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Abstract 
Efficient evaluation strategies are essential when 

reviewing computer code for potential reuse. Previous 
researchers have examined the factors that influence 
these assessments. However, researchers have yet to 
empirically demonstrate the direct influence of the 
specific factors that affect visual/cognitive effort, which 
can be inferred through eye tracking metrics.  

Programmers were recruited to complete a Java 
code review task, providing evaluations for a code file’s 
trustworthiness and reusability after various errors had 
been introduced to the file’s source reputation, 
readability, and organization. Analyses of the eye-
tracking data revealed increases in fixation counts and 
durations for manipulated code. An exploratory 
analysis of areas containing readability and 
organization errors revealed misuses of case and 
misuses of declarations garnered the most attention 
from participants relative to the rest of the code. 
Implications of the current study extend to 
recommendations for writing code that is easily 
reusable by decreasing the visual effort needed for code 
review. 

 
Keywords: Information Processing, Eye Tracking, 
Human-Computer Interaction, Software Reusability, 
Trust in Code. 

1. Introduction  

The interest in finding efficient strategies for 
creating computer code has become increasingly 
accelerated following a continuous expansion in the 
demand for automated systems and novel programming 
applications. Reusing previously written code and 
writing reusable code are practices that have proven 
beneficial due to increased efficiency in the code 
creation process (Frakes & Kang, 2005; Mäkitalo et al., 

2020). Code that reviewers perceive as trustworthy is 
more likely to be reused, and ensuring that programmers 
appropriately calibrate their trust in existing code helps 
maintain security and decrease vulnerabilities (Ryan et 
al., 2019).  

In a cognitive task analysis, three primary factors 
were identified that influence a programmer’s code 
trustworthiness perceptions: performance, reputation, 
and transparency of the code (Alarcon et al., 2017b). 
Performance is the ability of the code to meet the 
objective of the project. Reputation assessments are 
based on external information about the code that may 
or may not be related to the code itself. Transparency is 
defined by the understandability of the code from 
viewing or reading it, which includes aspects of the code 
related to organization and readability (e.g., style, 
architecture, etc.; Busjahn et al., 2011). As defined by 
Alarcon and colleagues (2017b), readability is the 
ability of the programmer to evaluate and comprehend 
the intended behavior of the code, and organization 
concerns aspects of the code that relate to its orientation 
and control structure. The current study specifically 
manipulated transparency by introducing errors to the 
readability and organization of the code and 
manipulated reputation by altering the code source’s 
stated reputation. Eye-tracking data can provide 
valuable insight into programmers’ perceptions of the 
code and cognitive processing (Busjahn et al., 2011), 
and thus could reveal how these coding conventions 
might affect a programmer’s trustworthiness 
perceptions and reuse intentions for a piece of code. 

Importantly, data from a programmer’s eye 
movements made during a code review task could 
indicate the reviewer’s type or depth of cognitive 
processing (Eckstein et al., 2017). The current study 
leverages eye-tracking data to infer the visual effort that 
is required of participants while completing a code 
review task and explore how differences in eye 
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movements vary as a function of degree or type of 
violation made to the code. We further attempt to 
replicate the effects of introduced errors made to a 
code’s source, readability, and organization and report 
how these manipulations affect a code’s perceived 
trustworthiness and reusability from previous research 
(Alarcon et al., 2017a). We also report the specific types 
of manipulations that seem to be the driving forces of 
attention capture during the code review process. 

2. Related Literature 

2.1. Eye-tracking Metrics and Cognitive 
Processing 

Eye-tracking metrics derived from gaze location 
and time data allow researchers to identify what 
information observers are looking at and for how long. 
Eye-tracking technology can provide a means of 
inferring the depth of cognitive processing and amount 
of visual effort required for a task (Binkley et al., 2013; 
Sharafi et al., 2015). Researchers can leverage data from 
this technology to approximate cognitive processes such 
as text comprehension, attention allocation, and 
approaches to problem solving (Eckstein et al., 2017; 
Raney et al., 2014). Recently, researchers have used 
eye-tracking technology to examine how programmers 
review code. These studies include an examination of 
the differences in code comprehension between expert 
and novice programmers (Jessup et al., 2021) and 
performance on code review tasks (Liu et al., 2020). 

Gaze data can be analyzed in several ways; two 
such metrics include calculating the number of fixations 
made by a participant (i.e., fixation count; FC) and the 
time participants spend fixating on a stimulus (i.e., 
fixation duration). Fixation metrics can be analyzed 
over an entire visual stimulus or for specific areas of 
interest (AOIs), which are defined by the researcher as 
particularly relevant regions of the visual stimulus 
(Orquin et al., 2016). Fixations are commonly used as a 
metric in eye-tracking research because much of the 
cognitive processing of visual input occurs during these 
momentary pauses in eye movements (Hauser et al., 
2018). For instance, FC has been used as a measure of 
visual effort and can signal if a stimulus is viewed often, 
as it may be relatively complex or interesting (Uzzaman 
& Joordens, 2011). Similarly, variables derived from 
fixation durations approximate how long it takes to 
evaluate a stimulus (Sharafi et al., 2015; Hauser et al., 
2018). As information processing increases in 
complexity, observers fixate longer (i.e., longer average 
fixation durations; AFD; and total fixation durations; 
TFD) and more often (i.e., increased FC) on relevant 
material (Raney et al., 2014).  

2.2. Effects of Code Reputation and 
Transparency 

In past research on code review tasks, Alarcon and 
colleagues (2017a; 2020a; Walter et al., 2017) have 
focused on tasks that have manipulated or measured a 
code’s reputation (by manipulating source), and 
transparency (by manipulating readability and 
organization). They have theorized programmers use 
different processing strategies depending on the 
presence and type of coding norm violations existent 
within a code file (Alarcon & Ryan, 2018). When 
evaluating computer code for trustworthiness and 
reusability, there is a balance between making well-
informed yet time-efficient decisions. Combined with 
other research focusing on how these manipulations 
affect eye movements and behaviors, we merge these 
research streams to develop the goals and expected 
outcomes for the current study. 

In the following subsections, we review research on 
eye tracking data following manipulations made to code 
source, readability, and organization. We propose that 
the introduced errors to each of the three manipulations 
will result in higher visual effort. We note that FC, AFD, 
and TFD are viewed as proxies rather than direct 
indicators of cognitive processes and visual/cognitive 
effort; see Holmqvist et al., 2011). When there was 
sufficient extant literature that indicated a direction of 
differences across our manipulations, we formulate 
hypotheses below. For the relationships with less 
supporting research, we pose research questions of a 
more exploratory nature. 
 
2.2.1. Source. We begin with our first manipulated 
variable of interest, code source, which is one aspect of 
the reputation factor (Alarcon et al., 2017a). Bertram 
and colleagues (2020) examined participants’ scanning 
patterns while they reviewed repair patches made to a 
sample of Java code. The authors manipulated the 
code’s source by randomly labeling the patches as being 
written by either a human or a machine (two of the six 
patches were in fact written by an automated program, 
whereas the other four were written by a human). The 
authors found no significant differences in eye-tracking 
metrics (FC, AFD, and average saccade length) or in 
overall time spent on the task between the two author 
labels. Interestingly, however, significant differences 
were found between human- and machine-labeled 
patches in the distribution of visual attention; the code’s 
class and methods garnered more attention (as measured 
by higher FC, longer AFD, and shorter average saccade 
length) in the human-labeled patches. Because Bertram 
and colleagues’ code source manipulation is quite 
different from the current study’s operationalization of 
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source reputation, we pose the following research 
question rather than a directional hypothesis:  

RQ1: What effect, if any, does code source have on 
a) FC, b) AFD, and c) TFD? 

As code source relates to trustworthiness and reuse 
intentions, Alarcon and colleagues found code labeled 
as originating from a reputable source led to higher 
trustworthiness perceptions (Alarcon et al., 2017a; 
Alarcon et al., 2020b; Walter et al., 2017) and increased 
reuse intentions (Alarcon et al., 2020b; Walter et al., 
2017) compared to code from an unknown source. 

H1: When code is from a reputable source, 
participants will a) rate the code as more trustworthy, 
and b) be more willing to reuse the code. 

 
2.2.2. Readability. Connections between eye-tracking 
data and manipulations made to a code’s readability 
have also been found. In one such study, Katona (2021) 
varied a piece of code’s readability with “clean” code, 
which included proper naming schemas, readable 
implementation of functions, and correct code 
formatting, compared to “dirty” code, which was not as 
readable. The researcher also collected self-report data 
about the code in addition to eye-tracking data. Results 
revealed that the clean code was rated as easier to read 
and understand and resulted in lower average FC and 
lower AFD compared to the dirty code. However, this 
study neglected to discuss the specific types or instances 
of errors that were present in the dirty code, and the 
author did not include any analysis of eye-tracking data 
between specific regions of code that contained errors 
versus regions that did not contain errors. From 
Katona’s evidence, we pose the following hypothesis:  

H2: Participants will have a) fewer FC, b) shorter 
AFD, and c) shorter TFD when code readability is 
higher. 

Additionally, Alarcon and colleagues found that 
higher code readability led to higher trustworthiness 
perceptions (Alarcon et al., 2017a; Walter et al., 2017) 
and increased reuse intentions (Walter et al., 2017). The 
following hypothesis is developed: 

H3: When code is higher in readability, participants 
will a) rate the code as more trustworthy, and b) be more 
willing to reuse the code piece. 

 
2.2.3. Organization. At present, there is little research 
investigating overall code organization using eye-
tracking metrics. This is likely due to the inability of 
many eye-tracking programs to allow participants to 
scroll vertically on the computer screen. As such, there 
is a difficulty of presenting stimuli of sufficient length 
to study many types of large-scale organization errors 
while also staying within the confines of one vertical 
screen length. Taking a more granular approach, a 
limited number of eye-tracking studies were found 

relating to the subtypes of our chosen organization error 
types [selected from Alarcon and colleagues (2020a) 
and listed in the Measures section below]. Namely, a 
study by de Oliveira and colleagues (2020) found that 
computer code containing “Logic as Control Flow” 
patterns (which present a confusing order of logical 
operators in execution statements) caused a significant 
increase in visual attention. This was evidenced by 
increased gaze transitions to the execution statement as 
well as increased time on areas containing those patterns 
of code. Because of the relative novelty of our approach 
to studying the effects of code organization (e.g., code 
consisting of numerous nested blocks spanning multiple 
screen lengths), we pose the following for exploration: 

RQ2: What effect, if any, does code organization 
have on a) FC, b) AFD, and c) TFD? 

In contrast to their expectations and those that the 
eye tracking research above would suggest, Alarcon and 
colleagues found that higher code organization led to 
lower trustworthiness perceptions (Alarcon et al., 
2017a; Walter et al., 2017) and lower reuse intentions in 
code (Walter et al., 2017). Despite these counterintuitive 
findings of higher organized code leading to worse 
perceptions, we believe that the changes 
(methodological and otherwise) made to the current 
study from these prior studies may align better with the 
original expectations of Alarcon and colleagues 
(Alarcon et al., 2017a; Walter et al., 2017). As such, we 
pose the following hypothesis: 

H4: When code is higher in organization, 
participants will a) rate the code as more trustworthy, 
and b) be more willing to reuse the code piece. 

 
2.2.4. Effects of Readability Versus Organization. It 
should be noted that Alarcon and colleagues did find 
interactions across their source, readability, and 
organization manipulations. Specifically, they found an 
interaction between organization and readability, such 
that when readability was low and organization was 
either high or low, participants trusted the code more 
than when code had a medium level of organization 
(Alarcon et al., 2020a). We believe that adding eye-
tracking data will allow the current study to delve into 
the attention capture driven by these two types of 
manipulations, though no previous studies to our 
knowledge have measured how readability errors 
differently capture a program reviewer’s attention as 
compared to organization errors. Therefore, we pose the 
following as an exploratory research question: 

RQ3: Do participants differently attend to 
readability versus organization manipulations or their 
subtypes (AOIs, listed in the Measures section below), 
as compared to the full stimulus?  
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2.3. Current Study  

Although the results from Alarcon and colleagues 
were replicated across several studies (Alarcon et al., 
2017a; Alarcon et al., 2020b; Walter et al., 2017), there 
are still issues with these replications. First, the 
researchers used within-subjects experimental designs 
in which each piece of code that participants reviewed 
was a unique Java class and may have had its own initial 
trustworthiness level (e.g., code that was high risk), 
regardless of manipulations. Second, these prior studies 
used a metric of overall page time to capture 
participants’ time spent on code, though this measure 
was not sensitive enough to fully capture differences in 
visual effort and attention across their manipulations.  
That is, their page time measure was not able to 
differentiate between when the participants were 
processing the code stimuli versus other aspects of the 
study, such as the code evaluation survey items located 
beneath the code on the same page. 

In the current study, we ameliorate some of the 
limitations of Alarcon and colleagues’ previous research 
(Alarcon et al., 2017a; Alarcon et al., 2020b; Walter et 
al., 2017) and further investigate their conclusions by 
modifying several aspects of their experimental 
approach. First, we used a between-subjects design in 
which participants evaluated a single piece of code that 
was manipulated by each combination of source 
(reputable, unknown), readability (high, medium, low), 
and organization (high, medium, low) factors. This 
adaptation from previous research (Alarcon et al., 
2017a) removes the risk of confounding code 
functionality or inherent risk with our variables of 
interest. Second, this study is differentiated from 
Alarcon and colleagues (2020a) by incorporating eye-
tracking technology to evaluate the visual effort needed 
for evaluating code. When eye-tracking technology is 
incorporated, it is also possible to separate the amount 
of time participants spend reviewing the code stimuli 
from the time they spend outside of the stimulus region 
(e.g., responding to survey items and short answer 
questions). Eye tracking also allows us to see which 
manipulations (i.e., subtypes of readability or 
organization error categories) are the driving forces of 
attention capture and more effortful processing. 
Contributions of our research include: 
1. Leveraging eye-tracking data to infer the visual 

effort that is required during a code review task. 
2. Exploring how differences in eye movements vary 

as a function of degree or type of violation made to 
the code.  

3. Attempting to replicate the effects of errors 
introduced to a code’s source, readability, and 
organization and report how these errors affect a 
code’s perceived trustworthiness and reusability. 

4. Finding the specific types of errors that seem to be 
the driving forces of attention capture during the 
code review process. 

5. Merging previous research streams to develop the 
goals and expected outcomes for the current study. 

3. Method  

3.1. Participants 

Participants were recruited (N = 52) during initial 
data collection via flyer postings, email, and by word of 
mouth from a Midwest university and local industries to 
obtain a sample of both student and professional 
programmers. Participants were required to have at least 
three years of programming experience and be familiar 
with the Java coding language. We removed six 
participants for poor eye-tracking data quality 
(designated by meeting a minimum track loss threshold) 
and two participants for not meeting the minimum 
experience requirements, leaving a total of 44 
participants for our analyses. Of these participants, 
79.55% identified as male, with a mean age of 30.34 
years (SD = 10.54) and a range of 4–20 years of 
programming experience. 

3.2. Task and Procedure 

After completing informed consent procedures, 
participants were asked to sit approximately 70 cm from 
a computer monitor (1920x1080 screen resolution), 
which had been affixed with a Smart Eye Aurora remote 
eye tracker (60-Hz sample rate) and was running the 
iMotions Screen-Based Eye Tracking Module (version 
7.1). Through the iMotions software, participants 
completed a four-point gaze calibration procedure. Prior 
to the code review task, participants were informed that: 
1) all comments were removed from each code piece (to 
reduce biases related to commenting practices and to 
deter participants from using comments to infer the 
codes’ functionality rather than the code itself); 2) all 
packages had been modified to remove the original 
source origin; 3) all code successfully compiles; and 4) 
there would be additional information above each piece 
of code. After being presented with instructions, 
participants reviewed and evaluated one target Java 
code file, which was altered from the original file by a 
randomly assigned combination of the study’s 
manipulated variables (see below).  

In an offline version of a Qualtrics survey, the target 
Java code was presented to participants as a screen-
captured image. Although participants could not modify 
nor interact with the code other than directly viewing the 
image, the iMotions program did allow the participants 
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to vertically scroll through the approximate 350 lines of 
code. The iMotions software is capable of recording 
gaze locations as X, Y pixel coordinates of the stimulus 
image rather than X, Y pixel coordinates of the screen, 
allowing the researcher to map where on the image the 
participant is looking, even during scrolling behaviors.  

The target code file was preceded by two distractor 
Java classes and followed by three additional distractor 
Java classes, each presented on a separate page, to 
ensure that participants were not aware of the location 
of the experimental stimulus. Above each code piece 
was a description of the code’s source. Once they had 
finished viewing each code file, participants were asked 
to provide their evaluations of it on the same page as 
well as a brief description of their understanding of the 
code’s function. All code sections were written to 
contain no major errors or issues, excluding the target 
piece of code. Participants were thanked for their time, 
compensated $50 USD, and dismissed from the study 
following the completion of the task. 

3.3. Manipulations 

The original target Java code file was manipulated 
across three different parameters: source (reputable, 
unknown), readability (high, medium, low), and 
organization (high, medium, low) according to previous 
research (see Alarcon et al., 2020a). This created 18 
total conditions to which each participant was randomly 
assigned (e.g., one condition was code from a reputable 
source with medium readability and low organization). 
The source factor was displayed to participants above 
each code piece as reading either “Source: Reputable” 
or “Source: Unknown,” referring to the reputation of the 
code’s origin repository. In reality, all target code piece 
variations originated from the same repository and were 
degraded by the same programmer. The high readability 
and high organization conditions contained no changes 
to the code for those error types, while the medium and 
low iterations of each altered the code across different 
parameters, increasing in severity from the medium to 
low conditions. 

3.4. Measures 

Three eye-tracking metrics were calculated across 
the vertical pixel range containing the Java code. FC 
was determined by counting the number fixations made 
within this pixel range. AFD was calculated for each 
participant by computing the average duration (in 
milliseconds) of all fixations located within this pixel 
range. TFD was calculated for each participant by 
summing the duration (in seconds) of all fixations 
within this pixel range. 

In addition to analyzing the eye-tracking data 
across the entire code stimulus, we also defined 10 
AOIs, each consisting of both adjacent and non-
contiguous sections of code that had readability or 
organization errors introduced on those lines. AOIs 
were composed of each span of vertical pixels that 
contained a line of manipulated code, grouped into two 
higher-order categories (readability and organization 
manipulations) as well as four lower order categories for 
each of these two manipulations. Consistent with past 
research (Alarcon et al., 2017a), readability was 
manipulated by increasing the number of offending 
instances of: a) misuse of case (e.g., for packages, 
methods, variables); b) misuse of braces (e.g., missing a 
space before an opening or closing brace); c) misuse of 
indentation (e.g., inconsistent indentation); and d) 
improper line wrapping (e.g., use of too many and 
unnecessary blank lines). Organization was manipulated 
by introducing errors of: a) misuse of declarations (e.g., 
import statements used improperly) b) ambiguous 
control flow (e.g., unnecessary or confusing nesting of 
blocks); c) improper exception handling (e.g., ignoring 
exceptions); and d) inconsistent block spacing. We 
report the area-normalized Rate of Relevant Fixations 
(RRF) by calculating the proportion of fixations that fall 
within each of the AOIs (i.e., the higher-order AOIs 
consisting of all Readability and all Organization errors 
and the four subtypes for each) compared to the number 
of fixations made over the entire code stimulus. AOI 
size was area-normalized by dividing the number of 
vertical pixels in the AOI by the total number of vertical 
pixels for the entire code piece (formula adapted from 
Smilek et al., 2006). 

Perceptions of the code’s trustworthiness as well as 
participants’ willingness to reuse the code were assessed 
with the following questions below each piece of code, 
respectively: a) “How trustworthy is the code?”, 
responding with a 7-point Likert scale ranging from 1 
(“Not at all trustworthy”) to 7 (“Very trustworthy”); and 
b) “Would you use this code?”, using the binary options 
“Use” or “Don’t use” to respond. 

4. Results 

We conducted a series of between-subjects analysis 
of variance (ANOVAs) using a 2 (Source: Reputable, 
Unknown) × 3 (Readability: High, Medium, Low) × 3 
(Organization: High, Medium, Low) design to 
determine the effects of the manipulations on eye-
tracking metrics (FC, AFD, TFD) and self-reported 
Trustworthiness Perceptions of code. Post hoc 
comparisons, when conducted, were adjusted with the 
Bonferroni correction, and estimated marginal means 
were used for computation of reported mean differences 
between groups. To analyze the manipulations’ effects 
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on Reuse Intentions, we conducted a generalized 
estimating equation (GEE), as the outcome variable is 
binary and would violate the assumptions of ANOVA 
testing.  

 
4.1. Eye-Tracking Metrics 

4.1.1. FC. We conducted a three-way between-subjects 
ANOVA on FC. There was a statistically significant 
main effect of Source [F(1, 26) = 7.78, p = .010, ηp

2 = 
.23] on FC, such that code from an Unknown Source had 
significantly more fixations than code from a Reputable 
Source (Mdiff = 221.35, SE = 79.38, p = .010). The main 
effect of Organization was marginally significant [F(2, 
26) = 3.12, p = .061,  ηp

2 = .19], and the main effect of 
Readability was not statistically significant. Results are 
illustrated in Figure 1. 

These main effects were qualified by two 
interactions. There was a statistically significant 
interaction between Source and Readability [F(2, 26) = 
7.86, p = .002, ηp

2 = .38]. Participants fixated on the 
code more when it was from an Unknown Source 
compared to a Reputable Source in both the High (Mdiff 
= 383.56, SE = 160.15, p =.022) and Low Readability 
conditions (Mdiff = 344.29, SE = 162.42, p = .041). There 
were no differences between the Source manipulations 
when Readability was Medium. There was also a 
significant interaction between Readability and 
Organization [F(4, 26) = 3.56, p = .020, ηp

2 = .35]. 
Participants had more fixations when Organization was 
High compared to Medium for code that was High in 
Readability (Mdiff = 497.40, SE = 195.40, p = .046). 
There were no other significant interactions.  

 
Figure 1. Fixation Counts by main effects of Source, 

Readability, and Organization. Bars represent 
estimated marginal means. Error bars represent 

standard errors. 
 
4.1.2. AFD. We conducted a three-way between-
subjects ANOVA on AFD. No statistically significant 
main effects nor interactions were found (all p’s > .220).  
 

4.1.3. TFD. We conducted a three-way between-
subjects ANOVA on TFD. There was a statistically 
significant main effect of Source [F(1, 26) = 7.19, p = 
.013, ηp

2 = .22] and Organization [F(2, 26) = 3.64, p = 
.040, ηp

2 = .22] on TFD. However, no significant main 
effect of Readability on TFD was detected. Post hoc 
comparisons illustrated that participants fixated longer 
when Source was Unknown compared to Reputable 
(Mdiff = 99.45, SE = 37.09, p = .013). Participants also 
fixated longer when Organization was High compared 
to Low (Mdiff= 116.59, SE = 43.24, p = .036). Results are 
presented in Figure 2. 

There was a significant Source by Readability 
interaction [F(2, 24) = 5.47, p = .010, ηp

2 = .30]. 
Participants fixated on the code for longer when it was 
from an Unknown Source compared to a Reputable 
Source in the High Readability condition (Mdiff = 
184.54, SE = 74.76, p = .018). There was also a 
significant Readability by Organization interaction 
[F(4, 26) = 3.33, p = .025,  ηp

2 = .34]. Participants 
fixated longer when Organization was High compared 
to Medium in the High Readability condition (Mdiff = 
257.99, SE = 87.56, p = .017). No other interactions 
were significant. 

 
Figure 2. Total Fixation Duration (in seconds) by 

main effects of Source, Readability, and 
Organization. Bars represent estimated marginal 

means. Error bars represent standard errors. 
 
4.1.4. AOIs. When errors were introduced to the code, 
the area-normalized RRF for those AOIs are reported. 
Overall, Readability errors (M = 1.91, SD = 0.26) were 
attended to significantly more often than Organization 
errors (M = 0.97, SD = 0.31) compared to the full code 
piece [F(1, 64) = 5.49, p = .022, ηp

2 = .08].  Looking 
further into the subcategories of Readability, the most 
attended Readability error type was misuse of case, with 
a mean area-normalized RRF of 2.49 (SD = 1.87) 
fixations. This was followed by misuse of braces, 
misuse of indentation, and improper line wrapping. For 
Organization errors, the most attended type was misuse 
of declarations (M = 1.48, SD = 1.08), as the mean area-
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normalized RRF was the highest for this subgroup. This 
was followed by inconsistent block spacing and 
ambiguous control flow. Lastly, improper exception 
handling did not seem to elicit a relevant proportion of 
fixations as compared to the entire Java class; however, 
the number of lines containing these errors was 
comparatively low, so more research is needed to obtain 
an accurate measure of relative attention allocation. 
Descriptive statistics are shown in Figure 3. 

 
Figure 3. Area-normalized mean RRF by error type. 

Gray bars represent general type of error, while 
white bars represent specific forms of errors. Error 

bars represent standard errors. 

4.2. Perceived Trustworthiness Ratings 

We also evaluated whether our manipulations of 
Source, Readability, and Organization had any effect on 
Perceived Trustworthiness Ratings. There was a 
marginally significant main effect of Readability on 
Perceived Trustworthiness Ratings [F(2, 26) = 3.28, p = 
.053, ηp

2 = .20]. Participants had higher Trustworthiness 
Ratings with the code that was High in Readability 
compared to Low Readability (Mdiff = 1.64, SE = 0.64, p 
= .050). Effects of Source and Organization were not 
significant. Results of the analyses are depicted in 
Figure 4. 

 
 

 
Figure 4. Trustworthiness Ratings by main effects 

of Source, Readability, and Organization. Bars 
represent estimated marginal means. Error bars 

represent standard errors. 

4.3. Reuse Intentions  

Due to the binary nature of the Reuse Intentions 
outcome variable, a GEE analysis was conducted to 
examine whether there were differences in Reuse 
Intentions across the Source, Readability, and 
Organization manipulations. We found a significant 
effect of Readability on Reuse Intentions [Wald χ2 (2, N 
= 44) = 6.55, p = .038]. Participants in the High (Use: 
11, Don’t Use: 4) and Medium Readability (Use: 11, 
Don’t Use: 4) conditions had significantly higher Reuse 
Intentions than those in the Low Readability condition 
(Use: 4, Don’t Use: 10). Effects of Source and 
Organization were not significant. 

5. Discussion 

The current study sought to explore differences in 
visual effort across errors introduced to source, 
readability, and organization of computer code in a 
between-subjects design utilizing eye-tracking metrics, 
as well as self-reported perceived trustworthiness and 
reuse intentions of computer code. More specifically, 
this study explored eye-tracking and self-report data to 
infer differences in visual/cognitive effort and attention 
allocation when the source, readability, and 
organization of computer code were manipulated to 
varying degrees. We first review the behavioral metrics 
from eye-tracking data compared to previous research, 
then discuss the self-report results of trustworthiness 
and reuse intentions.  

Interestingly, we only found a marginal effect of 
readability on trustworthiness, with differences between 
high and low readability conditions, whereas source and 
organization did not have significant effects on 
trustworthiness. The relationship between 
trustworthiness and source may not be significant in the 
current study due to the low-risk nature of the code. 
Source may be of higher importance in code that will be 
used in high-risk scenarios. The relationship between 
organization and trustworthiness may not have been 
significant because errors introduced to the code’s 
organization were less likely to cause bugs or compiling 
issues in the code (e.g., inconsistent block spacing) and 
could have been attributed to the original programmer’s 
writing style rather than ability.  

We found that certain subtypes of readability and 
organization errors were fixated on relatively more than 
the rest of the code piece as compared to other subtypes 
within the same higher-order manipulation category. 
Specifically, we found misuse of case was the most 
fixated aspect of readability. Since Java is a case-
sensitive programming language, it is important that 
programmers follow proper naming conventions. It is 
reasonable that lines degraded by misuse of case would 
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attract a relatively higher amount of attention than other 
areas of code because these instances (e.g., incorrect 
case for packages, classes, methods, variables, and 
constants) could result in program errors and require 
debugging procedures. Misuse of case errors may also 
be more visually salient compared to other readability 
error types, such as misuse of braces (e.g., missing a 
break before a closing or opening brace), and are more 
problematic for program functionality compared to 
improper length and wrapping (e.g., use of too many 
blank lines). 

We found that misuse of declarations was the most 
fixated aspect of organization, relative to the entire Java 
class. Lines with misuse of declarations errors drew 
relatively more attention than the rest of the code as 
compared to the other organization error subtypes. The 
higher amount of attention drawn to this type of error is 
also understandable because it would be difficult for 
programmers to understand program functionality 
when, for example, variables are not initialized as soon 
as possible and could cause errors when running the 
program (e.g., import statements used improperly). 
These errors may also be more visually salient than 
other types of organization issues (e.g., compressed if 
statements or unnecessary use of “break” or “continue”) 
because they often appear at the beginning of a block of 
code, where much of the information about the function 
or purpose of that block is located, rather than in the 
middle where the execution of the block’s contents are 
contained. Software engineers tend to focus on elements 
of the code that provide key information about the 
code’s functionality, which are referred to as beacons 
(elsewhere referred to as notations, naming schemas, 
comments, etc.; Katona, 2021; Crosby et al., 2002; 
Busjahn et al., 2011). Beacons can facilitate different 
depths of processing depending on factors such as a 
programmer’s level of experience, the program’s 
purpose or functionality, and the type of information 
contained within the beacon (e.g., comments versus 
variable names; Crosby et al., 2002). 

There are apparent differences between the results 
from the current study and previous research (Alarcon 
et al., 2017a; Alarcon et al., 2020b; Walter et al., 2017) 
which may have occurred for several reasons. First, in 
the current study participants only had to review one 
target piece of code, whereas in previous research they 
were required to review 18 pieces of code (Alarcon et 
al., 2017a; Walter et al., 2017). Differences between the 
results of the current study and previous studies may 
have resulted from a different number or different type 
of introduced readability and organization errors. The 
current study did not replicate the same number of 
manipulations as previous research (e.g., same number 
of lines containing a misuse of case error, etc.). It is also 
possible that the participants may have viewed each 

code piece in relation to the other code pieces being 
reviewed within Alarcon and colleagues’ previous 
research. This may have influenced programmers’ 
relevant processing times and code perceptions, as they 
may have used the other pieces they were reviewing as 
a sort of relative reference. 

Second, the code's functional purpose was held 
constant in the current study. Whereas previous research 
(Alarcon et al., 2017a) had manipulations specific to 
each piece of code type (i.e., each code piece had a 
different basic function or purpose), the current study 
manipulated the variables of interest across participants 
on the same original piece of code. Previous research 
demonstrated that when organization was manipulated, 
both high and low organization led to programmers 
spending more time on the code compared to when the 
code contained a medium level of organization errors 
(Alarcon et al., 2017a). However, when code was highly 
organized in the current study, participants spent more 
time on the code, as evidenced by higher FC and longer 
TFDs, compared to when code was either medium or 
low in organization. This may have occurred for several 
reasons. First, the code of interest in the current study is 
not used in a high-risk environment (e.g., servers), The 
nature of the code itself has been noted to be of 
importance in previous research, such that high-risk 
code (e.g., server code, bank wire code, etc.) was 
scrutinized more than low-risk code, especially when it 
violated computer programming norms (Alarcon et al., 
2017a). The code manipulated in the current study was 
considered low risk, so manipulations to lower risk code 
may not have the same impact on processing strategies 
or visual effort during code evaluation. Second, 
previous research has relied on time spent on the page 
rather than tracking of time spent on the code. In the 
current study we were able to differentiate between time 
spent reviewing the code and time spent answering the 
questions about the code using eye-tracking data. This 
may have influenced the assessment of time spent on the 
code in previous research, as the time also included time 
answering questions about the code. Code that is less 
organized may take more time to write about, as there 
are more questions about its processes.  

5.1. Limitations and Future Research 

The current study is not without limitations. First, 
the study is likely underpowered to detect many of the 
interactions and effects proposed. The onset of the 
COVID-19 pandemic has hindered in-person data 
collection in many areas of research, including ours. As 
high-accuracy eye trackers necessitate in-person data 
collection, the current study may be not have reached 
the sample size needed for adequate power for the 
conducted analyses. More specifically, with a final 
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sample size of N = 44 and a 2 × 3 × 3 within-subjects 
design, we were left with just three participants per 
unique cell to test the interaction effects between the 
readability, organization, and source manipulations. For 
example, the readability manipulation was marginally 
significant despite accounting for 20% of the variance 
in trustworthiness perceptions. Future researchers may 
benefit from a dichotomization of the readability and 
organization variables (rather than having three levels of 
each of these factors) to lower the required sample size 
needed to find significant effects. Despite our small 
sample size, we believe the significant effects that we 
detected do promote the current state of research in this 
area. 

Second, although Alarcon and colleagues (2017a) 
have demonstrated different effects of readability and 
organization on various outcomes (e.g., trustworthiness 
perceptions) and that the two are distinct constructs, it 
may be difficult for a reader to parse these factors apart. 
We therefore suggest that future research add subjective 
rating items for each of these factors to serve as 
manipulation checks as well as tests for the perceptual 
impacts of these manipulations. 

Third, as the errors that appear in code can manifest 
in dramatically varied forms, further research is required 
to assess whether the results seen here and elsewhere are 
the products of the unique qualities of the experimental 
code employed and their manipulations, or truly 
emblematic of broader effects of code manipulations on 
the efficient review and evaluation of code. Further, the 
specific types of errors that we introduced to our code 
are not wholly representative of all types of reputation 
and transparency errors. Future research would benefit 
from looking at many types of errors that were not 
included here. For example, code reputation could be 
explored with a variety of other manipulations including 
ratings and comments made by other programmers. The 
effect of comments made within the code would also be 
an interesting area for future investigation.  

5.2. Theoretical and Practical Implications 

Our findings of behavioral differences in eye 
movements indicate that there are differences in 
cognitive processing or visual effort between code that 
does and does not contain errors. Therefore, there is 
evidence that manipulating source, readability, and 
organization aspects of code have practical implications 
for recommendations towards writing reusable code. 
For instance, programmers should be careful to check 
for misuses of case and misuses of declarations in their 
code if they want others to be able to evaluate it for reuse 
in an efficient manner. The results suggest these forms 
of code errors specifically draw more attention relative 

to other types, which may reduce the ability to evaluate 
code quickly and effectively for reuse.  

Second, we found theoretical support for the source 
and readability manipulations on time spent reviewing 
the code. This serves as both a recommendation and 
caution, as code whose source was designated as 
reputable evoked less visual effort when readability was 
high and low. While this can enhance efficiency with 
highly readable code, it may lead to oversight with code 
that is well regarded but less readable; as such, code may 
have other issues beyond readability alone. Third, we 
observed some of the highest FC in conditions that 
featured incongruent code manipulations (e.g., low 
readability with high organization). Code of 
inconsistent quality may cause programmers to devote 
excessive cognitive resources and time in evaluating its 
quality. Programmers interested in developing reusable 
code should ensure that their code is of high quality in 
all respects of readability and organization but should 
consider focusing on fixing instances of misuse of case 
and misuse of declarations in order to garner higher 
perceptions of readability and organization, 
respectively. 

6. Conclusion  

The growing prominence of code reuse across 
industries brings significant potential for both risk and 
reward. While the effective reuse of code can optimize 
development time and contribute to a higher quality 
final product, implementation of poor-quality code can 
result in security risks, lost time and revenue, and be 
detrimental to a project overall. This study leveraged 
eye-tracking data to examine how manipulations made 
to a Java code file’s source reputation, readability, and 
organization affected program reviewers’ visual effort 
as well as their perceptions of code trustworthiness and 
reuse potential. Our findings indicate that reviewers 
expended more visual effort (higher FC, higher TFD) on 
code whose source reputation was unknown compared 
to reputable code. More visual effort was expended on 
code that contained many organization errors versus 
code that was high in organization (marginally higher 
FC, higher TFD). Readability errors did not 
significantly affect reviewer’s eye movement behaviors; 
however, errors introduced to the code’s readability 
lowered participant’s perceptions of trustworthiness and 
reuse intentions. The most fixated readability and 
organization error types were misuse of case and mises 
of declarations, respectively, relative to the rest of the 
Java file. The results found here are a crucial first step 
in understanding roles that each of the unique forms of 
code errors can play in the assessment and evaluation of 
code for reuse.  
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