
The Low-Code Phenomenon:
Mapping the Intellectual Structure of Research

Syed Asad Ali Naqvi
Leuphana University of Lüneburg

asadali.naqvi@outlook.com

Kristina Lemmer
Leuphana University of Lüneburg

kristina.lemmer@leuphana.de

Markus P. Zimmer
Leuphana University of Lüneburg

markus.zimmer@leuphana.de

Rahul C. Basole
Accenture Data & AI

rahul.basole@accenture.com

Paul Drews
Leuphana University of Lüneburg

paul.drews@leuphana.de

Abstract

The term low-code has been closely associated
with simplifying and accelerating software development.
Driven by the idea that low-code can help to meet
the increased digitalization demands, the low-code
phenomenon is rising in academia and industry.
This resulted in an immense increase in publications
on low-code, posing the question of what research
streams characterize the low-code literature. We
conducted a bibliometric analysis based on 725
articles. Out of these 725 articles, we selected
105 articles with the term ”low-code” in the title or
abstract. Our contribution is to clarify the conceptual
understanding of low-code by identifying six research
streams, namely, origins of low-code within software
engineering, low-code as an enabler for emerging
software engineering trends, workplace transformation,
establishing low-code methodologies, understanding
low-code adoption and leveraging low-code for digital
transformation. We conclude with future research
directions that still need to be explored within the
low-code literature.

Keywords: Low-code, intellectual structure,
bibliometrics, visualization, low-code platform (LCP),
LCP affordances.

1. Introduction

The low-code phenomenon refers to an emerging
trend in software development to help organizations
overcome digital transformation challenges and to
meet their increasing digitalization needs. Low-code
is perceived as a way to democratize software
development, making it more accessible to non-IT

professionals. Low-code is intended to be intuitive
and simple and can be used without significant training
[1]. Such characteristics enable non-IT professionals
to carry out tasks that software developers would have
typically handled. These non-IT professionals are often
called citizen developers, and their enablement via
low-code is known as citizen development [2]. Despite
the widespread popularity of low-code platforms (LCP),
the term low-code is still ambiguous [3, 4]. This is
mainly because research on low-code originates from
multiple disciplines and various emerging software
engineering trends [5, 6, 7, 8]. A shared understanding
of what constitutes low-code will help researchers
to advance their theoretical understanding and aid
practitioners in communicating its value.

The literature on the nascent low-code field has
rapidly grown during the past decade. Regardless,
low-code does not have a standard definition, which
can hinder our understanding and adoption of low-code
[5, 8]. Given low-code’s various origins, we argue
that we need to take a broad perspective to understand
the low-code phenomenon. Indeed, while the number
of studies on low-code surges, we lack an intellectual
structure of this work. An intellectual structure maps
existing literature on a phenomenon and aggregates
it to research streams. Such a structure can direct
research and by this, instruct and influence future
scholarship. This makes it a vital tool for developing
an understanding within a certain field [9]. We thus
conduct a literature review of existing work on the
low-code phenomenon to build an intellectual structure
of the low-code literature. We aim to tackle the
ambiguity of the low-code phenomenon by mapping
our understanding to its origins. This produces useful
insights into the emergence and evolution of low-code
by evaluating links between ideas and concepts across
existing work. The intellectual structure also highlight

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 7800
URI: https://hdl.handle.net/10125/107323
978-0-9981331-7-1
(CC BY-NC-ND 4.0)

different disciplines’ perspectives on low-code.
We investigate the following research question:

What research streams characterize the low-code
literature? Our work makes three contributions. First,
we uncover the theoretical origins of the low-code
phenomenon by creating a curated collection and finding
publications from multiple research disciplines. Second,
we identify patterns within the existing low-code
literature and map the intellectual structure of low-code
research by employing an automated literature analysis.
Third, we identify six low-code research streams by
analyzing 105 low-code publications.

2. Theoretical Foundations and Related
Work

Low-code aims to reduce the use of computer
programming by offering ways to develop software
intuitively. Moreover, it broadens the scope by accepting
that some programming would remain necessary for
software development; thus, LCPs assist both citizen
and software developers in software development [8].
LCP enables software development using the low-code
approach. In this paper, we refer to “low-code” as the
primary concept and “LCPs” when referring to low-code
platforms. Low-code is often interchangeably used
with the term no-code. The concept of no-code states
that software applications can be developed without
any programming through a design tool. In previous
academic literature, this concept resembled end-user
programming, that focuses on how end-users, mainly
citizen developers, can develop an application [10].

Software engineering research associates low-code
with the concept of Model-driven engineering (MDE)
which is a software development approach that relies
on models as key artefacts. MDE divides applications
into manageable modules that can be tested individually
and seamlessly merged, resulting in fewer mistakes and
higher quality [11]. When the low-code phenomenon
emerged as a research topic, researchers viewed
it as a new form of end-user programming and
an approach that supports MDE. Hence, the initial
research discourse on low-code linked it to existing
concepts, including MDE, end-user programming and
rapid application development. However, since the
publications on low-code increased tremendously, many
studies have investigated low-code capabilities [12] and
the socio-technical factors affecting the adoption of
low-code [4].

We found three existing literature reviews on
low-code. The first literature review on low-code was
conducted by [13], who reported that most studies on
low-code offer a technological view and very limited

(only three studies at that time) studies of the social
aspects associated with low-code. Therefore, there is
still a need for a comprehensive view of how low-code
is viewed by business users, such as in the context
of citizen development. Another literature review on
the usability of low-code platforms was conducted by
[14]. They identified common characteristics between
low-code and no-code platforms and twelve usability
elements related to low-code and no-code reported in
the existing literature, mainly from a technical view. To
explain the drivers and barriers to low-code adoption,
[15] conducted a literature review. They identified
thirteen factors that hinder and seven aspects that
support low-code adoption. They used an organizational
context to identify these factors and lacked focus on
individual user decisions to use LCPs. However, none
of these literature reviews provides a comprehensive
overview of existing research streams on low-code.

3. Research Methodology

To understand the intellectual structure of the
low-code phenomenon, a fundamental first step is to
identify salient articles. We started our search by
identifying seminal papers with “low-code” or “low
code” in their title using eight databases, including ACM
Digital Library, AISeL, IEEE Xplore Digital Library,
JSTOR, Science Direct, Emerald, SpringerLink, and
Wiley Online Library. We choose these databases,
as these offer an extensive range of peer reviewed
publications from various disciplines. We focused
the selection of publications on studies that explicitly
deal with low-code development from a socio-technical
perspective. Moreover, we included the existing three
literature studies in the initial dataset, as they help
to identify the relevant literature on low-code. Our
initial dataset included ten papers [A1, A2, A3, A4,
A5, A6, A7, A8, A9, A10]. Next, we leveraged
Connected Papers1, a web-based tool to help researchers
find relevant academic papers to identify key prior and
derivative works for a given focal paper. Connected
Papers is linked with the semantic scholar paper
corpus2, enabling it to access millions of articles from
various scientific subjects. Connected Papers outputs a
visual graph and corresponding tabular data of relevant
associated papers (prior and derivative)3 weighted by
a similarity metric, using co-citation and bibliographic
coupling analysis. The graph lays out articles using a
force-directed algorithm, placing similar articles closer
to the focal paper and less similar articles further apart.

1www.connectedpapers.com
2www.semanticscholar.org
3Prior articles are the most cited by the papers in the graph, while

derivative articles cite many of the papers in the graph.

Page 7801

The similarity metric implies that two articles with
significantly overlapping citations and references are
more likely to cover a similar topic area. Each graph
for a given paper consists of 40 related publications, thus
leading to an intermediate set of 400 publications. Using
a subsequent Snowball technique [16], we continued
to collect additional articles for each of these 400
publications as the focal article. As we continued the
process, we observed that the number of unique articles
was diminishing after each search. After 80 search
iterations and removing duplicate publications, our final
dataset yielded 725 publications. We summarize our
data collection and analysis steps in Figure 1.

Figure 1. Data Collection and Analysis.

3.1. Network Construction

In order to understand the overall structure of
low-code research, we created an integrative network
dataset of all the individual publication similarity
networks we extracted above. Nodes represent
publications; edges represent the weighted similarity
between any pair of papers.

3.2. Visualization

We used Gephi 0.10.1 [17], an open-source
graph visualization software, to visualize the low-code
development research network. We used OpenORD,
a cluster emphasizing layout algorithm, to depict the

overall structure [18]. We sized nodes proportionally
to their betweenness centrality to distinguish prominent
nodes. Edge thickness was encoded using the weighted
similarity between two papers. We then applied
Louvain’s community detection algorithm to identify
and color sub-communities in the ecosystem [19]. This
allows us to differentiate among nodes by how closely
related they are to each other.

4. Results

In the following, section 4.1 describes the evolution
of low-code literature over time. Next, we explain the
results of the network analysis in section 4.2, followed
by section 4.3, which explains the research streams’
classification and characteristics.

4.1. Classification by Year

After constructing the network in Gephi, we selected
papers based on the inclusion criteria (see section
3) for further analysis. We searched for the terms
“low-code” or “low code” or “citizen developers”
in the title, abstract, or keywords within the 725
publications (nodes) manually. We also included five
most commonly used LCPs (“PowerApps”, “Mendix”,
“Outsystems”, “Pegasystems” and “Appian”). Our
search yielded a total of 105 publications.4 The annual
distribution of articles is shown in Figure 2. It is
apparent from the results that there was a significant
increase in articles from 2020. Only 12 articles have
been published between 2014 and 2019, whereas 93
contributions have been published between 2020 and
2022, which accounts for approximately 89 percent of
all studies in our sample of the low-code literature.

Figure 2. Number of Publications on Low-Code

by Year (Dataset V).

4Given page length constraints, we offer a comprehensive
reference list of articles included in our study in an online appendix,
available at https://zenodo.org/record/8354060.

Page 7802

4.2. Classification by Network Analysis

Figure 3 visualizes the intellectual structure of the
low-code literature.5 The modularity analysis reveals
nine distinct clusters derived from the co-citation and
bibliographic coupling analysis. Each cluster, coloured
differently, represents distinct research disciplines.
Additionally, these clusters sometimes intertwine and/or
overlap; some share similar assumptions but focus on
various disciplines, implying that the research streams
complement each other.

The central core of the network stems from the
topics of LCPs affordances [A11, A12, A13, A14]
and investigates the characteristics and challenges to
low-code adoption [A15, A16, A17]. Most of these
articles are practice-oriented, with micro analyses
of specific LCPs characteristics or demonstrate LCP
use cases. We observe multiple small clusters in
the network’s periphery that demonstrate low-code’s
wide range of applications. These include mostly
technical papers investigating the role of low-code as
an enabler for emerging software engineering trends
for example, construction of recommender systems
[A18, A19], and social media monitoring [6], improving
technical capabilities of low-code [A20, A21] and
enabling new software development practices including
citizen development [A22, A23]. Some small clusters
with similar theoretical origins were combined to
understand better and analyze the underlying concepts
and principles that govern low-code. The authors then
conducted multiple rounds to interpret the constructed
network. Next, analyzing the core themes (see
table 1), using triangulation between the researchers,
we formulated the names of the research streams.
We conducted three iterations, until consensus was
developed between all authors about the name of each
research stream. For instance, research stream III has
seminal works focusing on citizen development, which
was proposed as the research stream name in the first
round. However, after analyzing and discussing the
second sub-group of research stream III, the authors
identified the literature oriented towards new ways
of simplifying jobs for both software developers and
non-IT professionals. Hence, the name “workplace
transformation” was concluded. This resulted in six
research streams (see Figure 3) with a more cohesive and
unified view of low-code literature, leading to a better
understanding of low-code literature.

5A high resolution visualization can be downloaded from
https://zenodo.org/record/8354060.

4.3. Classification by Research Streams within
the Low-Code Literature

In the following, we highlight each research stream
and the publications in these streams.

4.3.1. Research Stream I: Origins of Low-Code
within Software Engineering. The first research
stream stems from the software engineering discipline.
The central themes within this research stream
are technical papers that analyze the similarities
and differences of low-code with existing software
engineering approaches and between LCPs. The level
of analysis is mainly meso, i.e. either comparison
of multiple LCPs (more than five) or evaluating LCPs
characteristics on an abstract level. These include
comparison of low-code with MDE [A19, A24, A37]
and LCP specific use cases that compare the technical
characteristics of LCPs [A29, A30].

A growing body of literature has investigated the
parallels between the LCPs and MDE and reported
that LCP foundations stems from the MDE. [A24].
According to [5], traditional MDE primarily rely on
offline downloaded resources, resulting in scalability
and integration challenges. LCP can support to resolve
such challenges in MDE, as it is cloud based. LCP
simplifies the changes in workflow and analysis, testing
and deployment of models [5]. Whereas, MDE
also leveraged cloud computing, GUI, and declarative
programming, LCP adds an additional flexibility
component by offering programming interfaces for
accommodating complex requirements, instead of
striving for complete elimination of programming
[A26].

Other works within this research stream investigate
how LCPs advances software engineering by integrating
MDE, Cloud Computing, and Machine Learning [A37,
A39, A40]. Within the IoT discipline, [A37] analyzed
sixteen LCPs with MDE approaches and created a
taxonomy of low-code features. They reported that
compared to MDE approaches, LCP offer limited
support for multi-view modeling, testing and analysis
(ibit). [A29] discusses how LCPs can be leveraged
for managing collaborative manufacturing and logistics
environments. Remaining works within this research
stream focus on LCP architecture [A8] and low-code
testing [A35].

4.3.2. Research Stream II: Low-code as an Enabler
for Emerging Software Engineering Trends. The
second research stream is a combination of analytical
and technical papers, that develops an understanding
on the role of low-code phenomenon in supporting

Page 7803

Figure 3. Intellectual Structure of Low-Code Research 2014-2022.

advances in software engineering [A42, A43, A44,
A45], tackling socio-economic challenges and creating
new employability trends [A50, A51, A52, A53]. This
research stream is created by merging three peripheral
clusters. The level of analysis is micro-level, i.e.
most articles in this research stream study low-code
either with focus on an explicit technology or a
socio-technical challenge. Exploring the ways to
improve the documentation for application landscapes,
[A48] demonstrated the implementation of low-code
automation for interactive visualizations and application
documentation. Other work includes leveraging
low-code for the integration of IoT devices and
platforms [A46] and for test automation including Unit,
API, System/End-to-End testing levels [A47], managing

models for optimized performance [A43, A45].
Within the second sub-theme of this research

stream, we identified three examples demonstrating
how low-code helps in tackling socio-economic
challenges. First, since during a recent pandemic
COVID-19, the demand for digital applications is
increased tremendously, [A53] illustrates the use
of low-code for monitoring and maintaining health
protocols. Second, [A52] highlights the usefulness
of low-code for software sustainability, especially in
public sector, since public sector strongly rely on
customized software from consulting firms through
public tenders [A52]. Finally, LCP can be leveraged
for retraining individuals with STEM backgrounds and
with basic IT knowledge to meet the increased digital

Page 7804

Table 1. Intellectual Structure of Low-Code Research 2014-2022.

Research Streams Core Themes Key Publications

I Origins of low-code within Software
Engineering

MDE [A1, A24, A25, A26]

LCP specific use cases [A27, A28, A29, A30, A31, A32,
A33, A34]

Application Testing [A35, A36]

Interconnected digital technologies [A37, A38, A39, A40]

II Low-code as an enabler for
emerging software engineering
trends

Advances in Software Engineering [A7, A41, A42, A43, A44, A45,
A46, A47, A48, A49]

Tackling socio-economic challenges [A50, A51, A52, A53]

Recommender systems [A18, A36, A54]

AI-based analysis and social media monitoring [A2]

III Workplace transformation Citizen development [A22, A23, A55, A56, A57, A58]

Supporting domain-specific approaches, micro-services
and APIs

[A59, A60, A61, A62, A63, A64,
A65, A66, A67]

IV Establishing low-code
methodologies

Low-code development methodologies [A20, A68, A69, A70, A71, A72,
A73],

Polyglot data access layer [A21, A74]

V Enhancing understanding about
low-Code adoption

Characteristics and challenges of low-code adoption [A4, A6, A9, A10, A15, A17, A75,
A76, A77, A78, A79, A80, A81,
A82, A83]

LCP Affordances [A3, A11, A12, A13, A14, A84,
A85, A86, A87, A88, A89, A90,
A91, A92, A93, A94]

Barriers to low-code adoption [A5, A95, A96, A97, A98, A99]

VI Leveraging low-code for Digital
Transformation

Enterprise application development [A75, A100, A101, A102, A103]

Digital Twins [A104, A105]

transformation needs [A50, A51]. LCPs can benefit
from recommender systems as well since such systems
guide users with useful, customized recommendations
based on the learnings from developing prior software
applications [A18]. LCPs should also provide testing,
debugging capabilities, maintainability, and backward
compatibility [A85].

4.3.3. Research Stream III: Workplace
Transformation. The third research stream
uncovers the role of low-code phenomenon in
workplace transformation. The central works within
this research stream are empirical and technical
papers, with meso-level analysis for investigating
how low-code enables new software development
practices for workplace transformation. We identified
that the low-code phenomenon is supporting the
transformation in two ways. First, low-code enables

citizen development, and collaboration between
software developers and citizen developers. With its
easy to use and intuitive features, LCPs empower
citizen developers to shape their own environment
[A22, A23, A56]. Moreover, LCPs empower software
developers, since using LCPs they can save time and
efforts on simple tasks and can instead concentrate
their attention on other issues that call for in-depth
technical expertise [A55, A57, A58]. Moreover, LCPs
support developers to improve their understanding of
the business, since several technical activities including
application infrastructure, scalability, extensibility, data
integrity are managed through LCPs [A55, A56].

Second, organizations can leverage low-code
to streamline processes and improve workflow
by dividing them into smaller, more manageable
micro-services. Utilizing domain-specific approaches,
micro-services, and APIs, LCPs provide valuable

Page 7805

integration and communication capabilities between
different applications, enabling task automation
[A60, A61, A62, A64].

4.3.4. Research Stream IV: Low-Code
Methodologies. The fourth research stream stems
from the network periphery. It focuses on the low-code
methodologies and compares it with traditional software
development [A20, A70, A73]. Most articles in this
stream are descriptive and follow the case study
methodology [A20, A69, A71].

Recent studies evaluating low-code in educational
institutions’ process improvement [A71], and being
used as an enabler for agile software development
[A20] prove its usefulness. At the same time, due
to the wide applications and high number of LCPs, it
is challenging for organizations to select the LCP that
best matches their needs [A72]. Other works within
this research stream investigate Polyglot6 capabilities of
LCP and suggest ways for how LCP can improve such
capabilities. [A21, A74].

4.3.5. Research Stream V: Enhancing
Understanding about Low-Code Adoption.
The fifth research stream focuses on explaining
low-code adoption. Most articles in this
stream use empirical approaches to conduct
macro-level analyses, to investigate the LCP
affordances, and challenges to low-code adoption
[A15, A16, A17, A76, A79, A81, A83].

According to [20], LCPs enable fast application
development, are easier to learn and use, compared
to programming languages and can reduce IT
costs. Moreover, LCPs also provide ready-to-use
implementation units that enable agile software
development. On the other hand, vendor lock-in and no
access to source code are challenges that may hinder
its adoption. Despite the emergence of LCPs, the
need for skilled programming will exist, for customized
requirements [A17]. Code written LCPs can be complex
and difficult to understand. Thus, LCP should support
modern software engineering practices such as literate
coding, self-documentation, and automated testing.

According to Crunchbase7, more than 1100
vendors sate their products feature low-code
characteristics. Several studies have compared the
characteristics of widely adopted LCP including
Appian, Mendix, OutSystems and Microsoft Power
Apps [A3, A11, A14, A84, A86, A87]. Comparing
eight LCPs, Web portals, business process automation

6Polyglot is the ability to communicate through multiple
programming languages

7www.crunchbase.com

systems, and quality management, [A28] identified six
characteristics of LCP as mandatory. These include
graphical user interface, interoperability support
with external services, application security, business
logic specification mechanisms, Application build
mechanisms and deployment support and two optional
features including re-usability and scalability support.
This demonstrates that LCPs functionalities may vary
a lot and most of the LCPs may not offer optional
features.

Some articles in this research stream report that
LCPs may fall short to fulfill the promises and illustrate
challenges related to LCP adoption. Studies show
that applications developed on LCPs can be difficult to
maintain and customize beyond the standard features
offered by the LCPs [A97]. This is mainly because
access to source code is often not provided by LCPs.
Even in cases, where LCPs provide access to the code,
modifying the automated generated code can result in
errors upon the execution of application, leading to
high efforts in troubleshooting [A99]. Whereas, LCPs
promise to empower employees, in particular citizen
developers, [A56] reported that application deployment
phase in LCPs require in-depth technical knowledge and
to be managed solely by software developers. Such
situations may result in maintaining the IT-business gap.
Moreover, even software developers may experience
isolation, as they are dependent on the LCP vendor for
application maintenance and troubleshooting [A56].

Since LCPs lack standardization, [20] reported
that LCPs may have a steep learning curve. The
simple and easy to use design of LCPs may
also pose difficulty to software developers, who
are interested in managing the application beyond
prototyping. Moreover, LCP providers have strong
focus on building enterprise applications, instead
of establishing long-term ecosystem that facilitates
application development. Other risks include lack
of transparency and limitations to scalability and
vendor-lock in. Additionally, implementation of
advanced tools and capabilities including application
monitoring, analytics, user engagement is often left
open ended to customers, who may setup and configure
several protocols themselves [A55].

4.3.6. Research Stream VI: Leveraging Low-Code
for digital transformation. The sixth research stream
evaluates the role of low-code for enabling digital
transformation. It mainly comprises of technical papers
and analyses at the meso-level. This stream is connected
to other peripheral streams that focus on software
engineering via central research stream V.

The low-code phenomenon is being hailed as the

Page 7806

key infrastructure for digital transformation since it
enables application development at a faster pace. The
traditional software development struggle to keep-up
with the increasing demands for digital applications
because of their long development cycles and complex
deployment processes. LCPs offer pre-built components
and templates that optimize productivity and streamline
the development process [A101, A102]. Moreover,
LCPs offer a diverse range of applications, including
general-purpose, process-based, database, request
handling, and mobile-based applications. Due to such
capabilities, LCPs enable flexibility and scalablity for
enterprise application development. [A75].

Analyzing the efficiency of three LCPs namely,
OutSystems, Microsoft, and Salesforce, [7] reported
differences in the use cases, particularly related to the
applications integration. Moreover, they reported the
risks involved with low-code, such as the difficulty
in choosing the best platform because of the high
number of available LCPs. This stems another
challenge, that LCPs lack a unified framework. To
address this challenge [A101], explained a prototype
LCP framework that offers one-click deployment and
comprehensive data monitoring. Thus, LCP make it
easier to develop digital applications for niche cases, for
instance predictive maintenance application [A101].

5. Discussion

Based on the identified research streams, we
develop the following definition for the low-code
phenomenon to offer a bird’s eye view of the low-code
literature. The low-code phenomenon originates
from software engineering and integrates software
engineering tools to offer unified capabilities for
simplifying and advancing software development, and
workplace transformation, thus, contributing to the
digital transformation. At the same time, we need
to establish and enhance low-code methodologies to
promote low-code adoption.

This definition can help to develop a common
understanding of the low-code phenomenon. Future
researchers can use this definition to orient their work
within the low-code phenomenon. By analyzing the
evolution of the low-code phenomenon, we identify
that the initial works on low-code stem from software
engineering disciplines (research streams I and II).
Then it dispersed under other research disciplines.
This can be because, in the beginning, inspired by
the analyst reports [A34], researchers mainly studied
the low-code phenomenon from technical perspectives
[A48]. As researchers delved into the various aspects of
low-code, MDE was identified as a technology which

is closely related to low-code [A24]. Publications
within the research stream we identified share many
similar characteristics that low-code and MDE [5].
On the other hand, we do not identify publications
comparing low-code phenomenon with EUP, that
illustrates low-code phenomenon is not about moving
away from code, rather it focuses on facilitating both
software and citizen developers.

The practice-driven research in research stream
V focused on comparing low-code platforms [A7].
Most studied platforms include Microsoft PowerApps,
Mendix and OutSystems [12]. While analyzing the
recent work on LCPs, we identified that several
publications refer to the shortcomings of low-code.
Such work aims to propose approaches to how low-code
can overcome these limitations [A21, A60]. From
the visualization, we observe that whereas low-code
is mainly discussed from the software engineering
context, few studies focus on the digital transformation
contexts. Research streams II, IV, V, and VI are very
distinct and least interconnected on the peripheries.
Research streams I and III are strongly interconnected
and overlapping. Moreover, we identified a dominance
of descriptive papers and a need for more substantial
studies grounded in appropriate theoretical lenses.

Our results from the central research stream V
demonstrate that the low-code adoption phenomenon
fulfil several adoption characteristics discussed in
affordance theory [21, 22]. The design of LCPs is
simple and intuitive, with cues guiding the users about
the next steps and best practices. Studies have reported
that MDE has shared similar characteristics, including
automated code generation and built-in deployment
with low-code. However, the distinct characteristic
of low-code is it reduces the need for programming
[5]. This implies that due to the easy-to-use
and drag-and-drop characteristics of low-code, both
software and citizen developers are encouraged to use
it, resulting in a faster adoption [A89]. At the same
time, if the features of low-code are perceived as difficult
to use, this can act as a major barrier hindering its
adoption [A22]. While many studies have reported
difficulties such as scalability, and security, researchers
are also investigating approaches to how low-code can
overcome these challenges [A35, A98]. This illustrates
that, despite the widespread popularity in practice,
low-code adoption is yet an emerging phenomenon, with
most research in low-code literature comprising practice
papers with micro-level analyses focusing on specific
LCP or use cases [A33, A69].

The detailed classification in six research streams
from our work can help practice to determine how
different research disciplines study the low-code

Page 7807

phenomenon. While the discussed articles across these
streams acknowledge low-code as the next big evolution
in software engineering, we identified that emerging
trends in practice, including generative AI, are currently
not investigated in relation to low-code. Moreover, we
observe that while there has been significant growth in
studies examining the LCP characteristics, challenges,
and affordances, empirical research on the dynamics
and evolution of low-code ecosystems is still relatively
nascent.

Several studies argued that LCP is not a new or
novel technology [8], rather what is unique about the
low-code phenomenon is it offers traditional software
development elements, including IDEs, databases, GUI,
code compilation and testing interfaces, through a single
environment as a one-stop shop [A7]. Leveraging
such capabilities, LCPs help advance the software
engineering discipline in emerging areas, including the
machine learning discipline, social media monitoring,
and support for the rapid security requirements of
organizations [A98, A38]. Reduced coding efforts,
faster application development, and a manageable
learning curve for software developers are prominent
benefits of low-code reported in the literature [A30].
On the other hand, studies report that some software
developers perceive low-code as a barrier to their
creativity and have concerns that citizen development
would challenge their identity [4]. However, we lack
explanations of how low-code adoption would impact
the identity of software developers. Future research
is needed to understand the perceived challenges
and risks associated with low-code adoption from
macro perspectives, i.e. cross-industry perspectives,
interchangeability between LCPs, and how the low-code
phenomenon challenges the identity of software
developers.

In past years, research on low-code has progressed
substantially. Despite this widespread study of
low-code, we lack an understanding of what research
streams characterize the low-code phenomenon.
Indeed, existing work provides for ambiguity in
understanding the low-code phenomenon. We found
that this ambiguity roots in the intellectual structure
underpinning low-code research’s evolution. We show
this evolution by mapping this intellectual structure,
and by this, we contribute to low-code research in
three ways. First, we developed a curated dataset
within which we identified articles from multiple
research disciplines that constitute the theoretical
roots of existing work on low-code. Second, we
visualize this rooting in a network graph representing
the results of bibliometrics and co-citation analysis.
Third, we present six research streams we identified

based on our bibliometrics and co-citation analysis to
unpack how low-code literature is interconnected across
disciplines. These contributions serve as a starting point
for developing a research agenda for future low-code
research at the fringes of the different research streams.
For practice, we resolve the ambiguity associated with
low-code by explaining its origins and offering insights
into the applications of low-code in emerging software
engineering trends and workplace transformation.
Using the identified six research streams, practitioners
can gain a comprehensive understanding of low-code
and its capabilities. This can lead to more effective
use of low-code, allowing practitioners to create robust
applications and identify the respective use cases.

By leveraging a visualization approach for
understanding the intellectual structure, we provide
a better understanding of the connections with other
disciplines and uncover the theoretical origins of the
low-code phenomenon. We acknowledge that our work
may have certain limitations, each of which present
an opportunity for future research. Visualization for
literature analysis is a fruitful approach because it
allows for analyzing large amounts of data that are
very difficult to explore using traditional systematic
literature review approaches. Visualizations are useful
in providing a broader frame of reference, highlighting
the most important work within the literature, and
uncovering the heterogeneity by identifying different
sub-fields. At the same time, we acknowledge that a
visualization-only approach can treat grey literature and
short articles in the same way as peer-reviewed unless
explicitly encoded. We mitigated this problem using a
mixed-method approach by combining computer-aided
literature analysis with manual review. Future research
can leverage natural language processing and text
analytic methods to analyze the network more deeply
and develop more refined research stream clusters and
their core topics.

Another potential limitation is the number and types
of sources we included. We started our search process
using eight leading databases. It may be possible
that that some disciplines may not be comprehensively
represented in these databases. To the best of our
knowledge, we used keywords that best encompass
the low-code phenomenon. However, the list of
keywords could be extended to account for tangential
concepts. From a visualization method approach, our
goal was to unpack the intellectual structure of the
low-code phenomenon. We used a visual layout that
focuses on identifying core and peripheral structure
as well as clusters within the the low-code literature.
Future research can leverage different types of visual
layouts and attributes to reveal other characteristics, for

Page 7808

instance, evolution of clusters, disciplinary points of
focus, or research lineages.

6. Conclusion

The low-code phenomenon has rapidly grown during
the past years to help organizations tackle their digital
transformation challenges. However, the lack of a
standard definition and understanding of how low-code
literature is interconnected to other disciplines can
hinder the adoption. Our study aims at mapping the
intellectual structure of the low-code phenomenon. We
leveraged visualization for literature analysis to allow
for a better understanding of the relationships and
theoretical roots of the low-code phenomenon to resolve
the ambiguity.

By mapping the intellectual structure of low-code
literature, we seek to contribute to developing a
comprehensive understanding of the low-code
phenomenon and the diverse research streams that
exist within it. The identified research streams include
origins of low-code within software engineering,
low-code and emerging software engineering trends,
enabling new software development practices, low-code
methodologies, enhancing understanding about
low-code adoption and leveraging low-code for digital
transformation. These research streams offer interesting
insights into how organizations utilize low-code.
Our work brings structure to the cumulative body of
knowledge of low-code and can serve as a guide to
future researchers, supporting them to position their
work within the low-code research landscape.

References

[1] N. Patkar, A. Chis, N. Stulova, and O. Nierstrasz,
“Interactive behavior-driven development: a low-code
perspective,” in 2021 ACM/IEEE International
Conference on Model Driven Engineering Languages and
Systems Companion (MODELS-C), IEEE, 2021.

[2] M. Lebens, R. Finnegan, S. Sorsen, and J. Shah, “Rise
of the citizen developer,” Muma Business Review, vol. 5,
pp. 101–111, 2021.

[3] M. De Reuver, C. Sørensen, and R. C. Basole, “The digital
platform: A research agenda,” Journal of Information
Technology, vol. 33, no. 2, pp. 124–135, 2018.

[4] S. A. A. Naqvi, M. P. Zimmer, R. Syed, and
P. Drews, “Understanding the socio-technical aspects of
low-code adoption for software development,” European
Conference on Information Systems (ECIS), 2023.

[5] D. Di Ruscio, D. Kolovos, J. de Lara, A. Pierantonio,
M. Tisi, and M. Wimmer, “Low-code development and
model-driven engineering: Two sides of the same coin?,”
Software and Systems Modeling, vol. 21, pp. 437–446,
2022.

[6] F. Sufi, “Algorithms in low-code-no-code for research
applications: A practical review,” Algorithms, vol. 16,
no. 2, p. 108, 2023.

[7] R. Benac and T. K. Mohd, “Recent trends in software
development: Low-code solutions,” Lecture Notes in
Networks and Systems, pp. 525–533, 2021.

[8] A. C. Bock and U. Frank, “Low-code platform,” Business
& Information Sys Eng, vol. 63, pp. 733–740, 2021.

[9] H. D. White and B. C. Griffith, “Author cocitation: A
literature measure of intellectual structure,” Journal of the
American Society for Information Science, vol. 32, no. 3,
pp. 163–171, 1981.

[10] B. R. Barricelli, F. Cassano, D. Fogli, and A. Piccinno,
“End-user development, end-user programming and
end-user software engineering: A systematic mapping
study,” Journal of Systems and Software, vol. 149,
pp. 101–137, 2019.

[11] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven
software engineering in practice,” Synthesis Lectures on
Software Engineering, vol. 3, no. 1, pp. 1–207, 2017.

[12] F. Gürcan and G. & Taentzer, “Using microsoft
powerapps, mendix and outsystems in two development
scenarios: An experience report,” ACM/IEEE
International Conference on Model Driven Engineering
Languages and Systems (MODELS-C), 2021.

[13] N. Prinz, C. Rentrop, and M. & Huber, “Low-code
development platforms–a literature review,” Americas
Conference on Information Systems (AMCIS), 2021.

[14] D. Pinho, A. Aguiar, and V. Amaral, “What about the
usability in low-code platforms? A systematic literature
review,” Journal of Computer Languages, 2022.

[15] S. Käss, S. Strahringer, and M. Westner, “Drivers and
inhibitors of low code development platform adoption,”
IEEE 24th Conference on Business Informatics (CBI),
2022.

[16] C. Parker, S. Scott, and A. Geddes, “Snowball sampling,”
SAGE Research Methods Foundations, 2019.

[17] M. Bastian, S. Heymann, M. Jacomy, et al., “Gephi:
An open source software for exploring and manipulating
networks,” International Conference on Web and Social
Media, vol. 8, pp. 361–362, 2009.

[18] S. Martin, W. M. Brown, R. Klavans, and K. W.
Boyack, “Openord: an open-source toolbox for large
graph layout,” in Visualization and Data Analysis,
vol. 7868, pp. 786–806, International Society for Optics
and Photonics, 2011.

[19] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre, “Fast unfolding of communities in large
networks,” Journal of Statistical Mechanics: Theory and
Experiment, no. 10, pp. P1–8, 2008.

[20] Y. Luo, P. Liang, C. Wang, M. Shahin, and J. Zhan,
“Characteristics and challenges of low-code development:
The practitioners’ perspective,” Proceedings of the 15th
ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM),
pp. 1–11, 2021.

[21] J. J. Gibson, “The theory of affordances,” The Ecological
Approach to Visual Perception, Hilldale, USA, vol. 1,
no. 2, pp. 67–82, 1977.

[22] J. G. Greeno, “Gibson’s affordances,” Psychological
Review, vol. 101, no. 2, pp. 336–342, 1994.

Appendix

Given page length constraints, we offer a comprehensive
reference list of the 105 articles included in our study at
https://zenodo.org/record/8354060.

Page 7809

