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Abstract 

Inconsistency handling in declarative process 

models (DPMs) has been of increased interest as even 

a single contradiction within a constraint set makes 

the entire DPM unsatisfiable. To develop interactive 

inconsistency resolution and prevention approaches, 

humans must be able to identify and understand the 

problem at hand. Therefore, we aim to gather first 

insights into the cognitive effects of inconsistency 

characteristics on understanding inconsistencies in 

DPMs by conducting an exploratory study. Our results 

show that participants had notable difficulties with 

understanding inconsistencies, which we could trace 

back to several inconsistency characteristics, such as 
combinations of interrelated constraints. Thus, we 

identified a strong need for the development of 

interactive and visual decision support technologies to 

improve inconsistency understanding in DPMs.  

 

Keywords: Declarative Process Models, Declarative 

Process Specifications, Declare, Inconsistencies, 

Comprehension 

1. Introduction  

Enabling compliance with both internal and 

external regulations has been identified as a current 

challenge for organizations (Hashmi et al., 2018). 

Such compliance regulations are often modeled in the 

form of declarative statements that define allowed 

company behavior (Graham, 2006). A common way 

of modeling company processes using a declarative 

approach are declarative process specifications (Di 

Ciccio & Montali, 2022), also referred to as 

declarative process models (DPMs). DPMs are 

defined as “a set of constraints that must all be satisfied 

during the process run” (Figl et al., 2020, p. 123) and 

accept any execution trace that complies with the 

defined constraints. However, even a single 

contradiction within a constraint set makes the entire 

DPM unsatisfiable, as no finite execution trace is 

accepted. Thus, handling inconsistencies in DPMs has 

been of increased interest in previous years (Corea et 

al., 2019; Corea & Delfmann, 2019; Di Ciccio et al., 

2017). DPMs can originate from different sources, 

such as event logs (Di Ciccio et al., 2017) or natural 

language text (Lopez et al., 2019). However, current 

declarative process discovery and extraction 

approaches do not take potential interrelations 

between the newly modeled constraints into account, 

which can lead to contradictory statements within rule 

sets, also referred to as inconsistencies (Di Ciccio et 

al., 2017). For example, Corea et al. (2019) were able 

to show that a DPM mined from real-life event logs 

with a support factor of 95% led to more than 600 

inconsistencies within 207 constraints. Therefore, it is 

important to be able to resolve and/or prevent such 

inconsistencies. To date, several approaches for 

automated inconsistency resolution have been 

proposed (Corea et al., 2019; Di Ciccio et al., 2017). 

However, these approaches might not always be 

plausible in practice, as this might lead to the deletion 

of potentially business-critical rules. This stresses the 

need for interactive approaches that include the human 

in the loop. To be able to successfully identify and 

resolve inconsistencies, humans must be able to 

understand that a set of constraints is inconsistent and 

pinpoint the cause for this inconsistency. So far, 

inconsistency understanding has only been studied in 

the context of DMN decision tables (Nagel et al., 2019, 

2020), while DPMs have only been studied regarding 

understanding challenges in general (Figl et al., 2020; 

Haisjackl et al., 2016). Thus, this work aims to provide 

first insights into humans’ cognitive approaches and 

perceptions when trying to make sense of inconsistent 

constraint sets. More specifically, we aim to answer 

the following research question:  

 

What are the (potential) effects of inconsistency 

characteristics on understanding inconsistencies in 

declarative process models? 

 

The results will provide the basis for future 

studies and support the improvement of inconsistency 
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understanding using business intelligence (BI) in the 

form of metrics and/or visualizations, which is an 

important prerequisite for interactive inconsistency 

handling approaches.  

In Section 2 we introduce related work in the areas 

of DPMs and inconsistencies. Section 3 elaborates on 

the design of the explorative study conducted in the 

scope of this work. Section 4 presents and discusses 

the results of this study. We conclude with a summary 

and discussion of opportunities for further research. 

2. Background & Related Work 

2.1. Declarative Process Models 

DPMs consist of a set of constraints that every 

valid process execution must follow (Di Ciccio et al., 

2017; Figl et al., 2020), so they represent 

circumstantial information (Haisjackl et al., 2016). A 

common language to model declarative processes is 

called Declare, which defines a set of constraint 

templates (Di Ciccio et al., 2017). These templates are 

based on linear temporal logic (LTL) and can be used 

to model constraints without having to be familiar with 

the underlying formalization (Figl et al., 2020). Table 

1 provides an overview of the Declare templates we 

use as a basis for our study.  

Table 1: Overview of Declare Templates 

  Template 

E
x
is

te
n

ce
 Position Init(a) | End(a) 

Cardinality 

ExactlyOne(a) | ExactlyTwo(a) … 

AtLeastOne(a) | AtLeastTwo(a) … 

AtMostOne(a) | AtMostTwo(a) … 
Absence(a) 

R
el

a
ti

o
n

 

Forward 
RespondedExistence(a,b) 

[Chain]Response(a,b) 

Backward [Chain]Precedence(a,b) 

Coupling 
CoExistence(a,b) 
[Chain]Succession(a,b) 

Negation 

Not[Chain]Response(a,b) 

Not[Chain]Precedence(a,b) 

Not[Chain]Succession(a,b) 

NotCoExistence(a,b) 

 
Generally, we distinguish between existence and 

relation constraints. Existence constraints express 

restrictions regarding the position or cardinality of a 

single activity and are automatically activated. In 

contrast, relation constraints describe the interplay 

between two activities, with a source activity requiring 

or prohibiting a target activity. Here, forward relations 

are activated by their first parameter, backward 

relations by their second parameter and coupling 

constraints can be activated in both directions. 

 

In addition to the direction of activation, we also 

distinguish between undirected (RespondedExistence 

and CoExistence) and directed relations regarding the 

order of activities in a trace, i.e., an execution 

sequence. Directed relations can either express that a 

target activity must eventually (Response, Precedence, 

Succession) or immediately (ChainResponse, 

ChainPrecedence, ChainSuccession) follow or 

precede a source activity and can also be negated. 

In our study, we provided participants with an 

overview of all templates in their textual and visual 

forms, including their definitions. To avoid 

redundancy, we refer to Figure 2 and Figure 3 for an 

overview of natural language descriptions and visual 

notations for all templates. For a full formalization of 

all templates and corresponding LTL formulas, we 

refer to Di Ciccio and Montali (2022).  

2.2. Inconsistency in DPMs 

A DPM is referred to as inconsistent if it does not 

accept any finite execution trace (Di Ciccio et al., 

2017). Here we distinguish between inconsistencies in 

the classic-logical sense, which already occur at 

design time, and potential inconsistencies that only 

occur during run time (Corea & Delfmann, 2019; 

Corea & Thimm, 2020). For example, the constraint 
set {Init(a), Response(a,b), NotResponse(a,b)} is 

classically inconsistent, while the constraint set 

{Response(a,b), NotResponse(a,b)} represents a 

potential inconsistency and only leads to contradictory 

conclusions if a occurs in a trace. To extract and 

measure inconsistencies, we apply the notion of 

minimally inconsistent subsets (MIS) of declarative 

constraints. MIS are minimal in terms of set inclusion, 

so the deletion of exactly one element automatically 

resolves the inconsistency (Corea & Thimm, 2020). 

We also distinguish between different inconsistency 

structures. Nagel & Delfmann (2023) have identified 

a total number of 16 structures, i.e., recurring patterns 

with shared characteristics that describe how and why 

an interplay of constraints can lead to inconsistency. 

More specifically, they distinguish between structures 

that describe contradictions regarding a fixed or 

relative position in a trace (IS01-IS03), explicit or 

implicit contradictions regarding the cardinality of an 

activity (IS04-IS09), contradictions regarding the 

relation between two activities, and inconsistencies 

that occur due to trace boundaries (IS14-IS16), i.e., 

traces having to be finite. Table 2 provides an 

overview of all structures, corresponding examples are 

linked in Section 3.1., and for a more detailed 

explanation, we refer to Nagel & Delfmann (2023). 
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Table 2: Inconsistency Structures 

ID Structure 

IS01 Multiple Start/End Events 

IS02 Multiple Direct Predecessors/Successors 
IS03 Contradictory Chain 

IS04 Explicit Contradictory Cardinality 
IS05 Implicit Contradictory Cardinality – Activation 

IS06 Implicit Contradictory Cardinality – Single Pair 
IS07 Implicit Contradictory Cardinality – Activated Position 

IS08 Implicit Contradictory Cardinality – Multiple Pair 
IS09 Implicit Contradictory Cardinality – Combined Pair/Activation 

IS10 Contradictory Co-Existence 
IS11 Explicit Contradictory Order 

IS12 Implicit Contradictory Order – Bidirectional Paths 
IS13 Implicit Contradictory Order – Single Boundary 

IS14 Lack of Space – Local 
IS15 Lack of Space – Global 

IS16 Loop 

2.3. DPM & Inconsistency Understanding 

Many works have investigated the understanding 

of DPMs. In this context, Nagel and Delfmann (2022) 

conducted a structured literature review and were able 

to extract seven challenge categories from a total of 19 

empirical studies and theoretical discussions on DPM 

understanding, as summarized in Table 3. 

Table 3: DPM Understanding Challenges 

Category Factors/Options 

Complexity size, density, variability, modularization 

Individual 

Constraints 
template definitions 

Constraint 

Combinations 
pairs of constraints, hidden dependencies 

Representation visual, textual, hybrid, simulation 

Reading Order sequential instead of circumstantial 

Background & 

Experience 

affects preferences within other 

characteristics 

Task Type contextual information, allowed behavior 

 

In contrast, existing works on inconsistency 

understanding are currently limited to studies that 

analyze how quantitative measures and visualization 

techniques affect the understanding of inconsistencies 

in DMN decision tables (Nagel et al., 2019, 2020). 

While some of the identified DPM understanding 

challenges might also apply to inconsistencies, as they 

are always subsets of DPMs, others might differ due 

to different characteristics of inconsistencies 

themselves. For example, only presenting users with 

one MIS at a time already reduces complexity and is, 

thus, expected to lower the mental effort required to 

understand the problem at hand (Nagel & Delfmann, 

2022). Another example includes the high degree of 

connectivity within MIS, which might increase the use 

of a visual representation, even though this has been 

found to decrease understanding of entire DPMs. Also, 

the trade-off between individual characteristics has 

never been studied. For example, “size has generally 

been found to increase mental effort; however, large, 

and rather explicit models might still be easier to 

understand than small, implicit ones” (Nagel & 

Delfmann, 2022). Depending on the structure of an 

inconsistency, its characteristics, and their interplay 

can be further defined. This includes but is not limited 

to the type of inconsistency (classic vs. potential), its 

size, density (ratio between constraints and activities), 

and variability (the number of different templates).  

3. Study  

We approach this work in an exploratory manner 

due to the lack of research and theory regarding 

inconsistency understanding in DPMs. Here, we are 

especially interested in investigating similarities and 

differences compared to existing research on DPM 

understanding, as there is the possibility that not all 

understanding challenges align. Furthermore, we aim 

to identify additional (inconsistency) characteristics 

and other factors that potentially affect inconsistency 

understanding. Lastly, we are also interested in 

possibilities for understanding improvement. In the 

following, we describe the design, the individual steps, 

and the data collected during these steps (cf. Figure 1).  

 

 

Figure 1: Overview of Study 
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3.1. Preparation 

In this study, we provided participants with 

constraint sets and asked them to provide a valid trace 

or explain the underlying problem. Each participant 

received different constraint sets to collect data for a 

large variety of inconsistency characteristics. 

Therefore, we created between two and eight 

constraint sets based on each inconsistency structure 

(cf. Section 2.2). To keep the task equal throughout the 

study, we only used classic inconsistencies, as 

potential inconsistencies allow valid traces unless the 

activating activity occurs. We created MIS with 

randomly generated characteristics for each dimension 

(e.g., size, template variability) to represent a large 

variety of different inconsistencies. This led us to a 

total number of 60 different MIS, which serve as the 

basis for our study. We are also interested in 

investigating any differences in inconsistency 

understanding when confronting participants with 

textual vs. visual constraint sets. Thus, we prepared 

each task in textual and graphical representation, 

leading to a total number of 120 tasks1.  
 

 

Figure 2: Overview of Textual Constraints 

To focus on the interplay between constraints as 

opposed to the contents of these rules, we used 

randomly generated letters from c to z to represent 

activities in each task. The letters a and b were 

excluded from the constraint sets to avoid confusion, 

as these letters were already used in the provided 

template overview (Figure 2 and Figure 3).  

 
1https://uni-ko.de/hicss-iu-study 

 

Figure 3: Overview of Visual Constraints 

As shown in Figure 4, textual models were 

structured equally to the corresponding legend and 

within each sub-category, the constraints were shown 

in random order. For visual constraints, we randomly 

selected the direction of each arrow to prevent any bias 

by using a predefined visualization pattern and 

ensuring the same conditions for all participants, as 

they all received different tasks. We also prepared 

introductory material to provide the participants with 

all relevant prerequisites and prior knowledge.  
 

 

Figure 4: Exemplary Task in Textual (left) and Visual 

(right) Representation 

To verify and iteratively improve our study design 

and setup, we conducted pretests with the following 

results. The introduction was revised multiple times to 

break down the key foundations as briefly as possible, 

while still covering all concepts required for solving 

the tasks. Additionally, a step-by-step example was 

added to the introduction after the second iteration of 

pretests to prepare the participants for the following 

tasks. This was necessary due to the participants’ lack 

of experience with DPMs. We also decreased the 

maximum size of constraint sets from 15 to 8 

constraints, as participants were not able to work with 

Init(o)

ExactlyOne(t)

E X I S T E N C E

R E L A T I O N

ChainResponse(o,g)

FORWARD

NotPrecedence(g,t)

BACKWARD

1

t

Init

o g
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larger constraint sets in a reasonable amount of time. 

The constraint overviews were also iteratively refined 

to improve their usability. 

3.2. Participants & Settings 

The study was conducted in November of 2022 

with 20 undergraduate and graduate students (cf. 

Table 4) from the faculty of computer science at the 

University of Koblenz. While this sample size is 

generally considered small, it is a common sample size 

for exploratory studies in the area of DPMs “due to the 

substantial effort to be invested per subject” (Haisjackl 

et al., 2016, p. 330). All students had basic prior 

knowledge of procedural business process modeling 

and logic/reasoning, which we verified as part of our 

pre-study questionnaire. To ensure equal prerequisites, 

no prior knowledge of DPMs was allowed. This was 

important to prevent distortion of our results, as prior 

experience with certain templates or inconsistencies in 

DPMs might influence inconsistency understanding. 

Participation in the study was voluntary and no 

incentive was offered.  

We created and executed our study using the 

cloud-based eye-tracking software EYEVIDO Lab 

and a Tobii 4C eye-tracker. The study was displayed 

on a 24-inch screen with a resolution of 1920 x 1080. 
The tasks did not require or allow scrolling or 

zooming, as all components were shown at once, and 

clear visibility from a viewing distance of 60 cm was 

verified as part of our pretest (cf. Section 3.1). To keep 

the settings the same for all participants, we conducted 

the study in our IT lab where we could fully control 

potential distractions such as noise and lighting.  

We added our introductory slides as a PDF file 

and implemented the tasks as an HTML file. This 

allowed us to easily replace the respective models after 

each run without having to edit the study itself. 

Furthermore, it allowed us to easily track the 

participant’s answers. All other measurements were 

provided by EVEVIDO Lab and are explained in more 

detail in the following section.  

3.3. Structure, Instrumentation & 

Measurements 

The data collection of our study was structured as 

follows. First, we welcomed the participants and asked 

them to fill out a pre-study questionnaire and consent 

form. Here, we asked participants to provide their 

program of study and rate their prior knowledge in the 

areas of process modeling and logic/reasoning using a 

5-point Likert scale. This was followed by an 

explanation of the study and the calibration of the eye 

tracker. Next, the participants were provided with 

introductory slides to read at their own speed.  

As part of the data collection, each participant was 

confronted with a total number of eight constraint sets. 

Six were minimally inconsistent, while the remaining 

two were similar consistent constraint sets (i.e., we 

removed a single constraint from an MIS to make it 

consistent) that serve as control questions.  

The screen was divided into three areas for each 

question. The question area was located at the top of 

the screen. The task was the same for all constraint sets 

(“Please provide a valid trace for the model below.”) 

and the participants could either provide a valid trace 

and press “Submit” or conclude that there is no valid 

trace by pressing “No valid trace”. Below, the textual 

or visual constraints were located on the left (cf. Figure 

4), while an overview of all templates (Figure 2 and 

Figure 3) was located on the right. After submitting a 

valid trace, the participants were automatically 

directed to the next question. In case the participants 

concluded that there was no valid trace, they were 

directed to a follow-up screen, which consisted of the 

same three areas. However, the task was replaced with 

a request to “Please explain in your own words, why 

there is no valid trace for the given model”. After 

verbally describing the problem, the participants could 

proceed to the next question. Generally, we assume 

successful comprehension if a participant has 

determined that there is no valid trace for a given MIS 

and was able to correctly explain the problem 

afterward. The latter was important to identify invalid 

answers. For all inconsistencies that were successfully 

understood, we measured understanding efficiency by 

tracking the time from the point where the task was 

displayed until the participant clicked on the “no valid 

trace” button. After completing all tasks, we 

conducted a short semi-structured interview with the 

participants to gain further subjective insights into 

their approach and perception. Here, we asked the 

following four questions: (1) “Which representation 

did you find easier to understand and/or more 

intuitive?”, (2) “What templates did you find easy or 

hard to understand and apply?”, (3) “Which other 

factors or model characteristics did you find to 

positively or negatively influence your inconsistency 

understanding?”, and (4) “How could inconsistency 

understanding be improved in the future?”. Depending 

on the answers, we asked follow-up questions for 

clarification purposes. To prevent bias, we did not 

disclose task results before study completion.  

To gain insights into the cognitive processes of 

the subjects we evaluated the collected eye-tracking 

data. Here, we analyzed the fixation duration (FD), 

i.e., the time the eyes remain still on a fixed location, 

as this is an indicator of objective mental effort 
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(Meghanathan et al., 2015), with a higher FD 

indicating an increased mental effort. Additionally, we 

considered the number of fixations within different 

areas of interest (AOI) and evaluated heatmaps and 

view paths to get further insights on the participants’ 

approaches. To enrich these results with subjective 

participant insights, we made use of think-aloud 

protocols during the study (Ericsson & Simon, 1980). 

We encouraged German-speaking participants to 

voice their thoughts in German instead of English if 

that made them more comfortable to speak.  

4. Results & Discussion 

We processed and analyzed our data as follows. 

First, we determined which tasks were answered 

correctly, incorrectly, or were considered invalid. 

Furthermore, we transcribed the verbal data collected 

during the study and the post-study interview. We also 

analyzed the collected eye-tracking data and screen 

recordings to identify the cause for incorrect answers 

in case this could not be derived from the think-aloud 

data and answers. After analyzing all data, we were 

left with a total of 66 correct (white), 38 incorrect 

(red), and 16 invalid answers (gray) for non-control 

questions.  

Table 4: Overview of Participants & Results 

P M L 
Intro 

(min) 

Part 1 Part 2 

1 2 3 4 5 6 7 8 

P1 1 3 15:43 5 15 C 24 31 40 C 53 
P2 4 2 12:29 1 11 C 29 33 43 C 60 
P3 3 4 14:39 2 12 C 30 38 46 C 51 
P4 2 2 14:13 3 20 C 32 41 50 C 56 
P5 1 4 23:08 4 22 C 35 42 45 C 57 

P6 2 1 17:04 6 13 C 18 26 48 C 49 
P7 1 4 11:40 7 14 C 16 28 44 C 52 
P8 2 1 15:50 8 17 C 23 37 39 C 54 
P9 2 3 15:11 9 19 C 25 34 47 C 58 

P10 2 4 15:54 10 21 C 27 36 55 C 59 

P11 3 2 11:54 53 40 C 31 24 15 C 5 
P12 2 4 13:10 60 43 C 33 29 11 C 1 
P13 2 4 21:19 51 46 C 38 30 12 C 2 
P14 3 4 15:26 56 50 C 41 32 20 C 3 
P15 3 3 11:11 57 45 C 42 35 22 C 4 

P16 4 4 15:51 49 48 C 26 18 13 C 6 
P17 4 2 14:28 52 44 C 28 16 14 C 7 
P18 2 2 19:41 54 39 C 37 23 17 C 8 
P19 3 2 11:06 58 47 C 34 25 19 C 9 
P20 1 3 21:56 59 55 C 36 27 21 C 10 

 

Table 4 provides an overview of the data that 

serves as the basis for the following analyses. Here we 

show the participant IDs, their prior knowledge in the 

areas of process modeling (M) and logic/reasoning 

(L), the time they spent looking at the introductory 

slides, the task IDs for each participant, and their result 

for each task, indicated by the previously described 

colors. While odd participant IDs received textual 

models in part 1 and visual models in part 2, the order 

was reversed for participants with even IDs.  

In the following sections, we first identify the 

reasons for tasks being answered incorrectly, analyze 

the obtained eye-tracking data to gain insights into the 

objective mental effort, and then discuss the perceived 

mental effort in more detail. 

4.1. Reasons for Incorrect Answers 

In the introduction, we instructed participants to 

start with the existence constraints and follow the path 

of activation from there, as relation constraints 

represent if-statements that must be activated by an 

activity. We also suggested using the input field to 

start constructing traces while analyzing the 

constraints. Despite these instructions, we observed a 

variety of different approaches that often led to 

problems when trying to make sense of the provided 

constraint sets. While some incorrect answers were 

based on a single error, others resulted from a 

sequence of errors. Table 5 provides an overview of 

the main reasons for incorrect answers, as well as the 

corresponding number of affected textual and visual 

tasks, as discussed in more detail below.  

Table 5: Overview of Reasons for Incorrect Answers 

and Number of Tasks 

Reason Textual Visual 

Constraints were skipped 6 7 

Constraints were not applied globally 4 2 

Inactivated relations were executed 4 4 
Templates were misunderstood/misinterpreted 21 16 

Other 2 6 

 

Constraints were skipped for several reasons, 

mostly because the activation of a relation constraint 

was missed, or constraints were simply overlooked or 

not considered at all. Especially the latter was a larger 

problem for visual constraints (4 vs. 1 incorrect 

answers), as participants had an immediate overview 

of all interrelations but quickly jumped to the 

conclusion that parts of the model were irrelevant. 

Another commonly made mistake was not considering 

relations as if-statements and adding all involved 

activities to the trace, which led to unnecessary and 

redundant activities. 

Next, some constraints were not applied to the 

entire trace, which was a larger problem for textual 

models. For example, one participant provided the 

combination “cgcf” as a valid trace for the constraint 

set {AtLeastTwo(c), ChainResponse(c,g), 

ChainResponse(c,f)}. However, both ChainResponse 

constraints were only applied to a single occurrence of 

c, which led to an incorrect answer. It also occurred 
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that conditions were initially applied correctly but 

were never revisited after updating the trace.  

The most common causes for incorrect answers 

were misinterpreted or misunderstood templates. 

While forward templates were rather unproblematic, 

backward constraints were regularly misinterpreted. 

More specifically, Precedence was either confused 

with Response (“a must be followed by b” instead of 

“b must be preceded by a”) or the parameters 

themselves were switched (“a must be preceded by 

b”). Here the visual representation appears to prevent 

this issue compared to a textual representation, with 1 

vs. 6 incorrect answers. Furthermore, regular 

constraints were sometimes confused with their chain 

counterpart and vice versa, positive and negative 

templates were mixed up, and cardinalities were 

processed incorrectly. In Section 4.3 we will extend 

this discussion by focusing on the participants’ 

perception regarding templates.  

Other errors include not fully grasping the 

concept of a finite trace (i.e., trying to provide an 

infinite trace or being confused by parallel activity 

executions), automatically considering the “last” 

activity in visual representations the end, or 

interpreting multiple cardinality constraints involving 

a single activity as alternatives.  

4.2. Understanding Accuracy & Objective 

Mental Effort 

When looking at the distribution of correct 

answers across tasks, some inconsistency structures 

generally seem to be easier to understand than others 

(see Table 6). This can mainly be explained by their 

complexity (i.e., size and template variability). For 

example, tasks containing directly contradicting 

constraints (e.g., IS01, IS03) were all answered 

correctly, while participants struggled with more 

complex and interrelated structures (e.g., IS09). While 

the overall distribution was similar with 6 structures 

having more correct answers for textual vs. 7 

structures for visual constraints, some structures seem 

to explicitly benefit from a visual representation (e.g., 

loops) and vice versa.  

When looking at the average fixation duration, it 

is noticeable that the visual notation is associated with 

a lower mental effort required to understand an 

inconsistency for most structures (11 out of 16). 

Table 6: Overview of Correctly Answered Questions 

ID Tasks 
Correct Answers Fixation Duration (s) 

Textual Visual Textual Visual 

IS01 1–2 100% 100% 98 10 

IS02 3–6 25% 50% 61 160 
IS03 7–10 100% 100% 119 66 

IS04 49–52 100% 75% 28 21 

IS05 57–60 75% 25% 89 125 

IS06 53–56 0% 50% 144 80 

IS07 45-46 0% 50% 88 69 
IS08 43–44 100% 50% 102 87 

IS09 47–48 50% 0% 157 110 

IS10 31–34 100% 50% 85 172 

IS11 
11–14, 

35–38 
25% 38% 169 139 

IS12 19–22 25% 50% 200 99 

IS13 15–18 75% 25% 67 101 

IS14 23–26 75% 75% 200 81 

IS15 27–30 75% 100% 77 20 

IS16 29–42 0% 50% 136 166 

 

Next, we considered other characteristics that 

have the potential to affect inconsistency 

understanding (cf. Section 2.3). While most 

characteristics strongly influence each other and can, 

therefore, not be considered in isolation, we were able 

to observe a clear trend regarding the number of 

constraints and the mental effort required to 

understand the respective constraint sets. As shown in 
Table 7, the average fixation duration for tasks 

involving constraint sets of increasing size also 

increases, regardless of most other characteristics. 

This aligns with related works on DPM understanding 

(cf. Section 2.3 and Abbad-Andaloussi et al. (2023)). 

Also, we can again see a difference between the mental 

effort required to understand inconsistencies in visual 

models and textual inconsistencies. While this is also 

the case when considering the understanding accuracy, 

which is measured using the number of correct 

answers, a clear trend of a decreased understanding 

accuracy for increasing inconsistency size cannot be 

observed.  

Table 7: Average Fixation Duration for Tasks with 

Increasing Numbers of Constraints 

Constraints 
Correct Answers Fixation Duration (s) 

Textual Visual Textual Visual 

2 88% 88% 46 40 
3 40% 60% 61 82 

4 25% 25% 96 92 

5 40% 50% 145 106 

6 30% 30% 134 107 

7 25% 50% 159 155 
8 44% 67% 192 142 
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4.3. Perception of Factors Affecting 

Inconsistency Understanding 

Based on the collected think-aloud protocols and 

the answers resulting from our post-study interview, 

we now investigate and discuss the perceived mental 

effort when trying to understand inconsistencies in 

DPMs.  

While only a few participants perceived the 

templates themselves as easy to understand and rather 

straightforward (P7, P19), most participants had 

notable difficulties with one or more templates. 

Existence constraints were mainly considered as easy 

to understand (P7, P8) and especially cardinality was 

mentioned as an intuitive concept known from other 

areas (P11, P17). 4 participants even implied that the 

presence of an Init constraint helped them to 

understand the model “as you always knew where to 

start” (P3). For relation constraints, it was agreed that 

backward constraints are harder to understand and less 

intuitive than forward or coupling constraints, mainly 

because of their reversed order of activation. 

Negations were generally perceived as easy to 

understand, independent of the form of representation, 

except requiring “twice the mental effort to apply” 

(P5). Chain constraints were also considered easy to 

implement, “as the condition that two activities must 

follow each other directly is satisfied right away and 

you do not have to go back” (P19), the latter being the 

case for regular relations.  

Another factor that was mentioned by participants 

is the complexity of an inconsistency. Here, 11 

participants agreed that a larger number of constraints 

negatively influenced inconsistency understanding, 

while some participants specifically mentioned the 

number of relation constraints or activities.  

Furthermore, two participants implied that an 

increased template variety makes it harder to 

understand the provided models. For example, P5 

referred to the number of different symbols in visual 

constraint sets as “an increased diversity makes the 

logic very complex” and P11 specifically said that 

“when there was a bit of everything, it was harder”.  

Furthermore, the participants mentioned several 

factors related to individual constraints or constraint 

combinations. Two participants were confused by an 

activity that was not connected to the remaining 

activities (P4, P6). While P16 and P17 generally 

referred to the presence of interrelations as 

problematic, others specifically mentioned 

combinations of forward and backward constraints 

(P13, P17) and/or multiple arrows connected to a 

single element (P6, P7, P20). Also, P8 mentioned that 

“it is harder if rules that contradict each other are 

further apart”. However, as inconsistencies are 

minimal, all constraints are automatically involved in 

the contradiction. Lastly, direct contradictions made it 

easier for the participants to identify problematic 

models (P4, P7, P14), compared to contradictions that 

are hidden across multiple constraints. 

4.4. Textual vs. Visual Representation 

Table 8 provides a summary of the number of 

correctly answered questions, the percentage of 

fixations on the screen area containing the provided 

legend, and the participants' perception regarding 

which form of constraint representation they found 

easier. In total, 11 participants preferred the textual 

representation while 8 preferred the visual notation. 

This shows that there does not seem to be a unanimous 

favorite, but the preferred notation is based on 

personal preference. Interestingly, the participants’ 

perception does not always align with the number of 

correctly answered textual and visual tasks, as well as 

the mental effort dedicated to the respective legends. 

Also, multiple participants expected to prefer the 

visual notation after the introduction and later 

concluded, that they found the textual constraints 

easier to understand (P1, P6, P10, P12). Additionally, 

P3 and P6 implied that they imagined visual 

constraints to be easier after having some practice, 
which they were lacking during this study. We now 

discuss the main advantages and disadvantages 

mentioned by the participants. 

Table 8: Textual vs. Visual Constraint Representation 

PID 
Correct Legend Fixations (%) 

Perception 
Text. Vis. Textual Visual 

P1 2 2 30.3 31.3 textual 

P2 3 4 20.0 6.4 visual 
P3 4 3 24.3 38.6 textual 

P4 1 2 19.4 38.0 textual 

P5 0 2 17.4 17.1 visual 

P6 1 0 23.4 32.6 textual 

P7 3 3 24.2 14.2 visual 
P8 0 4 21.4 30.7 textual 

P9 2 1 31.7 31.6 textual 

P10 1 3 19.1 12.8 textual 

P11 1 2 36.1 37.3 visual 

P12 3 0 32.0 43.4 textual 
P13 1 2 23.1 24.6 visual 

P14 3 3 22.9 9.6 same 

P15 1 3 36.8 28.0 textual 

P16 0 0 20.1 17.6 textual 

P17 3 1 25.8 35.2 textual 
P18 4 4 20.8 21.0 visual 

P19 3 2 32.4 28.6 visual 

P20 1 0 28.2 31.4 visual 

 

Multiple participants agreed that textual 

constraints require more time to read and process (P5, 

P6, P11), while visual constraint sets are easier to look 

at and faster to process (P11, P19, P20). Also, visual 
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constraints allow seeing the big picture as they display 

dependencies and interrelations between constraints 

(P2, P3, P5, P19), while textual constraints require any 

context to be stored in the participants' minds (P7). 

However, this also leads to having to process more 

information at a time when looking at visual models 

(P14, P16, P17), whereas textual constraints can be 

read one at a time (P8). Thus, a visual notation seems 

especially beneficial for smaller examples (P1, P14).  

As MIS only comprise a small fraction of 

constraints compared to the overall model, a visual 

representation might be more suitable for improving 

inconsistency understanding compared to the 

understanding of DPMs in general (cf. Section 2.3). 

The interrelations between visual constraints also 

helped participants to follow a path of activation (P3, 

P6) whereas activity occurrences had to be identified 

manually to put textual constraints in a logical order 

(P3, P6, P13). Considering that MIS have a high 

degree of connectivity, this seems to be an important 

factor when presenting inconsistencies to users. 

However, multiple participants also referred to the 

visual notation as confusing, abstract, and unintuitive. 

Here, some complained about the arrows, especially 

for backward constraints (P4, P15), while others found 

the circles that represent activations hard to understand 

(P7). In contrast, one advantage of textual constraints 

appeared to be the rather self-explanatory wording 

(P1, P7). This aligns with the opinions about prior 

experience helping to understand textual and/or visual 

constraints. While some found the visual notation 

easier “as it is similar to common graph notation” and 

they could “associate symbols with known ones” (P7), 

others criticized the similarity of the visual models to 

procedural process models, which led to confusion 

(P9) as it might, e.g., mistakenly imply the presence of 

loops (P10).  

To summarize, a visual notation seems preferable 

when providing rather small and strongly connected 

constraint sets, but the notion might require some 

adjustments to improve understanding, which we will 

discuss in more detail in the following section. 

4.5. Improving Inconsistency Understanding 

To improve inconsistency understanding, many 

users suggested changing the order in which the 

constraints are displayed. For textual constraints, it 

was suggested to display the constraints in their order 

of activation (P11), although that might not be possible 

in many cases due to multiple activation paths. For 

visual constraints, many participants struggled with 

not having a clear start (P11) and reading order, which 

is due to the nature of DPMs comprising 

circumstantial and not sequential information. 

However, P8, P11, P14, and P18 suggested displaying 

all constraints with the arrows pointing from left to 

right or top to bottom, as this resembles their natural 

reading order. While this is generally possible, it 

would mean that the order of activation might still be 

visualized from right to left or bottom to top. Some 

also realized this issue and only suggested changing 

the order, without having any specific visualization in 

mind. Similarly, two participants suggested 

completely changing the visual notation, but they were 

also not able to provide any specific suggestions on 

how a different visualization could look.  

Next, some participants suggested applying color 

codes to differentiate between templates or groups of 

constraints. This includes using different colors for 

different arrows (P12), specifically highlighting 

negation constraints in red (P17, P18, P20) or coloring 

Chain constraints (P8, P20). Other suggestions for 

improvement include to “not show as much at once 

when you have to look for a valid trace but show 

everything at once when you look for inconsistencies” 

(P9), spacing out activities visually for large models 

(P20), and to “clearly mark optional activities” (P10).  

Lastly, one participant suggested using a 

combination of textual and visual representation, 

which “might make it slower but lead to more correct 

answers” (P4). This seems like a reasonable 

suggestion, considering that we were able to show that 

there is no common understanding about which form 

of representation is easier or harder to understand, as 

both textual and visual constraint sets have advantages 

and disadvantages. 

5. Conclusion 

In this work, we conducted an exploratory study 

to investigate the potential effects of inconsistency 

characteristics on inconsistency understanding in 

DPMs. We confronted participants with declarative 

constraint sets and asked them to provide any valid 

trace or explain the underlying problem. Our results 

show that many participants had problems with 

identifying and properly explaining inconsistencies. 

Thus, we focused on analyzing the causes by looking 

at the reasons for incorrectly answered questions based 

on the verbal transcripts, answers, and collected eye-

tracking data. We could show that the main 

characteristic of inconsistencies, namely being a set of 

interrelated constraints, had negative effects on 

understanding. Also, backward templates posed 

notable understanding challenges. Furthermore, we 

gained subjective insights by conducting post-study 

interviews with all participants. Here our focus was to 

identify possibilities for the improvement of 

inconsistency understanding. The findings include 

Page 6020



matching the order of constraints to a natural human 

reading order, as well as making use of color codes for 

different concepts within inconsistent constraint sets.  

However, we found that many participants only 

identified problems but were unable to come up with 

a solution, which highlights the non-triviality of an 

optimal form of representing inconsistencies. 

Therefore, further studies on the visualization of 

inconsistencies in DPMs are needed. As several 

attempts to develop alternative visual representations 

of DPMs have been made (Ferro & Marrella, 2018; 

Hanser et al., 2016), these works could serve as a 

starting point by investigating the potential of these 

notations in the scope of inconsistency understanding.  

To ensure internal validity and prevent distortion 

of our results, we enforced equal prerequisites by only 

considering participants without prior knowledge of 

DPMs. However, the high number of incorrect 

answers and identified reasons indicate that 

participants had notable difficulties when working 

with the declarative notation itself. In future work, we 

plan to conduct further studies with larger sample sizes 

and more experienced modelers to decrease the 

cognitive load of acquiring a new notation and 

potentially obtain more accurate results.  

As this study is exploratory, our results do not 

point to causal relationships between inconsistency 

characteristics and the accuracy and mental effort 

required for understanding inconsistencies. Instead, 

we focus on gaining first insights into humans’ 

perception and cognitive processes when trying to 

make sense of MIS. As this is the first work to 

empirically investigate inconsistency understanding in 

DPMs, it provides an important foundation for future 

quantitative studies and the design, development, and 

evaluation of novel decision support technologies. 
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