
A Case Study of Continuous Adoption in the Norwegian Public Sector

Astri Barbala
SINTEF

Trondheim, Norway
astri.barbala@sintef.no

Tor Sporsem
SINTEF

Trondheim, Norway
tor.sporsem@sintef.no

Klaas-Jan Stol
University College Cork, Lero, SINTEF

Cork, Ireland
klaas-jan.stol@sintef.no

Abstract

The Norwegian public sector has become
increasingly software-intensive. To enable faster
software delivery involving frequent deployments,
software development teams building new solutions for
public sector employees and citizens have started to
embrace a Continuous Software Engineering (CSE)
approach. Research on CSE has primarily had an inward
focus on the development practices including Continuous
Integration and Delivery. Far fewer studies have had
an outward focus that considers the involvement of
users of a system that is delivered incrementally, and

‘continuously.’ Further, most CSE research is conducted
in commercial settings, where the quest to innovate and
retain users in a competitive market is key. This paper
presents a case study of new systems development in
the Norwegian public sector. Our analysis identified
the concept of “Continuous Adoption” as a distinct
concept from Continuous Use. This paper extends the
CSE literature, and complements traditional adoption
literature. This paper presents a definition and identifies
three key dimensions, namely transparency, feedback,
and evolving context, and illustrates these using an
in-depth analysis of a longitudinal case study.

Keywords: Continuous Software Engineering, Public
Sector, Continuous Adoption.

1. Introduction

Digital transformation efforts have moved
center-stage on the agenda of politicians, public
administration stakeholders, software developers, and
research communities over the last decade and are
radically changing how public sector organizations
are organized and operated (Plesner et al., 2018).
The Norwegian public sector is undergoing a digital
transformation (Moe & Mikalsen, 2020) that aims to
increase data-sharing between the various stakeholders
in public administration and create more effective and
user-friendly services. The Norwegian public sector

has become increasingly software intensive, which
means that both employees in public administration
and Norwegian citizens must maneuver these digital
solutions. A major trend in the software industry is
Continuous Software Engineering (CSE). CSE captures
a wide range of activities including Continuous Planning,
Continuous Integration, but also Continuous Use;
Fitzgerald and Stol (2017) have labeled this ‘Continuous
*’. Their Continuous * framework suggests that besides
long-established practices such as continuous integration,
software companies could also benefit from focusing
on other continuous practices such as Continuous Use,
which refers to the continued use of software systems
after the initial adoption (Fitzgerald & Stol, 2017).
However, this concept, which focuses on the relationship
between development teams and user groups, has
remained largely untheorized to date. Research on CSE
practices has first and foremost focused inward on the
development process, studying e.g., experimentation
(Auer & Felderer, 2018; Ros et al., 2022; Yaman et al.,
2020) and cost-benefit evaluations (Klotins et al., 2022)
in a continuous development process. Very few studies
have focused outward on the user side in the context
of CSE, and user-focused studies have mainly looked
at how development teams use feedback and integrate
it into their continued work (e.g., Fabijan et al., 2017;
Maalej et al., 2009).

An outward view on CSE involves the adoption of
the software that is developed and includes attention
for concerns of users. While there is considerable
literature on adoption, prior frameworks and theories
do not fit well with the CSE approach, which Bosch et al.
(2018) have labeled a ’paradigm shift.’ In this paper,
we coin the term “Continuous Adoption” to refer to the
continuous adoption practices that involve both software
development (supply side) and software use (user side).
We define Continuous Adoption as a distinct concept
from Continuous Use and initial adoption, and identify
three integral features that characterize the concept
which are central for determining its success, namely
transparency, feedback, and evolving context.

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 1983
URI: https://hdl.handle.net/10125/106626
978-0-9981331-7-1
(CC BY-NC-ND 4.0)



Given the nascent state of research on software
adoption in a continuous development context, we
conducted a longitudinal case study at NAV, a large
public organization in Norway responsible for social
welfare and labor services. The expert users in this case
study are caseworkers in state aid centers who evaluate
and process digital applications for various auxiliary
aids like wheelchairs and hearing aid devices. With
several thousand employees and servicing large parts
of the Norwegian population at different life stages, NAV
is a prime example of a large, complex organization.
In recent years, NAV has moved away from being
dependent on large consultancy companies, to in-house
software product teams organized by specific domain.
The organization comprises several divisions, with many
interdependencies among them. The development teams
have moved towards pursuing a CSE approach, with
an aim to deliver and deploy software frequently. The
frequency of deployment amongst NAV teams has
increased from a few releases per year to several a day.

Our study goal was to develop a better understanding
of the continuous adoption process that takes place in
a CSE context, from the perspective of both developers
and users. As the focus here is on the process and not
the result—which, in CSE is a matter of never-ending
negotiations—we employ a process perspective to the
study, which allows for elaborating on “underlying
dynamics [revealing] how and why outcomes are reached
over time” (Fitzgerald, 2009). We ask:
RQ: How is the Continuous Software Engineering
development process experienced by the supply and user
sides in a public sector, and which challenges do expert
users experience in adoption of the software?

Continuous Adoption takes place at the intersection
of software development and software use, and thus it
is necessary to understand both perspectives to provide
a deep understanding of the adoption process in the
Continuous * framework. We interviewed and observed
both caseworkers and the developers of digital solutions.

The paper is organized as follows. Section 2 presents
related work and the conceptual foundation of our
study, followed by a presentation of our methodological
approach and data in Sec. 3. We then present our results
in Sec. 4. Section 5 discusses the main findings and
limitations, and directions for future work.

2. Background and Related Work

2.1. Continuous Software Engineering

Mirroring the term ‘DevOps’ (Debois, 2011),
Fitzgerald and Stol (2017) coined the term ‘BizDev’ to
argue for closer integration between business strategy and

development. In their discussion of CSE, Fitzgerald and
Stol make a link to the concept of ‘flow’ which originated
in Lean manufacturing and encoded in “Lean Thinking”
(Womack & Jones, 2003, p.180), and which refers to
a “connected set of value-creating actions.” They argue
that Lean Thinking’s explicit focus on an end-to-end
process may be better suited for a ‘continuous’ approach
than agile software methods, which focus less on a
holistic chain of integrated practices. Although they
identified several significant challenges for the practice
of CSE, including a potentially misplaced focus on
speed, Fitzgerald and Stol concluded that the need for
more holistic and integrated approaches within software
engineering demands clear and rigorous definitions. CSE
comprises several related but distinct practices, but three
of these in particular are applicable to discussing software
adoption in a continuous context, namely Continuous
Use, Continuous Trust, and Continuous Innovation.

Continuous Use considers users’ continued
employment of a product after its initial adoption.
Literature on Continuous Use places a focus on how
the user as existing costumer chooses to keep using
the product (Fitzgerald & Stol, 2017), and how this
continued use is vital for a vendor to receive economic
payoff. Again, the focus is mainly inward and on how
development teams can work in order to facilitate for this
use and its accompanying financial reward. Fitzgerald
and Stol (2017) further point out that “many studies
consider intention to continue using a system rather
than the actual continuous use,” meaning that very few
studies report detailed accounts of user experiences
in the context of CSE. At the same time, the term
Continuous Use lacks attention for the broader context
of deploying the software into actual practice, and the
associated negotiations, appropriation, and habits that
happen when software is adopted.

Closely related, intertwined even, to Continuous Use
is the concept Continuous Trust, where trust is seen
as a prerequisite for users to keep using a product in
question. Fitzgerald and Stol (2017) defined Continuous
Trust as: “trust developed over time as a result of
interactions based on the belief that a vendor will act
cooperatively to fulfill customer expectations without
exploiting their vulnerabilities.” Hence, the term implies
a wider understanding than merely trusting the software
itself; it also implies the reliability and reputation of
the vendor or organization. Trust is regarded one of
the central human values increasingly seen as critical
in all stages of software development, although the
studies incorporating a focus on trust have mainly
looked at e-commerce, freelancing, and crowd-sourcing
platforms (Hussain et al., 2022). In discussing how
establishing trust with customers is intertwined with the

Page 1984



implementation of user feedback, Klotins et al. (2022)
wrote: “The primary benefits from continuous use arise
from closer, longitudinal relationships with customers
and end-users. The closer relationship enables more
opportunities for feedback collection, builds trust, and
improves overall customer satisfaction.”

Similar to the conceptualization of Continuous Use,
then, Continuous Trust uses terms such as “vendor”
and “customer” in its definition. While this does not
necessarily exclude public sector IT systems, the main
concern expressed here is that of vendors seeking to
retain a customer base by acting in a way that customers
would expect. Indeed, to the best of our knowledge,
continuous trust has only been studied in the context
of commercial operators (Gefen et al., 2003; Hoehle
& Huff, 2012). Whereas in the private sector users of
IT services may have several alternatives, this is not
the case in the public sector. IT systems in the public
sector have the exclusive mandate from a country’s
government to provide services to its citizens. Citizens
have no choice but to use these systems to avail of the
services that a government offers. Another relevant study
within the CSE literature that underline the importance
of trust-building is Mattos et al. (2020)’s investigation
of how high levels of trust and close collaboration
with customers were vital for successful Continuous
Experimentation (CE). They underlined that a key to
building a trust relationship is transparency between the
user and the company, where: “the customer needs to
understand the need for the deployment, have a clear
vision of how it can impact the system and what are the
potential benefits.”

The third term that relates to our suggested concept
of Continuous Adoption is Continuous Innovation. This
concerns how “new ideas are transformed to create
business value for customers” (Fitzgerald & Stol, 2017)
with an emphasis on the planning process, and although
the focus is yet again largely on financial opportunities
(e.g., Wiedemann et al. (2019)), the concept is also useful
for the public sector; in our case the aim is to develop
novel ideas to use data and simplify case processing.

Due to the implications brought about by CSE,
Bosch et al. (2018) refer to the current changes in
software development as a “paradigm shift,” where
software-intensive organizations are seeing a need to
complement traditional requirement-driven approaches
with data-driven practices and use of machine learning
and artificial intelligence (AI). We argue that this
paradigm shift also entails a change regarding how users
are integrated into the development process, which we
seek to elaborate in this study.

2.2. Technology Adoption

Several conceptual models have been proposed to
help understand how technology is integrated into users’
lives. Although we contend that existing frameworks
to discuss the findings in our study do not suffice, the
Continuous Adoption concept draws from both the CSE
literature and technology adoption literature within the
Information Systems (IS) and Science and Technology
Studies fields to pinpoint the aspects at stake in the
context of public sector caseworkers integrating new
digital solutions.

Among the best-known frameworks is the Technology
Acceptance Model (TAM) (Davis, 1989) which posits
that two factors determine whether a computer system
will be accepted by its potential users: 1) perceived
usefulness, and 2) perceived ease of use. However, this
model focuses on the initial adoption of technology,
and does not pay attention to the supply side and
the development processes, nor does it consider the
continuous nature of integrating versions of a system
inot a user context. TAM has had many extensions
since its initial introduction, among the most central
ones being the Unified Theory of Acceptance and Use of
Technology (UTAUT), which regards users’ intentions
of using specific technology (Venkatesh et al., 2003).
Similarly, the domestication framework (Berker et al.,
2005) underlines how different uses of technology are
negotiated into people’s lives, “influenced by choice as
well as discipline, by enthusiasm as well as resistance”
(Sørensen, 2005). This model primarily focuses on
individual users and the meaning-making tactics utilized
by them to ‘tame’ technological devices or systems to
fit their existing everyday habits. Although useful for
this study for its focus on the continuous negotiations
that take place when integrating software into everyday
life contexts, the domestication framework also lacks
attention to how technology development affects the
negotiation process.

A growing scholarship is investigating technology
adoption taking place within the public sector, however
usually with a focus on challenges and implications
taking place at the initial implementation on new
technology. Reddick (2009)’s study of American
local governments’ adoption of centralized customer
service systems is a much-cited example. It points to
how organizational, environmental, technological, and
geographical factors are central for the success of its
implementation. This is, however, a statistical study
and focuses on initial adoption, and hence differs from
our research. Similar studies are conducted in other
countries, including Kaliannan et al. (2007)’s insights
into how the Malaysian government implemented

Page 1985



e-government solutions and Takahashi et al. (2020)’s
study of digital farm managing systems in sub-Saharan
Africa. Again, the focus is on initial implementation and
on organizational and financial implications rather than
on users’ and suppliers’ experiences with a continued
adoption process. By adopting the CSE framework and
focusing on qualitative data, we contribute novel insights
to the literature on technology adoption in public sector
contexts.

3. Methodology

We conducted an exploratory case study (Runeson &
Höst, 2009), drawing on observations and interview data
from a public sector development team and caseworkers
at four state aid centers that use the software built by the
team. Case study research can be a fruitful approach
to develop novel theoretical concepts by observing
actual practices (Meredith, 1998). Additionally, we
drew on strategy documents and reports on the status
quo on digitalization efforts within the organization.
Both traditional and digital observations were conducted,
entailing observations of both the NAV development team
and selected caseworkers. Both groups were observed in
their everyday working environment. To ensure a detailed
overview and representation, the aid centers are placed in
different parts of Norway and comprise both centers in
large and small municipalities. The users we studied can
be described as expert users, and the software in question
is tailored to their needs in their everyday work contexts.

3.1. Background to the Case

We studied the development of a new digital case
management system at NAV. The system is tailored to
caseworkers in 12 aid centers located in municipalities
across Norway, which serve citizens in their local regions.
Between 100 and 200 caseworkers use the software
in question in their everyday work, yet the different
caseworker units focus on different technological aid
areas and hence do not process the same digital
applications. Aid Center 4 and the development team
jointly designed a new part of the system to satisfy new
public policy requirements. This regards one specific
type of technological aid that now requires the public
to choose between different applications when applying
for those. As our study shows, the intertwining of new
technology and new public policies further complicates
the continuous software adoption process, and we here
contribute to the literature pinpointing the entanglements
of technology and law (Cordella & Gualdi, 2019; Gualdi
& Cordella, 2022).

We refer to the development team we studied as
Team Welfare. Their team structures employ principles

for typical agile teams: Product Owner, developers,
designers, and other domain-specific roles.

3.2. Data Collection and Analysis

We collected data through interviews and
observations (see Table 1). The interviews were
semi-structured and lasted between 30 and 60 minutes.
In total, we conducted 18 interviews with 19 informants
(the development team Product Owner was interviewed
both at the beginning and the end of the data collection
period, and three informants in Aid Center 4 were
interviewed together). Seven of the interviews in the aid
centers can be described as field interviews, entailing
that these were more informal conversations during our
observations. These field interviews lasted more than
30 minutes each; in addition, we also had many, shorter
and more casual conversations. The interviews focused
on the informants’ attitudes toward the software, the
development process, and how this was experienced both
by developers and users.

We conducted approximately 30 hours of
observations at aid centers (ca. 7 hours in each)
and 4 hours of observations of the development team.
Additionally, we attended two online meetings and
analyzed conversations in the chat rooms within NAV’s
online meeting system. The field notes comprise
approximately 25 pages of written text, noting in the aid
centers how the caseworkers made use of the different
software during the day, how they spoke about both
the software in question and their attitudes towards the
development team, and the workaround tactics they had
developed.

Interviews were recorded, transcribed, and coded
open-ended, and we used NVivo to identify and structure
common codes into higher level concepts. The Constant
Comparison Method (Seaman, 1999) used for coding
and memoing and findings were analyzed using an
abductive thematic analysis which focuses on a dialogue
between the empirical data material and theory. In
order to structure the codes into higher level themes
we followed Saldaña (2013)’s pragmatic approach to
thematic analysis. As some of the analysis was conducted
jointly by the research team, our approach was also
informed by the collaborative thematic analysis approach
(Eggebø, 2020), entailing that we discussed back and
forth before deciding and agreeing on the final themes.
Three major themes emerged from the data analysis:
transparency, feedback and evolving context. Within
these overarching themes, the most important subthemes
were techno-legal hurdles, types of communication
(e.g., online meeting, instant messenger (IM) messages,
face-to-face communication), planning challenges for aid

Page 1986



Table 1. Data collection activities

Period Activity Interviewees
Dec
2022-June
2023 NAV

7 interviews
+ 1 workday
observing the
development
team +
attending 1
online meeting
+ 1 feedback
presentation

• Product owner (x2)
• Developer 1
• Developer 2
• Designer
• Communications

advisor
• Legal advisor
• Department director

Feb 2023
Aid Center
1

2 interviews
+ 1 workday
observation
+ attending 1
online meeting

• Caseworker 1
• Digital advisor/

caseworker

April 2023
Aid Center
2

5 interviews
+ 1 workday
observation

• Caseworker 1
• Caseworker 2
• Special aid advisor
• Center director
• Digital advisor

May 2023
Aid Center
3

2 interviews
+ 1 workday
observation

• Caseworker 1
• Caseworker 2

June 2023
Aid Center
4

1 group
interview +
1 workday
observation

• Caseworker
• Special aid advisor
• Legal

consultant/Team
coordinator

centers, guilty conscience among the development team,
and lack of interdisciplinary understanding.

4. Findings

Our analysis led to the emergent theme of
‘Continuous Adoption’ (CA), a continuous process of
adopting new versions of software that is actively being
developed. We now present a definition (Sec. 4.1), and
three key elements of CA (Sections 4.2, 4.3, and 4.4).

4.1. Continuous Adoption

The analysis revealed themes and issues that
existing technology adoption frameworks do not account
for. Thus, we identified a need to propose a new
concept that pinpoints the integration process between
development and use, and the continuous negotiations
taking place in this respect in order to provide a
nuanced discussion of our findings. Recognizing
the key limitations of current adoption literature, we
coin the term “Continuous Adoption,” to extend the
continuous software engineering literature, and contrast
with traditional notions of initial adoption. Specifically,
within Fitzgerald and Stol (2017)’s “Continuous *”
framework, Continuous Adoption sits closely with
Continuous Use and Continuous Trust. We define

Continuous Adoption (CA) as:

“a continuous process of adopting new versions
of a software system that involves negotiation
between software providers and software users,
which takes into consideration concerns of
users, such as transparency, ease-of-use, and
responsiveness, while also considering the
concerns of software providers, such as policy,
standards, and regulation.”

Similar to other practices of CSE, CA does not have
a distinct ending, but rather indicates that the adoption of
the software happens continuously and at the same pace
as the software is being deployed by the development
team building it. Continuous Adoption also underlines
the importance of the context of continued use, as users
must adopt both the software and adjust to potentially
new ways of working and new public policies integrated
into the software in question.

Lastly and importantly, Continuous Adoption implies
that there is a provider side offering something that is to
be adopted, which the term “continuous use” lacks. This
is another central aspect of the concept of Continuous
Adoption underlining the need for a novel concept here;
the part continuously providing software for the users
to adopt are directly involved in the outcome of the
adoption process and the feedback loop. Our thematic
analysis resulted in three main themes that we argue
make up the key aspects of Continuous Adoption, namely
transparency, feedback, and evolving context.

4.2. Transparency

When Team Welfare embarked on the development
of their new case processing software, they introduced a
paradigm shift in the way caseworkers were included in
the development process. Unlike the traditional approach
of receiving plans and fixed release dates, users were
now presented with a continuous development process
where software would be delivered incrementally. This
necessitated a change in mindset for caseworkers who
had to adapt to the dynamic nature of CSE. They needed
to grasp the concept that their own adoption and feedback
as users would directly impact the development team’s
priorities and the timing of new feature releases.

In response to the incremental software releases,
caseworkers must now adapt their working methods and
organizational practices to incorporate the new software
into their daily workflows. When confronted with
the continuous way of adopting software, some of the
caseworkers expressed a loss of control over their work
processes and schedules, as they had to align with the
release pace determined by the development team and
their prioritization of features. This was linked to a lack
of understanding of how the development teams were

Page 1987



organized, how they scheduled deliveries, and, perhaps
most importantly, why they worked the way they did.
Pinpointing this, a caseworker explained: “[I]t’s hard
to be part of this process because it’s difficult to know
what happens [as the development is] moving forward.
Because people come and ask, ‘What happens now,’ and
we know nothing until we receive the news just before [a
new function is] released.”

This highlighted the fact that the continuous
development process was mostly concealed from the
users. Many caseworkers expressed frustration with the
developers’ work method, and they feared it would make
it difficult to plan resources and schedule holidays at the
aid centers. Uncertainty surrounding the deployment of
new or improved features meant they were never sure
when to expect changes.

The developers in Team Welfare acknowledged the
caseworkers’ struggles in adapting to the continuous
development but found it difficult to do something about
it. The challenge was that there were no natural points
in time to inform about new feature releases or changes
made. One developer asked, “When is a change big
enough to invest time in informing the users?” The
development team found it difficult to understand the
information needs of caseworkers, given their limited
knowledge of caseworkers’ work processes. They also
did not want to confuse and overwhelm the caseworker
users with too much information whenever a new release
was ready. However, they underlined that if a new
release would come with considerable changes, then
users should be notified of this. Finding the right balance,
or ‘threshold’ for reaching out to users was a challenge
for the development team. This again points to a lack
of communication and mutual understanding about the
different work processes from the development and the
user sides, something that would take both time and effort
to establish. Complicating this, the development team
would have to familiarize themselves with completely
different aid centers around the country, each with their
own distinct culture and geographical features.

Another challenge arose from the difficulty of
providing timely information about planned features
when there was uncertainty surrounding their actual
release. Users saw the need to be informed
about upcoming features in order to make necessary
preparations. This could involve adjusting staffing levels
to accommodate the change or acquiring knowledge
about how it would impact their work processes. This
situation presented a dilemma: if the information was
shared too late, users were unable to adequately prepare,
but if it was provided too early, users might prepare for
something that ultimately would not materialize. The
development team’s communication advisor said, “We

could choose to tell users that [a release] might happen
next week. But we have also had a pilot solution for two
years now because we didn’t know exactly what would
happen. I don’t want to hype anything if it isn’t going to
be released.”

Informing caseworkers about new features that were
ultimately not released would lead to a loss of trust and
disappointment. This had a noticeable effect on some
caseworkers who became disinterested in adopting the
new software.

These findings highlight how the nature of CSE and
its elusiveness as perceived by users can erode user trust
and hinder successful software adoption. In this case,
the limited number of caseworkers, ranging from 110
to 180, made it crucial to prioritize their satisfaction in
order to maintain a productive collaboration between
them and the developers. The caseworkers indicated that
they missed transparency of the development process.

4.3. Feedback

A frequent error message could be observed flashing
across the screen repeatedly when case workers used
the new software: “Could not retrieve the case. There
has been a technical error. Contact the developers
in Team Welfare.” We saw this error message several
times during our observation of caseworkers. However,
contacting the developers in Team Welfare about this
issue appeared to be challenging in practice, because
case workers were scattered across Norway, and the
only means of communication they had with the product
team was through channels in the online meeting system.
Caseworkers were reluctant to use these channels to
provide feedback. When we asked why, several reasons
were revealed.

Several caseworkers shared that they felt scared
or intimidated when they had to use channels within
their virtual meeting software to report errors or post
suggestions for improvement and changes in the software
based on what they perceived were missing for them to
do their work properly. The reason was their frequent
uncertainty about whether the current software was faulty
or that they might be using the software incorrectly.
They were afraid of embarrassing themselves in front
of other members of the channel they did not know when
making reports in an open channel, as one caseworker
explained, “You have an audience when you write in a
channel.” Some of them chose to directly contact the
Product Owner within the development team when they
experienced this insecurity. Caseworkers perceived such
direct contact as ‘safer,’ and they were more comfortable
asking seemingly stupid questions and ensuring they
had understood things correctly. However, we found

Page 1988



that only the caseworkers who had already established a
relationship with the Product Owner would do this.

One of the reasons why caseworkers struggled to
provide feedback was the difficulty in articulating their
thoughts effectively. The field of assistive technology
is complex, making it time-consuming to explain to
developers why even minor errors or deficiencies can
lead to significant problems. One caseworker noted that
the developers seemingly were unfamiliar with basic
domain knowledge and terminology: “For instance,
[the developers] don’t seem to know what an exchange
form is,” making it challenging to explain its purpose
and discouraging her from spending time providing
feedback. Further, caseworkers felt insecure about using
technical jargon commonly used by developers. Without
these terms, it became difficult for them to accurately
describe errors and suggest improvements. Despite
their limited knowledge of software development, all
caseworkers we observed displayed humility and respect
towards the software developers, acknowledging the
complexity and challenges associated with their work
towards digitalizing the public sector. However, the
caseworkers also felt like a liability or burden when they
were not able to articulate themselves accurately, further
discouraging them from providing feedback.

Another factor that influenced the feedback from
caseworkers was the response given by the development
team. Team Welfare continuously prioritized tasks for
each development iteration. This meant that the team
could not provide users with information about the
impact of their feedback, as priorities were constantly
changing. Eventually, as tasks were completed, there was
no trailing back to the initial feedback and the person
who provided it. This made caseworkers uncertain as to
whether their effort of providing feedback was worth it,
as one caseworker explained: “There is no motivation
in itself to provide feedback when you don’t know what
has been done with the feedback.” As a result, their
trust in the development process diminished for some of
the users we spoke to, and they began to see providing
feedback as a waste of time.

The team members’ awareness that informing users
was not prioritized was a constant source of guilty
conscience. This seemed closely connected to the lack
of motivated users, as the team was aware of their
responsibilities in informing users about what happened
to the feedback, yet they were not always able to
prioritize this over other tasks. Thus, CSE not only
puts new responsibilities onto users, but also on the
development teams: they are expected to continuously
follow up and inform their users about changes in the
software, despite oftentimes having no clear agenda of
future releases.

In the context of software engineering, the continuous
adoption of new software necessitates the provision of
feedback to customize the software according to user
needs and domain requirements. However, this study
highlights some challenges associated with establishing
an effective feedback loop for developers, thereby
impeding the adoption process.

4.4. Evolving Context

The third and final challenge that our analysis
revealed was primarily connected to the group of
caseworkers situated in Aid Center 4 that also was
part of developing a new aid solution that required
two different types of digital applications due to a
change in government policies. However, as the
content of this policy was difficult to understand,
both for the development team, the caseworkers, and
also governmental advisors, the development of new
technology implementing these policies had become very
complicated.

This led us to recognize the impact and importance
of the evolving context in which the adoption process
unfolds. For expert users such as caseworkers in the
public sector, the context is largely connected to the
implication of regulations and government policies, and it
is crucial for caseworkers to have a clear understanding of
these to be able to process applications from citizens. In
the present context, new policies had been put in place not
long before the development team had been ordered to
begin the production process for digital case processing
system. The aid center in question had volunteered to
be part of the development process, but it was very clear
that it had not turned out to be what they had imagined:

“We thought it would be two cases per year. But we are
not built for two or three a day. And we thought those
two cases [per year] were super easy to just turn down.
But that wasn’t the case, either. So it turned out to be
something quite different from what we expected.”

The caseworker unit we interviewed had been
informed that being part of developing the new digital
solution would take a few hours yearly, but in reality,
two of them were now spending a third of their time
at work contributing to software development. This
included two weekly online meetings with the developers
and writing down all errors they encountered in the
application software (which seemed to be showing up for
every other case) in spreadsheets and physical notebooks.
The applications fed into the wrong application system
or that generally were not possible to process could
only be completed together with the development team
using virtual meeting software as they developed this
part of the solution. The uncompleted cases were added

Page 1989



to a long queue of unsolved applications that remained
unprocessed until they were prioritized at one of their
online meetings, however, they usually only managed to
go through one application per session with the team (i.e.,
two cases per week). During our visit to the caseworker
unit, we observed a list of 42 unprocessed cases, the
oldest received more than two months ago.

Since the new system was built to support new
policies, the development team had to construct a
completely new way of working for the caseworkers,
which meant that the caseworkers first had to process
applications in a near ‘empty’ system. The idea was that,
following CSE principles, the development team would
add new features incrementally, as both they and the
caseworkers eventually would identify what was needed
next. This way of working was, however, extremely
frustrating for the caseworkers, who were not able to
process any of the applications coming into the system
as critical features were missing. As one caseworker
said: “Using [the new software] is like an empty room
with nothing but a door in and out.” This frustration was
also clearly noticeable when observing the unit at work.

Ultimately, the result of the halting development
process was not only that the caseworkers felt a growing
resentment for the technology development moving to
fast, but they also experienced a growing frustration
among the other major group of users: citizens applying
for aids. Citizens frequently called caseworkers to ask
advice on how to send a digital application, which one
of the two systems to use, and inquiring why their
applications were not yet processed as they had to wait
for their devices. As it is the caseworkers’ responsibility
to make sure that citizens get the exact right aids and in
due time, they are the ones blamed for the system not
functioning. This added a lot of stress and anxiety for the
caseworkers, and several in the unit were wondering why
the digital solution had to be rushed through. One said:

“We would much rather have been given a completed
digital system and training material to use it when [all
the policy details] had been worked out.”

The frustration and guilty conscience were also
visible amongst parts of the development team. They
were left feeling responsible for the delayed process,
despite the juridical hurdles being the main cause for the
situation and would also have been impossible to predict
for them. Some team members we interviewed expressed
that they were doubting how well the continuous process
was working in this scenario. One said: “You must have
basic functionality [in place] to get a case through by
issuing money and letters, and make a decision. [...] So
before you have that foundation, it should be complete in
the sense that you have to have a solid foundation before
you can launch. I think we launched too early.”

5. Discussion

5.1. Discussion of Findings

We began this study by asking: How is the
Continuous Software Engineering development process
experienced by the supply and user sides in the
Norwegian public sector, and which challenges do CSE
pose for the caseworker users’ adoption of the software?

In CSE literature, users’ trust in the product is seen
as needed for them to continue using the software. This
entails however that users have a choice, and that there
are alternatives if trust is not “continuous” (Fitzgerald
& Stol, 2017). In public sector software development,
however, users (both government employees, and
citizens) have no choice but to use what a governing
authority provides, which reduces the importance of
continuous trust.

Our findings suggest that this influenced the
development team’s approach to getting continuous
feedback from their users, which points to the second
main theme that emerged in our findings. The team
admitted to not making user feedback a central part of
the development process. Although this led to a sense
of guilt, they saw the need to prioritize it away due to
the wide range of responsibilities that permeated their
work as public sector software developers, encompassing
both technological and societal chores. One might
hence speculate about whether a lack of profit-driven
incentives discourages a focus on trust-building and
continuous user communication from the developer
side. Another central finding was that users became
demotivated when they felt excluded or not informed
about any essential information on the product under
development. In plan-driven development, milestones
and deadlines provide users with a sense of predictability
(even though these deadlines are frequently overrun).
Continuous software engineering implies that plans are
defined at a much shorter planning horizon and subject
to considerable change, leaving users in the dark about
what will be developed and when. In contrast to both
Continuous Use and extant technology adoption models,
Continuous Adoption focuses on the transactional aspect
of the software development process, seeing as it takes
place at the point where users continuously receive and
integrate new, incremental versions of the technology
into their specific context. However, this study highlights
how a lack of predictability may demotivate users both
from providing necessary feedback to the team, and in
their general attitude towards the software they had to
use as their main work tool, preventing this transaction
from working smoothly. Instead, caseworkers saw the
continuous way of working as concealing transparency

Page 1990



and, relating this to findings of Mattos et al. (2020) we
argue that the lack of transparency in the continuous
process made it difficult for caseworkers to have a clear
vision of the potential benefits of the software.

It is worth noting, however, that much of the criticism
was tied to the speed of the digitalization efforts as well as
the lack of extra resources to be part of the development,
and not to the efforts of the development team, who
were in the same situation as public sector employees.
In all four centers, caseworkers saw investing time and
mental effort into providing feedback to developers as
an additional burden to their already heavy workload.
Despite their integral role in the production of the new
software, they were not formally recognized as a key
stakeholder in this process, nor did their managers
grant them any extra time to do so, or other privileges.
Caseworkers who had to spend extra time delivering
feedback due to their roles as ‘super users’ and contact
persons for Team Welfare used their goodwill to get
colleagues to cover their responsibilities for them. They
thus bore the burden of spending time and cognitive
labor on providing feedback, while developers gained
valuable insights from users without incurring much
effort themselves. This attitude seemed to stem from
developers perceiving software customization as a mainly
positive aspect for users, perhaps failing to see the work
involved in continuously providing feedback. However,
they were also not thoroughly informed about this burden
from the users.

Developing software continuously for a small user
base differs from developing for a large market with
tens of thousands to millions, where developers may be
willing to risk demotivating or even losing some users
in exchange for discovering something valuable. This
discovery could potentially attract many more users than
they lose. However, in cases like NAV, where bespoke
software is developed for a limited number of users,
typically tens or hundreds, demotivating users poses
a significant risk as it can greatly hinder successful
software adoption and lead to negative effects such as
reduced job satisfaction and possibly an increase in staff
turnover. An enormous responsibility is hence put on the
shoulders of the development team in that regard.

It seemed clear that both the development team and
expert users would have benefited from a better mutual
understanding of each other’s roles and where they fit
together in the complex organization to maximize their
potential. These findings correspond to Klotins et al.
(2022)’s argument that development teams adopting
CSE can be at odds with regulatory practices in
other environments, meaning that “a careful balance
between speed and discipline” is needed. Our findings
also point to how regulatory practices deriving from

governmental policies directly impact and complicate
software adoption. Caseworkers in Aid Center 4, who
almost without their awareness had agreed to become part
of developing a new digital case processing system, felt
that not only had they become the development team’s
‘guinea pigs’ in testing out ‘empty’ software solutions
that only helped developers in determining what needed
to be built next. Caseworkers in this unit also saw
themselves as being forced to simultaneously execute
new policies they did not understand, at the expense
of citizens who relied on their provided services. This
example is an instance of what Gualdi and Cordella
(2022) have labeled “techno-legal entanglements”; not
only does technology impact the application of public
policies, policies also directly impact and complicate the
development and adoption of technology.

The contextual aspect of Continuous Adoption,
entailing that not just the actual use situation but also the
evolving context was in constant change as a result of the
incremental software delivery, also allows for discussing
the evolvement of individual as well as collective
adoption tactics, although that was not a focus for this
study. We encountered big differences regarding not
only geography and number of users for each aid center,
but also in terms of team and workday organization and
attitudes towards digitalization. The gradual software
implementation also likely allows for different cultures
in the different aid centers to be preserved. With a
plan-based delivery approach, these cultural differences
would likely not have been sustained in the same way.
When software is delivered incrementally it is integrated
into already established practices and cultures and allows
for the different aid centers to develop in different, and
perhaps conflicting ways. This, however, likely creates
more work for the development team, and Team Welfare
reported that they often received very different kinds
of feedback and requests from the various aid centers
around the country, as it also allows for the complexity
of this user group to sustain, and even adds further
complexity.

5.2. Study Limitations and Future Work

As this study addresses a specific context within
the Norwegian public sector, it cannot be generalized
to contexts in other countries or sectors. However,
we contend that the Continuous Adoption concept is
more generally relevant and extends CSE literature by
highlighting the need to study the adoption of software
in a continuous context, encouraging discussions around
development teams’ practices and implications for users’
experiences. Future studies can delve further into
the role of software adoption in other contexts where

Page 1991



development teams build software following the CSE
paradigm. Of particular interest would be to study
the contrast between our study of the public sector
with Continuous Adoption in profit-driven teams in
the private sector and their users. More research is
particularly needed looking into how the entanglements
of new technology and new public policies (see Gualdi
and Cordella (2022)) complicate the software adoption
process and create frustrations, both for the development
team and their users.

Acknowledgments This research is supported by the
Norwegian Research Council (grant number: 321477).

References

Auer, F., & Felderer, M. (2018). Current State of Research on
Continuous Experimentation: A Systematic Mapping
Study. 44th Euromicro Conference on Software
Engineering and Advanced Applications, 335–344.

Berker, T., Hartmann, M., & Punie, Y. (2005). Domestication
of media and technology. McGraw-Hill Education.

Bosch, J., Olsson, H. H., & Crnkovic, I. (2018). It takes
three to tango: Requirement, outcome/data, and
AI driven development. International Workshop on
Software-intensive Business: Start-ups, Ecosystems
and Platforms.

Cordella, A., & Gualdi, F. (2019). Law, technology and policies:
A complex negotiation to generate value. In 3rd
international conference on e-commerce, e-business
and e-government (pp. 21–28). ACM.

Davis, F. D. (1989). Perceived usefulness, perceived ease of
use, and user acceptance of information technology.
MIS Quarterly, 13(3), 319–340.

Debois, P. (2011). Devops: A Software Revolution in the
Making? — Cutter Consortium.

Eggebø, H. (2020). Kollektiv kvalitativ analyse. Norsk
Sosiologisk Tidsskrift, 4(2), 106–122.

Fabijan, A., Dmitriev, P., Olsson, H. H., & Bosch, J. (2017). The
evolution of continuous experimentation in software
product development. IEEE/ACM 39th Intern. Conf.
Software Engineering, 770–780.

Fitzgerald, B. (2009). Open Source Software Adoption:
Anatomy of Success and Failure. International
Journal of Open Source Software and Processes, 1,
1–23.

Fitzgerald, B., & Stol, K.-J. (2017). Continuous software
engineering: A roadmap and agenda. Journal of
Systems and Software, 123, 176–189.

Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and
TAM in Online Shopping: An Integrated Model. MIS
Quarterly, 27(1), 51–90.

Gualdi, F., & Cordella, A. (2022). Techno-legal entanglements
as new actors in the policy-making process.

Hoehle, H., & Huff, S. (2012). Advancing Task-Technology
Fit Theory: A formative measurement approach to
determining task-channel fit for electronic banking
channels. In Information Systems Foundations:
Theory Building in Information Systems. ANU Press.

Hussain, W., Perera, H., Whittle, J., Nurwidyantoro, A.,
Hoda, R., Shams, R. A., & Oliver, G. (2022). Human
Values in Software Engineering: Contrasting Case
Studies of Practice. IEEE Transactions on Software
Engineering, 48(5), 1818–1833.

Kaliannan, M., Awang, H., & Raman, M. (2007). Technology
adoption in the public sector: An exploratory study

of e-government in Malaysia. 1st International
Conference on Theory and Practice of Electronic
Governance, 221–224.

Klotins, E., Gorschek, T., Sundelin, K., & Falk, E. (2022).
Towards cost-benefit evaluation for continuous
software engineering activities. Empirical Software
Engineering, 27(6), 157.

Maalej, W., Happel, H.-J., & Rashid, A. (2009). When
users become collaborators: Towards continuous
and context-aware user input. 24th ACM SIGPLAN
OOPSLA, 981–990.

Mattos, D. I., Dakkak, A., Bosch, J., & Olsson, H. H. (2020).
Experimentation for Business-to-Business
Mission-Critical Systems: A Case Study.
International Conference on Software and
System Processes, 95–104.

Meredith, J. (1998). Building operations management
theory through case and field research. Journal of
Operations Management, 16(4), 441–454.

Moe, N. B., & Mikalsen, M. (2020). Large-Scale Agile
Transformation: A Case Study of Transforming
Business, Development and Operations. In
Proceedings XP 2020 (pp. 115–131). Springer.

Plesner, U., Justesen, L., & Glerup, C. (2018). The
transformation of work in digitized public sector
organizations. Journal of Organizational Change
Management, 31(5), 1176–1190.

Reddick, C. G. (2009). The adoption of centralized customer
service systems: A survey of local governments.
Government Information Quarterly, 26(1), 219–226.

Ros, R., Bjarnason, E., & Runeson, P. (2022). A theory of
factors affecting continuous experimentation (face)
[arXiv:2210.05192].

Runeson, P., & Höst, M. (2009). Guidelines for conducting and
reporting case study research in software engineering.
Empirical Software Engineering, 14(2), 131–164.

Saldaña, J. (2013). The coding manual for qualitative
researchers (2nd ed). SAGE.

Seaman, C. B. (1999). Qualitative methods in empirical
studies of software engineering. IEEE Transactions
on Software Engineering, 25(4), 557–572.

Sørensen, K. (2005). Domestication: The enactment of
technology. In T. Berker, M. Hartmann, Y. Punie,
& K. Ward (Eds.), Domestication of Media and
Technology. Open University Press.

Takahashi, K., Muraoka, R., & Otsuka, K. (2020). Technology
adoption, impact, and extension in developing
countries’ agriculture: A review of the recent
literature. Agricultural Economics, 51(1), 31–45.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D.
(2003). User acceptance of information technology:
Toward a unified view. MIS Quarterly, 27(3),
425–478.

Wiedemann, A., Wiesche, M., Gewald, H., & Krcmar, H.
(2019). Implementing the planning process within
devops teams to achieve continuous innovation. 52nd
Hawaii International Conference on System Sciences.

Womack, J., & Jones, D. (2003). Lean thinking: Banish waste
and create wealth in your corporation (2nd Edition).
Productivity Press.

Yaman, S., Fagerholm, F., Munezero, M., Männistö, T., &
Mikkonen, T. (2020). Patterns of user involvement
in experiment-driven software development.
Information and Software Technology, 120, 106244.

Page 1992


