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Abstract 
This paper investigates the application of Machine 

Learning (ML) approaches for anomaly detection in 
time series data from screw driving operations, a pivotal 
process in manufacturing. Leveraging a novel, open-
access real-world dataset, we explore the efficacy of 
several unsupervised and supervised ML models. 
Among unsupervised models, DBSCAN demonstrates 
the best performance with an accuracy of 96.68% and a 
Macro F1 score of 90.70%. Within the supervised 
models, the Random Forest classifier excels, achieving 
an accuracy of 99.02% and a Macro F1 score of 
98.36%. These results not only underscore the potential 
of ML in boosting manufacturing quality and efficiency, 
but also highlight the challenges in their practical 
deployment. This research encourages further 
investigation and refinement of ML techniques for 
industrial anomaly detection, thereby contributing to 
the advancement of resilient, efficient, and sustainable 
manufacturing processes. The entire analysis, 
comprising the complete dataset as well as the Python-
based scripts are made publicly available via a 
dedicated repository. This commitment to open science 
aims to support the practical application and future 
adaptation of our work to support business decisions in 
quality management and the manufacturing industry.  
 
Keywords: Anomaly detection, screw driving 
operations, tightening process, supervised learning, 
unsupervised learning.  

1. Introduction  

Anomaly detection in manufacturing operations is 
a cornerstone for maintaining process quality and 
efficiency (Schlegl et al., 2022; Stojanovic et al., 2016). 

The advent of Machine Learning (ML) in recent 
decades has transformed this area, paving the way for 
new methods and innovative strategies (Glaser et al., 
2022). ML has opened up a wide field of possibilities 
for improved monitoring of screw driving data. As a 
subset of Artificial Intelligence, ML uses algorithms that 
allow computers to learn from data and make decisions 
or predictions without specific programming. Anomaly 
detection, especially unsupervised learning, can identify 
complex failure patterns and thus represents a 
significant improvement to existing quality assurance 
processes that often require prior knowledge of the 
nature of the anomalies (Chandola et al., 2009).  

The aim of this paper is to expand the scope of 
business decisions in quality management by 
introducing a data-driven approach to detecting 
complex error scenarios. This entails the exploration of 
anomaly detection methods based on unsupervised ML 
techniques, which will be tested and validated in the 
context of a screw driving case study. In achieving this, 
the paper makes several important contributions: 

• Offering a comprehensive summary of the 
contributions made by related research in the field 
of anomaly detection, thereby enabling readers to 
understand the landscape of existing solutions and 
their implications more clearly (see Sec. 3). 

• Providing a new real-world data set of screw 
driving operations, thereby enriching the resources 
available for studying these processes (see Sec. 5). 

• Conducting an extensive study of popular models 
using the provided dataset, thereby, contributing to 
the understanding of their practical applications and 
limitations (see Sec. 6). 

Following this introduction, we will explore the 
fundamentals of tightening processes as well as anomaly 
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detection. Then, we provide a review of related works, 
an introduction to the methods as well as the case study, 
and finally a discussion of our results and their 
implications, followed by a brief conclusion. 

2. Fundamentals 

2.1. Tightening process  

Various methods exist within the manufacturing 
industry to oversee and manage the screw tightening 
process. These methods differ in their supervisory 
techniques and the parameters they use for control. For 
instance, torque-controlled methods monitor the applied 
torque, ceasing the screwing process once a preset 
torque is attained. This approach is cost-effective and 
efficient for a majority of applications (J. H. Bickford & 
Nassar, 1998). In contrast, angle-controlled methods 
govern the screwing process via the rotation angle. After 
reaching a specific torque, the screw undergoes further 
rotation over a set angle, providing superior control and 
repeatability, particularly in safety-critical connections 
(J. Bickford, 1995). Other techniques include pulse-
controlled, yield point-controlled, torsion-free 
tightening, or hybrid methods that combine torque and 
angle control. The use case in this paper mainly utilizes 
the torque-controlled method.  

Upon examining the tightening process, the role of 
collected data in assuring its overall quality becomes 
evident. Handheld screwdrivers or automated stations 
gather thousands of angle-torque pairs, essential for 
enabling operators to observe the tightening curve and 
deduce process correctness. This data collection serves 
a dual purpose; beyond offering immediate feedback, it 
aids in developing a defect catalog. Such a catalog 
proves invaluable in understanding potential tightening 
process issues and mitigating them, thus fostering 
continual enhancements in quality. The amassed data 
points allow for meticulous inspection of each unit, 
aiding in isolating those needing further examination. 
This approach prevents the transition of defective units 
to subsequent assembly stations, thereby reinforcing the 
quality control within the manufacturing process. 

Maintaining a high degree of process quality during 
tightening is crucial for any manufacturing process, 
emphasizing the role of data analyses. They can provide 
a visual representation of the complex interplay between 
torque and angle. In the simplest form, such 
visualizations allow process experts to monitor each 
process, with regard to a collected defect catalog. For a 
higher degree of automation, statistical tools for quality 
monitoring, such as specific quality control limits, are 
used more frequently (Schlegl et al., 2021). While these 
approaches are widely used and easy to apply, they also 
exhibit limitations. Stochastic and technological noise 

within the collected data may introduce anomalies, 
potentially resulting in incorrect process interpretations. 
Processes falsely labeled as erroneous are not as 
damaging in this regard as observations falsely labeled 
as correct. Nevertheless, they are accompanied by 
increased expenses for manual inspections or rework.  

This emphasizes the need for more sophisticated 
analytics, capable of effectively identifying and 
addressing these issues. Such analytics could transform 
the tightening process and quality control. The 
following section reviews anomaly detection methods 
and their capability to improve quality control. 

2.1. Anomaly detection  

In practice, an anomaly is characterized as a pattern 
that deviates from expected behavior (Chandola et al., 
2009; Pang et al., 2021). A practical approach to identify 
these patterns involves establishing a range of values 
indicative of normal behavior. However, several multi-
faceted influencing factors make this straightforward 
approach more challenging. These hurdles can 
encompass the multivariate character of time-series-
based use cases, an ambiguous boundary separating 
normal and anomalous behavior, the potential for 
normal behavior to shift over time, the presence of noise 
or other interferences in the data, and the scarcity of 
labeled data to define and validate decision boundaries. 

As stated before, traditional inspection methods 
usually require substantial human effort to detect 
potential defects or deviations. As such, these manual 
inspections are generally regarded as time-consuming, 
exhausting, and prone to errors (Cao et al., 2019). Given 
the repetitive nature of these tasks, operators might 
experience fatigue or miss subtle differences, resulting 
in inaccurate findings. This could have significant 
ramifications in industries like manufacturing, where 
quality control is essential. Furthermore, traditional 
methods often fall short in adapting to the dynamic and 
complex nature of manufacturing processes. This is 
especially true concerning screw tightening, where 
numerous factors such as torque, angle, and position can 
influence assembly quality. Thus, ensuring consistent 
and precise inspections in such complex conditions 
becomes challenging, particularly for human operators. 
As a result, contemporary strategies are increasingly 
adopting automated and algorithmic approaches from 
the anomaly detection domain (see Sec. 3). These 
approaches leverage the potential of advanced analytics 
and ML to minimize the need for human inspections, 
offering a more accurate, consistent, and efficient way 
to detect anomalies in manufacturing processes. 

Deep Learning and ML, particularly Deep Neural 
Network (DNN), are especially relevant in this context. 
A DNN can learn intricate patterns and create a model 
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capable of distinguishing between defective and non-
defective instances through training with known 
examples of normal and abnormal cases. This concept, 
known as supervised learning, has yielded notable 
outcomes in industrial settings. However, supervised 
learning methods have a significant limitation in that 
they require labeled instances of damage patterns during 
training to accurately classify them during subsequent 
operational use. Given the high standardization level of 
industrial processes, instances of relevant damage 
patterns are seldom available. This implies that 
deviations from normal conditions occur infrequently, 
rendering the collection of a sufficient number of 
labeled examples that accurately reflect representative 
error types nearly impossible. Moreover, generating and 
labeling anomalous samples synthetically for model 
training can be expensive and time-consuming.  

3. Related work  

The following review of related work presents 
recent research and applications of ML approaches for 
anomaly detection in screw driving operations. The 
studies encompass a range of approaches including 
unsupervised and supervised models. The overarching 
objective is to identify reoccurring models as well as the 
structure of the explored screw driving scenarios. 
Table 1 provides an overview of the works discussed. 

Cheng et al. (2019) refer to their work as the first 
known approach of unsupervised learning in tightening 
data. In it, they investigate the use of Hidden Markov 
Models (HMM) to identify erroneous patterns in 1,013 
samples of four different screw types. HMMs are 
statistical models capable of representing stochastic 
processes with hidden states, and they can be applied for 

anomaly detection, where unusual sequences of 
observed outcomes, deviating from the normal patterns 
inferred by trained HMMs, are identified as potential 
anomalies (Dorj & Altangerel, 2013). In their data, with 
75% faults deliberately caused by various types of 
misalignment errors, the authors manage to determine 
the classes of screw runs with an accuracy of over 97%. 

In the same year, Cao et al. (2019) demonstrated a 
successful application of Long Short-Term Memory 
Networks (LSTM), a specialized type of Recurrent 
Neural Networks (RNN), to detect anomalies in screw 
driving data, achieving an accuracy of 93% within a 
dataset of 2,000 observations with four distinct classes. 
LSTM help to alleviate the vanishing gradient problem 
inherent in traditional RNN, thus enhancing their ability 
to learn from, and remember, information over long 
sequences of data (Hochreiter & Schmidhuber, 1997). 
The supervised approach significantly outperforms the 
two benchmarks, both also supervised, Support Vector 
Machine and Random Forest, and emphasizes the good 
suitability of LSTM for use cases with time series data. 

The work of Li et al. (2020), in which Synthetic 
Minority Over-sampling Technique (SMOTE) is used in 
combination with Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) for anomaly 
detection in screw data, introduces a hybrid or semi-
supervised approach. SMOTE is a supervised learning 
technique since it requires class labels to generate 
synthetic samples for minority classes (Chawla et al., 
2002), while DBSCAN is a prominent, unsupervised 
method used for clustering (Ester et al., 1996). In 
combination, the methods are often applied to use cases 
with unevenly distributed classes (Sanguanmak & 
Hanskunatai, 2016), a scenario that is typical for screw 
driving use cases, since faults usually occur several  

Table 1: Overview of related work on supervised and unsupervised machine learning for anomaly detection in tightening data 

Source Approach Proposed or deployed methods 
(Methods selected for benchmarking) 

Observations? Open-Access? 
#OK #NOK Data Code 

Cheng et al. (2019) Unsupervised Hidden Markov Model (none) 253 760 No No 
Cao et al. (2019) Supervised LSTM-RNN (Random Forest, SVM) 664 1,336 No No 
Li et al. (2020) Hybrid SMOTE with DBSCAN (none) 98,693 1,703 No No 
Ribeiro et al. (2021) Unsupervised LOF, iForest, AE (Random Forest) 6,088 74 No No 
Schlegl et al. (2021) Unsupervised Shape-based AE (traditional AE) 9,950 50 No No 

West et al. (2021) Supervised kNN, Naïve Bayes, DT, MLP, Random 
Forest, AdaBoost (six DL-classifier) 

14,083 
100 

60 
100 

No 
Yes Yes 

Ribeiro et al. (2022) Unsupervised LOF, iForest, AE (Random Forest) 67,337 220 No No 
Leporowski et al. 
(2022) Supervised ResNet, Temporal Attention-

augmented Bilinear Network (none) 
1,420 
1,574 

625 
288 

Yes 
Yes Yes 

Sakamoto et al. (2023) Unsupervised iForest (none) 300 100 No No 
West et al. (2023) Unsupervised  k-Means clustering with DTW (none) 50,000 96 No Yes 
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orders of magnitude less frequently than correct runs 
do. With this hybrid approach, the authors manage to 
achieve an accuracy of more than 99% in a scenario 
with a very large data set with over one hundred 
thousand screw runs and four variants of different 
screw types. 

Instead of just one model, Ribeiro et al. (2021) 
test and evaluate three unsupervised approaches: 
Local Outlier Factor (LOF), Isolation Forest 
(iForest), and a Deep Learning Autoencoder (AE). 
LOF is an unsupervised anomaly detection method 
that calculates the local density deviation of a given 
sample with respect to its neighbors, identifying those 
that have significantly lower density as outliers 
(Breunig et al., 2000). iForest is an anomaly detection 
algorithm that isolates observations by randomly 
selecting a feature and then randomly selecting a split 
value between the maximum and minimum values of 
the selected feature, with anomalies being identified as 
those observations that require fewer random 
partitions to be isolated (Liu et al., 2008). AE are a 
type of neural network used for learning efficient 
codings of input data, typically used for 
dimensionality reduction or anomaly detection, by 
training the network to reconstruct its inputs, with the 
hidden layers encoding a compressed representation of 
the input (Zhou & Paffenroth, 2017). In their scenario 
with 6,162 observations, iForest performed best with 
a 99% accuracy, while AE with about 96% and LOF 
with at least 80% also produced acceptable results. At 
the same time, a Random Forest classifier, chosen as 
a supervised benchmark, also achieved a result of 
99%. Only about a year later, the authors repeated the 
analysis for a related scenario with significantly more 
observations (Ribeiro et al., 2022). With 67,337 screw 
runs, ten times as many observations were available. 
Despite this, the authors managed to obtain results of 
over 99% using iForest and AE, thus again 
demonstrating the suitability of their approaches. 
Schlegl et al. (2021) implement a custom 
implementation of a Deep Learning model with an 
AE-logic specialized for mapping characteristic fault 
shapes in screw driving data. The proposed model, 
composed of two sub-networks, learns interpretable 
representations of normal process behaviors from 
manufacturing sequences through a custom 
convolution operation and unique loss function, and 
then employs these learned representations within a 
convolutional-RNN-AE structure to perform anomaly 
detection, using the inverse reconstruction error as a 
measure of normality. Besides an increase in 
interpretability, the model achieves a better detection 
rate compared to a conventional AE approach.  

West et al. (2021) present an approach that aims 
at efficient feature extraction through statistical 

representations of time series data. In addition to using 
a variety of traditional classification models, such as 
k-Nearest Neighbors (kNN), Gausian Naive Bayes, 
Decision Trees (DT), Multi-layer Perceptrons (MLP), 
Random Forest and Adaptive Boosting (AdaBoost), 
the paper stands out for being the first to publish the 
code to their analysis. Furthermore, in addition to the 
application for an unpublished screw driving scenario 
from the automotive industry, they demonstrate the 
suitability of the developed approach for an open-
source dataset with 200 observations. Unfortunately, 
this was no screw driving scenario, but a case study 
with time series observations of human motion data.  

Leporowski et al. (2022) (2022) employ two 
models, called Residual Neural Networks (ResNet) 
and Temporal Attention-augmented Bilinear Network, 
to classify screw driving data. Of particular note is that 
the authors used their own dataset with 2,045 
observations, called AURSAD, which they previously 
made publicly available (Leporowski et al., 2021). 
Furthermore, they apply the approach to another open-
source screw driving dataset, called The Manipulation 
Lab Screwdriving Dataset (Aronson et al., 2017) and 
make the generated analysis publicly available. Thus, 
making a valuable contribution to the deployment of 
ML-based approaches for anomaly detection and 
paving the way for future approaches. 

Sakamoto et al. (2023) present an approach that 
also utilizes iForest, but unlike previous methods, does 
not primarily consider torque-angle angle pairs, but 
detects faulty screw runs based on data from the AC 
servo system during tightening. In the scenario, the 
errors are detected with almost complete accuracy and 
false positive and false negative rates are reported as 
mostly zero. Their work demonstrates that torque-
angle values are not the only basis to successfully 
detect anomalies in screw driving operations.  

West et al. (2023) implement an unsupervised 
approach that relies on the K-Means clustering method 
and uses Dynamic Time Warping (DTW) as a 
similarity measure to compare different screw runs. As 
a result, the faulty screw runs stand out as separate 
cluster, clearly distinguishable by their respective 
error shape. The approach succeeds in predicting the 
class of screw runs with up to 89% accuracy, not 
requiring prior knowledge about class distributions. 

The review shows the continued relevance and 
steady success in the application of ML methods for 
anomaly detection in tightening data. High accuracy 
rates in anomaly detection have been achieved using a 
range of methods, both with unsupervised and 
supervised approaches. It should be noted, that the 
reported metrics of the results are highly dependent on 
the respective use case and were provided in this 
review primarily to quantify the achievement of the 
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approaches for anomaly detection. Additionally, we 
want to stress that this is a selection of the most recent 
work. In the past, work such as Matsuno et al. (2013) 
or Diez-Olivan et al. (2017), presented promising 
work for anomaly detection in screw driving as well.  

4. Methods  

This paper explores four supervised and four 
unsupervised anomaly detection methods, spanning a 
diverse set of approaches, such as density-based, tree-
based, encoder or Deep Learning. We selected the 
respective models based on the related contributions, 
summarized in Table 1. Our goal is not to develop a 
novel method but to explore the applicability of 
established models in detecting anomalies within 
screw driving data using the data descripted in Sec. 5. 
At the same time, it is not our goal to provide an in-
depth look at how the selected models function, so as 
not to exceed the intended scope of this paper. For this, 
we refer to the related works, which provide an in-
depth description of the models. 

Next, we introduce the four unsupervised 
methods, later deployed in our case study in Sec. 6.  
• Autoencoder. Designed for unsupervised ML, 

AE are a powerful tool for anomaly detection in 
screw driving torque and angle data. It achieves 
this by encoding high-dimensional input data into 
a lower-dimensional representation, before 
reconstructing it (Zhou & Paffenroth, 2017). 
Discrepancies between the original and 
reconstructed data, which likely correlate with 
unusual screw driving runs that deviate from 
standard torque-angle patterns, represent potential 
anomalies indicative of anomal instances. 

• DBSCAN. Utilizing the DBSCAN algorithm for 
unsupervised anomaly detection within screw 
driving data enables efficient distinction between 
dense, typical data clusters and sparse, irregular 
ones (Ester et al., 1996). This algorithm spatially 
characterizes torque-angle data points, identifying 
those anomalous screw runs that do not belong to 
denser regions, generally indicative of anomalies. 

• Isolation Forest. iForest excels at detecting 
anomalies in torque and angle data, operating 
without any prior knowledge of good or bad screw 
runs. It isolates anomalies based on their rarity 
and uniqueness, quickly identifying and isolating 
screw driving runs that exhibit anomalous torque 
or angle readings (Liu et al., 2008). 

• Local Outlier Factor. Utilizing the LOF 
algorithm for unsupervised anomaly detection 
within screw driving data enables the detection of 

anomaly instances, identified as those deviating 
significantly from the density of their neighboring 
runs (Breunig et al., 2000). By designating lower 
density instances as outliers, the LOF method 
effectively differentiates between standard and 
unusual screw driving data, facilitating the 
detection of potential process anomalies.  
While unsupervised methods have the inherent 

advantage of not requiring labels from screw driving 
data, we also leverage four supervised learning 
techniques as benchmarks. Their application aims to 
demonstrate the capabilities of supervised approaches. 
• Random Forest. For supervised time series 

clustering with screw driving data, a Random 
Forest classifier, an ensemble learning method 
utilizing multiple decision trees, provides a robust 
tool that curtails the risk of overfitting prevalent 
in individual trees (Breiman, 2001). Its integration 
of randomness in feature selection contributes to 
a sturdy and versatile method for identifying 
complex, nonlinear relationships typical in time 
series data, also found in torque and angle data. 

• Long Short-Term Memory. As a type of RNN, 
LSTMs are particularly suited for analyzing 
sequential data like screw driving torque and 
angle measurements over time. Their unique 
memory cells can capture long-term 
dependencies, enabling the LSTM to learn from 
extended sequences commonly observed in time 
series data (Hochreiter & Schmidhuber, 1997). 
This feature allows the LSTM to detect patterns 
over time, aiding the accurate clustering of high-
dimensional data. 

• Convolutional Neural Network. Within the 
scope of time series clustering, a CNN can 
effectively extract relevant features from screw 
driving torque and angle measurements. The 
convolutional layers in the network perform a 
series of local operations across the time 
sequence, identifying localized temporal patterns 
within the data, providing a powerful and flexible 
tool for classifying sequential observations.  

• Encoder. An Encoder classifier can translate 
high-dimensional time series data, such as screw 
driving torque and angle measurements, into a 
lower-dimensional, more digestible 
representation. This transformation of complex 
sequential data reveals underlying structures and 
dependencies, potentially improving the 
efficiency of supervised clustering tasks within 
the high-dimensional time series domain. 
The next section will provide detailed information 

on the use case and the dataset utilized in our study. 
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5. Use case  

The data set this study is based on was generated 
using an automatic screwing station. The station was 
used in serial production to connect two housing 
halves of a motor control unit of an electronic vehicle 
from the consumer sector. Since its end of serial 
production, the station serves as demonstrator for 
different research applications. On the station, one 
spindle performs two identical tightening operations 
for each component. Delta PT 40x12 screws are used, 
specifically designed for superior performance in 
thermoplastics. Accordingly, the housing halves are 
also made of a thermoplastic material and the targeted 
tightening torque is comparatively low at 1.4 Nm. 

The data set contains measurements of 5,000 runs. 
Of these, there are 4,089 normal and 911 anormal runs. 
We generated the data with the assembly of 100 work 
pieces of the same type, each consisting of an upper 
and lower part. Each work piece was tightened 25 
times, resulting in multiple cuttings of the thread in the 
same work piece. With two connections per 
component, this results in the total number of 5,000 
screw runs. Unlike some related work (e.g. Cheng et 
al., 2019; Leporowski et al., 2022; Sakamoto et al., 
2023), no other measures were taken to artificially 
generate defective components. Only material wear 
due to the repeated threading of the screws led to faulty 
observations. To illustrate this effect, Figure 1 shows 
an example of 25 screw runs of the same work piece, 
with the color gradient showing the number of the 
respective tightening cycles. The example shows that 
the torque that has to be applied in the tightening phase 
decreases with the increasing number of tightening 
cycles, and at the same time the maximum achievable 
angle of rotation appears to be slightly decreasing. 

 
Figure 1: Exemplary representation of 25 screw driving 
operations for the same work piece, colored according to 

the respective number of subsequent operations 

We provide binary class labels, okay ("OK") and 
not okay ("NOK"), for every screw run, recorded by 

the process monitoring of the station’s control unit. 
For OK, a connection must achieve a maximum torque 
of between 1.2 and 1.6 Nm, where 1.4 Nm was the 
experimentally determined target torque in serial 
production. In addition, the tightening phases of the 
screw runs has to meet the torsion angle-based 
specifications of the screw station’s program, else a 
NOK is assigned. Figure 2 shows the effect of the 
cycle number to the relative distribution of the labels.  

 
Figure 2: Visualization of the relation between the cycle 
number of the screw run and the label of the observation 

The figure shows that 1.5% of defects occur from 
the second screw connection onward, with the relative 
ratio of OK to NOK rising almost constantly with the 
increasing number of the respective screwing cycle. 
As expected, the highest percentage of anomalies 
occurs for the last screw run, i.e. the twenty-fifth, with 
41% of all recorded screw runs. In the analysis that 
follows in Sec. 6, we treat the 5,000 observations as 
individual screw runs and do not include the number 
of the screwing cycle while training the models. 

 
Figure 3: Exemplary display of five normal  

and five anormal screw runs 

Figure 3 shows ten randomly selected screw runs 
(five OK and five NOK) to provide an insight into the 
structure of the normal and abnormal nature of the 
time series. The OK observations are shown in green 
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and the NOK observations in red. The illustration 
shows the manifold forms of the different time series.  

In Table 2, we provide a summary of the data that 
is available in the project repository (i.e. West, 2023). 
For each screw run 𝑖𝑖, the DMC code of the work piece 
("id code"), a timestamp at the start of the process 
("date") and the label of the screw run ("result"), i.e. 
OK or NOK, are recorded. In addition, four tightening 
steps were performed for each run, which have 
individual names ("name"), a continuous angular 
velocity ("speed") and an indication of the success of 
the respective step ("result"). Several hundreds of 
values 𝑘𝑘 are recorded as a time series for each step. 
The current angle in degree ("angle vales"), the torque 
in Nm ("torque values") as well as the gradient 
("gradient values") and the time in seconds ("time 
values") are determined. This is a selection of recorded 
and stored values. The total number of recorded values 
is several hundred and contains more information on 
the screw program. Each run is saved as a JSON file 
and can be viewed in the project repository (see data/).  

For an in-depth look at the model’s 
parameterization, we again refer to the full published 
code for this analysis (West, 2023, see models/). 

To summarize, this use case is an application with 
real-world tightening data, in which no artificial errors 
were induced. To the best of our knowledge, this is 
only the third open-source dataset for anomaly 
detection in tightening data, besides the two datasets 
AURSAD and TMLSD discussed in Sec. 3. Other 
special features of this study are the application in the 
screw driving for a plastics work piece as well as the 
investigation the effects of re-tightening work pieces. 

 
Table 2: Description of some selected variables from the 

recorded screw driving data (available in the project repo) 

Variable Description 
One value for each recorded screw run (i) 
id code  Unique id of the work piece 
date  Timestamp of the screw run 
result  Binary label of the screw run  
Four values per screw run (one for each screw step): 
name  Defined name of the tightening step 
speed  Target speed [in degree per minute] 
result  Binary label of the screw step 
Hundreds of values per individual screw step (𝑘𝑘): 
angle  𝜃𝜃𝑖𝑖,𝑘𝑘 Value for the angle [in degrees] 
torque  𝜏𝜏𝑖𝑖,𝑘𝑘 Value for the torque [in Nm] 
gradient 𝑔𝑔𝑖𝑖,𝑘𝑘 Value for the gradient 
time 𝑡𝑡𝑖𝑖,𝑘𝑘 Value for the time [in seconds] 

6. Results  

6.1. Modeling and evaluation  

In this section, we apply the models introduced in 
Sec. 4 to check whether the classes of observations are 
recognizable with ML methods. For each model, we 
perform a tenfold cross-validation of the screw driving 
data to obtain comparable results. Ten-fold cross-
validation is a technique where a dataset is divided into 
ten subsets. A model is trained ten times, each time 
using nine subsets for training and the remaining 
subset for testing, which helps in obtaining a more 
robust estimate of the model’s performance by 
averaging the results from each of the ten iterations. In 
Sec. 6, we therefore additionally provide the variance 
of the ten determined modeling metrics. 

For comparison, we calculate the Accuracy, 
Precision, Recall and the Macro F1 Score. Accuracy 
is the ratio of correctly predicted labels to the total 
number of runs, providing a simple, straightforward 
measure of a model’s performance. Conversely, the 
Macro F1 Score is the harmonic mean of Precision and 
Recall, computed independently for each class and 
then averaged. This metric is particularly insightful in 
scenarios with unbalanced classes, as it gives equal 
weight to each class performance, regardless of its 
size. In the use case with about 81.78% OK and 
18.22% NOK observations, a decent ML model has to 
achieve an Accuracy of more than 81.78% and a 
Macro F1 Score of more than 50.00%. 

Since not all models can handle time series of 
different lengths, we had to limit the length of all series 
to 750 after a preliminary study. Shorter series were 
extended accordingly using zero padding. While the 
majority of screw runs had to be padded, 140 series 
were shortened due to their length exceeding 750. In 
addition, we limited the analysis to the torque values, 
since the angle was specified as a constant by the 
process control for each screw driving step.  

6.2. Unsupervised models  

We evaluate four unsupervised models, using the 
screw driving data from our use case introduced in 
Sec. 5, and summarize their averaged performance 
across a ten-fold cross-validation in Table 3. Again, 
both the models (see models/) and results (see results/) 
are in the provided project repository (West, 2023).  

The Autoencoder delivered an average accuracy 
of 89.30% ± 0.05%, exceeding the discussed baseline 
accuracy of 81.78%. In addition, its Macro average F1 
Score of 83.76% ± 0.07% indicates an adequate 
performance in discerning both OK and NOK classes. 
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Table 3: Averaged results of the anomaly detection with regard to the type of machine learning models 

Type Model Accuracy Precision Recall Macro avg. F1 
U

ns
up

er
vi

se
d Autoencoder 89.30% ± 0.05% 66.71% ± 0.24% 84.00% ± 0.14% 83.76% ± 0.07% 

DBSCAN 96.68% ± 0.08% 75.52% ± 0.73% 99.26% ± 0.04% 90.70% ± 0.12% 

Isolation Forest 69.78% ± 0.02% 12.50% ± 0.06% 11.00% ± 0.04% 46.73% ± 0.01% 

LOF 73.82% ± 0.04% 30.10% ± 0.27% 33.05% ± 0.27% 57.64% ± 0.09% 

Su
pe

rv
is

ed
 CNN 97.52% ± 0.01% 92.57% ± 0.15% 94.31% ± 0.11% 95.92% ± 0.02% 

Encoder 98.98% ± 0.00% 98.78% ± 0.01% 95.65% ± 0.05% 98.27% ± 0.00% 

LSTM 87.96% ± 6.99% 36.72% ± 22.58% 38.16% ± 24.30% 63.34% ± 6.96% 

Rand. Forest 99,02% ± 0.00% 99.04% ± 0.01% 95.67% ± 0.05% 98.36% ± 0.00% 

The DBSCAN model surpassed the Autoencoder, 
demonstrating an accuracy of 96.68% ± 0.08% and a 
Macro average F1 score of 90.70% ± 0.12%. 
Furthermore, the high values of Precision with 75.52% 
± 0.73% and Recall with 99.26% ± 0.04 clearly show 
the superior performance of DBSCAN compared to the 
three other unsupervised methods. However, the slightly 
lower Precision implies that the model achieves a higher 
rate of False Positives, whereas the rate of False 
Negatives is very low, expressed by the great Recall. 
The spatial distribution of torque-angle data points 
appears to provide meaningful information for the 
differentiation between regular and anomalous screw 
runs, as evidenced by the DBSCAN results. 

In contrast, the Isolation Forest and Local Outlier 
Factor models were less successful. The iForest 
attained an accuracy of merely 69.78% ± 0.02%, and its 
Macro average F1 score of 46.73% ± 0.01% indicates 
potential for improvement. This result suggests that this 
model's foundational approach of isolating anomalies 
based on their distinctiveness and rarity may not be 
entirely suitable for this particular application. 
Similarly, the LOF model, which assigns lower density 
instances as outliers, achieved an accuracy of 73.82% ± 
0.04%. The Macro's average F1 score of 57.64% ± 
0.09% was slightly better than iForest's, but still 
significantly below average compared to Autoencoder 
and DBSCAN. 

6.2. Supervised models  

Similarly, we evaluated the four supervised models 
from Sec. 3 to provide a comparison, with their averaged 
performance across ten-fold cross-validation also 
presented in Table 3 in the previous section. 

The Convolutional Neural Network performs 
well, delivering an accuracy of 97.52% ± 0.01% and a 
Macro average F1 score of 95.92% ± 0.02%. This result 

indicates that the CNN's ability to extract localized 
temporal patterns from screw driving torque and angle 
measurements is highly effective. 

The Encoder model reached the highest accuracy 
among the considered models, with an Accuracy score 
of 98.98% ± 0.00%, and a Macro average F1 score of 
98.27% ± 0.00%. With 98.78% ± 0.01% and 95.65% ± 
0.05% respectively, Precision and Accuracy again 
clearly show the success of the model predictions. We 
emphasize the high ratio of observations correctly 
identified as erroneous, expressed by the Precision. This 
superior performance underscores the Encoder's 
capability to transform high-dimensional time series 
data into lower-dimensional representations, which is 
particularly useful in detecting anomalies in screw 
driving data, as evident in this use case’s results.  

Among all supervised models, the LSTM classifier 
presented the widest range of performances, averaging 
an accuracy of 87.96% ± 6.99% and a Macro average F1 
score of 63.34% ± 6.96%. This variability mainly stems 
from an uneven performance across cross-validation 
folds. The variations are also reflected in the high 
variance of the values of Precision and Accuracy, which 
are at 36.72% ± 22.58% and at 38.16% ± 24.30%, 
respectively. Notably, in four folds, the model displayed 
high efficacy, with accuracies and Macro F1 scores 
exceeding 95% and 92%, respectively, due to the 
accurate classification of True Positives and True 
Negatives. Conversely, in the six remaining folds, the 
model's inability to detect any True Positives critically 
affected its Precision, Recall, and Marco F1 Score, 
hence reducing overall Accuracy. These findings 
underscore the need to consider data characteristics and 
distribution when deploying ML models. 

The Random Forest model achieved an excellent 
accuracy of 99.02% ± 0.00%, surpassing the Encoder, 
and a slightly superior Macro average F1 of 98.36% ± 
0.00%. A consideration of Precision and Recall, which 
are 99.04% ± 0.01% and 95.67% ± 0.05% respectively, 

Page 1057



shows that the Random Forest is superior to DBSCAN 
in this respect as well. The significantly higher precision 
shows the ability to avoid False Positives. This robust 
performance demonstrates the effectiveness of this 
model in identifying complex, nonlinear relationships in 
the time series data. The use of multiple decision trees 
in a Random Forest model may have contributed to this 
superior performance.   

7. Conclusion 

In this paper, we undertook the task of exploring 
anomaly detection within industrial manufacturing 
processes, specifically focusing on screw driving data. 
Our aim was to explore the potential of unsupervised 
(ML) techniques in identifying anomalous patterns 
within time series data, a data-driven approach that 
enhances traditional quality assurance measures. 

We introduced a real-world dataset of screw driving 
operations, enriching the resources available for 
studying these processes and enabling exploration of the 
utility and limitations of various ML models. Our study 
demonstrated the efficacy of CNN, AE, and Random 
Forest, with Random Forest achieving the highest 
accuracy and Macro average F1 scores. Nevertheless, 
the LSTM model displayed high variability in 
performance, underlying the importance of data 
distribution and model parameter tuning.  

We have shown that unsupervised ML techniques 
can efficiently detect both known and unexplored 
anomalies in screw driving data, contributing to 
improving manufacturing process quality and 
efficiency. The implications of these findings extend 
beyond the scope of quality management: Enhancing the 
reliability of screw runs can lower production costs, 
improve customer satisfaction, and contribute to more 
sustainable manufacturing practices. 

Since the scope of this work did not allow us to 
examine the eight modeling processes in depth, we 
intend to do so for selected models in future work. In 
addition, we consider publishing a complementary 
publication for the data set (akin to Leporowski et al., 
2021), in which we provide detailed explanations of the 
data collection set-up as well as the nature of the 
collected data. We are also considering providing a 
simpler extract-transform loading process for the 
dataset, instead of simply publishing the raw data, to 
facilitate future use in subsequent scientific work. 

Summarizing, despite the promising results, our 
research highlighted that the practical implementation 
of ML models in manufacturing anomaly detection is 
not without challenges. For example, the LSTM results 
demonstrated the role that data characteristics and 
distribution may play in modeling, underscoring the 
need for careful data preprocessing, parameter tuning 

during practical applications as well as the need for a 
holistic approach to anomaly detection. 
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