

Interoperability for Autonomy

Kara Combs
Air Force Research Laboratory

Kara.Combs.1@us.af.mil

Trevor J. Bihl

Air Force Research Laboratory
 Trevor.Bihl.2@us.af.mil

James Pennington
Ohio University

 Jp013718@ohio.edu

Abstract

Autonomous systems aim to augment human
capabilities with machine-based decision-making in the
absence of a user. Ideally, autonomy hardware and
software would be modular, having the ability to swap
components in and out as needed based on necessary
capabilities. However, many legacy systems in use
utilize proprietary software with specific standards and
components, reducing the system’s ability to be
interoperable. Currently, the literature’s definition of
interoperability is vague and often mistaken for other
similar terms. We distinguish the uniqueness of
interoperability and codify it through a taxonomy. Next,
we extend this framework to understand autonomy and
its hardware/software components through a proposed
unified autonomy stack. We then evaluate the similarity
between four autonomy architectures based on 29 stack
components that are later presented in the
“interchangeability matrix.” Thus, we demonstrate the
necessity to unify autonomy hardware/software under
the proposed taxonomy in the development of future
autonomous systems.

1. Introduction

Autonomy is the ability to make decisions or act on

one’s own (Trivellato, Spiesses, & Zannone, 2009).
Autonomous systems such as robots, self-driving cars,
and unmanned aerial vehicles have been incorporated
into daily life to assist humans (Lum & Heer, 1989). The
ability to connect these individual autonomous systems
to work has been the goal of the Internet of Things (IoT)
(Li, Xu, & Zhao, 2015). However, before individual
autonomous systems can cohesively work together, they
must be interoperable (Trivellato, Spiesses, & Zannone,
2009).

There are many similar, but technically different
definitions of interoperability; however, essential to all
of them is the ability for individual systems to
communicate with one another (Ford, Colombi,
Graham, & Jacques, 2007; Kasunic, 2001). In the
broadest terms, there are two types of interoperability:
operational and technical (Kasunic, 2001). Operational

interoperability is focused on enterprise/organization-
based interoperability often involving systems of
systems and humans. Whereas technical interoperability
focuses on the individual systems at the technical level
regarding data and information exchange between
systems. Since then, types of interoperability have been
further split into more levels namely such as business,
processes, services, and data (Chen, 2006) and
organizational, operational, systems, and technical
(Moon, Fewell, & Reynolds, 2008). At each level, there
are varying degrees to which these systems are
considered interoperable. This has been the subject of
research aimed at the quantification interoperability and
metrics therein (see (Mensh, 1989)).

Though systems cognitively connected, dubbed
“smart objects” in (Kaisler, Money, & Cohen, Smart
objects: An active big data approach, 2018) are
applicable and important to interoperability, this paper
is focused on the technical interoperability of
autonomous systems. As such, the focus of this paper
concerns systems that physically or otherwise transmit
data and information to one another. The primary
research questions are:
RQ1) Can a systems-level understanding of autonomy

be developed and conceptualized into a stack?
RQ2) What are ways to conceptualize and describe the

interoperability of systems and issues therein?
RQ3) Can a high-level taxonomy of interoperability,

separate from autonomy be developed?
RQ4) Can this taxonomy and system stack of autonomy

be used to influence further collaboration and
integration?

The contributions of our paper are thus, each
corresponding to the respective research questions: (1)
we have produced a unified autonomy stack to guide the
development of future autonomy systems, (2) provide
definitions of interoperability-related concepts and
current barriers to interoperability, (3) creation of an
interoperability taxonomy for autonomous systems, and
(4) evaluate the interoperability of four popular
autonomy architectures. First, in Section 2, this paper
provides an overview of autonomy systems and stacks
before describing our proposed autonomy stack. In
Sections 3 & 4, we survey the literature to understand

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 903
URI: https://hdl.handle.net/10125/106486
978-0-9981331-7-1
(CC BY-NC-ND 4.0)

more about interoperability and the current limitations
of interoperable autonomous systems, which guide the
development of our taxonomy. Then, in Section 5, we
compare the interoperability of four autonomy
architectures based on the stack in Section 2. Finally, in
Section 6, we discuss future work and conclusions.

2. Autonomous Systems

As described by (Bihl & Talbert, 2020), autonomy
describes a system with intelligence-based capabilities,
allowing it to respond to situations that were not
preprogrammed or anticipated in the design. Such
systems include biological intelligence and potentially
artificial intelligence applications. To be autonomous, a
system needs perception, decision-making (including
control), and actuation (including physical/localization
or data creation) (Gan, et al., 2022) (Bihl & Talbert,
2020). Notionally, this is divided into “autonomy in
motion,” i.e., a robot, and “autonomy at rest,” i.e., a
system that processes data and develops its
interpretation (Zacharias, 2019). Such autonomous
systems must have a degree of self-government, and

self-directed behavior and have three general
characteristics of cognition (Bihl & Talbert, 2020).

2.1. Autonomy Stacks

Autonomy, in all its embodiments, involves a

complex interaction of systems and subsystems. These
can include visual stimuli being converted to signals in
a neuron, which go to a visual cortex for further
processing in the brain and so on, as well as a sensor on
a robot that converts sensed data to digital information
which is then converted to a data standard for further
processing by a computer processor. Notably, in all
cases, data is converted to different formats, and/or
processed, by different systems and subsystems of an
autonomous system. Technology (“tech”) stacks allow
for the ability to have data consistently flow between
hardware and/or software “layers” (MongoDB, 2023).
The advantages of using a tech stack are ease of
scalability, focused areas of expertise, initial
understanding of requirements, ability to customize,
large support community, and utilization of best security
practices (MongoDB, 2023). There are several different
types of tech stacks including:

Figure 1(a). Planning stack, for autonomy, rotated and modified for space, from (Kingston, 2017)

Figure 1(b). Autonomy stack from (Gulzar, 2022)

Figure 1(c). Autonomy stack from (Barad, Martinez Luna, Dentler, & Olivares Mendez, 2021)

Figure 1(d). Autonomy stack, modified for space, from (Biggie, et al., 2023)

Page 904

 Software: Characterized by exclusively containing
software components (e.g., MEAN, LAMP, etc.)

 Planning: Specific type of software stack utilized in
robotics (e.g., Figure 1(a)) that includes behavior
aspects, local plans, and sometimes mission plans
(Kingston, 2017; O'Kelly, et al., 2016)

 Protocol/Network: Used to guide communication
between network entities (OSI, TCP/IP, etc.)

One of the most widely used technology stacks is the
OSI model, which expands upon the earlier TCP/IP
model (see the comparison in Table 1) (Zimmermann,
1980; Meyer & Zobrist, 1990). The OSI model is a
protocol stack that focuses on the communication
between hardware and software components. OSI has
been investigated in terms of interoperability but it was
limited to specific hardware/software systems (see
(Wood, Harvey, Linderman, Gardener, & Capraro,
2012)).

Table 1. OSI vs TCP/IP Models

OSI Layers
TCP/IP
Layers

Description

Application

Application

Receives data and
presents to end-user

Presentation
Curation of the

presentation of data

Session
Com. between two
devices/computers

Transport Transport Data transmission

Network Internet
Com. between two

indirectly connected
hardware elements

Data Link Network
Access

Com. between two
directly connected
hardware elements

Physical Hardware elements

Recently, a 7-layer AI technology stack model has

been proposed in (Tsaih, Chang, Hsu, & Yen, 2023)
consisting of the following layers:
1. Infrastructure – hardware components
2. Platform – operating system (OS), environment,

programming language, etc.
3. Framework – programming libraries, pre-built

packages/software, etc.
4. Algorithm – customized algorithms for task(s)
5. Data Pipeline – data pre-processing
6. Service – application programming interface (API)
7. Solution – specific AI tool for a given task(s)

depending on the need.
The AI technology stack focuses on providing “AI-as-
a-service” rather than on the development of
autonomous systems, which requires other aspects such

as communications, behaviors, and plans. Though these
foundational software, planning, and protocol stacks
exist, there is still a need for a go-to autonomy-specific
one, e.g., an “autonomy stack.” Autonomy stacks
generally aim to standardize components of hardware
and software of autonomous systems. The literature
presents a few examples as shown in Figure 1(a-d). The
stack developed by (Kingston, 2017), shows the
information that is passed between layers and considers
the overall mission objective. The limitation of this
stack is that many layers in series are required to achieve
commands being sent to the Autopilot, which is the
layer that ultimately makes control decisions. Ideally,
these layers would be unified under a single algorithms
layer with which the operator/pilot does not directly
interact as much as what is currently proposed. In
(Gulzar, 2022) (visualized in Figure 1 (b)), a stack is
presented to demonstrate the flow of information from
the real world and how it contributes to the eventual
planning and control of an agent. This stack, however,
considers only that information flows in a single
direction and does not consider interoperability between
autonomous systems. Figure 1(c) presents a stack
created by (Barad, Martinez Luna, Dentler, & Olivares
Mendez, 2021), which outlines the different capabilities
that an autonomous agent must possess to truly be
autonomous. The limitation of this stack is that it does
not consider the flow of information between the layers.
Finally, the stack developed by (Biggie, et al., 2023) in
Figure 1(d), shows a clear transition of information as it
is processed by the agents to plan and act. However, this
stack is not generalized and relies on software and
sensors specific to the application therein.

2.2. Developing a Unified Autonomy Stack

A new autonomy stack must address the limitations

of those currently available in the literature. First, it
must apply to truly autonomous agents. To be truly
autonomous, an agent must be capable of responding to
unexpected situations without human input (Bihl, Cox,
& Jenkins, 2018). Consequently, human input should be
minimal, only occurring to provide mission
requirements. As shown by the developed stack in
Figure 2, the human only interacts with the environment
layer to provide information about mission
requirements. The next limitation of many stacks,
including those shown in Figure 1(a,b,d), is that
information related to the perception of the real world
cannot be shared between agents but only directly to the
actuation phase.

To address these limitations, the authors developed
the autonomy stack in Figure 2. Here, we consider that

Page 905

information flows in both directions through each layer.
At the bottom of the stack, information is sent and
received by interoperable systems. Another advantage
to our stack is its ability to apply to “autonomy in
motion” as well as “autonomy at rest,” with the
difference between the two in the context of actuation
and sensing (a physical environment for the former and
a more virtual space for the latter). Finally, the stack
must be generalized. As a given system may have any
subset of sensors and/or actuators available, the stack
must not limit its utilization of them. This allows for
robustness and wide application of the stack.

Going up the stack in Figure 2, we begin with the
hardware layer. This layer encompasses all physical

Figure 2. Developed Unified Autonomy Stack

components that make up the computer, i.e., hard drive,
motherboard (CPU/GPUs), and RAM. Next up the stack
is the environment layer, which handles the operating
system (OS)/container system and interaction with the
human operator. This layer specifically considers
proprietary OS, open-source Linux OS, and/or
containerization software. This layer sends messages
generated by a human (AKA “mission requirements”) in
the form of abstract commands to the data layer.

The data layer’s purpose is to convert the abstract
commands to formatted message types. Several data
formats/standards are relevant to autonomy such as
geographic data, general structure/protocol, and NATO
standards. The data layer takes a command that would
be human-readable, extracts the important information,
and stores that in a computer-readable file. That file is
then passed to the data link layer, where the physical

link between systems is established. The data link layer
considers communication standards such as SATCOM
and relevant recommended standards (RS). The
formatted command from the data layer is then broken
into packets and sent to the network layer. At the
network layer, the protocol by which the command will
be sent is determined before the command is sent to the
algorithms layer. These communication standards
include widely used file sharing and communication
ones such as TCP/IP and HTTP(S) as well as some
lesser-known ones.

At the algorithms layer, mission commands are
assigned to a particular agent, referred to as an
unmanned system or UxS. The algorithms layer
involves heavy computation as it handles navigation and
task planning of the UxS as well as building a model of
the surrounding environment to reliably assign tasks to
the optimal UxS. There are several subsections of the
algorithms layer (from the bottom up): program (open
vs proprietary), control (actuator and waypoint
commands), behavioral (navigation; motion planning),
cognition (learning engine; scheduling manager(s); task
planning; context reasoning/decision making), and
knowledge base (ontologies; plant and environment
models; procedural memory; primitives database).

UxS commands from the algorithms layer are passed
to the architecture layer. This layer ensures the
cooperation of agents through interoperability. At this
layer, UxS commands become actions and are sent to
the UxS (i.e., a command such as “Move to this
waypoint,” becomes “Orient this direction and increase
throttle”). Finally, the actuation and sensing layer
represents the UxS, where actions are translated to
motor controls.

Moving down the stack acts much the same as
moving up the stack, except rather than considering
actions to be performed, we consider information
regarding the environment. Data is first captured by
various sensors on the UxS. This data becomes
perceptions of the environment at the architecture layer,
which then interprets those perceptions for detection.
From these, the algorithms layer builds the status of an
individual UxS. Over the network layer, the status of
each UxS is collected and summed to develop the status
of the mission. Continuing down the stack, those are
broken into packets and formatted messages so that
commands can be developed to send back up the stack.

3. Interoperability

An autonomy stack provides an understanding of the
data flow and general needs of an architecture and is a

Page 906

first step to understanding how a system works.
However, while general architecture or embodiment of
architecture is useful, it lacks a specific indication of the
degree of interoperability between technologies in the
stacks. While an autonomy stack provides an
understanding of how a system works, more fidelity is
needed to create an autonomous system able to
collaborate with external systems. Beyond the physical
or digital connections providing interoperability, there
are non-technological interoperability types that can be
considered as well (Kaisler, 2005).

Although used synonymously, it is a misconception
that portable, interchangeable, compatible, integrated,
and interoperable are equivalent to one another (see
(Kolb & Wirtz, 2014)). Within Figure 3, a “system” is
used regarding computer software, hardware,
component, service, or entity. Whereas, an environment
is a more encompassing term referring to a platform that
houses or hosts multiple systems, or more simply a
“system of systems.”

Portable systems can migrate between two
environments (Lewis, 2013). One series of standards
defines portability as the “degree of effectiveness and
efficiency with which a system ... can be transferred
from one hardware, software, or other operational or
usage environment to another” (ISO/IEC 25000, 2022).
These systems ideally have a plug-and-play-like ability
to make these exchanges seamless with little to no
adaptations (Al Ridhawi, Otoum, Aloquaily, &
Boukerche, 2020). Portability is a characteristic of one
individual system and should always be an underlying
characteristic of interchangeable systems.

Figure 3. Conceptualization of Related

Interoperability Concepts

Merriam-Webster defines interchangeable as the
“[capability] of being substituted in place of one

another.” Interchangeability has been equated to
“cloning” wherein all the abilities of one system are
reproduced in another separate system (Buono, 2005).
Interchangeable systems ideally have a plug-and-play
ability like portable systems; however, what
differentiates the two is that the interchangeable systems
may not perform the same tasks/processes as portable
systems are expected to. Since interchangeable systems
are expected to perform the same tasks with the same
inputs/outputs, usually there is no need to consider
whether the systems are compatible, integrated, or
interoperable even though they might be.

Compatibility can have multiple meanings.
Systems, in general, may be deemed compatible based
on the consistency between their executed actions
during a process (Taberko, Ivaniuk, Shunkevich, &
Pupena, 2020). According to Dictionary.com’s
definition of compatibility regarding computer systems,
it is the “ability to be used … without the need for
special adaptations.” The key characteristic of two
compatible systems is the ability to perform their
respective tasks/processes without disrupting the other
one (Hajim, 2021). The most basic level of
compatibility does not require two systems to interact
with one another in any way. Though this definition
seems broad and encompassing, higher degrees of
compatibility can be better described by being
integrated or interoperable.

Integrated systems are those designed or adapted to
operate within the same environment, within which they
are contained (Hasselbring, 2000; Mohamed, Mahadi,
Miskon, Haghshenas, & Adnan, 2013; Testing
Standards Working Party, 2005). This allows the
individual systems to operate as one within the
environment, which is the distinguishing characteristic
of integrated systems (Wilder, 2019; Smith, 2018). This
requires compatibility between the two systems which
all functional integrated systems have. However, the
converse is not always true. The primary benefit of
integrated systems over most interoperable systems is
minimal adaptation in the upgrading or development of
the individual systems; however, the integration process
can be costly and time-consuming.

According to ISO 25964-2:2013, interoperability is
defined as “the ability of two or more systems or
components to exchange information and to use that
information that has been exchanged” (ISO, 2013).
IEEE defines interoperability as “the capability of two
or more networks, systems, devices, applications, or
components to externally exchange and readily use
information securely and effectively” (IEEE, 2018).
Regardless of specifics, at the heart of these definitions
are two systems that can effectively communicate with

Page 907

one another (Testing Standards Working Party, 2005).
The key characteristic of interoperable systems is the
ability to effectively communicate through the
exchanging of data typically through a “translating”
middleware despite being different systems often in
different environments (Mohamed, Mahadi, Miskon,
Haghshenas, & Adnan, 2013; Asif & Webb, 2015).
Many integrated systems are interoperable in the sense
they frequently receive and send data to one another
because the integrated systems act as a single unified
system. This has confused the literature where
integrated used to mean interoperable (as done in
(Mohamed, Mahadi, Miskon, Haghshenas, & Adnan,
2013; Asif & Webb, 2015)).

4. Developing Measures of Interoperability

There has been some research on the quantification
of interoperability. This research was first focused on
addressing common barriers to interoperability as it
pertains to computer systems. Popular interoperability
measures are categorical with the ability to classify a
system into different tiers of interoperability.

4.1 Barriers to Interoperability

Despite interoperability being a straightforward

concept, its implementation has proven difficult.
Barriers to interoperability have been broken into three
categories (Chen, 2006; Chen, 2017):
 Conceptual – concerned with the consistency of the

presentation of data/information
 Technological – issues with the ability for systems

to communicate with other systems;
 Organizational – difficulties with the delegation of

implementation tasks among people/groups.
Issues with obtaining conceptual interoperability

largely include discrepancies between consistent
definitions (semantics) and the representations (syntax,
structure, etc.) across the various levels of
interoperability (Cuenca, Boza, Ortiz, & Trienekens,
2015; Chen, 2017). Conceptual interoperability is the
foundation of technological and organizational
interoperability since if the data are ambiguous, it is
impossible to ensure the data keeps a consistent and
accurate meaning.

With an understanding of how interoperability is
unique from related but different terms, it is important
to understand why and how interoperability may be
implemented. In 2019, the US Department of Defense
(DoD) required the use of the Modular Open Systems
Approach (MOSA) for the design and implementation

of open systems where feasible (US DoD, 2019). This
has led to several “open architectures” where the focus
is to reuse previously created solutions to prevent re-
inventing the wheel. Some researchers distinguish
“open systems” from “open architecture” (Kramer,
2016) (Kovach, Natarian, & Littlejohn, 2021));
however, in this paper, they are used interchangeably
with the latter used most frequently for consistency. An
open architecture has its standards published and
available and these standards discuss design modularity
and the interfacing between systems (Grovak, 2021;
Kovach, Natarian, & Littlejohn, 2021). Historically,
systems were mostly proprietary, or “closed,” meaning
that their internal properties were kept hidden from
anyone not associated with the owning vendor of the
system (Dantoni, 2022). Thus, the owning vendors were
the only ones with the ability to make modifications and
adjustments to the systems. With open architectures,
there is no longer a “vendor lock” on these systems as
there are no longer restrictions on who can be
knowledgeable about the system (Lyke, 2014). This
allows the goal of interoperability to be more feasible
since the barrier-to-entry has been lowered with the
usage of open architectures. This does not mean “plug-
and-play,” as stated above, but it opens the door for
various systems to be able to “communicate” with one
another without the need for integration or application-
specific middleware. Of course, there are varying
degrees of interoperability.

4.2 Current Measures of Interoperability

Since there are varying levels of which systems can

be interoperable, several metrics to quantify this
relationship have been developed over the years. These
evaluation models have been the subject of several
literature reviews (Ford, Colombi, Graham, & Jacques,
2007; Rezaei, Chiew, Lee, & Aliee, 2014; Moon,
Fewell, & Reynolds, 2008; Leal, Guedria, & Panetto,
2019). Most models are categorical; however, there has
been some research involving continuous
interoperability values as seen with i-Score (Ford,
Colombi, Graham, & Jacques, 2007). The two most
famous are the levels of information system
interoperability (LISI) and the levels of conceptual
interoperability (LCIM). The LISI assessment identifies
five levels of interoperability:
0. Isolated - standalone system(s) with only manual

data transfer
1. Connected - simple data transfers: text, email, etc.
2. Distributed/functional - data transfer through local

area networks (LANs)

Page 908

3. Integrated/domain - data transfer through wide area
networks (WANs)

4. Enterprise - data is freely accessible and distributed
throughout the environment.

LISI was further expanded into sub-levels for four
attributes that can be evaluated through the assessment:
procedures, applications, infrastructure, and data
(C4ISR Architecture Working Group, 1998; Morris,
Levine, Meyers, Place, & Plakosh, 2004).

The LCIM approach more narrowly focuses on the
data exchange between systems into 5 levels (Tolk &
Muguira, 2003; Tolk, Diallo, & Turnitsa, 2007):
0. No interoperability/data sharing
1. Technical - common comm. protocol for bits/bytes
2. Syntactical - common data reference model/format
3. Semantic - clear definitions of data and meanings
4. Pragmatic – in-context data and processes are

understood by all systems within
5. Dynamic - ability for a system to understand and

adapt based on changes in its environment
6. Conceptual - systems are fully aware of one another

such that the model has “meaningful abstraction.”
However, there are several other categorical models
such as the NATO C3 Technical Architecture Reference
Model for Interoperability (which now aligns closely
with LISI) (NATO, 2021), System of Systems
Interoperability (Morris, Levine, Meyers, Place, &
Plakosh, 2004) and the Informational Systems
Interoperability Maturity Model (Van Staden & Mbale,
2012). Despite being able to think of these
classifications as a taxonomy, a formal taxonomy for
interoperability has yet to be defined in the literature.

4.3. Interoperability Taxonomy

Figure 4. Interoperability Taxonomy

From our understanding of the terms discussed in
Section 4, we create a taxonomy combining those terms
focused on communication and data information
exchanged as shown in Figure 4. As discussed in

Section 3, compatibility is a necessity for
interoperability (shown as the base of Figure 4). Two
systems are not necessarily expected to communicate to
be compatible, but their ability to communicate leads to
potential interoperability. Communication is usually
done through an interface, that is through a translator
(indirect); however, it is possible to communicate
directly. Interoperability is split into 3 sub-types, each
dependent on the previous one: syntactical, structural,
and semantic. Syntactical interoperability is based on
using common syntax for the communicated data such
as common data types. Structural interoperability is the
use of a common data structure or format. Together
syntactical and structural interoperability is part of the
LCIM syntactic level. The final sub-section of
interoperability is its semantic form, which requires an
understanding of what the data means when passed from
one system to another. Finally, through direct
communication between systems where they act
together as one is when two systems are integrable.

5. Autonomy Stack Case Study

To create an appropriate evaluation of
interoperability in the current environment,
architectures, where interoperability is crucial to their
function, must be chosen to be evaluated. Such a
category where interoperability is crucial is that of
ground control station software. A ground control
station is a computer application that communicates
with one or many UAS via wireless telemetry to control
them during flight through uploading mission
commands (ArduPilot Dev Team, 2023) Many of these
applications are commercially available to be purchased
or free to install by any user.

Of interest were four autonomy architectures. First,
Mission Planner’s stable version (released last updated
March 2023) is a free open-source ground control
station developed for use with UAS running ArduPilot
firmware (Oborne, 2023). Second, QGroundControl
(QGC) v4.2.6 is another free, open-source application,
but it is intended to operate with UAS that uses the
MAVLink serial protocol (Dronecode Foundation,
2019). Third, VCSi is a modular suite of proprietary
software developed by Lockheed Martin for commercial
and military use (Lockheed Martin, 2023). Finally, the
fourth architecture was OpenUxAS, or simply UxAS,
which is an open-source ground control station
developed by AFRL with military applications as the
target case (AFRL, 2023). These were selected based on
having the most information availability and the ability
to run locally rather than through a hosted server.

Page 909

Figure 5. Interoperability Analysis Based on Developed Unified Autonomy Stack

5.1. Autonomy Architecture Comparison

Utilizing the autonomy stack proposed in Figure 2

the four architectures mentioned above were evaluated
in terms of their interoperability and similarity to one
another. An interoperability scoring system was created
based on elements of the 7 remaining layers of the
proposed stack. This interoperability score was later
used to calculate the interchangeability scores.

Starting with the bottom layer, hardware, the
architectures were evaluated based on requirements for
whether the software required or recommended to run
on a GPU and if there was a recommended RAM
amount. Needing a GPU awarded one point, as well if it
was compatible with 8 or 16 GB of RAM for a total of
up to three points for the hardware layer. Moving up to
the environment layer, its focus was operating systems
(OS) (either proprietary or open source) and the
containerized software (Kubernetes; Docker) the
autonomy architecture was able to run on. Each of the
six OS and the two container software were worth one
point each if the architecture was able to be hosted and
run on it; therefore, there is a total of eight points that an
architecture could earn in the environment layer. Next,
the data layer was evaluated for each architecture on its
ability to send and receive ten common and popular file
types with each file type worth one point if the
architecture supported it. After the data layer is the data
link layer related to whether the architecture supported
three methods of data transfer, which was worth one
point each if the architecture did support it. For the
network layer, the architecture was evaluated on the data
transfer protocols they utilize with a total of ten being
considered with each being worth one point each if
supported. The algorithms layer was focused on the
openness of the architectures related to its code and data.
A point was earned if the architecture had open code and
used open data (as opposed to proprietary code and data)
for a total of two potential points gained in the
algorithms layer. The architecture layer was skipped

since it was being evaluated. Finally, in the actuation &
sensing layer, the architectures were evaluated to
determine if there was a perception and/or an actuation
& control module, which were one point each. Thus, the
architectures could gain up to two points in this layer.
The interoperability score was the sum of points across
all the layers with a maximum of 29 points an
architecture could receive for its interoperability score.
Mission Planner tied with QGC with the highest score
of 16, followed by another tie with VCSi and UxAS at
8. Figure 5 displays the results of this analysis with the
specific criteria shown for each layer. Note that the
architectures may be interoperable with more
components; however, Figure 5 is as complete as
possible based on publicly available data.

Table 2. Interchangeability Matrix

Mission
Planner

QGC VSCi UxAS

Mission Planner 0.71 0.25 0.44
QGC 0.71 0.35 0.35
VSCi 0.25 0.29 0.25
UxAS 0.44 0.35 0.25

Now that each system has been evaluated, of interest

is how similar they are to one another. An
interchangeability analysis was conducted that
compared the interoperability score between each
architecture. The interchangeability metric for each
pairing was determined by observing whether the
architecture on the row paired was compatible with the
architecture on the column given their layer components
(if the selected architecture both had an “X” in the same
column of Figure 5) This number was then divided by
the larger of the two interoperability scores since, to
have interchangeability, the two architectures should be
interoperable with the same components in each layer.
These results are presented in Table 2 For example,
Mission Planner and VCSi have a total of 4 common
components, this number was divided by Mission

Page 910

Planner’s interoperability score, 16, since VCSi only
had a score of 8. Hence, the interchangeability score
between Mission Planner and VCSi is 4/16 = 0.25.

6. Conclusions

With the rise in autonomous systems, their ability
to communicate effectively with one another is of
importance to their future development. Being
interoperable allows one autonomous system to
leverage the abilities of another, which is important to
ensure the wheel is not constantly being reinvented.
Thus, to facilitate this idea of an open modular
autonomous system, we proposed a unified autonomy
stack and interoperability taxonomy. The unified
autonomy stack consists of eight layers (bottom-up):
hardware, environment, data, data link, network,
algorithms, architecture, and actuation & sensing. This
discussion also necessitates the need for interoperability
of autonomous systems. First, we define the related but
different concepts of portable, interchangeable,
compatible, and integrated systems regarding
interoperability, which focuses on communication
between two systems. Utilizing these definitions and
current interoperability metrics, we propose an
interoperability taxonomy to guide the future
development of interoperable systems, especially
autonomous ones. This taxonomy classifies systems as
compatible, interoperable (at the syntactic, structural, or
semantic levels), or integrated based on whether direct
or indirect communication is utilized.

The autonomy stack was utilized to evaluate 4
architectures: Mission Planner, QGroundControl
(QGC), VCSi, and OpenUxAS (UxAS). Based on the
architecture’s ability to support a variety of different
operating systems/containers, communication
protocols, data formats, and data transfer standards were
used in addition to whether they had proprietary or open
code and data to determine their interoperability per the
autonomy stack. Across the eight layers, 44 components
were identified for the architectures to be evaluated.
Through the analysis, the most to least interoperable
architectures were: QGC (17), Mission Planner (16),
UxAS (8), and then, VSCi (8). Furthermore, looking at
the similarity (with 0 being not similar at all and 1 being
the same) between architectures for interchangeability,
Mission Planner and QGC received the highest score
(0.71) with a significant decline with the remaining
architecture pairs. Related future work concerning the
interoperability taxonomy, might include a qualitative
way of determining where a system lies would be of
benefit to the evaluation of the interoperability of
autonomous systems. Additionally, would be to better

refine the criterion in the autonomy stack and expand
our analysis to other autonomous architecture.

7. Acknowledgements

The views expressed in this paper are those of the
authors and do not necessarily represent any views of
the U.S. Government or Air Force. This work was
cleared for unlimited release under SAF/PA-2023-0588.

8. References

AFRL. (2023, May). OpenUxAS. Retrieved from GitHub.
Al Ridhawi, I., et al. (2020). Generalizing AI: Challenges and

opportunities for plug and play AI solutions. IEEE
Network, 35(1), 372-379.

ArduPilot Dev Team. (2023). Choosing a Ground Station.
Retrieved from ArduPilot Documentation.

Asif, S., & Webb, P. (2015). Software system integration -
Middleware - an overview. Int. J. of Computer
Applications, 121(5), 27-29.

Barad, K., et al. (2021). Towards incremental autonomy
framework for on-orbit vision-based grasping. Proc. of
the IAC.

Biggie, H., et al. (2023). Flexible supervised autonomy for
exploration in subterranean environments. arXiv preprint
arXiv:2301.007.

Bihl, T. J., & Talbert, M. (2020). Analytics for Autonomous
C4ISR within e-Government: a Research Agenda. Proc.
52nd HICSS, 2218-2227.

Bihl, T., et al. (2018). Finding common ground by unifying
autonomy indices to understand needed capabilities.
SPIE Proc.

Buono, F. M. (2005, January 1). "Interoperability," not
"interchangeability". Corporate Counsel Business J.

C4ISR Architecture Working Group. (1998). Levels of
information systems interoperability (LISI). U.S. DoD.

Chen, D. (2006). Enterprise interoperability framework. Proc.
of the Open Interop Workshop on Enterprise Modelling
and Ontologies for Interoperability. Luxembourg:
Enterprise Modelling and Ontologies for Interoperability.

Chen, D. (2017). Framework for enterprise interoperability. In
B. Archimede, & B. Vallespir, Enterprise
Interoperability: INTEROP-PGSO Vision (Vol. 1, pp. 1-
18). Hoboken, NJ, USA: John Wiley & Sons, Inc.

Cuenca, L., Boza, A., Ortiz, A., & Trienekens, J. J. (2015).
Conceptual interoperability barriers framework (CIBF):
A case study of multi-organizational software
development. Proc. 7th Int'l Conf Enterprise Information
Systems, 521-531. Barcelona: SCITEPRESS.

Dantoni, J. (2022, May 18). Open architecture defined:
Advantages & when to consider. Oracle Netsuite.

Dronecode Foundation. (2019). QGroundControl. Retrieved
from QGroundControl.

Ford, T. C., Colombi, J. M., Graham, S. R., & Jacques, D. R.
(2007). A survey on interoperability measurement. 12th
Int. Command and Control Research and Tech. Sym.

Page 911

Ford, T. C., Colombi, J. M., Graham, S. R., & Jacques, D. R.
(2007). The interoperability score. 5th Annual Conf. on
Systems Eng. Research, 1-10. Hoboken: SERC.

Gan, Y., et al. (2022). Braum: Analyzing and protecting
autonomous machine software stack. 2022 IEEE 33rd
ISSRE, 85-96. Charlotte: IEEE.

Grovak, M. (2021, August 24). Embracing open architectures.
New Electronics, 14-15.

Gulzar, M. (2022). Integrating a motion prediction baseline
into an autonomy stack. Final Report, Uni. of Tartu.

Hajim, M. (2021). Interoperability. RingCentral.
Hasselbring, W. (2000). Information system integration.

Communications of the ACM, 43(6), 33-38.
IEEE. (2018). IEEE Std 1547-2018. Piscataway: IEEE.
ISO. (2013). ISO 25964-2:2013. International Standard

Organization.
ISO/IEC 25000. (2022). System and software quality

requirements and evaluation (SQuaRE). Portability.
Kaisler, S. H. (2005). Software Paradigms. Hoboken: John

Wiley & Sons, Inc.
Kaisler, S. H., et al. (2018). Smart objects: An active big data

approach. Proc. of the 51st HICSS (pp. 809-818).
Kasunic, M. (2001). Measuring systems interoperability

version 1.0. McLean: Software Engineering Institute.
Kingston, D. (2017, Dec. 7). UxAS Overview. Retrieved from

https://www.youtube.com/watch?v=B6xIIcAoiwU
Kolb, S., & Wirtz, G. (2014). Towards application portability

in platform as a service. 2014 IEEE 8th Int. Symposium
on Service Oriented System Engineering, 218-229.

Kovach, N. S., et al. (2021). The rise of open architectures in
the U.S. Department of Defense. Proc. SPIE 11753,
Open Architectures/Open Business Model net-Centric
Systems and Defense Transformation 2021, 12-23. SPIE.

Kramer, R. (2016, February 24). Open architecture v. open
systems: Distinctions that impact innovations from
government contractors. FEI Daily.

Leal, G. S., et al. (2019). Interoperability assessment: a
systematic literature review. Computers in Industry, 106,
111-132.

Lewis, G. A. (2013). The Role of standards in cloud-
computing interoperability. Pittsburgh: Software
Engineering Institute.

Li, S., et al. (2015). The internet of things: A survey.
Information Systems Frontiers, 17, 243-259.

Lockheed Martin. (2023). VCSi. Retrieved from Lockheed
Martin: https://www.lockheedmartin.com/en-
us/products/cdl-systems/vcsi.html

Lum, H., & Heer, E. (1989). Toward Intelligence Robot
Systems in Aerospace. In H. Lum, & E. Heer, Machine
Intelligence and Autonomy or Aerospace Systems (pp. 1-
13). Washington DC: AIAA.

Lyke, J. C. (2014). Empowering open systems through cross-
platform interoperability. Proc. SPIE 9096, Open
Architecture/Open Business model net-Centric Systems
and Defense Transformation 2014, 1-16. SPIE.

Mensh, D. R. (1989). The quantification of interoperability.
Naval Engineers J., 101(3), 251-259.

Meyer, D., & Zobrist, G. (1990, February). TCP/IP versus
OSI. IEEE Potentials, 9(1), 16-19.

Mohamed, N., Mahadi, B., Miskon, S., Haghshenas, H., &
Adnan, H. M. (2013). Information system integration: A
review of literature and a case analysis. WSEAS Math.
and Computers in Contemporary Science, 68-77.

MongoDB. (2023). What is a tech stack and how do they
work? Retrieved from MongoDB.

Moon, T., et al. (2008). The what, why, when and how of
interoperability. Defense and Security Analysis, 24(1), 5-
17.

Morris, E., et al. (2004). System of systems interoperability
(SOSI): Final report. Pittsburgh: Carnegie Mellon
Software Engineering Institute.

NATO. (2021). C3 Taxonomy Baseline 5.0. Norfolk: NATO.
Oborne, M. (2023, May 12). Mission Planner Home.

Retrieved from ArduPilot: https://ardupilot.org/planner/
O'Kelly, M., et al. (2016). APEX: Autonomous vehicle plan

verification and execution. SAE World Congress, 1-12.
Rezaei, R., et al. (2014). Interoperability evaluation models: A

systematic review. Computers in Industry, 65, 1-23.
Smith, G. (2018, February 15). Interface, interoperability,

integration - Quick Guide for Distributor. Retrieved from
TIMS Software: Industrial.

Taberko, V., et al. (2020). Principles for enhancing the
development and use of standards within Industry 4.0.
Open Semantic Intelligence Systems Design
Technologies, 167-174.

Testing Standards Working Party. (2005). Testing Standards.
Retrieved from Integration, interoperability,
compatibility and portability.

Tolk, A., & Muguira, J. A. (2003). The levels of conceptual
interoperability model. Proc. 2003 Fall Simulation
Interoperability Workshop, 1-11.

Tolk, A., Diallo, S. Y., & Turnitsa, C. D. (2007). Applying the
levels of conceptual interoperability model in support of
integrability, interoperability, and composability for
system-of-systems engineering. J. of Systematics,
Cybernetics, and Informatics, 5(5), 65-74.

Trivellato, D., Spiesses, F., & Zannone, N. E. (2009).
POLIPO: Policies & ontologies for interoperability,
portability, and autonomy. IEEE Int. Symposium Policies
for Distributed Systems and Networks, 110-113.

Tsaih, R.-H., et al. (2023, March). The AI Tech-Stack Model.
Communications of the ACM, 66(3), 69-77.

US DoD. (2019). Modular Open Systems Approach (MOSA).
Retrieved from Defense Standardization Program.

Van Staden, S., & Mbale, J. (2012). The information systems
interoperability maturity model (ISIMM): Toward
standardizing technical interoperability and assessment
within government. Int. J. Information Eng. Eletronic
Business, 5, 36-41.

Wilder, R. (2019, January 22). Integration vs. interoperability:
What's the difference? Retrieved from Spok.

Wood, R. J., et al. (2012). OSI for hardware/software
interoperability. Coupling Tech. to Nat. Need, 231-239.

Zacharias, G. (2019). Autonomous Horizons: The Way
Forward. Maxwell AFB, AL: Air University Press.

Zimmermann, H. (1980). OSI reference model - the ISO
model of architecture for open systems interconnection.
IEEE Trans. on Communications, 28(4), 425-432.

Page 912

