
Representative Dataset Generation Framework for AI-based Failure
Analysis during real-time Validation of Automotive Software Systems

Mohammad Abboush
Technische Universität Clausthal,
Institute for Software and Systems

Engineering
mohammad.abboush@tu-clausthal.de

Christoph Knieke
Technische Universität Clausthal,
Institute for Software and Systems

Engineering
christoph.knieke@tu-clausthal.de

Andreas Rausch
Technische Universität Clausthal,
Institute for Software and Systems

Engineering
andreas.rausch@tu-clausthal.de

Abstract

Recently, thanks to its ability of extracting
knowledge from historical data, the data-driven
approach has been widely used in various phases
of the system development life cycle. In real-time
system validation, remarkable achievements have
been accomplished in developing an intelligent failure
analysis based on historical data. However, despite
its superiority over other conventional approaches,
e.g., model-based and signal-based, the availability of
representative datasets persists as a major challenge.
Thus, for different engineering applications, new
solutions to generate representative faulty data in
different forms should be explored. Therefore, in this
study, a novel approach based on Hardware-in-the-Loop
(HIL) simulation and real-time Fault Injection (FI)
method is proposed to generate and collect data
samples under single and simultaneous faults for
Machine Learning (ML) applications during system
validation phases. The developed framework can
generate not only sequential data, but also textual data
including fault logs. The results show the applicability
of the proposed framework in simulating and capturing
the system behaviour under faults within the system
components.

Keywords: HIL testing, fault injection, automotive
software systems development, failure analysis,
machine learning.

1. Introduction

In accordance with model-based design and the
V-model development approach, the System Under Test
(SUT) is tested at each level of the development process.
In other words, the testing and validation process are

performed for different states of the SUT, i.e., the
executable model, the model code and the implemented
code on the host and target machine (Garousi et al.,
2018). Several platforms have been leveraged to
carry out the testing and validation activities, which
are known as X-in-the-Loop (Shokry and Hinchey,
2009). As such, Hardware-in-the-Loop (HIL) real-time
simulation is recommended by ISO 26262 as a safe,
flexible, reliable, and effective platform (Himmler et al.,
2012). Recently, HIL has played a vital role in the
verification and validation of automotive embedded
control systems under time constraints. Substituting the
real hardware elements with fidelity simulated system
provides not only avoidance of potential risks but also
reductions in testing costs for various applications e.g.,
electric drives, power electronics, power grids, railways
and automotive (Mihalič et al., 2022). HIL-based
system validation is currently a hot topic in academia
and industry due to its ability to provide efficient,
fast, and realistic simulations in real-time with high
accuracy. On the top of that, by serving as a
digital test drive platform, HIL has contributed to
overcome the limitations of real test drives in terms of
time, cost, effort and risk to the tester (Chen et al.,
2018). However, at system integration testing level,
an enormous amount of datasets from heterogeneous
components and subsystems are generated as a result
of tests’ execution (Jordan et al., 2020). Besides,
despite test automation of Test Cases (TCs), many
failed TCs are documented in the test report as pass/fail
(Vermeulen, 2008). Therefore, analysing the vast
amount of test records based on traditional approaches
is costly, difficult, and time-consuming (Nair and
Koustubh, 2017). This is why an intelligent system
capable of analysing the test results of HIL in an efficient
way without domain knowledge is necessary.

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 7312
URI: https://hdl.handle.net/10125/107263
978-0-9981331-7-1
(CC BY-NC-ND 4.0)



In the last decade, the advances in the computational
resources paved the way for the widespread application
of data-driven approach to tackle the problem of
Fault Detection and Diagnosis (FDD). Central to this
approach is the idea of extracting knowledge from
historical data and constructing non-linear relationships
between input and output classes to discover hidden
patterns. Compared to other FDD approaches,
neither does it require expert knowledge nor a precise
mathematical model. Hence, the data-driven approach
has attracted the attention of researchers, and the
development of FDD methods has increased rapidly
in various technical fields. Deep Learning (DL) and
Machine Learning (ML)-based methods, as subsets of
the data-driven approach, are widely used in various
phases of the software development life cycle, i.e.,
software requirements, software architecture and design,
software implementation, software quality and analysis,
and software maintenance (Shafiq et al., 2021). In
the testing and analysis phase, for example, DL and
ML tackle not only the generation and selection of
TCs, but also to the detection and analysis of defects
and anomalies. However, despite the remarkable
accomplishments in different domains, one of the major
challenges impeding DL and ML methods is the lack
of datasets (Badihi et al., 2022; Neupane and Seok,
2020). As a result, the availability of datasets imposes
constraints on the development process of DL-based
FDD in real-world applications. For that reason,
generating representative datasets, such as document
logs and signal data, should be further explored.

As previously mentioned, one of the core elements
of developing FDD model is the dataset. In principle,
obtaining fault-free data can be realised by logging
the system behaviour in fault-free mode (S. Zhang
et al., 2020). However, acquiring representative data
that capture the reactions of the system under faulty
conditions is complicated in terms of difficulty and cost
(T. Zhang et al., 2022). In automotive domain, due
to confidentiality of test data, it is rare to have public
real-world data containing faulty behaviour (Theissler
et al., 2021). Besides, even in case of limited data
existence, the ratio of faulty to healthy data is small
and unstable, which in turn leads to the problem of
imbalanced data. A reason for this is the difficulty in
simulating the open set of failure modes under complex
working conditions (Kukkala et al., 2018). Besides,
capturing hardware faults is not feasible in real-world
applications (Fernandes et al., 2022).

In order to train a robust intelligent FDD model,
the following requirements on the dataset should be
ensured: 1. a high quality dataset with a sufficient
number of samples, including healthy and faulty

operating conditions, 2. a high degree of fault
classes coverage, 3. consideration of the single and
simultaneous faults occurrence, 4. consideration of
real-time constraints on system behaviour under normal
and faulty conditions. 5. offering different types of
datasets, i.e., time series and text data.

Therefore, tackling the problem of representative
dataset is still an open concern, and collecting faulty
dataset that meets the above requirements should be
further explored. In this paper, we attempt to bridge
this gap by proposing a novel framework for generating
and collecting representative data including healthy and
faulty samples during Automotive Software Systems
(ASSs) development. To demonstrate the benefits and
applicability of the proposed framework, a high-fidelity
simulation of a gasoline engine system is used as a
case study. Vehicle dynamics, environment, driver and
powertrain models have also been considered to capture
the detailed characteristics of the vehicle during data
acquisition. The main contributions of the proposed
framework can be summarised as follows:

• We propose a novel framework capable of
generating real-time faulty datasets, taking into
account the time constraints of the system
behaviour.

• The framework can cover major types of random
hardware sensor and actuator faults in ASSs.

• Not only the single faults but also the
simultaneous occurrence of faults can be
simulated, providing a high coverage.

• Real-time HIL simulation and high fidelity
simulation models are employed providing high
quality real-time coverage of the collected data.

• Finally, our proposed framework provides the
ability to collect two types of representative
datasets, i.e., time series and text log data.

The rest of the paper is structured as follows: Related
work and other contributions are presented in Section
2. Section 3 introduces the proposed approach,
highlighting the key stages of dataset collection and
preparation. The implementation steps and the case
study are described in Section 4 . Section 5 summarises
the results and findings. Finally, Section 6 presents the
conclusion and future work.

2. Related work

To tackle the problem of faulty data non-availability,
several solutions have been proposed in the literature.
Some of them have used online public datasets, while
others had to generate the data depending on the

Page 7313



real prototype or simulated system. For example,
(Rengasamy et al., 2020) have used a standard dataset
of a gas turbine engine provided by NASA. The
mentioned data is used to develop a DL-based model
for prediction and diagnosis tasks. Similarly, based on
Audi’s industrial dataset, (Safavi et al., 2021) developed
an intelligent model relying on DL methods for fault
detection, isolation, identification and prediction. The
target system in the work is automotive autonomous
driving. Despite the advantage of employing published
standard data, the fault classes are limited depending
on the source, lacking the flexibility to extend the
data under the same operating conditions. A static
injection of the faulty sample into the data, based on
normal distributions with one standard deviation, has
been used as an alternative solution. Employing a
real prototype has been an alternative solution for other
researchers. For example, aiming at developing a robust
FDD for vehicle engines, (Jung, 2020) employed a real
engine to capture the system behaviour under normal
and abnormal conditions. Since the data collected
exactly matched the real industrial application data, the
developed model showed a high degree of applicability
and robustness to the environmental conditions, e.g.,
noise. However, the major limitation of the applied
technique is the potential risk and damage to the target
physical system in case of Fault Injection (FI). In the
same respect, but for different applications, (Bafroui
and Ohadi, 2014) have proposed a FDD model for
automotive gearboxes. The developed model was
developed based on data collected from an experimental
test bench in the laboratory. Some other studies have
been conducted based on data collected from real
vehicle prototypes to develop an intelligent solution for
the detection of unknown faults in the test drive records
(Theissler, 2017). However, beside the high cost, this
type of experimentation could pose a risk not only to
the vehicle, but also to the tester in case of a critical
situation. Moreover, some types of faults cannot be
explored, in which the whole physical system can be
damaged.

To overcome the limitations of using real physical
systems, a simulation platform has been used to generate
representative datasets. Based on the modelling and
simulation techniques, many researchers have proposed
solutions to address the problem of availability data.
For example, (Tagawa et al., 2015) have employed
the FI method to generate the faulty data based
on the simulated system in the MATLAB/Simulink
environment. In this work, four driving scenarios
were used to generate faulty data along with normal
data. Similarly, (Biddle and Fallah, 2021) approached
the problem of faulty data non-availability by injecting

five different types of faults into the simulated system,
namely erratic, hardover, drift, spike and stuck-at
fault. To this end, the failure modes were modelled
in the simulation environment, i.e., MATLAB/IPG
CarMaker co-simulation, and then the faults were
artificially injected according to the fault parameters.
Consequently, and based on the collected data,
ML-based architecture for multi-fault in multi-sensor
FDD was constructed. However, despite the ability
to reproduce the test under critical conditions with a
high degree of confidence, real-time constraints remain
ignored. The effect of this is that the application of
the target model in the real world becomes increasingly
restricted. Not only that, the current developed FDD
models are validated based on simulation data generated
by a simulation platform. By doing so, the real industrial
conditions, such as influences, noise and uncertainties,
are ignored (Yin et al., 2022). Lately, with the aim
of overcoming the limitations of pure simulation, HIL
real-time simulation has been introduced as a solution
for generating data covering various critical conditions
(Gonzalez-Jimenez et al., 2021). Employing Dataset
generated from HIL, (Abboush et al., 2022b) have
proposed FDC model based on hybrid DL techniques
to be used during the development phases of ASSs,
i.e., integration testing. The basis of the developed
model is the faulty data collected by programmatically
injecting nine different single sensor faults into the
target system in real-time without changing the model.
As an extension of the mentioned work, in this study,
the simultaneous occurrence of the faults are considered,
including transient and permanent occurrence. Besides,
the textual nature of logs from test execution results are
collected for Root Causes Analysis (RCA) problem.

3. Methodology

In this section, the proposed framework is presented,
including real-time HIL simulation, data analysis and
management, and FI, as shown in Figure 1.

The HIL system is the core of the framework,
in which the complex target system is simulated and
executed in real-time. It consists of two main parts,
namely the HIL simulator and the target prototype
(controller). HIL simulator is responsible for executing
the controlled system (plant) in real-time. Precisely,
in our case the controlled system is the entire vehicle
model. Engine model, dynamic vehicle model,
environmental model, traffic model and powertrain
model are the main subsystems of the selected system.
Noteworthy, the SoftECU, i.e., virtual ECU, model is
also included in the controlled system model. By doing
so, the whole vehicle model including the controller

Page 7314



Figure 1. Proposed framework for representative dataset generation.

model can be executed in the HIL simulator, which
acts as a Rapid Control Prototype (RCP), known as
offline mode. On the other hand, MicroAutoBox II
is the target machine of the SUT where the ECU
model is deployed and executed. MicroAutoBox II
is considered as RCP and acts as the real ECU. Both
parts of the HIL system are connected via the CAN
bus. To establish the connection, the signal interface is
modelled in the simulation environment on both sides,
i.e., in the ECU model and in the plant model. The
generated code of the mentioned models is injected from
the host PC via Ethernet into the control unit and the HIL
simulator,respectively.

On the host PC, the configurations and experiments
are carried out. For this purpose, four software
tools from dSPACE are used, namely MotionDesk,
ConfigurationDesk, ModelDesk and ControlDesk
(dSPACE, 2023). In addition to the parameterisation of
the system model, ModelDesk is used to design the test
drive scenarios and the TCs. Thanks to the model-based
design approach, once the model is configured, the code
of the both models, i.e., SUT and plant, is automatically
generated and deployed using ConfigurationDesk. To
represent the driving environment and the dynamic
traffic as a 3D visualisation, MotionDesk is employed.
Finally, the instrumentation, measurements, dataset
acquisition and the control of the experiments during
real-time execution are performed using ControlDesk.

The mentioned tool enables also switching between
the offline execution mode (SoftECU) and the online
execution mode (Real ECU).

FI process takes place at the signal interface
between the control unit and the HIL simulator during
real-time execution. By doing so, the execution
of the system model of the ECU and the plant
can be ensured in real-time as a black box without
modification. Furthermore, the injection process is
executed programmatically without extending the target
system model with additional components. The input of
the FI framework is healthy data representing the system
behaviour under normal conditions. The target signals
are then manipulated according to the fault attributes
configured by the user. There are three attributes in the
fault injector that should be configured before injection,
i.e., fault type, fault location and FI time. Fault type
covers most sensor’s and actuator’s malfunctions such
as gain, offset, hard over, stuck-at, delay, noise, packet
loss, drift and spike fault. The target sensor and actuator
signal is identified as a location for faults to be injected.
Duration of the FI, and the time at which the fault is
injected are specified according to the driving cycle or
standard system behaviour.

Finally, the data analysis and management is carried
out using host PC. Here, the system requirements,
the TCs specifications and the scenarios descriptions
are documented. Besides, in this phase the collected

Page 7315



healthy and faulty datasets are stored as a result of
the test execution. Two types of data are collected,
sequential signal data and textual log data. This allows
the collected data to be used for various tasks and
applications, e.g. fault detection, diagnosis, prognosis
and RCA of failed TCs. In addition to data generation,
pre-processing of the data takes place so that outliers
and redundant data are removed. Beyond that, the data
is converted into a suitable format, e.g. CSV, MAT or
XML, to be ready for the ML/DL model development
process. Finally, the pre-processed data is visualised on
the host PC to get a deeper understanding of the patterns
and features before training the DL/ML model.

4. Case study and Experimental
Implementation

To validate the applicability of the proposed
framework, this section presents the selected case study,
highlighting the system architecture and implementation
steps.

4.1. Case study

As a case study from the automotive domain,
gasoline engine system from dSPACE (dSPACE, 2023)
was used to validate the proposed approach. The
architecture of the system is shown in Figure 2.
What can be seen is that the various systems and
subsystems have been modelled to accurately reflect
the actual physical characteristics. MATLAB/Simulink
was selected as the graphical simulation and modelling
environment to model the dynamic system. Simulink
tool has significant features in designing, analysing
and testing the dynamic system using the model-based
approach. Besides, it offers the possibility to test
the SUT in a simulated environment and automatically
generate the code before deployment, supporting
real-time simulation. However, despite the realistic
simulation of the selected system, it does not enable
driving with lateral control. To overcome this limitation,
in our case , a complex gasoline engine model was
integrated into the dynamic system model of the vehicle.
Thereby, lateral and longitudinal driving with manual
and automatic transmission can be simulated. The major
subsystem models that structure the gasoline engine are
exhaust, fuel, air path, cooler and the piston engine
system. Various components have been modelled and
interconnected in a block diagram environment, so that
the comprehensive functions of the gasoline engine are
simulated. Additionally, the powertrain, driver and
environmental models are included to capture the overall
dynamic characteristics of the vehicle. The gasoline
engine is controlled by the ECU in two modes, i.e.,

offline and online. In offline mode, the soft ECU is
internally connected to the engine, whereas a separate
ECU model in the RCP is used as the real ECU to
enable online mode. Finally, the interface between
the real ECU model and the gasoline engine model is
realised using a real-time interface CAN multimessage
blockset (RTICANMM) wherein the fault injections
are configured and modelled. Thanks to the feature
of RTICANMM, the system signals can be accessed
and manipulated programmatically without changing
the original system model.

Figure 2. System architecture of the case study.

4.2. Experimental setup

There are three levels of configurations in our
case study, namely system model configurations,
experiments’ configurations and FI configurations.
At the first level, dSPACE’s software tools, i.e.,
ModelDesk and ConfigurationDesk, are used to specify
the parameters and variables of the models based
on the GUI. Additionally, driving scenarios and TCs
are designed based on the specifications. In our
case, two driving scenarios are selected, namely
”Highway” and ”Ftp 75”. By doing so, driving
scenarios on the highway, on non-urban/open roads
and in urban traffic can be covered. Once the
system and test configurations are specified, the code
can be automatically generated and deployed to the
target machines using ConfigurationDesk. Two target
machines are employed in our study, MicroAutoBox II
for the ECU system and the HIL SCALEXIO simulator
for the entire controlled vehicle system. Finally, the 3D
visualisation of the driving environment, i.e., the defined
scenarios, is modelled with MotionDesk.

On the second level, the configurations of the fault

Page 7316



injector are set. To be specific, the FI attributes,i.e.,
fault location, fault type and FI time, are configured. As
already mentioned, all system signals, i.e., sensors and
actuators, can be accessed via the CAN bus interface.
Therefore, the degree of coverage of our developed
framework is high compared to the traditional approach.
Some examples of sensors signals accessed are crank
angle, battery voltage, engine speed, accelerator pedal
position (APP), ignition and starter request, EGR
mass flow, intake and exhaust manifold pressure, fuel
pressure, coolant temperature and railbar sensor. The
actuators involved are the throttle valve, the fuel
metering unit, the pressure control valve and the ignition
angle adjuster. Due to the significant effect of a fault
in the APP and engine speed sensor on the vehicle
behaviour, we selected these locations for FI in our
study. On the other hand, nine different types of the
single faults and 15 combinations have been identified
to demonstrate the coverage of the fault data generation.
By this way, not only the single fault-based dataset but
also the concurrent faults-based dataset can be collected.
Finally, when to inject the fault and the duration of the
injection are determined based on the selected driving
cycle. FI can be permanent until the faulty component
is treated, or it can be temporary occurring frequently
for a specific duration. By injecting permanent and
transient faults, both balanced and imbalanced datasets
can be acquired for developing a reliable FDD model
for real-world applications. The detailed configuration
of the FI framework for single and simultaneous faults
is shown in (Abboush et al., 2022a).

The experimental setup takes place at the last level,
where the measurements, recording and instrumentation
are carried out. The sampling time of the signal
measurements is set to 0.001 sec in this study. At
the system level, 6 variables of the target system are
selected to represent the recorded system behaviour
under normal and faulty conditions. These system
variables are throttle position, engine temperature, mean
effective engine torque, engine speed, intake manifold
pressure, rail pressure and vehicle speed, as illustrated
in Figure 3.

Figure 3. Generated Dataset

With the aid of ControlDesk, which can be used
to configure and control the run-time experiments,

the system is executed under the various conditions.
Once the real-time execution is completed, the system
response to the faults is captured as time-series data
and stored in a CSV file containing system variables
and data samples. On the other hand, TCs designed in
ModelDesk are executed on the target SUT to generate
the documented error logs as text data. The TCs
should contain the data inputs and the expected outputs.
According to the actual system behaviour, the defined
expected output is then compared with the measured
output. According to the test execution, the results can
be either pass or fail. Thanks to the ASM test function
of ModelDesk, the TCs are automatically executed and
evaluated. Note that the generated report contains key
information about the TCs specifications as well as the
execution results (passed or failed). Besides, the report
contains a failure log describing the occurred failure.
Using the logs of the failed TCs, an intelligent model for
RCA is developed based on natural language processing
and machine learning methods.

5. Result and Discussion

In this section, the results of the data collection
for the different FI configurations are presented.
Specifically, the generated data is described,
highlighting the effects of single and concurrent
faults on system behaviour. Besides, the log data of
failed TCs generated in the test report are presented.

In the real-time, both the SUT and the controlled
system are executed under normal and abnormal
conditions according to the aforementioned system
and FI configurations. A total of 40 experiments
were conducted with single and simultaneous faults
in two driving scenarios. In particular, two files as
healthy data from ”highway” and ”ftp 75” scenarios,
18 files represent the single fault types and 30 files
for simultaneous faults with 15 combinations have been
collected. As a result, 50 CSV files have been obtained
as HIL testing records.

Focusing on packet loss and stuck-at as an example
of fault types, the system behaviour under the injected
fault can be captured at the system level on vehicle and
engine speed signals. In Figure 4, the stuck-at fault has
been injected into the RPM sensor after 10 sec of driving
cycle. The engine’s behaviour deviates significantly
from 750 rpm in the normal range to 2300 rpm as soon as
the fault is activated, which in turn leads to an increase in
energy consumption. Until the 180 sec, the control unit
is unable to cope with the fault’s occurrence. However,
after 180 sec, the system tries to overcome the fault
and behave according to the desired behaviour. Then,
the deviation and fluctuations take place again from 210

Page 7317



sec and 290 sec, respectively. The reason behind this
change is the driving variations and conditions between
the acceleration mode, deceleration mode and the steady
state mode. This means, in other words, that the control
strategy cannot properly mitigate the fault when the
vehicle is accelerating and decelerating sharply, as seen
in Figure 5.

Figure 4. Engine system behaviour under Stuck-at

fault

Figure 5. Vehicle system behaviour under Stuck-at

fault

On the other hand, by injecting the packet loss into
the APP sensor during the driving cycle, the effect of
the fault cannot be directly observed on the vehicle
speed and the engine speed, as presented in Figure 6.
However, from sec 75 onwards, significant fluctuations
can be observed. At the system level, the behaviour of
the vehicle and the engine deviates from the standard in
the form of severe jerking. At this moment, the ECU
tries to overcome the signal losses for a certain period of
time. That is due to the fact that the behaviour remains
in the state of fluctuation while the loss time is less than
3 sec.

According to the scenario ”ftp 75”, what can be seen
in Figure 7 and Figure 8 is the effect of injecting a
single fault into the APP and RPM sensors, respectively.

Figure 6. Engine system behaviour under packet loss

fault

Specifically, APP sensor signal is manipulated by the
stuck-at value, and the effect of the fault is directly
observed at the system level as a constant value, i.e.,
1160 rpm. On the other hand, the effect of the delay
of the RPM sensor signal causes fluctuations of the
engine speed between 265-307 sec, as shown in Figure
8. During this period, the ECU cannot perfectly perform
the desired behaviour with increasing delay of the
received signal, especially when the driving mode is
changed.

In the case of the simultaneous faults, two different
fault types are injected simultaneously into two different
locations. For example, while the stuck-at fault
is injected into the APP sensor, the delay fault is
simultaneously injected into the engine speed sensor.
To put it in another way, two or more factors have
contributed to creating a novel pattern in the signals as
an effect of the simultaneous FI. Figure 9 illustrates the
effect of the simultaneous faults on the vehicle system
behaviour, i.e., vehicle speed, between 170-330 sec. The
vehicle speed closely follows the desired behaviour up
to 170 sec, the time at which the faults are activated.
As a result of the large fluctuations shown in Figure 10,
the vehicle is unable to accelerate at 190 sec, the time
at which the speed drops to 18 km/h, causing a risk of
failure. However, the system returns to the acceptable
state with minor deviations.

In spite of the fact that the collected data
represent comprehensive characteristics of the system
behaviour, the generated CSV files contain redundant
or useless information. For example, each file contains
information about the recording process as well as
the data samples. Hence, the collected data should
be preprocessed to remove outliers and redundant
information. Three steps are applied to the data in the
pre-processing phase, i.e., non-usefull information and
outlier removal, data scaling and normalisation, and data
splitting. After converting the csv files into execl format,

Page 7318



the training variables are selected and the non-useful
data is removed. By doing so, the useful data samples
are ensured for the development of the ML model. The
next step is to apply a normalisation function to all the
variables due to the fact that each variable has a different
range of values. Thus, all variable values are scaled in
the range between [0-1]. The last step is to split the
data into three parts, i.e., training data, validation data
and test data. Noteworthy, when developing ML models
based on supervised learning, the process of labelling
the data should take place before splitting the data.
During this process, the fault class is assigned to the
appropriate data for the classification task. Generally,
the data in each part is divided into 80% for training,
10% for validation and 10% for testing part.

Figure 7. Engine system behaviour under stuck-at

fault.

Figure 8. Engine system behaviour under delay fault.

As a result of the TCs execution, where the desired
system signals are compared to the observed outputs, a
test report is generated. What is of interest in the report
is the logs, written in natural language, describing the
failures that occurred. One example of the generated
test report is shown in Figure 11. As can be seen, a short
text is written indicating the failed TCs as information
about the causes of the failure. However, the mentioned
transcripts are not able to correctly identify the failure

Figure 9. Vehicle system behaviour under stuck-at

and delay faults simultaneously

Figure 10. Engine system behaviour under stuck-at

and delay faults simultaneously

causes without the expert knowledge of the tester.
Therefore, an intelligent model can be trained based
on the collected logs so that the RCA process can
be performed efficiently without human intervention.
Furthermore, the generated logs can be employed to
provide additional information to support the decision
of the signal-based FDD model. Similar to the time
series data, various steps are also conducted on the
collected logs as a pre-processing stage before training
the model. The key steps in preprocessing text data
are tokenization, normalisation, stop word removal and
stemming. After applying Natural Language Processing
(NLP) techniques to the collected data, it is divided into
training three parts: training with 80%, validation with
10% and testing with 10%.

Despite the reliability of the proposed framework
in simulating realistic system behaviour in the presence

Figure 11. Generated report of test case execution

Page 7319



of faults, several complicating factors concerning setup
and implementation should be considered. Since three
different fault attributes have to be specified in the setup
phase, an unlimited number of possible configurations
could be created, i.e., an unbounded fault space.
For complex software systems, the trade-off between
achieving high test coverage and exploring the most
effective critical fault is still a challenge. Notably, in
this study, the fault test cases were identified based
on three factors, i.e., representative and realistic faults
to be injected, the impact and rapidity of the injected
fault causing failures, and the variety of fault scenarios.
Besides the setup effort, a real-time system should be
provided to enable real-time execution of the system
model along with the framework. For this purpose,
in our study, MicroAutoBox II embedded PC (DS1401
Base Board) with 900 MHz processor, 6th Gen.Intel®
CoreTM i7-6822EQ, 16 MB memory and 340 ms boot
time for 3 MB application are utilized. Based on the
debugging run-time information for 10 sec log and
intended sampling time of 1 ms, the maximum task
execution time is 0.738 ms. Each test case has a
test execution time of 40242.6164 ms, including the
evaluation period.

Finally, depending on the specification of the log
data system, a huge amount of data can be collected
from heterogeneous components, which poses another
challenge in terms of computational cost of ML/DL
model development. Specifically, considering 0.001
sec as the sampling period, several million data
samples are generated, including outliers, noise and
missing/redundant samples. Therefore, training the
ML/DL model not only requires significant effort and
time in the pre-processing and training phases, but also
demands powerful hardware with high computational
capability, such as GPUs or TPUs, to process such a
large amount of data.

6. Conclusion and Future Work

A novel framework for generating and collecting
representative data for intelligent failure analysis
applications during the system validation process is
proposed in this paper. To this end, HIL simulation and
a fault injection method are used considering real-time
constraints. The proposed framework objective is to
provide the required dataset for training, testing and
validation of DL-based intelligent failure analysis of
HIL test records. Innovatively, there is no need for
fault modelling within the system architecture in order
to acquire the data. Instead, the target faults are injected
programmatically in real-time without any modelling
effort and time. Moreover, the proposed framework

is able to simulate and collect faulty data in different
formats, i.e., sequential and textual. As time-series data,
the effect of hardware random faults is simulated at
the system level in terms of transient and permanent
faults. In this manner, the system behaviour under
various critical fault conditions can be accurately and
reliably captured in real-time. The higher the quality
of the captured data, the higher the performance of
the developed DL model. In this study, a complex
automotive gasoline engine has been selected to validate
and demonstrate the proposed approach. The outcomes
show the applicability of the approach in representing
the effects of single and simultaneous faults at the
system level. Simulations of nine different types of
sensor and actuator faults were carried out in this study.
Besides, combination of two faults at different locations
simultaneously was simulated. On the other hand, the
textual descriptions of the failed TCs were generated as
a result of injecting the faults in real-time during the
system executions. To conclude, a high quality dataset
with high faults classes coverage can be collected with
low effort during real-time simulation.

In the future, the proposed framework will be further
improved using automation tools so that the injection
process can be performed automatically, effectively and
systematically according to the requirements.

References

Abboush, M., Bamal, D., Knieke, C., & Rausch, A.
(2022a). Hardware-in-the-loop-based real-time
fault injection framework for dynamic behavior
analysis of automotive software systems.
Sensors, 22(4), 1360.

Abboush, M., Bamal, D., Knieke, C., & Rausch,
A. (2022b). Intelligent fault detection and
classification based on hybrid deep learning
methods for hardware-in-the-loop test of
automotive software systems. Sensors, 22(11),
4066.

Badihi, H., Zhang, Y., Jiang, B., Pillay, P., &
Rakheja, S. (2022). A comprehensive review
on signal-based and model-based condition
monitoring of wind turbines: Fault diagnosis
and lifetime prognosis. Proceedings of the
IEEE.

Bafroui, H. H., & Ohadi, A. (2014). Application of
wavelet energy and shannon entropy for feature
extraction in gearbox fault detection under
varying speed conditions. Neurocomputing,
133, 437–445.

Biddle, L., & Fallah, S. (2021). A novel fault detection,
identification and prediction approach for

Page 7320



autonomous vehicle controllers using svm.
Automotive Innovation, 4, 301–314.

Chen, Y., Chen, S., Zhang, T., Zhang, S., &
Zheng, N. (2018). Autonomous vehicle testing
and validation platform: Integrated simulation
system with hardware in the loop. 2018 IEEE
Intelligent Vehicles Symposium (IV), 949–956.

dSPACE. (2023). Experiment and Visualization
Software. Retrieved March 30, 2023, from
https : / / www . dspace . com / en / inc / home /
products/products.cfm

Fernandes, M., Corchado, J. M., & Marreiros, G.
(2022). Machine learning techniques applied to
mechanical fault diagnosis and fault prognosis
in the context of real industrial manufacturing
use-cases: A systematic literature review.
Applied Intelligence, 52(12), 14246–14280.

Garousi, V., Felderer, M., Karapıçak, Ç. M., & Yılmaz,
U. (2018). Testing embedded software: A
survey of the literature. Information and
Software Technology, 104, 14–45.

Gonzalez-Jimenez, D., Del-Olmo, J., Poza, J.,
Garramiola, F., & Madina, P. (2021).
Data-driven fault diagnosis for electric
drives: A review. Sensors, 21(12), 4024.

Himmler, A., Lamberg, K., & Beine, M. (2012).
Hardware-in-the-loop testing in the context of
iso 26262 (tech. rep.). SAE Technical Paper.

Jordan, C. V., Hauer, F., Foth, P., & Pretschner, A.
(2020). Time-series-based clustering for
failure analysis in hardware-in-the-loop
setups: An automotive case study. 2020
IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW),
67–72.

Jung, D. (2020). Data-driven open-set fault
classification of residual data using bayesian
filtering. IEEE Transactions on Control
Systems Technology, 28(5), 2045–2052.

Kukkala, V. K., Tunnell, J., Pasricha, S., & Bradley, T.
(2018). Advanced driver-assistance systems:
A path toward autonomous vehicles. IEEE
Consumer Electronics Magazine, 7(5), 18–25.

Mihalič, F., Truntič, M., & Hren, A. (2022).
Hardware-in-the-loop simulations: A
historical overview of engineering challenges.
Electronics, 11(15), 2462.

Nair, V. V., & Koustubh, B. P. (2017). Data analysis
techniques for fault detection in hybrid/electric
vehicles. 2017 IEEE Transportation
Electrification Conference (ITEC-India),
1–5.

Neupane, D., & Seok, J. (2020). Bearing fault
detection and diagnosis using case western
reserve university dataset with deep learning
approaches: A review. IEEE Access, 8,
93155–93178.

Rengasamy, D., Jafari, M., Rothwell, B., Chen, X.,
& Figueredo, G. P. (2020). Deep learning
with dynamically weighted loss function
for sensor-based prognostics and health
management. Sensors, 20(3), 723.

Safavi, S., Safavi, M. A., Hamid, H., & Fallah, S.
(2021). Multi-sensor fault detection,
identification, isolation and health forecasting
for autonomous vehicles. Sensors, 21(7), 2547.

Shafiq, S., Mashkoor, A., Mayr-Dorn, C., & Egyed, A.
(2021). A literature review of using machine
learning in software development life cycle
stages. IEEE Access, 9, 140896–140920.

Shokry, H., & Hinchey, M. (2009). Model-based
verification of embedded software. Computer,
42(4), 53–59.

Tagawa, T., Tadokoro, Y., & Yairi, T. (2015). Structured
denoising autoencoder for fault detection
and analysis. Asian conference on machine
learning, 96–111.

Theissler, A. (2017). Detecting known and
unknown faults in automotive systems
using ensemble-based anomaly detection.
Knowledge-Based Systems, 123, 163–173.

Theissler, A., Pérez-Velázquez, J., Kettelgerdes, M.,
& Elger, G. (2021). Predictive maintenance
enabled by machine learning: Use cases
and challenges in the automotive industry.
Reliability engineering & system safety, 215,
107864.

Vermeulen, B. (2008). Functional debug techniques for
embedded systems. IEEE Design & Test of
Computers, 25(3), 208–215.

Yin, Z., Hu, N., Chen, J., Yang, Y., & Shen, G. (2022). A
review of fault diagnosis, prognosis and health
management for aircraft electromechanical
actuators. IET Electric Power Applications,
16(11), 1249–1272.

Zhang, S., Zhang, S., Wang, B., & Habetler, T. G.
(2020). Deep learning algorithms for bearing
fault diagnostics—a comprehensive review.
IEEE Access, 8, 29857–29881.

Zhang, T., Chen, J., Li, F., Zhang, K., Lv, H., He, S.,
& Xu, E. (2022). Intelligent fault diagnosis of
machines with small & imbalanced data: A
state-of-the-art review and possible extensions.
ISA transactions, 119, 152–171.

Page 7321


