
Effects of Coding Norm Violations on Visual Effort, Trustworthiness
Perceptions, and Reuse Intentions

Sasha M. Willis
Wright State University
willis.149@wright.edu

Sarah A. Jessup
Consortium of Universities

jessup.11@wright.edu

Gene M. Alarcon
Air Force Research Laboratory

gene.alarcon.1@us.af.mil

Michael A. Lee
GDIT

mlee209@student.gsu.edu

Abstract
Efficient evaluation strategies are essential when

reviewing computer code for potential reuse. Previous
researchers have examined the factors that influence
these assessments. However, researchers have yet to
empirically demonstrate the direct influence of the
specific factors that affect visual/cognitive effort, which
can be inferred through eye tracking metrics.

Programmers were recruited to complete a Java
code review task, providing evaluations for a code file’s
trustworthiness and reusability after various errors had
been introduced to the file’s source reputation,
readability, and organization. Analyses of the eye-
tracking data revealed increases in fixation counts and
durations for manipulated code. An exploratory
analysis of areas containing readability and
organization errors revealed misuses of case and
misuses of declarations garnered the most attention
from participants relative to the rest of the code.
Implications of the current study extend to
recommendations for writing code that is easily
reusable by decreasing the visual effort needed for code
review.

Keywords: Information Processing, Eye Tracking,
Human-Computer Interaction, Software Reusability,
Trust in Code.

1. Introduction

The interest in finding efficient strategies for
creating computer code has become increasingly
accelerated following a continuous expansion in the
demand for automated systems and novel programming
applications. Reusing previously written code and
writing reusable code are practices that have proven
beneficial due to increased efficiency in the code
creation process (Frakes & Kang, 2005; Mäkitalo et al.,

2020). Code that reviewers perceive as trustworthy is
more likely to be reused, and ensuring that programmers
appropriately calibrate their trust in existing code helps
maintain security and decrease vulnerabilities (Ryan et
al., 2019).

In a cognitive task analysis, three primary factors
were identified that influence a programmer’s code
trustworthiness perceptions: performance, reputation,
and transparency of the code (Alarcon et al., 2017b).
Performance is the ability of the code to meet the
objective of the project. Reputation assessments are
based on external information about the code that may
or may not be related to the code itself. Transparency is
defined by the understandability of the code from
viewing or reading it, which includes aspects of the code
related to organization and readability (e.g., style,
architecture, etc.; Busjahn et al., 2011). As defined by
Alarcon and colleagues (2017b), readability is the
ability of the programmer to evaluate and comprehend
the intended behavior of the code, and organization
concerns aspects of the code that relate to its orientation
and control structure. The current study specifically
manipulated transparency by introducing errors to the
readability and organization of the code and
manipulated reputation by altering the code source’s
stated reputation. Eye-tracking data can provide
valuable insight into programmers’ perceptions of the
code and cognitive processing (Busjahn et al., 2011),
and thus could reveal how these coding conventions
might affect a programmer’s trustworthiness
perceptions and reuse intentions for a piece of code.

Importantly, data from a programmer’s eye
movements made during a code review task could
indicate the reviewer’s type or depth of cognitive
processing (Eckstein et al., 2017). The current study
leverages eye-tracking data to infer the visual effort that
is required of participants while completing a code
review task and explore how differences in eye

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 7677
URI: https://hdl.handle.net/10125/107310
978-0-9981331-7-1
(CC BY-NC-ND 4.0)

movements vary as a function of degree or type of
violation made to the code. We further attempt to
replicate the effects of introduced errors made to a
code’s source, readability, and organization and report
how these manipulations affect a code’s perceived
trustworthiness and reusability from previous research
(Alarcon et al., 2017a). We also report the specific types
of manipulations that seem to be the driving forces of
attention capture during the code review process.

2. Related Literature

2.1. Eye-tracking Metrics and Cognitive
Processing

Eye-tracking metrics derived from gaze location
and time data allow researchers to identify what
information observers are looking at and for how long.
Eye-tracking technology can provide a means of
inferring the depth of cognitive processing and amount
of visual effort required for a task (Binkley et al., 2013;
Sharafi et al., 2015). Researchers can leverage data from
this technology to approximate cognitive processes such
as text comprehension, attention allocation, and
approaches to problem solving (Eckstein et al., 2017;
Raney et al., 2014). Recently, researchers have used
eye-tracking technology to examine how programmers
review code. These studies include an examination of
the differences in code comprehension between expert
and novice programmers (Jessup et al., 2021) and
performance on code review tasks (Liu et al., 2020).

Gaze data can be analyzed in several ways; two
such metrics include calculating the number of fixations
made by a participant (i.e., fixation count; FC) and the
time participants spend fixating on a stimulus (i.e.,
fixation duration). Fixation metrics can be analyzed
over an entire visual stimulus or for specific areas of
interest (AOIs), which are defined by the researcher as
particularly relevant regions of the visual stimulus
(Orquin et al., 2016). Fixations are commonly used as a
metric in eye-tracking research because much of the
cognitive processing of visual input occurs during these
momentary pauses in eye movements (Hauser et al.,
2018). For instance, FC has been used as a measure of
visual effort and can signal if a stimulus is viewed often,
as it may be relatively complex or interesting (Uzzaman
& Joordens, 2011). Similarly, variables derived from
fixation durations approximate how long it takes to
evaluate a stimulus (Sharafi et al., 2015; Hauser et al.,
2018). As information processing increases in
complexity, observers fixate longer (i.e., longer average
fixation durations; AFD; and total fixation durations;
TFD) and more often (i.e., increased FC) on relevant
material (Raney et al., 2014).

2.2. Effects of Code Reputation and
Transparency

In past research on code review tasks, Alarcon and
colleagues (2017a; 2020a; Walter et al., 2017) have
focused on tasks that have manipulated or measured a
code’s reputation (by manipulating source), and
transparency (by manipulating readability and
organization). They have theorized programmers use
different processing strategies depending on the
presence and type of coding norm violations existent
within a code file (Alarcon & Ryan, 2018). When
evaluating computer code for trustworthiness and
reusability, there is a balance between making well-
informed yet time-efficient decisions. Combined with
other research focusing on how these manipulations
affect eye movements and behaviors, we merge these
research streams to develop the goals and expected
outcomes for the current study.

In the following subsections, we review research on
eye tracking data following manipulations made to code
source, readability, and organization. We propose that
the introduced errors to each of the three manipulations
will result in higher visual effort. We note that FC, AFD,
and TFD are viewed as proxies rather than direct
indicators of cognitive processes and visual/cognitive
effort; see Holmqvist et al., 2011). When there was
sufficient extant literature that indicated a direction of
differences across our manipulations, we formulate
hypotheses below. For the relationships with less
supporting research, we pose research questions of a
more exploratory nature.

2.2.1. Source. We begin with our first manipulated
variable of interest, code source, which is one aspect of
the reputation factor (Alarcon et al., 2017a). Bertram
and colleagues (2020) examined participants’ scanning
patterns while they reviewed repair patches made to a
sample of Java code. The authors manipulated the
code’s source by randomly labeling the patches as being
written by either a human or a machine (two of the six
patches were in fact written by an automated program,
whereas the other four were written by a human). The
authors found no significant differences in eye-tracking
metrics (FC, AFD, and average saccade length) or in
overall time spent on the task between the two author
labels. Interestingly, however, significant differences
were found between human- and machine-labeled
patches in the distribution of visual attention; the code’s
class and methods garnered more attention (as measured
by higher FC, longer AFD, and shorter average saccade
length) in the human-labeled patches. Because Bertram
and colleagues’ code source manipulation is quite
different from the current study’s operationalization of

Page 7678

source reputation, we pose the following research
question rather than a directional hypothesis:

RQ1: What effect, if any, does code source have on
a) FC, b) AFD, and c) TFD?

As code source relates to trustworthiness and reuse
intentions, Alarcon and colleagues found code labeled
as originating from a reputable source led to higher
trustworthiness perceptions (Alarcon et al., 2017a;
Alarcon et al., 2020b; Walter et al., 2017) and increased
reuse intentions (Alarcon et al., 2020b; Walter et al.,
2017) compared to code from an unknown source.

H1: When code is from a reputable source,
participants will a) rate the code as more trustworthy,
and b) be more willing to reuse the code.

2.2.2. Readability. Connections between eye-tracking
data and manipulations made to a code’s readability
have also been found. In one such study, Katona (2021)
varied a piece of code’s readability with “clean” code,
which included proper naming schemas, readable
implementation of functions, and correct code
formatting, compared to “dirty” code, which was not as
readable. The researcher also collected self-report data
about the code in addition to eye-tracking data. Results
revealed that the clean code was rated as easier to read
and understand and resulted in lower average FC and
lower AFD compared to the dirty code. However, this
study neglected to discuss the specific types or instances
of errors that were present in the dirty code, and the
author did not include any analysis of eye-tracking data
between specific regions of code that contained errors
versus regions that did not contain errors. From
Katona’s evidence, we pose the following hypothesis:

H2: Participants will have a) fewer FC, b) shorter
AFD, and c) shorter TFD when code readability is
higher.

Additionally, Alarcon and colleagues found that
higher code readability led to higher trustworthiness
perceptions (Alarcon et al., 2017a; Walter et al., 2017)
and increased reuse intentions (Walter et al., 2017). The
following hypothesis is developed:

H3: When code is higher in readability, participants
will a) rate the code as more trustworthy, and b) be more
willing to reuse the code piece.

2.2.3. Organization. At present, there is little research
investigating overall code organization using eye-
tracking metrics. This is likely due to the inability of
many eye-tracking programs to allow participants to
scroll vertically on the computer screen. As such, there
is a difficulty of presenting stimuli of sufficient length
to study many types of large-scale organization errors
while also staying within the confines of one vertical
screen length. Taking a more granular approach, a
limited number of eye-tracking studies were found

relating to the subtypes of our chosen organization error
types [selected from Alarcon and colleagues (2020a)
and listed in the Measures section below]. Namely, a
study by de Oliveira and colleagues (2020) found that
computer code containing “Logic as Control Flow”
patterns (which present a confusing order of logical
operators in execution statements) caused a significant
increase in visual attention. This was evidenced by
increased gaze transitions to the execution statement as
well as increased time on areas containing those patterns
of code. Because of the relative novelty of our approach
to studying the effects of code organization (e.g., code
consisting of numerous nested blocks spanning multiple
screen lengths), we pose the following for exploration:

RQ2: What effect, if any, does code organization
have on a) FC, b) AFD, and c) TFD?

In contrast to their expectations and those that the
eye tracking research above would suggest, Alarcon and
colleagues found that higher code organization led to
lower trustworthiness perceptions (Alarcon et al.,
2017a; Walter et al., 2017) and lower reuse intentions in
code (Walter et al., 2017). Despite these counterintuitive
findings of higher organized code leading to worse
perceptions, we believe that the changes
(methodological and otherwise) made to the current
study from these prior studies may align better with the
original expectations of Alarcon and colleagues
(Alarcon et al., 2017a; Walter et al., 2017). As such, we
pose the following hypothesis:

H4: When code is higher in organization,
participants will a) rate the code as more trustworthy,
and b) be more willing to reuse the code piece.

2.2.4. Effects of Readability Versus Organization. It
should be noted that Alarcon and colleagues did find
interactions across their source, readability, and
organization manipulations. Specifically, they found an
interaction between organization and readability, such
that when readability was low and organization was
either high or low, participants trusted the code more
than when code had a medium level of organization
(Alarcon et al., 2020a). We believe that adding eye-
tracking data will allow the current study to delve into
the attention capture driven by these two types of
manipulations, though no previous studies to our
knowledge have measured how readability errors
differently capture a program reviewer’s attention as
compared to organization errors. Therefore, we pose the
following as an exploratory research question:

RQ3: Do participants differently attend to
readability versus organization manipulations or their
subtypes (AOIs, listed in the Measures section below),
as compared to the full stimulus?

Page 7679

2.3. Current Study

Although the results from Alarcon and colleagues
were replicated across several studies (Alarcon et al.,
2017a; Alarcon et al., 2020b; Walter et al., 2017), there
are still issues with these replications. First, the
researchers used within-subjects experimental designs
in which each piece of code that participants reviewed
was a unique Java class and may have had its own initial
trustworthiness level (e.g., code that was high risk),
regardless of manipulations. Second, these prior studies
used a metric of overall page time to capture
participants’ time spent on code, though this measure
was not sensitive enough to fully capture differences in
visual effort and attention across their manipulations.
That is, their page time measure was not able to
differentiate between when the participants were
processing the code stimuli versus other aspects of the
study, such as the code evaluation survey items located
beneath the code on the same page.

In the current study, we ameliorate some of the
limitations of Alarcon and colleagues’ previous research
(Alarcon et al., 2017a; Alarcon et al., 2020b; Walter et
al., 2017) and further investigate their conclusions by
modifying several aspects of their experimental
approach. First, we used a between-subjects design in
which participants evaluated a single piece of code that
was manipulated by each combination of source
(reputable, unknown), readability (high, medium, low),
and organization (high, medium, low) factors. This
adaptation from previous research (Alarcon et al.,
2017a) removes the risk of confounding code
functionality or inherent risk with our variables of
interest. Second, this study is differentiated from
Alarcon and colleagues (2020a) by incorporating eye-
tracking technology to evaluate the visual effort needed
for evaluating code. When eye-tracking technology is
incorporated, it is also possible to separate the amount
of time participants spend reviewing the code stimuli
from the time they spend outside of the stimulus region
(e.g., responding to survey items and short answer
questions). Eye tracking also allows us to see which
manipulations (i.e., subtypes of readability or
organization error categories) are the driving forces of
attention capture and more effortful processing.
Contributions of our research include:
1. Leveraging eye-tracking data to infer the visual

effort that is required during a code review task.
2. Exploring how differences in eye movements vary

as a function of degree or type of violation made to
the code.

3. Attempting to replicate the effects of errors
introduced to a code’s source, readability, and
organization and report how these errors affect a
code’s perceived trustworthiness and reusability.

4. Finding the specific types of errors that seem to be
the driving forces of attention capture during the
code review process.

5. Merging previous research streams to develop the
goals and expected outcomes for the current study.

3. Method

3.1. Participants

Participants were recruited (N = 52) during initial
data collection via flyer postings, email, and by word of
mouth from a Midwest university and local industries to
obtain a sample of both student and professional
programmers. Participants were required to have at least
three years of programming experience and be familiar
with the Java coding language. We removed six
participants for poor eye-tracking data quality
(designated by meeting a minimum track loss threshold)
and two participants for not meeting the minimum
experience requirements, leaving a total of 44
participants for our analyses. Of these participants,
79.55% identified as male, with a mean age of 30.34
years (SD = 10.54) and a range of 4–20 years of
programming experience.

3.2. Task and Procedure

After completing informed consent procedures,
participants were asked to sit approximately 70 cm from
a computer monitor (1920x1080 screen resolution),
which had been affixed with a Smart Eye Aurora remote
eye tracker (60-Hz sample rate) and was running the
iMotions Screen-Based Eye Tracking Module (version
7.1). Through the iMotions software, participants
completed a four-point gaze calibration procedure. Prior
to the code review task, participants were informed that:
1) all comments were removed from each code piece (to
reduce biases related to commenting practices and to
deter participants from using comments to infer the
codes’ functionality rather than the code itself); 2) all
packages had been modified to remove the original
source origin; 3) all code successfully compiles; and 4)
there would be additional information above each piece
of code. After being presented with instructions,
participants reviewed and evaluated one target Java
code file, which was altered from the original file by a
randomly assigned combination of the study’s
manipulated variables (see below).

In an offline version of a Qualtrics survey, the target
Java code was presented to participants as a screen-
captured image. Although participants could not modify
nor interact with the code other than directly viewing the
image, the iMotions program did allow the participants

Page 7680

to vertically scroll through the approximate 350 lines of
code. The iMotions software is capable of recording
gaze locations as X, Y pixel coordinates of the stimulus
image rather than X, Y pixel coordinates of the screen,
allowing the researcher to map where on the image the
participant is looking, even during scrolling behaviors.

The target code file was preceded by two distractor
Java classes and followed by three additional distractor
Java classes, each presented on a separate page, to
ensure that participants were not aware of the location
of the experimental stimulus. Above each code piece
was a description of the code’s source. Once they had
finished viewing each code file, participants were asked
to provide their evaluations of it on the same page as
well as a brief description of their understanding of the
code’s function. All code sections were written to
contain no major errors or issues, excluding the target
piece of code. Participants were thanked for their time,
compensated $50 USD, and dismissed from the study
following the completion of the task.

3.3. Manipulations

The original target Java code file was manipulated
across three different parameters: source (reputable,
unknown), readability (high, medium, low), and
organization (high, medium, low) according to previous
research (see Alarcon et al., 2020a). This created 18
total conditions to which each participant was randomly
assigned (e.g., one condition was code from a reputable
source with medium readability and low organization).
The source factor was displayed to participants above
each code piece as reading either “Source: Reputable”
or “Source: Unknown,” referring to the reputation of the
code’s origin repository. In reality, all target code piece
variations originated from the same repository and were
degraded by the same programmer. The high readability
and high organization conditions contained no changes
to the code for those error types, while the medium and
low iterations of each altered the code across different
parameters, increasing in severity from the medium to
low conditions.

3.4. Measures

Three eye-tracking metrics were calculated across
the vertical pixel range containing the Java code. FC
was determined by counting the number fixations made
within this pixel range. AFD was calculated for each
participant by computing the average duration (in
milliseconds) of all fixations located within this pixel
range. TFD was calculated for each participant by
summing the duration (in seconds) of all fixations
within this pixel range.

In addition to analyzing the eye-tracking data
across the entire code stimulus, we also defined 10
AOIs, each consisting of both adjacent and non-
contiguous sections of code that had readability or
organization errors introduced on those lines. AOIs
were composed of each span of vertical pixels that
contained a line of manipulated code, grouped into two
higher-order categories (readability and organization
manipulations) as well as four lower order categories for
each of these two manipulations. Consistent with past
research (Alarcon et al., 2017a), readability was
manipulated by increasing the number of offending
instances of: a) misuse of case (e.g., for packages,
methods, variables); b) misuse of braces (e.g., missing a
space before an opening or closing brace); c) misuse of
indentation (e.g., inconsistent indentation); and d)
improper line wrapping (e.g., use of too many and
unnecessary blank lines). Organization was manipulated
by introducing errors of: a) misuse of declarations (e.g.,
import statements used improperly) b) ambiguous
control flow (e.g., unnecessary or confusing nesting of
blocks); c) improper exception handling (e.g., ignoring
exceptions); and d) inconsistent block spacing. We
report the area-normalized Rate of Relevant Fixations
(RRF) by calculating the proportion of fixations that fall
within each of the AOIs (i.e., the higher-order AOIs
consisting of all Readability and all Organization errors
and the four subtypes for each) compared to the number
of fixations made over the entire code stimulus. AOI
size was area-normalized by dividing the number of
vertical pixels in the AOI by the total number of vertical
pixels for the entire code piece (formula adapted from
Smilek et al., 2006).

Perceptions of the code’s trustworthiness as well as
participants’ willingness to reuse the code were assessed
with the following questions below each piece of code,
respectively: a) “How trustworthy is the code?”,
responding with a 7-point Likert scale ranging from 1
(“Not at all trustworthy”) to 7 (“Very trustworthy”); and
b) “Would you use this code?”, using the binary options
“Use” or “Don’t use” to respond.

4. Results

We conducted a series of between-subjects analysis
of variance (ANOVAs) using a 2 (Source: Reputable,
Unknown) × 3 (Readability: High, Medium, Low) × 3
(Organization: High, Medium, Low) design to
determine the effects of the manipulations on eye-
tracking metrics (FC, AFD, TFD) and self-reported
Trustworthiness Perceptions of code. Post hoc
comparisons, when conducted, were adjusted with the
Bonferroni correction, and estimated marginal means
were used for computation of reported mean differences
between groups. To analyze the manipulations’ effects

Page 7681

on Reuse Intentions, we conducted a generalized
estimating equation (GEE), as the outcome variable is
binary and would violate the assumptions of ANOVA
testing.

4.1. Eye-Tracking Metrics

4.1.1. FC. We conducted a three-way between-subjects
ANOVA on FC. There was a statistically significant
main effect of Source [F(1, 26) = 7.78, p = .010, ηp

2 =
.23] on FC, such that code from an Unknown Source had
significantly more fixations than code from a Reputable
Source (Mdiff = 221.35, SE = 79.38, p = .010). The main
effect of Organization was marginally significant [F(2,
26) = 3.12, p = .061, ηp

2 = .19], and the main effect of
Readability was not statistically significant. Results are
illustrated in Figure 1.

These main effects were qualified by two
interactions. There was a statistically significant
interaction between Source and Readability [F(2, 26) =
7.86, p = .002, ηp

2 = .38]. Participants fixated on the
code more when it was from an Unknown Source
compared to a Reputable Source in both the High (Mdiff
= 383.56, SE = 160.15, p =.022) and Low Readability
conditions (Mdiff = 344.29, SE = 162.42, p = .041). There
were no differences between the Source manipulations
when Readability was Medium. There was also a
significant interaction between Readability and
Organization [F(4, 26) = 3.56, p = .020, ηp

2 = .35].
Participants had more fixations when Organization was
High compared to Medium for code that was High in
Readability (Mdiff = 497.40, SE = 195.40, p = .046).
There were no other significant interactions.

Figure 1. Fixation Counts by main effects of Source,

Readability, and Organization. Bars represent
estimated marginal means. Error bars represent

standard errors.

4.1.2. AFD. We conducted a three-way between-
subjects ANOVA on AFD. No statistically significant
main effects nor interactions were found (all p’s > .220).

4.1.3. TFD. We conducted a three-way between-
subjects ANOVA on TFD. There was a statistically
significant main effect of Source [F(1, 26) = 7.19, p =
.013, ηp

2 = .22] and Organization [F(2, 26) = 3.64, p =
.040, ηp

2 = .22] on TFD. However, no significant main
effect of Readability on TFD was detected. Post hoc
comparisons illustrated that participants fixated longer
when Source was Unknown compared to Reputable
(Mdiff = 99.45, SE = 37.09, p = .013). Participants also
fixated longer when Organization was High compared
to Low (Mdiff= 116.59, SE = 43.24, p = .036). Results are
presented in Figure 2.

There was a significant Source by Readability
interaction [F(2, 24) = 5.47, p = .010, ηp

2 = .30].
Participants fixated on the code for longer when it was
from an Unknown Source compared to a Reputable
Source in the High Readability condition (Mdiff =
184.54, SE = 74.76, p = .018). There was also a
significant Readability by Organization interaction
[F(4, 26) = 3.33, p = .025, ηp

2 = .34]. Participants
fixated longer when Organization was High compared
to Medium in the High Readability condition (Mdiff =
257.99, SE = 87.56, p = .017). No other interactions
were significant.

Figure 2. Total Fixation Duration (in seconds) by

main effects of Source, Readability, and
Organization. Bars represent estimated marginal

means. Error bars represent standard errors.

4.1.4. AOIs. When errors were introduced to the code,
the area-normalized RRF for those AOIs are reported.
Overall, Readability errors (M = 1.91, SD = 0.26) were
attended to significantly more often than Organization
errors (M = 0.97, SD = 0.31) compared to the full code
piece [F(1, 64) = 5.49, p = .022, ηp

2 = .08]. Looking
further into the subcategories of Readability, the most
attended Readability error type was misuse of case, with
a mean area-normalized RRF of 2.49 (SD = 1.87)
fixations. This was followed by misuse of braces,
misuse of indentation, and improper line wrapping. For
Organization errors, the most attended type was misuse
of declarations (M = 1.48, SD = 1.08), as the mean area-

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

Re
pu

ta
bl

e

U
nk

no
w

n

H
ig

h

M
ed

iu
m

Lo
w

H
ig

h

M
ed

iu
m

Lo
w

Source Readability Organization

Fi
xa

tio
n

Co
un

ts

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Re
pu

ta
bl

e

U
nk

no
w

n

H
ig

h

M
ed

iu
m

Lo
w

H
ig

h

M
ed

iu
m

Lo
w

Source Readability Organization

To
ta

l F
ix

at
io

n
D

ur
at

io
ns

 (
in

 s)

Page 7682

normalized RRF was the highest for this subgroup. This
was followed by inconsistent block spacing and
ambiguous control flow. Lastly, improper exception
handling did not seem to elicit a relevant proportion of
fixations as compared to the entire Java class; however,
the number of lines containing these errors was
comparatively low, so more research is needed to obtain
an accurate measure of relative attention allocation.
Descriptive statistics are shown in Figure 3.

Figure 3. Area-normalized mean RRF by error type.

Gray bars represent general type of error, while
white bars represent specific forms of errors. Error

bars represent standard errors.

4.2. Perceived Trustworthiness Ratings

We also evaluated whether our manipulations of
Source, Readability, and Organization had any effect on
Perceived Trustworthiness Ratings. There was a
marginally significant main effect of Readability on
Perceived Trustworthiness Ratings [F(2, 26) = 3.28, p =
.053, ηp

2 = .20]. Participants had higher Trustworthiness
Ratings with the code that was High in Readability
compared to Low Readability (Mdiff = 1.64, SE = 0.64, p
= .050). Effects of Source and Organization were not
significant. Results of the analyses are depicted in
Figure 4.

Figure 4. Trustworthiness Ratings by main effects

of Source, Readability, and Organization. Bars
represent estimated marginal means. Error bars

represent standard errors.

4.3. Reuse Intentions

Due to the binary nature of the Reuse Intentions
outcome variable, a GEE analysis was conducted to
examine whether there were differences in Reuse
Intentions across the Source, Readability, and
Organization manipulations. We found a significant
effect of Readability on Reuse Intentions [Wald χ2 (2, N
= 44) = 6.55, p = .038]. Participants in the High (Use:
11, Don’t Use: 4) and Medium Readability (Use: 11,
Don’t Use: 4) conditions had significantly higher Reuse
Intentions than those in the Low Readability condition
(Use: 4, Don’t Use: 10). Effects of Source and
Organization were not significant.

5. Discussion

The current study sought to explore differences in
visual effort across errors introduced to source,
readability, and organization of computer code in a
between-subjects design utilizing eye-tracking metrics,
as well as self-reported perceived trustworthiness and
reuse intentions of computer code. More specifically,
this study explored eye-tracking and self-report data to
infer differences in visual/cognitive effort and attention
allocation when the source, readability, and
organization of computer code were manipulated to
varying degrees. We first review the behavioral metrics
from eye-tracking data compared to previous research,
then discuss the self-report results of trustworthiness
and reuse intentions.

Interestingly, we only found a marginal effect of
readability on trustworthiness, with differences between
high and low readability conditions, whereas source and
organization did not have significant effects on
trustworthiness. The relationship between
trustworthiness and source may not be significant in the
current study due to the low-risk nature of the code.
Source may be of higher importance in code that will be
used in high-risk scenarios. The relationship between
organization and trustworthiness may not have been
significant because errors introduced to the code’s
organization were less likely to cause bugs or compiling
issues in the code (e.g., inconsistent block spacing) and
could have been attributed to the original programmer’s
writing style rather than ability.

We found that certain subtypes of readability and
organization errors were fixated on relatively more than
the rest of the code piece as compared to other subtypes
within the same higher-order manipulation category.
Specifically, we found misuse of case was the most
fixated aspect of readability. Since Java is a case-
sensitive programming language, it is important that
programmers follow proper naming conventions. It is
reasonable that lines degraded by misuse of case would

1.00

2.00

3.00

4.00

5.00

6.00

7.00

R
ep

ut
ab

le

U
nk

no
w

n

H
ig

h

M
ed

iu
m

Lo
w

H
ig

h

M
ed

iu
m

Lo
w

Source Readability Organization

Tr
us

tw
or

th
in

es
s R

at
in

gs

Page 7683

attract a relatively higher amount of attention than other
areas of code because these instances (e.g., incorrect
case for packages, classes, methods, variables, and
constants) could result in program errors and require
debugging procedures. Misuse of case errors may also
be more visually salient compared to other readability
error types, such as misuse of braces (e.g., missing a
break before a closing or opening brace), and are more
problematic for program functionality compared to
improper length and wrapping (e.g., use of too many
blank lines).

We found that misuse of declarations was the most
fixated aspect of organization, relative to the entire Java
class. Lines with misuse of declarations errors drew
relatively more attention than the rest of the code as
compared to the other organization error subtypes. The
higher amount of attention drawn to this type of error is
also understandable because it would be difficult for
programmers to understand program functionality
when, for example, variables are not initialized as soon
as possible and could cause errors when running the
program (e.g., import statements used improperly).
These errors may also be more visually salient than
other types of organization issues (e.g., compressed if
statements or unnecessary use of “break” or “continue”)
because they often appear at the beginning of a block of
code, where much of the information about the function
or purpose of that block is located, rather than in the
middle where the execution of the block’s contents are
contained. Software engineers tend to focus on elements
of the code that provide key information about the
code’s functionality, which are referred to as beacons
(elsewhere referred to as notations, naming schemas,
comments, etc.; Katona, 2021; Crosby et al., 2002;
Busjahn et al., 2011). Beacons can facilitate different
depths of processing depending on factors such as a
programmer’s level of experience, the program’s
purpose or functionality, and the type of information
contained within the beacon (e.g., comments versus
variable names; Crosby et al., 2002).

There are apparent differences between the results
from the current study and previous research (Alarcon
et al., 2017a; Alarcon et al., 2020b; Walter et al., 2017)
which may have occurred for several reasons. First, in
the current study participants only had to review one
target piece of code, whereas in previous research they
were required to review 18 pieces of code (Alarcon et
al., 2017a; Walter et al., 2017). Differences between the
results of the current study and previous studies may
have resulted from a different number or different type
of introduced readability and organization errors. The
current study did not replicate the same number of
manipulations as previous research (e.g., same number
of lines containing a misuse of case error, etc.). It is also
possible that the participants may have viewed each

code piece in relation to the other code pieces being
reviewed within Alarcon and colleagues’ previous
research. This may have influenced programmers’
relevant processing times and code perceptions, as they
may have used the other pieces they were reviewing as
a sort of relative reference.

Second, the code's functional purpose was held
constant in the current study. Whereas previous research
(Alarcon et al., 2017a) had manipulations specific to
each piece of code type (i.e., each code piece had a
different basic function or purpose), the current study
manipulated the variables of interest across participants
on the same original piece of code. Previous research
demonstrated that when organization was manipulated,
both high and low organization led to programmers
spending more time on the code compared to when the
code contained a medium level of organization errors
(Alarcon et al., 2017a). However, when code was highly
organized in the current study, participants spent more
time on the code, as evidenced by higher FC and longer
TFDs, compared to when code was either medium or
low in organization. This may have occurred for several
reasons. First, the code of interest in the current study is
not used in a high-risk environment (e.g., servers), The
nature of the code itself has been noted to be of
importance in previous research, such that high-risk
code (e.g., server code, bank wire code, etc.) was
scrutinized more than low-risk code, especially when it
violated computer programming norms (Alarcon et al.,
2017a). The code manipulated in the current study was
considered low risk, so manipulations to lower risk code
may not have the same impact on processing strategies
or visual effort during code evaluation. Second,
previous research has relied on time spent on the page
rather than tracking of time spent on the code. In the
current study we were able to differentiate between time
spent reviewing the code and time spent answering the
questions about the code using eye-tracking data. This
may have influenced the assessment of time spent on the
code in previous research, as the time also included time
answering questions about the code. Code that is less
organized may take more time to write about, as there
are more questions about its processes.

5.1. Limitations and Future Research

The current study is not without limitations. First,
the study is likely underpowered to detect many of the
interactions and effects proposed. The onset of the
COVID-19 pandemic has hindered in-person data
collection in many areas of research, including ours. As
high-accuracy eye trackers necessitate in-person data
collection, the current study may be not have reached
the sample size needed for adequate power for the
conducted analyses. More specifically, with a final

Page 7684

sample size of N = 44 and a 2 × 3 × 3 within-subjects
design, we were left with just three participants per
unique cell to test the interaction effects between the
readability, organization, and source manipulations. For
example, the readability manipulation was marginally
significant despite accounting for 20% of the variance
in trustworthiness perceptions. Future researchers may
benefit from a dichotomization of the readability and
organization variables (rather than having three levels of
each of these factors) to lower the required sample size
needed to find significant effects. Despite our small
sample size, we believe the significant effects that we
detected do promote the current state of research in this
area.

Second, although Alarcon and colleagues (2017a)
have demonstrated different effects of readability and
organization on various outcomes (e.g., trustworthiness
perceptions) and that the two are distinct constructs, it
may be difficult for a reader to parse these factors apart.
We therefore suggest that future research add subjective
rating items for each of these factors to serve as
manipulation checks as well as tests for the perceptual
impacts of these manipulations.

Third, as the errors that appear in code can manifest
in dramatically varied forms, further research is required
to assess whether the results seen here and elsewhere are
the products of the unique qualities of the experimental
code employed and their manipulations, or truly
emblematic of broader effects of code manipulations on
the efficient review and evaluation of code. Further, the
specific types of errors that we introduced to our code
are not wholly representative of all types of reputation
and transparency errors. Future research would benefit
from looking at many types of errors that were not
included here. For example, code reputation could be
explored with a variety of other manipulations including
ratings and comments made by other programmers. The
effect of comments made within the code would also be
an interesting area for future investigation.

5.2. Theoretical and Practical Implications

Our findings of behavioral differences in eye
movements indicate that there are differences in
cognitive processing or visual effort between code that
does and does not contain errors. Therefore, there is
evidence that manipulating source, readability, and
organization aspects of code have practical implications
for recommendations towards writing reusable code.
For instance, programmers should be careful to check
for misuses of case and misuses of declarations in their
code if they want others to be able to evaluate it for reuse
in an efficient manner. The results suggest these forms
of code errors specifically draw more attention relative

to other types, which may reduce the ability to evaluate
code quickly and effectively for reuse.

Second, we found theoretical support for the source
and readability manipulations on time spent reviewing
the code. This serves as both a recommendation and
caution, as code whose source was designated as
reputable evoked less visual effort when readability was
high and low. While this can enhance efficiency with
highly readable code, it may lead to oversight with code
that is well regarded but less readable; as such, code may
have other issues beyond readability alone. Third, we
observed some of the highest FC in conditions that
featured incongruent code manipulations (e.g., low
readability with high organization). Code of
inconsistent quality may cause programmers to devote
excessive cognitive resources and time in evaluating its
quality. Programmers interested in developing reusable
code should ensure that their code is of high quality in
all respects of readability and organization but should
consider focusing on fixing instances of misuse of case
and misuse of declarations in order to garner higher
perceptions of readability and organization,
respectively.

6. Conclusion

The growing prominence of code reuse across
industries brings significant potential for both risk and
reward. While the effective reuse of code can optimize
development time and contribute to a higher quality
final product, implementation of poor-quality code can
result in security risks, lost time and revenue, and be
detrimental to a project overall. This study leveraged
eye-tracking data to examine how manipulations made
to a Java code file’s source reputation, readability, and
organization affected program reviewers’ visual effort
as well as their perceptions of code trustworthiness and
reuse potential. Our findings indicate that reviewers
expended more visual effort (higher FC, higher TFD) on
code whose source reputation was unknown compared
to reputable code. More visual effort was expended on
code that contained many organization errors versus
code that was high in organization (marginally higher
FC, higher TFD). Readability errors did not
significantly affect reviewer’s eye movement behaviors;
however, errors introduced to the code’s readability
lowered participant’s perceptions of trustworthiness and
reuse intentions. The most fixated readability and
organization error types were misuse of case and mises
of declarations, respectively, relative to the rest of the
Java file. The results found here are a crucial first step
in understanding roles that each of the unique forms of
code errors can play in the assessment and evaluation of
code for reuse.

Page 7685

8. Acknowledgement

The views expressed are those of the authors and do
not reflect the official guidance or position of the United
States Government, the Department of Defense, or of
the United States Air Force. Distribution A. Approved
for public release: AFRL-2023-4568.

7. References

Alarcon, G. M., & Ryan, T. J. (2018). Trustworthiness
perceptions of computer code: A heuristic-systematic
processing model. Proceedings of the Hawaii
International Conference on System Sciences, 51, 5384–
5393.

Alarcon, G. M., Gamble, R., Jessup, S. A., Walter, C., Ryan,
T. J., Wood, D. W., & Calhoun, C. S. (2017a).
Application of the heuristic-systematic model to
computer code trustworthiness: The influence of
reputation and transparency. Cogent Psychology, 4,
Article 1389640.

Alarcon, G. M., Gibson, A. M., Jessup, S. A., Capiola, A.,
Raad, H., & Lee, M. A. (2020a). Effects of reputation,
organization, and readability on trustworthiness
perceptions of computer code. Proceedings of the Human
Computer Interaction International Conference, 12183,
367–381.

Alarcon, G. M., Gibson, A. M., Walter, C., Gamble, R. F.,
Ryan, T. J., Jessup, S. A., Boyd, B. E., & Capiola, A.
(2020b). Trust perceptions of metadata in open-source
software: The role of performance and reputation.
Systems, 8(3), 1–14.

Alarcon, G. M., Militello, L. G., Ryan, P., Jessup, S. A.,
Calhoun, C. S., & Lyons, J. B. (2017b). A descriptive
model of computer code trustworthiness. Journal of
Cognitive Engineering and Decision Making, 11(2),
107–121.

Bertram, I., Hong, J., Huang, Y., Weimer, W., & Sharafi, Z.
(2020). Trustworthiness perceptions in code review: An
eye-tracking study. Proceedings of the ACM/IEEE
International Symposium on Empirical Software
Engineering and Measurement, 14, 1-6.

Binkley, D., Davis, M., Lawrie, D., Maletic, J. I., Morrell, C.,
& Sharif, B. (2013). The impact of identifier style on
effort and comprehension. Empirical Software
Engineering, 18(2), 219–276.

Busjahn, T., Schulte, C., & Busjahn, A. (2011). Analysis of
code reading to gain more insight in program
comprehension. Proceedings of the Koli Calling
International Conference on Computing Education
Research, 1–9.

Crosby, M. E., Scholtz, J., & Wiedenbeck, S. (2002). The roles
beacons play in comprehension for novice and expert
programmers. Proceedings of the Workshop of the
Psychology of Programming Interest Group, 14, 58–73.

De Oliveira, B., Ribeiro, M., Da Costa, J. A. S., Gheyi, R.,
Amaral, G., De Mello, R., Oliveira, A., Garcia, A.,
Bonifacio, R., & Fonseca, B. (2020). Atoms of confusion:
The eyes do not lie. Proceeding of the Brazilian
Symposium on Software Engineering, 34, 243–252.

Eckstein, M. K., Guerra-Carrillo, B., Miller Singley, A. T., &
Bunge, S. A. (2017). Beyond eye gaze: What else can
eyetracking reveal about cognition and cognitive
development? Developmental Cognitive Neuroscience,
25, 69–91.

Frakes, W. B., & Kang, K. (2005). Software reuse research:
Status and future. IEEE Transactions on Software
Engineering, 31(7), 529–536.

Hauser, F., Mottok, J., & Gruber, H. (2018). Eye tracking
metrics in software engineering. Proceedings of the
European Conference of Software Engineering
Education, 3, 39–44.

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R.,
Jarodzka, H., & Weijer, J. (2011). Eye tracking: A
comprehensive guide to methods and measures. Oxford.

Jessup, S. A., Willis, S. M., Alarcon, G. M., & Lee, M. A.
(2021). Using eye-tracking data to compare differences
in code comprehension and code perceptions between
expert and novice programmers. Proceedings of the
Hawaii International Conference on System Sciences, 54,
114–123.

Katona, J. (2021). Clean and dirty code comprehension by
eye-tracking based evaluation using gp3 eye tracker. Acta
Polytechnica Hungarica, 18(1), 79–99.

Liu, L., Liu, W., Li, X., Wang, W., & Cheng, W. (2020). Eye-
tracking based performance analysis in error finding
programming test. Proceedings of the International
Conference on Computer Science and Education, 15,
477–482.

Mäkitalo, N., Taivalsaari, A., Kiviluoto, A., Mikkonen, T., &
Capilla, R. (2020). On opportunistic software reuse.
Computing, 102(11), 2385–2408.

Orquin, J. L., Ashby, N. J. S., & Clarke, A. D. F. (2016). Areas
of interest as a signal detection problem in behavioral
eye-tracking research. Journal of Behavioral Decision
Making, 29(2–3), 103–115.

Raney, G. E., Campbell, S. J., & Bovee, J. C. (2014). Using
eye movements to evaluate the cognitive processes
involved in text comprehension. Journal of Visualized
Experiments, 83, 1–7.

Ryan, T. J., Walter, C., Alarcon, G. M., Gamble, R. F., Jessup,
S. A., & Capiola, A. (2019). The influence of personality
on code reuse. Proceedings of the Hawaii International
Conference on System Sciences, 52, 5805–5814.

Sharafi, Z., Shaffer, T., Sharif, B., & Gueheneuc, Y. G. (2015).
Eye-tracking metrics in software engineering.
Proceedings of the Asia-Pacific Software Engineering
Conference, 22, 96–103.

Smilek, D., Birmingham, E., Cameron, D., Bischof, W., &
Kingstone, A. (2006). Cognitive Ethology and exploring
attention in real-world scenes. Brain Research, 1080(1),
101–119.

Uzzaman, S., & Joordens, S. (2011). The eyes know what you
are thinking: Eye movements as an objective measure of
mind wandering. Consciousness and Cognition, 20(4),
1882–1886.

Walter, C., Gamble, R. F., Alarcon, G. M., Jessup, S. A., &
Calhoun, C. S. (2017). Developing a mechanism to study
code trustworthiness. Proceedings of the Hawaii
International Conference on System Sciences, 50, 5817–
5826..

Page 7686

	1. Introduction
	2. Related Literature
	2.1. Eye-tracking Metrics and Cognitive Processing
	2.2. Effects of Code Reputation and Transparency
	2.2.1. Source. We begin with our first manipulated variable of interest, code source, which is one aspect of the reputation factor (Alarcon et al., 2017a). Bertram and colleagues (2020) examined participants’ scanning patterns while they reviewed repa...
	2.2.2. Readability. Connections between eye-tracking data and manipulations made to a code’s readability have also been found. In one such study, Katona (2021) varied a piece of code’s readability with “clean” code, which included proper naming schema...
	2.2.3. Organization. At present, there is little research investigating overall code organization using eye-tracking metrics. This is likely due to the inability of many eye-tracking programs to allow participants to scroll vertically on the computer ...
	2.2.4. Effects of Readability Versus Organization. It should be noted that Alarcon and colleagues did find interactions across their source, readability, and organization manipulations. Specifically, they found an interaction between organization and ...

	2.3. Current Study

	3. Method
	3.1. Participants
	3.2. Task and Procedure
	3.3. Manipulations
	3.4. Measures

	4. Results
	4.1. Eye-Tracking Metrics
	4.1.1. FC. We conducted a three-way between-subjects ANOVA on FC. There was a statistically significant main effect of Source [F(1, 26) = 7.78, p = .010, ηp2 = .23] on FC, such that code from an Unknown Source had significantly more fixations than cod...
	These main effects were qualified by two interactions. There was a statistically significant interaction between Source and Readability [F(2, 26) = 7.86, p = .002, ηp2 = .38]. Participants fixated on the code more when it was from an Unknown Source co...
	4.1.2. AFD. We conducted a three-way between-subjects ANOVA on AFD. No statistically significant main effects nor interactions were found (all p’s > .220).
	4.1.3. TFD. We conducted a three-way between-subjects ANOVA on TFD. There was a statistically significant main effect of Source [F(1, 26) = 7.19, p = .013, ηp2 = .22] and Organization [F(2, 26) = 3.64, p = .040, ηp2 = .22] on TFD. However, no signific...
	There was a significant Source by Readability interaction [F(2, 24) = 5.47, p = .010, ηp2 = .30]. Participants fixated on the code for longer when it was from an Unknown Source compared to a Reputable Source in the High Readability condition (Mdiff = ...
	4.1.4. AOIs. When errors were introduced to the code, the area-normalized RRF for those AOIs are reported. Overall, Readability errors (M = 1.91, SD = 0.26) were attended to significantly more often than Organization errors (M = 0.97, SD = 0.31) compa...

	4.2. Perceived Trustworthiness Ratings
	4.3. Reuse Intentions

	5. Discussion
	5.1. Limitations and Future Research
	5.2. Theoretical and Practical Implications

	6. Conclusion
	8. Acknowledgement
	7. References

