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Abstract 
Severe weather conditions are known for causing 

forced outages in the electric distribution grid. Recent 
research efforts were aimed at predicting outages 
using weather and historical outage data. This paper 
studies the sensitivity of different Machine Learning 
(ML) algorithms to the inclusion of weather 
parameters from adjacent geographic areas and data 
availability. We analyzed the ability of different ML 
algorithms to predict electric grid outage State of Risk 
(SoR). The selected algorithms are trained and tested 
on actual utility company data. The findings indicate 
that a bigger size of the training dataset improves the 
performance of all models, which is measured by the 
Receiver Operating Curve, Average Precision, and F1 
Score. Conducted experiments suggest that at least 
two years of training data is required to achieve 
satisfactory performance. Also, we investigate a 
statistical significance in models’ performance with 
the inclusion of weather in adjacent geographic areas.  

 
Keywords: ML, State of Risk, Outage Prediction. 

1. Introduction  

The occurrence of forced outages in power 
systems, resulting from short circuits caused by faults 
or equipment failure, can pose a considerable safety 
hazard and economic burden for utilities, their 
customers, and society as a whole. The rise in severe 
weather conditions due to climate change has become 
one of the major concerns since it causes more 
frequent impacts of inclement weather on overhead 
feeders and other exposed components of the electric 
grid (Panteli et al., 2015). A new approach of 
predicting outages in the system allows a proactive 
mitigation approach to reducing or avoiding 
detrimental impact (M. Kezunovic et al., 2022), 
(Khoshjahan et al., 2021).  

Several data model aspects such as historical 
weather and forecasts, GIS representation of utilities’ 
assets, machine learning (ML) methods, and 
digitalization of utility operations to assess the 

potential risk to the power grid have been reported so 
far (Kezunovic et al., 2020), (Kezunovic et al., Nov., 
2019). The selection of the best ML algorithm is vital 
in accurately predicting the State of Risk (SoR) for 
outages in the network, which reflects the probability 
of an outage occurrence in each place and time. 
Different algorithms have various strengths and 
weaknesses, which can impact the accuracy of the 
predictions. For instance, the ensemble algorithms 
such as Random Forest (RF) and Gradient Boosting 
are known for their robustness and accuracy, but they 
are less interpretable than decision trees (Shi et al., 
2018), (Leistner et al., 2009).  

In the past, RF algorithm was used along with 
dimensionality reduction techniques to predict the 
probability of transmission line outage during severe 
weather storms (Taylor et al., 2023). The Neural 
Network (NN) was utilized to predict the time of repair 
and restoration in distribution networks (Arif et al., 
2018). Logistic Regression (LR) was implemented to 
predict the likelihood of power grid elements failure 
from an approaching hurricane (Eskandarpour et al., 
2017). Support Vector Machine (SVM) that considers 
the deterioration level of the equipment was suggested 
in (Eskandarpour et al., 2018) to estimate the 
operability of the grid's components during extreme 
weather events. Graph Convolutional NN were used to 
process weather parameters and anticipate outages in 
the system (Owerko et al., 2018). Ensemble learning 
approaches were also utilized for outage prediction 
(Shashaani et al., 2018), (Zhang et al., 2018). Most of 
the studies analyze the outages during extreme storms 
or hurricanes that damage the grid infrastructure.  

Forced outages in the power systems caused by 
environmental factors pose a threat to the safe and 
economical operation of distribution grids. The 
industry aims at reducing the number of outages as 
well as their impact (duration, number of customers 
affected, monetary loss, etc.) The cause of the outage 
may be attributed to human error or wear and tear, but 
most outages are caused by weather-related events 
such wind, lightning, or overgrown trees. We utilize 
the approach of gathering data that is relevant to 
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outage causes, training an ML algorithm with the 
general goal of predicting SoR of outages, and then 
taking mitigation actions to reduce or eliminate outage 
impact (M. Kezunovic et al., 2022), (Nematirad et al., 
2023). In the context of this broader goal, this paper 
contributes by analyzing the outage prediction 
capability of diverse ML algorithms under conditions 
of data scarcity. Additionally, we explore the influence 
of incorporating weather conditions from a broader 
area on the performance. The paper evaluates how 
different models respond to data limitations and the 
integration of weather factors from adjacent regions, 
providing practical insight on the most effective 
approaches for outage prediction in distribution grids. 

The comparison of ML algorithms for SoR 
predictions in the case of normal day-to-day 
operations during severe weather received less 
attention in the literature than SoR prediction during 
extreme weather events. Moreover, it is unclear what 
is the minimal amount of data needed for training an 
ML algorithm to achieve optimal performance. Our 
contribution is in analyzing algorithm sensitivity to the 
data scarcity conditions when estimating the size of 
the training dataset needed for an effective SoR model 
implementation for forced outages. We also evaluate 
the statistical significance of including weather 
parameters from a wider region for improving model 
accuracy. Our work provides guidance for the 
implementation of practical solutions under field data 
constraints*. 

The rest of the paper is organized as follows. 
Section II gives the evaluation background. Section III 
describes data extraction, correlation, and preparation 
procedures used in this study. Section IV discusses the 
training of different algorithms. Section V summarizes 
the analysis of algorithm performance, while section 
VI draws conclusions. References are given at the end. 

2. Background 

Prior Work 

This section provides an overview of outage 
prediction, illustrating the challenges of prior research. 
Correlation between outage frequency and 
environmental conditions, topographic exposure,  and 
tree parameters were analyzed (Hirata, 2011). A 
statistical approach was utilized to explore 6 years of 
outage data based on transmission inventory in a utility 
located in Kazakhstan (Bapin et al., 2020). An analysis 
of outages in a Canadian utility shows that adverse 
weather conditions are the primary cause of outages 
(Bin et al., 1998). An outage risk-based approach to tree 
trimming scheduling to lower the impact of outages is 
proposed (Dokic et al., 2019). The literature review 

shows that significant benefits can be achieved by 
adopting an outage prediction approach in improving 
customer satisfaction and power grid operations 
(customer notifications, tree trimmings etc.), but it is left 
unclear which prediction algorithm is more accurate 
under specific data conditions. The metrics to compare 
the algorithms and evaluate their performance were also 
not used consistently in the prior studies.  

Prior research also did not differentiate between the 
geographical scope (spatial aspect) of input variables. 
Including additional data from adjacent regions in the 
analysis may have positive effects on the accuracy and 
comprehensiveness of the assessment. By incorporating 
data from neighboring areas, the model can capture a 
broader range of factors that may impact the power 
grid's risk profile, such as weather patterns or 
infrastructure conditions. However, the use of more data 
needs to be justified because it is associated with 
increased computation times, storage requirements, 
download times, etc.  

The data scarcity (temporal aspect) for the task of 
predicting outages has not been extensively addressed 
in the existing literature. The availability of sufficient 
and high-quality data is vital for developing accurate 
and reliable predictive models. However, in many 
cases, there may be limited historical data or incomplete 
datasets specifically tailored to the task of outage 
prediction in networks.  

Our Contribution 

In this paper, we focus on the sensitivity study of 
different ML algorithms to the available data temporally 
and spatially. The findings of this paper are built upon 
our prior work by delving into the specific issue of data 
availability and the geographical scope of inputs. While 
our previous research focused on various aspects of risk 
prediction when anticipating power grid outages, this 
study a) assesses the temporal sensitivity to data 
quantity and b) analyzes spatial extent of features and 
their impact on performance when incorporating data 
from adjacent regions.  

We explore how the temporal quantity of available 
data influences the accuracy of different models and 
establish the minimum data quantity required to achieve 
acceptable outage prediction using a nested cross 
validation testing technique, which produces robust 
estimates. By demonstrating the dependency between 
data availability during the training step and the ability 
to predict outages, this paper provides insights into the 
performance of various ML algorithms for outage 
prediction. The experiments also reveal a high 
correlation between the number of historical outages in 
test dataset and model performance once the minimum 
data quality is satisfied.  

*Field constraints include, but are not limited to, data 
acquisition, input processing and cleaning, data storage, outputs 
generation, etc., in real-time.  
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Neglecting the data availability and its impact can 
have detrimental effects on the accuracy and reliability 
of outage prediction models. Models may lack 
robustness and generalizability without determining the 
minimum training data quantity.  

To address the problem of incorporating more data 
from adjacent geographical regions, we investigate two 
approaches for the spatial scope of input data. Using 
paired one-tailed Student's t-test in our experiment, we 
prove the statistically significant advantageous impact 
on model performance resulting from the incorporation 
of weather data from neighboring areas. The use of 
statistical testing provides a rigorous and quantitative 
assessment of the performance improvement achieved 
through the inclusion of spatial data. By comparing the 
model's performance with and without the 
incorporation of data from adjacent regions, the analysis 
demonstrates that the observed improvement is not due 
to random chance but is statistically significant. 

3. Data Preparation 

Cluster feeders in GIS 

To investigate the impact of including weather 
parameters from adjacent areas, we divide the entire 
service area of a utility into segments where each 
segment of the grid consists of several feeders. We refer 
to these segments as feeder clusters. In our study, each 
feeder cluster represents a distinct segment of the grid 
comprising multiple feeders. We break down the system 
into feeder clusters so that we can train and test ML 
algorithms separately for each cluster. This enables us 
to compare the performance of the models when 
including or excluding weather data from adjacent 
feeder clusters.   

The clusters can be formed in different ways: from 
having a single feeder in each cluster to having all 
feeders in a single cluster. The decision about the 
clustering technique can be based on a number of 
factors, such as the size of the service territory, number 
of feeders, feeder length, number of substations, or 
geographical conditions of the region (e.g., valleys, 
mountains, plains, forests). Clustering can be done 
manually, or it can be automated based on selected 
feeder characteristics. The final outage SoR reflects the 
outage probability in each of the feeder clusters created 
in this step. Options for clustering could be by voltage 
level, substations, closest weather station, etc. 
Optimization of clustering for performance 
maximization is outside the scope of this paper and is 
left for future research.  

In our experiment, we segmented the distribution 
network that consists of 192 feeders into 3 clusters. 
The original map of the network (90x90 miles) with 

each feeder represented by distinct color and ASOS 
weather stations available in the area, is shown in Fig. 
1. For each location in the network weather 
information is represented as min, max, and mean 
statistics from stations within a 25 km proximity. 
Clustering was performed using Arc GIS Pro (Esri). 
Arc GIS Pro has an automated way of clustering 
spatial features (feeders) included in the Spatial 
Statistics toolbox: Build Balanced Zones. We have 
used the option that sets the number of clusters and 
accounts for their total area, which allowed us to form 
clusters of approximately equal area. We have also 
used “compactness” criteria, which resulted in clusters 
being geographically compact. We created clusters 
comparable to each other in size but at the same time 
different regarding geographic locations. The 
difference in geographic location accounts for weather 
parameters difference, which allows better 
differentiation between events in each cluster. The 
map with the clustered network is shown in Fig. 2.  

 

 

Figure. 1. Original network map. 

 

Figure. 2. Clustered electric grid map. 
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Spatiotemporal correlation of outages 

To train the model, we utilize a historical outage 
dataset obtained from a utility company in Texas. In 
general, the historical outage dataset needs to reflect 
when and where the outages took place in the past. The 
underlying hypothesis is that the data model can 
identify specific patterns in the conditions that lead to 
an outage.  

To use the dataset, one needs to spatially correlate 
each occurrence of an outage to the corresponding 
feeder cluster. The dataset provided by a utility 
company includes fields that represent outage start and 
end time, failed equipment ID, closest feeder, outage 
cause code, and comments of the repair crew. We have 
utilized the equipment ID and closest feeder fields to 
map each outage to the corresponding feeder cluster.  

Our historical outage dataset was logged using the 
local time zone. Because most public datasets use UTC 
to report their timestamps, we have converted the 
outage timestamps from the local time zone to UTC and 
associated the events with the feeder cluster ID. Our 
study uses 6 years of historical outage data from January 
2015 to December 2020.  

Weather data preprocessing 

The predominant causes of forced outages in the 
distribution system are weather conditions and 
vegetation intrusion. One needs to extract surrounding 
weather parameters to capture the environmental 
conditions at the time and location of outage 
occurrence. For this study, we have used a historical 
weather dataset collected by ASOS (Automated Surface 
Observing Systems, 2016). Iowa State University has 
created a convenient interface to fetch ASOS data (Iowa 
Environmental Mesonet: ASOS-AWOS-METAR Data 
Download). Their portal also supports data download 
by using an open-source Python script that we modified 
to our needs and used in our study (Herzmann). ASOS 
weather data has varying time resolutions, but most 
recent data has a 1-minute time resolution.  

The obtained weather dataset contains the following 
weather parameters: weather station ID, weather station 
location, wind speed, direction, gust speed, air 
temperature, air pressure, dew point temperature, 
relative humidity, and one-hour precipitation.  

For each weather station and each weather 
parameter, we: a) substitute string trace report filler 
value (T) for hourly precipitation with a small value 
(0.0001), b) substitute missing data with None values, 
c) convert all the values to floating-point type. Then we 
proceed with substituting None values by mean values 
for all parameters except wind direction and wind gust 
speed. For wind direction, we use median values to fill 

in missing data, and for wind gust speed, we use 
corresponding values from wind speed. We also drop 
duplicate values, keeping the first occurrence only.  

The temporal correlation analysis of weather 
parameters is performed by first creating 1-hour 
timestamps for the full length of the period (2015-
2020). For each hour and each weather station, the 
dataset is sliced temporarily, taking all values that were 
reported in the last hour. These values are aggregated 
using mean, min, and max functions. In such a manner, 
for each weather parameter, we obtained mean, min, 
and max values for each timestamp. Since the 
aggregation was performed on the temporal window, 
we refer to these values as temporal statistics. This 
aggregation allows one to characterize the weather in 
the last hour by just three values; however, one also 
loses information due to aggregation. Other techniques 
may be used to describe the data, for example, wavelet 
or Fourier transform. At the end of this step, weather 
parameter statistics are calculated for each hour for each 
weather station and saved.  

Correlation of weather parameters to outages 

Once weather data is preprocessed, we correlate it 
to the feeder clusters. We first define which weather 
stations are closest to each cluster. Operation is 
performed in ArcGIS using a spatial join tool: weather 
stations (points) are spatially joined with clusters 
(polygons) within a 25 km radius. As a result, weather 
stations get feeder cluster IDs assigned to them, creating 
cluster-weather station mapping. Based on this 
mapping, the weather data is pulled to clusters on each 
timestamp and then spatially aggregated for each cluster 
regardless of number of stations using min, max, and 
mean statistics. The hyperparameter of a 25 km radius 
was chosen empirically and may need to be tuned for 
each application considering the size of the clusters and 
the separation between them. 

The last step calculates min, max, and mean 
spatially for each temporal statistic within a 25 km 
radius of each feeder cluster yielding 9 statistics for 
each weather parameter for each timestep. Here we 
aggregate the data again, but spatially as opposed to 
temporally in the previous step. The result characterizes 
weather conditions within the specified feeder cluster in 
the last hour. To decrease the number of features, we 
only keep the spatial minimum of temporal minimums, 
spatial maximum of temporal maximums, and spatial 
mean of temporal means, which gives us 3 values per 
weather parameter.  

Now, the weather data is joined with outage data 
based on the corresponding timestamp and feeder 
cluster ID. We take weather parameters from the past 
hour as inputs and outages from the next hour as targets 
for our outage prediction models.  
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4. ML algorithm Selection and training 

Algorithm types 

We have implemented the prediction framework 
using five ML algorithms: Random Forest (RF), 
Catboost (Cat), Logistic Regression (LR), Support 
Vector Machine (SVM), and Neural Network (NN). 
These algorithms were chosen as representatives of 
different "families" of ML algorithms, aiming to 
explore potential variations in their performance and 
identify whether one type may outperform the others in 
the context of outage prediction.   

Random Forest is a decision tree-based ensemble 
algorithm that combines multiple decision trees to make 
a more accurate and stable prediction (Breiman, 2001; 
Scornet, 2016). Each of the decision trees is trained on 
a random subset of the data and a random subset of the 
features. Such an approach helps to avoid overfitting 
and improves the accuracy of the model. The output of 
the RF is the majority vote of all the trees in the forest.  

Catboost is an open-source gradient boosting type 
of algorithm based on decision trees and is capable of 
handling categorical data with almost no preprocessing 
(Baembitov et al., 2021; Dorogush et al., 2018). As 
opposed to RF, where the trees are used independently, 
Catboost uses gradient boosting to iteratively improve 
the predictive accuracy of a set of decision trees. The 
algorithm also possesses a built-in feature for 
importance estimation, which allows for determining 
the most impactful input parameters (Baembitov et al., 
2023).   

Logistic Regression is primarily used for 
classification tasks. It uses the logistic function to model 
the probability of the output prediction. It takes a linear 
combination of input features to create a log odds ratio 
and then puts it through the logit function to estimate 
the probability (Sperandei, 2014). LR is a simple and 
powerful algorithm that performs well on linearly 
separable data (Ezukwoke et al., 2019).  

In the Support Vector Machine algorithm, a 
hyperplane is found that separates the classes by 
maximizing the margin between them. SVM is based on 
mapping the input data into a high-dimensional feature 
space using a kernel function, which allows for non-
linear decision boundaries. The algorithm then finds the 
hyperplane that maximizes the margin between the 
classes in this feature space. The hyperplane is 
essentially a decision boundary that divides the input 
data into two or more classes. The margin is the distance 
between the hyperplane and the closest data points from 
each class (Cervantes et al., 2020), (Mohammadi et al., 
2021).  

A Neural Network is comprised of an input, output 
layer, and one or more hidden layers containing 

artificial neurons (Chasiotis et al., 2020). There are a 
few classes of NNs, in this study, we are using the Deep 
Feed Forward Neural Network, also referred to as 
Multi-Layer Perceptron (Hemeida et al., 2020). 
Neurons in NN have a non-linear activation function, 
which allows them to capture non-linear dependencies 
in data. We are using an Exponential Linear Unit (ELU) 
as an activation function, which produces negative 
outputs for negative inputs allowing to balance the 
mean activation of the neurons in the network (Qiumei 
et al., 2019).  

For all the algorithms, we have used default 
hyperparameters as defined in related Python packages. 
For the NN, we used empirically determined 2 hidden 
layers with 30 artificial neurons in each layer. Kernel 
initializers are set to HE Uniform, and the activation is 
set to Exponential Linear Unit (ELU). The optimizer 
used for training is Adam, while the loss function is set 
to a binary focal cross-entropy from logits. The batch 
size was set to 16, and the number of epochs was set to 
30.   

Creating the training and test datasets 

To address the algorithm sensitivity to temporal data 
availability and to obtain robust estimates of the 
model’s performance, we employed nested cross 
validation (nCV) for forming temporal training and test 
datasets (Vu et al., 2022). As discussed in (Varma et al., 
2006), nested cross-validation provides a nearly 
unbiased method for assessing performance.  

To provide a more comprehensive understanding of 
nCV for the sensitivity study, we offer additional details 
below. The process of nCV is illustrated in Fig 3.  

 

Figure 3. Nested Cross Validation 

We start with three months of data to train the 
models, and we test them in the next three months. In 
the next fold, we expand the training dataset with the 
predefined time (Δ = 3 months in our experiments) and 
simultaneously shift the borders of the test dataset for 
the same value. In this manner, we repetitively increase 
the size of the training dataset and obtain test results in 
the next 3 months. nCV approach imitates the addition 
of new data once the solution is deployed into operation. 
The folds do not contain the same number of examples 
as in classical nCV, as the number of examples depends 
on the number of actual outages in the system. By using 
nCV, we ensure robust model assessment that accounts 
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for variations in data distribution and simulates real-
world operational conditions. It enhances the reliability 
of our results and demonstrates the applicability of our 
approach to practical scenarios. 

An outage in the distribution system is a rare event 
when looking from an hourly perspective at multiple 
years of data. That makes our dataset highly 
unbalanced. There are a total of 7,023 reported outages 
during the 6 years of available data. In this study, we 
will refer to outages as a positive class and refer to 
timestamps when no outage occurred as a negative class 
or normal operation (NO). In our study we do many 
experiments to ensure robustness of results. 

To train the model, we subsampled the training 
dataset, which allowed us to decrease the number of 
negative class examples and use a more balanced 
dataset. We also applied a temporal exclusion window 
of 5 hours around the positive class (faults) to select NO 
examples. Such a technique provides the model with 
more distinctive features for each class. The downside 
is that model is not trained on examples in the temporal 
vicinity of the faults, making it harder for the model to 
classify such examples. When applying the exclusion 
window, we only consider the target cluster, that is, the 
cluster that the specific model is trained to predict 
outages. Such an approach leaves the "noisy" training 
examples, where the fault has occurred in a different 
cluster from the target cluster. For instance, when 
training the model for cluster 1, a "noisy" example 
would be a case when cluster 2 experiences an outage, 
but cluster 1 operates normally. We consider "noisy" 
examples as a negative class (NO). The inclusion of 
"noisy" examples helps to improve the models' ability 
for spatial differentiation. We apply the same approach 
to form the test datasets. To obtain metrics for several 
combinations of positive and negative classes, we create 
10 test datasets for the same time period with a random 
sampling of negative classes. The varying composition 
of the test datasets allows one to acquire robust results 
for sensitivity study. Also, it creates additional cases for 
statistical testing to validate our hypothesis.  

Spatial extent of features 

In our study, we are using two sets of features in the 
training and test datasets. The first is comprised of 
features specific to the target cluster, where we limit the 
input weather parameters to the spatial extent of the 
target cluster plus the buffer radius (25 km). This 
approach prioritizes the weather around the specific 
cluster where the model is predicting the outage risk. 
The hypothesis behind such an approach is that outage 
prediction would be more accurate if in ML models 
influence of weather conditions is limited to the area of 
interest. We refer to this method as the “cluster-
specific” method.  

In an alternative setting, ML models are accounting 
for the weather parameters from all the available 
clusters in the network. That allows us to capture the 
weather not only over the target cluster but also the 
weather over the non-target clusters. The underlying 
hypothesis is that the consideration of the weather in the 
far-off territories from the target cluster would yield 
better performance for the model. The basic concept 
behind the second approach is that the current weather 
patterns or conditions observed over a certain distance 
can be a reliable indicator or predictor of the likelihood 
of power outages occurring in the future.  

To differentiate between the two feature structures, 
we use a target-source notation. The target field 
indicates the target cluster as described earlier. The 
source field reflects the cluster(s) from which the 
weather parameters are taken. An integer in the source 
field indicates a specific cluster and corresponds to the 
“specific cluster” method. Letter “A” corresponds to the 
second approach and stands for “[A]ll of the available 
weather parameters."  

All the algorithms are trained for cluster-specific 
outage prediction on the balanced dataset using both 
“cluster-specific” and “A” methods. Given 3 clusters in 
the network, we obtain 6 trained models for each 
algorithm type.  

Data Scarcity Sensitivity  

When deploying our approach, data availability for 
the initial training process is a problem that needs to be 
addressed. It is desirable to have enough data which 
would represent the latent relationship between outages 
and environmental conditions. In this study, we analyze 
the model performance depending on the amount of 
relevant training data. More data may provide valuable 
examples for the model making it more selective and 
powerful, but in practice, there is usually a saturation 
point, and further increase of the training data is not 
significantly improving the accuracy of the model. We 
perform a sensitivity analysis to study the effect of the 
size of the training dataset on the model's performance. 
A nested CV provides a natural way for such an 
experiment. As we break down the six years of data into 
chunks of 3 months, the models’ performance is 
obtained for each testing fold and then can be averaged. 
The Nested CV helped us to obtain unbiased and robust 
estimates of the model's performance by preventing 
overfitting and potential data leakage. Also, through the 
repeated splitting of the data into different training and 
test sets, we were able to observe how the algorithms 
performed under varying data availability conditions.  
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5. Performance Comparison 

Metrics 

To compare the performance of different ML 
algorithms, we utilize 3 metrics: F-1 Score (F1), 
Average Precision (AP), and Area Under the Receiver 
Operator Curve (ROC) (Powers, 2011).  

F-1 Score is a harmonic mean between Precision 
and Recall. Precision indicates how accurate the 
positive predictions of the model are, and Recall 
measures how well the model can identify all positive 
cases in the dataset. F1 is a metric that allows one to 
estimate the performance at a glance and is useful in 
cases where both false positives and false negatives are 
equally important (Hennessy et al., 2021). 

AP is calculated by computing the area under the 
Precision-Recall curve, which plots the precision 
against the Recall at different classification thresholds. 
It represents the balance between Precision and Recall, 
where one needs to be sacrificed for the improvement 
of the other. AP is closely related to the Area under the 
Precision-Recall Curve (AUPRC); however, it is shown 
that AP does not yield overoptimistic results as 
compared to AUPRC (Davis et al., 2006). AP is useful 
in cases of heavily imbalanced datasets as it accounts 
more for a positive class (Saito et al., 2015). 

The Receiver Operator Curve is formed by plotting 
the Recall against the false positive rate (FPR) at 
different classification thresholds showing the trade-off 
between them. Measuring the area under the Receiver 
Operator Curve summarizes the model performance in 
a single value. ROC metric reflects the likelihood of the 
model to rank a positive instance higher than a negative 
instance when both are chosen at random. It is less 
useful in unbalanced datasets (Fawcett, 2004), (Fawcett, 
2006).  

Any metric used to evaluate the performance of the 
model can reflect only a part of the model’s capabilities, 
no single metric can provide a full image of the model's 
performance. It is essential to analyze several metrics to 
understand why one model performs better or worse 
than the other. It is also strongly advised to use business 
metrics in addition to mathematical metrics. Examples 
of such are an average reduction of repair time of an 
outage, yearly reduction of costs for equipment repair, 
impacts on grid reliability indices, change of revenue 
due to implementation of optimized mitigation 
measures, etc.  

Business metrics reflect the ultimate impact of the 
model decisions on different stakeholders. These can 
also help in threshold selection, reflecting the 
penalty/award balance of the decisions for a 
stakeholder. Such thresholds need to be investigated 
separately for each individual case. The task of defining 

thresholds is outside the scope of this paper and is left 
for future research.  

Student's t-test for the spatial extent of 
features  

We have performed the paired one-tailed Student’s 
t-test to verify the statistical significance of metrics 
improvement due to the inclusion of weather 
parameters from adjacent clusters (Hsu et al., 2014). We 
ran the test for each combination of model type (5), 
target cluster (3), and metric (3), totaling 45 tests. The 
null hypothesis is that for a given cluster, the 
performance metrics (AP, ROC, F1) are equal when 
including adjacent cluster features and when only using 
target cluster features. The alternative hypothesis is that 
the performance metrics for a model with adjacent 
cluster features are greater than the metrics of the model 
with target features only. The selected significance level 
is 0.05. The results have shown that in 36 tests, we can 
reject the null hypothesis and accept the alternative 
hypothesis, and in 9 tests, we cannot reject the null 
hypothesis. The results for the tests where the null 
hypothesis could not be rejected are presented in Table 
I. As can be seen from the table few cases of AP and 
ROC metrics did not pass the t-test. F1 metric, on the 
other hand, has passed the test in all cases.  

Table I. T-test results for p-value greater than 
the significance level 

 

One of the paper’s contributions stems from 
comparing these results. We conclude that 
incorporating features from neighboring clusters leads 
to a consistent enhancement in the model's performance 
across most scenarios. It leads to a significant 
implication: the model's ability to forecast forced 
outages in the upcoming hour is not solely reliant on 
data within the focal region. Rather, it also depends on 
the weather conditions surrounding the area of interest. 
Since the weather conditions are “moving” across the 
region mainly by winds, information about the weather 
in adjacent regions reflects what would happen in the 
next hour. This finding also points to the necessity of 
including weather parameters from a wider area around 
the target cluster. Creating a dynamic buffer that is 
positively correlated to the wind speeds can further 
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improve the temporal predictive capabilities of the 
model. These topics are left for future research.  

Based on the findings of this section, we have 
removed the models of the "cluster-specific” method 
from further analysis and only focus on the second 
method, which includes weather parameters from all 
clusters.  

Performance analysis 

Every model was evaluated on each of the test 
datasets of nested CV. The test was performed 10 times 
using the same positive class examples but different 
randomly selected negative class examples from the 
same CV fold. The aggregated results of average scores 
per fold are presented in Fig. 4, where the target 
dimension is omitted, so the results reflect the metrics 
for the entire network. The X-axis denotes temporal 
nCV folds, while the Y-axis displays metric values and 
fault counts per fold. 

As can be seen from the figure, the model’s 
performance is highly correlated to the number of 
outages in the given period (fold). The more outages the 
network experiences, the better the performance a 
model archives. We can conclude that the outage 
prediction approach is most effective when there is a 
large amount of positive class present, which usually 
happens under severe weather conditions.  

Examination of metrics behavior illustrates another 
contribution of the paper. The AP metric increases for 
all models as more training data is used. The F1 score 
appears to have a strong positive correlation with the 

number of outages: it improves as the number of 
outages grows and drops when there are fewer outages. 
The ROC metric is very low in the case of a small-size 
training dataset, and it increases sharply when more 
training data is added. ROC metric is initially minimal 
with a limited training dataset, yet it shows a rapid rise 
as more training data is incorporated. This growth of the 
ROC occurs in the first 7-8 folds, which translates into 
21-24 months of training data. Based on these findings, 
we can conclude that for practical applications, utilities 
need to accumulate at least around 2 years of relevant 
data. While addition of temporal data beyond 2 years 
marginally enhances performance, the incorporation of 
more diverse features, innovative feature engineering, 
and varied datasets could potentially lead to significant 
performance improvements. 

With no substantial implementation advantage of 
any algorithm over the rest, we infer that tested 
algorithms possess comparable performance on the task 
of outage prediction using the weather parameters 
described in Section 3. We note that NN requires more 
data than the other algorithms to output comparable 
results, but at the same time, it tends to have lower 
fluctuations of the metrics when more training data is 
available, as can be seen from the F1 score. Both RF and 
SVM show higher initial F1 score values and both 
possess quicker training times. The practical takeaway 
is that utilities have the flexibility to select any of these 
algorithms for deployment purposes unless they wish to 
explore further feature engineering approaches which 
may benefit from diverse or enhance datasets. 

The dependence of models’ performance from the 
target cluster is shown in Table II, which averages the 

 
Figure 4. Nested CV results. 
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metrics for all algorithms and presents them on a per-
target cluster basis. The results indicate that all metrics 
improve for cluster 2, which has the greatest number of 
outages. That corroborates our previous conclusion 
about the correlation between performance and the 
number of outages. Cluster 2 covers urban areas and is 
characterized by dense feeder locations. That explains 
the increased number of outages when compared to the 
other two clusters, which are in more rural areas.  

Table II. Per target metrics. 

 

6. Conclusions 

In this paper, we have presented a sensitivity study 
of different ML algorithms used for predicting outage 
risks in the distribution system. Based on our findings, 
we make the following conclusions.  

1. Models are sensitive to the geographical extent of 
input features. The inclusion of weather parameters 
from the adjacent territories of a feeder’s cluster 
improves the model performance. This is a result of 
considering weather from a wider region that may 
be moving towards the target cluster.  

2. All the considered models exhibited a similar level 
of sensitivity to the availability of data. To obtain 
satisfactory performance, at least 2 years of 
training data are needed to prepare a prediction 
model for deployment. A lower data quantity does 
not provide models with enough training examples.  

3. The performance of the model is highly correlated 
with the number of forced outages in the system. 
When there is an abundance of forced outages, 
models detect outages more accurately, which may 
lead to faster restoration times. 

4. Models for outage prediction are most accurate 
during harsh weather conditions. Inclement 
weather induces an increased amount of outage 
occurrences, making prediction models more 
applicable.  
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