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Abstract 

This study aims to analyze a mechanism of AI 
responsibility based on attribution theory. It also 
identifies a new concept, AI locus of control (AI-LOC), 
reflecting an individual’s belief about the degree to 
which AI determines decision performance. To this 
end, we built a website with embedded AI systems 
where participants longitudinally made corporate 
credit rating decisions. We created a dynamic panel 
dataset that includes participants’ decisions per task 
and decision performance and attitudes per session. 
The results revealed that AI-LOC and trust in AI were 
developed in parallel yet differed over time. AI-LOC 
positively influenced AI use, but trust in AI did not. We 
reasoned that individuals would likely exhibit self-
serving biases and take an egocentric and 
disengagement coping strategy regarding their 
decision-making with AI. This study can contribute to 
understanding the psychological and behavioral 
aspects of AI use.    
 

Keywords: Artificial Intelligence, Attribution 
Theory, Trust, Locus of Control, Decision Making 

1. Introduction  

Trust in technology can be defined as the belief 
that a technological artifact possesses certain desirable 
attributes, making it capable of fulfilling one’s 
expectations [1]. Researchers across academic 
disciplines have highlighted the importance of trust in 
artificial intelligence (AI), contending that it is 
imperative for successful implementation of AI [2, 3]. 
Accordingly, while focusing mainly on technological 
characteristics, researchers have also paid attention to 
identifying the ways that can enhance trust in AI (e.g., 
[4], [5], [6]). However, some researchers and limited 
anecdotal evidence have shown that individuals often 
stop using technologies despite initially forming a 
positive attitude toward them [7].  

Trust in a technology is likely sustained as an 
outcome of positive experiences with that technology 

[8, 11] and its perceived reliable performance over 
time [1]. In the context of decision-making with AI, 
employees and AI are both prone to making mistakes 
[7]. Additionally, decision-makers are likely more 
sensitive to algorithm errors than human mistakes [10] 
which can increase attributional errors. In this regard, 
initial trust in AI may not always increase subsequent 
use because trust is an outcome of attribution [6, 9]. 
The consequences of individuals’ evolving trust in AI 
[12] should be a critical issue, but it has not yet been 
investigated longitudinally. Hence, this study aims to 
answer the question: (RQ1) How does trust in AI 
influence AI use over time? 

Users may deliberatively consider not only AI’s 
capabilities but also their own abilities when receiving 
performance feedback about decision-making [6, 13, 
14]. That is, when individuals evaluate the 
performance of new technologies, an attribution 
process tends to arise [13, 15], which can influence 
their continued AI use. Accordingly, attributional 
thinking is critical in understanding trust [6, 8] and 
post-adoption IT use behaviors [10]. Although many 
researchers (e.g., [16], [17], [18], [19]) have begun 
focusing on responsible AI, they have paid less 
attention to responsibility development based on 
performance feedback over time. Though not focusing 
on attributional theory, several recent researchers have 
begun emphasizing that decision-makers’ sense of AI 
responsibility can be determined by the perception of 
decision control [6, 13] in the attribution processes 
[13, 20]. Hence, the research also aims to answer the 
following question: (RQ2) How do individuals 
perceive the causes of their decision performance? To 
this end, this study has a purpose to introduce AI locus 
of control (AI-LOC)—an individual’s beliefs 
regarding AI as the cause of decision-making, and 
identify an answer for the following question: (RQ3) 
How does AI-LOC affect AI use over time? 

In addressing the above limitations of the extant 
research, we built a research model to explain the 
relationships among AI-LOC, trust in AI, and 
continued AI use based on attribution theory. As such, 
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this study developed AIs capable of providing 
corporate credit rating recommendations. Next, we 
built an online website embedding the AIs where 
participants made corporate credit-rating decisions 
longitudinally (three sessions over two months). We 
analyzed data in two steps: auto-regressive (AR) 
hierarchical linear modeling (HLM) and cross-lagged 
structural equation modeling (CL-SEM). 

The current study makes the following major 
contributions. First, this research provides a 
theoretical mechanism to uncover how individuals 
determine AI responsibility [19, 21] that is not free 
from self-serving biases in attribution processes [17]. 
Second, by taking a dynamic and longitudinal 
perspective as well as delving into the link between 
trust in AI and its actual use (rather than the self-
reported intention to use it), this study reveals the 
marginal role of trust in facilitating future AI use. 
Hence, this can extend our understanding of trust in AI 
(e.g., [4], [6], [13]). Third, while revealing the 
important role of AI-LOC in increasing AI use, this 
study demonstrates that individuals are likely to 
disengage from decision-making processes and 
increase their dependence on AI advice based on their 
expected tradeoffs between losses and gains from 
following AI advice. 

2. Theories & Related Work 

2.1 Trust in AI 

Trust is “the willingness of a party to be 
vulnerable to the actions of another party based on the 
expectation that the other will perform a particular 
action important to the trustor” ([23], p. 712). Trust 
was initially defined in the interpersonal domain, but 
its conceptualization has been increasingly applied to 
human-technology interactions (e.g., [1], [2], [19], 
[20]). Researchers have argued that factors enhancing 
trust are dependent on contexts, for instance, 
competence, benevolence, and integrity rooted in 
interpersonal contexts [20] and functionality, 
helpfulness, and reliability in technological contexts 
[1, 24]. Particularly, a few researchers (e.g., [14]) have 
explained that trust development in the context of AI 
involves calculation, prediction, and capability 
processes. More specifically, individuals are likely to 
calculate the costs and benefits of AI use that can occur 
due to AI agents’ (un)trustworthy behaviors. 
Additionally, people tend to develop confidence in 
AI’s ability to perform as predicted, and recognize 
AI’s capabilities in fulfilling commitments. Thus, the 
AI features of transparency, reliability, and flexibility 
can enhance individuals’ cognitive trust [14]. 

Several researchers have recognized trust as an 
outcome of responsibility or attribution [6, 26], though 
their contexts did not involve AI advice. For instance, 
Molm et al.’s [26] definition of trust explicitly stated 
that individuals’ attribution of positive intentions to 
another party is the basis of their trust formation under 
uncertainty and risk. In line with these studies, the 
literature has begun arguing that AI accountability and 
responsibility are important for its users’ beliefs and 
behaviors [11, 22]. However, empirical findings 
remain limited in longitudinally uncovering the 
attribution mechanisms underpinning the formation of 
trust in the organizational decision-making context in 
which irreducible uncertainties are embedded [28]. 
Therefore, it is essential to explore how individuals 
determine responsibility for the (un)intentional 
consequences of decision performance [14, 29]. 
Furthermore, we must also investigate how 
performance feedback affects trust in AI and 
subsequently influences usage patterns. This 
exploration can help researchers understand the 
dynamic nature of trust in AI [8].  

2.2 Attribution Theory 

Individuals’ attribution is at the core of trust [11]. 
The tenet of attribution theory is to determine how 
individuals explain events by asking for the reasons 
[30] behind their perceptions, judgments, and 
evaluations of behaviors [31]. According to this 
theory, individuals use performance as a primary 
informational cue to assess the causal attributions of 
their actions [31]. The attributional outcomes can then 
determine their subsequent expectations and responses 
[15] to ensure similar outcomes [32]. Particularly in 
AI contexts, Ha et al. [13] argued that when 
individuals obtain appropriate explanations for the 
outcomes, they are more likely to attribute the 
outcomes to the AI and discount other causes. 

Causal attribution has three primary dimensions: 
locus of control (i.e., internal [vs. external] attribution 
to the decision maker [vs. AI] in this context), 
controllability (i.e., the level of voluntary control by 
the decision maker), and stability (i.e., the extent to 
which the decision maker perceives the cause as 
dynamic or constant) [15, 20]. When individuals 
consider the accountability of decision performance, 
locus of control (LOC) may determine who is 
responsible for a given outcome [33, 34]. In the 
context of AI-assisted decision-making, people 
consider either themselves or AI in the attribution 
process [13]. Accordingly, we define AI-LOC as the 
extent to which individuals tend to perceive that AI is 
accountable for their decisions. Additionally, 
individuals may feel lower controllability over their 
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decision performance, they can perceive helplessness 
and vulnerability [33]. Finally, stability can influence 
individuals’ expectations of the future accuracy of AI 
advice [33], which may, in turn, affect their 
subsequent usage. As individuals perceive AI 
accuracy over time, they learn what to expect from AI 
usage and how to leverage its advice more effectively. 
As such, trust dynamics may emerge over time [34]. 
In sum, individuals’ perceptions of AI responsibility 
and their resulting trust in AI can be subject to a 
longitudinal attributional process.  

3. Hypotheses  

3.1. Attributions for Decision Performance 

When individuals evaluate AI accuracy, they use 
the outcome information—part of performance 
feedback—to process the causal attributions of their 
past actions [6, 14, 15]. When individuals achieve 
performance beyond their expectations in their AI-
assisted decision-making, they are more likely to 
realize AI’s abilities [12]. Accordingly, they are less 
likely to perceive vulnerability regarding expected 
outcomes and are instead more likely to build trust in 
AI [3, 37]. That is, when individuals make decisions 
with AI and achieve their expected goals over time, 
they are more willing to develop and sustain their trust 
in AI [3, 37]. Thus, the so-called positive spirals of 
trust can be maintained [11]. Thus, we expect that 
decision performance increases trust in AI (H1-1). 

Furthermore, it is natural to consider AI 
capabilities and personal abilities while evaluating 
decision performance. Attribution processes are not 
spared from ‘errors of judgment’ [11]. More 
specifically, self-serving biases are prevalent in the 
process [6, 22], highlighting individuals’ tendencies to 
attribute positive (negative) outcomes to internal 
(external) factors, i.e., the so-called discounting 
principle [13]. In doing so, individuals are motivated 
to enhance themselves and seek knowledge about their 
specific contexts [39]. Similarly, in the context of 
information systems, Jörling et al. [21] found that 
when users face disruptive events, they tend to blame 
software in 73.85% of the cases but blame themselves 
in only 14.29% of cases. Thus, individuals may be 
more likely to attribute high performance to 
themselves but low performance to AI in this context. 
Overall, when individuals achieve a high level of 
decision performance, they build trust in AI but 
attribute the performance to themselves. Thus, we 
expect that decision performance will increase trust in 
AI rather than AI-LOC. Formally, we expect that the 
influence of decision performance on trust in AI is 
higher than on AI-LOC over time (H1-2). 

3.2. AI Use Behaviors as an Outcome 

How individuals behave tends to rely on 
expectations of reciprocity [40]–what they expect to 
gain from their current inputs. Applying this to AI-
assisted decision-making contexts, people may make 
educated guesses about AI’s performance and respond 
accordingly (cf., [23]). Even if they trust AI advice 
after evaluating the positive outcomes, they may 
speculate about not only the outcomes relevant to 
themselves (e.g., potential gains from following the 
advice [14]) but also the party responsible for the 
outcomes. Particularly, as AI can recommend only 
stochastically accurate answers than humans in the 
context of many organizational decisions [29], 
individuals should consider who is responsible for the 
tradeoffs between losses and gains from following AI 
advice [14]. In short, taking AI advice should be 
strategic [40]. 

In this situation, despite AI’s higher accuracy rate, 
decision-makers may not always follow AI advice, 
because individuals tend to exhibit algorithm aversion 
and thus prefer riskier (and often suboptimal) human 
advice [9, 41]. Additionally, people need to learn how 
to utilize AI advice and recognize the need to put 
personal effort into making decisions. Similarly, 
Gefen et al. [10] found that, in online shopping 
contexts, new users’ behaviors tend to be determined 
by trust, whereas experienced users rely more on 
recommendation agents’ accuracy. While highlighting 
performance feedback, researchers [14, 35] have 
shown that though individuals initially build trust in 
AI, erroneous AI advice can decrease their trust and 
recovery takes time. Accordingly, although 
individuals trust AI, they may not always follow its 
advice. Instead, they may also feel responsible for 
decision performance and only selectively accept AI 
advice. This argument can be understood as a dynamic 
coping process in individuals’ adaptations to a new 
technology, demonstrating that they may change from 
one coping strategy to another strategy based on an 
evaluation of their previous efforts [41]. Hence, 
without individuals’ recognizing AI responsibility, 
trust in AI may not always lead to following AI advice. 

On the one hand, recognizing AI abilities and 
ascribing responsibility for the performance may lead 
individuals to take AI advice selectively. On the other 
hand, they may feel less control over their decision 
contexts and less skill in overcoming situations. For 
example, because individuals perceive that their past 
efforts did not contribute enough to their decision 
performance compared to AI advice, they may feel 
that fewer cognitive resources are available and may 
be more motivated to adopt a disengagement coping 
strategy [42]. Such low-controllability situations tend 
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to increase withdrawal behaviors [30]. This coping 
strategy may lead individuals to avoid solving their 
own problems and instead rely on AI advice, 
increasing AI usage. Likewise, Ha et al. [13] found 
that individuals with high power status are more likely 
to perceive greater control over AI outputs than those 
with low power status. Interestingly, low 
controllability of AI outputs is positively associated 
with confidence in AI’s capabilities. de Guinea [43] 
found that individuals tend to switch to a 
disengagement coping strategy when they feel a lack 
of control over an IT event. Notably, some researchers 
found that individuals’ decreasing perceptions of 
control may reduce their AI use when they cannot 

change AI advice and replace AI roles (e.g., [16], 
[44]). However, when people can input their expertise 
in the final decisions but simultaneously perceive less 
control than AI, they may realize that following AI 
advice may be optimal. Thus, we expect that AI-LOC 
increases continued AI use (H2-1).  

Overall, individuals may change their decision-
making strategies as the situations unfold over time, 
demonstrating dynamic behavioral patterns. Hence, 
we expect that while the effect of trust on future AI use 
may not be sustained over time, that of AI-LOC on 
future AI use can remain intact; Formally, the 
influence of AI-LOC on continued AI use is stronger 
than that of trust in AI (H2-2).

 
Figure 1. Credit-rating Decision Procedure 

 
4. Method  

4.1. Overview of Longitudinal Studies 

This research examines a corporate credit-rating 
context that naturally includes irreducible uncertainty 
[28]. Thus, individuals and AI can both only estimate 
stochastically correct answers. For this study, we 
developed websites with embedded AI 
recommendation agents for aiding participants in 
solving credit rating problems. The websites were 
designed to provide financial (e.g., total assets, paid-in 
capital, annual sales) and non-financial (e.g., number 
of IPs and locations) information as well as AI advice 
for making credit decisions. We chose the information 
by following the common industry and academia 
practices [45]. Furthermore, we differentiated the 
conditions regarding the AI type (neutral or user-
dependent AI) and the type of extra information 
(relevant or less relevant information). Thus, we 
enhanced the generalizability of the results and 
represented better real-world decision contexts. 
 
4.1.1. AI-based Systems Development 
 

We created four websites representing unique 
decision conditions, allowing us to identify their 

impact on individuals’ attitudes (see Figure 1). First, 
we developed two AIs to identify the effect of AI 
advice on user attitudes [47]. We assumed that (1) a 
system recommending credit scores based only on 
historical data for credit events (i.e., neutral AI) may 
be less preferred than (2) a system recommending 
credit scores based on both historical data and users’ 
initial judgments (i.e., user-resembling AI). It is 
because individuals tend to prefer the 
recommendations including their opinions [3]. Then, 
we nested the AIs in the websites.  

Second, we offered either the focal company’s 
previous-year credit score (relevant information) or 
the average previous-year credit score of companies in 
the same region (less relevant information) along with 
the AI advice. This condition represents the practices 
that employees are exposed to multiple information 
cues in their decision-making processes. Several 
recent studies on non-AI contexts have identified that 
even one additional source of information can exert a 
sizable effect on a final decision [47]. Therefore, 
depending on its relevance, they tend to leverage the 
extra information differently [48]. 

We employed historical credit data from Korea 
Enterprise Data, one of South Korea’s largest credit-
rating service companies. Additionally, we developed 
AI algorithms based on linear regression, random 
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forest, and gradient-boosted decision tree techniques 
offered by the caret and xgboost packages in R 
statistics. Then, the neutral AI was trained with 
113,000 credit scores from 2002 to 2014 in the 
database, yielding a root mean square error (RMSE) of 
2.513. Further, we compared the difference between 
the advice and credit scores in the database (difAI-DB) 
and the difference between participants’ initial 
estimates and credit scores in the database (difIE-DB). 
Our finding indicated that AI was significantly more 
accurate than individuals (t = 28.502, df = 7,709, p 
< .001). From 2015 to 2017, 842 credit events in the 
database were used to administer the tasks with which 
individuals made decisions using AI advice.  

We developed four types of online sites. Site (A) 
provided neutral AI advice, and Site (B) offered user-
resembling AI advice. Neither contained any (less) 
relevant additional information. That is, the 
participants who used websites (A) and (B) had a 
different AI-type condition but an identical condition 
in terms of extra information cues. Site (C) offered 
user-resembling AI advice and relevant extra 
information. As for site (D), it gave user-resembling 
AI advice and less relevant information. Compared to 
the participants who used site (B), those who 
employed sites (C) and (D) were exposed to unique 
conditions regarding the existence of (less) relevant 
information. Additionally, sites (C) and (D) could 
create different conditions regarding the informational 
relevance. Through these sites, we can efficiently 
create diverse conditions and effectively isolate the 
possible impact of the unique attributes. 

In total, 226 participants who had completed the 
three sessions were included in the analysis. On sites 
(A), (B), (C), and (D), 57, 65, 63, and 41 participants 
completed the three sessions, respectively. Out of 226 
participants, 135 were men, 107 were younger than 25, 
71 were between 26 and 35, and 48 were over 35. 
Among the participants, 156 were in business-related 
disciplines. The remaining were in engineering and the 
humanities but had business and economics minors. 

 
4.1.2. Research Procedure and Participants 
 

We recruited individuals from four major South 
Korean universities, compensating them with 15,000 
Korean won (KRW, 1 USD = 1,100 KRW as of 
January 2021) for their participation. They were all 
senior-level undergraduate or master-level students. 
We motivated them to enhance their learning and 
decision accuracy efforts by offering 50,000 to 
100,000 KRW based on performance outcomes. The 
different website links were distributed via email, 
thereby making participation voluntary. We randomly 
assigned websites to the participants. Individuals did 

not know the type of websites, which remained the 
same for all three sessions. The firms’ names were 
anonymized so that participants could not rely on 
external sources of information. 

Once participants accessed the website, they 
created IDs and passwords. As shown in Figure 1, 
before starting the credit rating tasks, participants 
learned how to rate credit scores based on numerical 
data about organizations. Participants needed to rate 
ten firms per session. They could then advance to the 
next session five days after finishing the previous 
session and were required to finish all three sessions. 
All participants were given the same questions, but the 
task order was randomized. If all ten tasks were not 
completed before leaving the site, they could not 
participate in the experiment again.  

 

Table 1. Summary of Measures 
Constructs Mean (SD) 

Variant to time and experiments 
 Session 1 Session 2 Session 3 
Decision Performance 16.141 17.202 17.788 

(1.759) (1.538) (1.074) 
Continued AI Use .317 

(.248) 
.308 

(.246) 
.307 

(.252) 
Trust in AI 3.400 

(.790) 
3.662 
(.819) 

3.706 
(.912) 

AI-LOC 2.673 2.761 2.814 
(.858) (.912) (.953) 

Invariant to time 
PreFocip .279 (.449) 
PreLocip .181 (.386) 
AI Type (AITypeip) .748 (.435) 
Invariant to time and experiments 
Major 2.991 (2.288) 
Job 6.345 (2.518) 
Gender 1.403 (1.456) 
Age 3.164 (1.527) 
PreFoc (Previous Year Credit Score of Focal Company), 
PreLoc (Previous Year Average Credit Score of Local 
Companies)	

 

Participants initially estimated each company’s 
credit score before receiving AI advice and then had a 
chance to adjust the initial score after receiving it. 
Individuals using sites (A) and (B) made preliminary 
estimates based only on companies’ numerical 
information. Those using sites (C) and (D) could use 
the focal firm’s information combined with the (less) 
relevant additional information. Next, individuals 
received AI advice. We informed participants that they 
could leverage the advice strategically rather than 
merely following it. Based on their valuation of AI 
advice, they could discretionally adjust their initial 
estimates only if they answered “Yes” to the question 
“Will you change the initial estimate?” After 
completing the ten tasks in a session, they could 
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review their session (not each task) performance. 
Based on the feedback, they could update their 
attitudes toward AI advice across sessions.   

 
4.2. Measures 

The unit of analysis was session–individual 
observations. Accordingly, we created continued AI 
use and decision performance for the ith individual for 
the qth tasks at the pth session and aggregated the two 
variables at the session level. We also created AI-LOC 
and trust in AI for the ith individual at the pth session 
by asking a series of survey questions after each 
completed session. Table 1 summarizes the measures.  

Continued AI Use. We measured continued AI 
use in terms of individuals’ switching decision after 
they had received AI advice per task with their answer 
to the question, “would you change the initial 
estimate?” (AIUipq = 1 for yes, 0 for no). Then we 
averaged the measures per session to indicate session-
level AI use (AIUip = ΣAIUipq/10) 

Decision Performance. We measured 
individuals’ decision accuracies (DPipq) by computing 
the difference between their final estimates (FE) and 
the actual credit scores in the database (D_Val) as 20 - 
|FEipq – D_Valipq | per tasks. Decision accuracies per 
task were then aggregated by averaging them (DPip= 
ΣDPipq /10).  

Trust in AI. We employed Venkatesh et al.’s [49] 
scale to measure trust in AI (7-point Likert scale). 
Participants were asked to answer the questions after 
completing each session (Cronbach’s Alpha = .820).  

AI-LOC. Ifinedo’s [50] single item was used to 
measure AI-LOC (7-point Likert scale). Participants 
replied to a question after finishing each session.  

Control variables. We included AI type that 
participants used and information type that represented 
whether received (less) relevant information. We also 
included educational background and job to control for 
domain knowledge’s effect on using AI advice [28]. 
Age, gender, and university were added to control for 
the unobserved effects of individuals [51]. Finally, we 
included session dummies to control for individuals’ 
experience (Expip) by counting the sequential session 
number of (1-3). 

4.3. Analysis 

We built dynamic panel datasets, which include 
678 (= 226 individuals X 3 sessions) longitudinal 
observations. Our datasets contain the same 
respondents' responses at multiple times. The session-
level data are nested in individuals. Thus, within- and 
between-session variances may not be independent of 
individuals’ unobserved characteristics. In addition, 
this study aims to identify the time-lagged effects of 

AI-LOC and trust in AI. Accordingly, we leveraged 
two analytical methods–autoregressive hierarchical 
linear modeling (AR-HLM; [52]) and cross-lagged 
structural equation modeling (CL-SEM; [53]).  

AR-HLM was used to identify the relationships of 
decision performance with AI-LOC and trust in AI 
over sessions while controlling for session invariant 
factors (i.e., individuals’ demographics). Fit indices 
consistently indicate that a model with autocorrelation 
fits better than that without it, supporting the first-
order autocorrelation (AR[1]). We controlled the serial 
correlations among variables measured at different 
time points from the same individuals. Intercepts were 
random at the individual level (Level 2), and the 
covariates were assessed at both the individual level 
(Level 2) and the session level (Level 1). CL-SEM 
seeks to ascertain the causality of trust in AI and AI-
LOC to continued AI use by temporal separations.  

5. Results  

Before testing the hypotheses, we examined 
within- (between-) individual variations of AI-LOC 
and trust in AI. One-way analysis of variance 
(ANOVA) with random effects revealed that 21.041% 
and 18.631% of the variance in AI-LOC and trust in 
AI were explained by individuals (computed from the 
intercept variance; cf. null models [Models 1 and 5] in 
Table 2). The results consistently indicated that 
experience positively influences trust in AI (minimum 
coefficient = .105, p = .007) and AI-LOC (minimum 
coefficient = .071, p = .043). Regarding the variance 
of trust in AI and AI-LOC, 21.997% and 21.311%, 
respectively, are explained by experience and 
individual demographics (Models 2 through 4 for trust 
in AI and Models 6 through 8 for AI-LOC in Table 2). 
The results highlight the heterogeneity across 
individuals and the dynamics of AI-LOC and trust in 
AI over time, i.e., the primary assumptions of our 
research. The results (Model 4) indicate that decision 
performance significantly relates to trust in AI 
(coefficient = .094, p = .028), supporting H1-1. 
However, it did not influence AI-LOC (coefficient = 
-.060, p = .191). The results indicate that when 
individuals achieve higher performance, they increase 
their trust in AI but do not attribute the performance to 
AI. These results support H1-2. 

Figure 2 displays the results of a cross-lagged 
model that specifies the relationships among focal 
variables over time. The fit statistics for the model, χ2 
(37) = 72.467, CFI = 0.935, RMSEA = .064, and 
SMSR = 0.050, confirmed a good fit with the data. 
Hence, we proceeded to test the structural model. 
After accounting for the covariates, AI-LOC in session 
1 was positively related to continued AI use in session 
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2 (coefficient = .033, p = .016), and a significant 
relationship was also found between sessions 2 and 3 
(coefficient = .027, p = .013). However, trust in AI in 

session 1 (2) was not related to continued AI use in 
session 2 (3). These results provide evidence to 
support H2-1 and H2-2. 

Table 2. HLM Results 
Dependent Variable: 
Trust in AI  

Model 1 Model 2 Model 3 Model 4 
Coef. SE p-value Coef. SE p-value Coef. SE p-value Coef. SE p-value 

(Intercept) 3.582 .044 .000 3.527 .257 .000 3.410 .290 .000 3.463 .292 .000 
Experience 

   
.153 .032 .000 .153 .032 .000 .105 .038 .007 

Major 
   

-.011 .020 .573 -.010 .020 .634 -.009 .020 .657 
Job 

   
-.024 .019 .211 -.019 .019 .318 -.019 .019 .323 

Age 
   

.026 .033 .421 .030 .035 .394 .031 .035 .377 
Gender    -.106 .094 .261 -.095 .095 .315 -.091 .095 .338 
PreFoc 

      
-.233 .120 .053 -.301 .124 .016 

PreLoc 
      

-.055 .135 .685 .037 .142 .797 
AI type 

      
.174 .128 .175 .218 .130 .094 

Decision Performance 
      

   .094 .043 .028 
AIC 1606.025 1613.667 1622.306 1623.943 
BIC 1624.095 1654.259 1676.375 1682.499 

logLik -799.012 -797.834 -799.153 -798.971 
Dependent Variable: 
AI LOC  

Model 5 Model 6 Model 7 Model 8 
Coef. SE p-value Coef. SE p-value Coef. SE p-value Coef. SE p-value 

(Intercept) 2.748 .048 .000 2.608 .277 .000 2.789 .314 .000 2.755 .314 .000 
Experience    .071 .035 .043 .071 .035 .043 .101 .042 .016 
Major    .036 .021 .091 .034 .022 .116 .034 .021 .119 
Job    -.024 .020 .245 -.018 .021 .375 -.018 .021 .370 
Age    -.035 .035 .314 -.059 .038 .123 -.060 .038 .117 
Gender       .107 .102 .297 .105 .102 .306 
PreFoc       -.170 .129 .191 -.126 .133 .343 
PreLoc       -.052 .146 .722 -.109 .152 .472 
AI type       -.100 .138 .469 -.129 .139 .356 
Decision Performance          -.060 .046 .191 

AIC 1678.253 1703.357 1712.589 1717.214 
BIC 1696.323 1743.949 1766.658 1775.770 

logLik -835.126 -842.678 -844.294 -845.607 
PreFoc (Previous Year Credit Score of Focal Company), PreLoc (Previous Year Average Credit Score of Local Companies) 

 
Chi Squared = 72.467 (df = 37); CFI = .935; RMSEA = .064; SRMR = .050 

Figure 2. Cross lagged Model Results 
 

6. Discussion and Conclusion 

6.1. Discussion 

This study identifies an egocentric and dynamic 
coping strategy when individuals leverage their 
decision-making with AI advice. Hence, trust in AI 
may not play an important role in enhancing 
subsequent AI use, while AI-LOC both positively and 
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consistently affects AI use over time. The results can 
help answer the following three questions (detailed 
below), which contribute to constructing a deeper 
understanding of AI use behaviors based on 
attributional mechanisms. 

How do individuals ascribe AI responsibility? 
Researchers have highlighted the concept of 
responsible AI [17, 19, 45], which plays a fundamental 
role for building trust [6, 13]. In this regard, our 
longitudinal investigation provides preliminary 
evidence on the mechanism of trust formation and 
responsibility in the AI context based on attribution 
theory. It also identifies a new concept of AI-LOC. By 
doing so, this study illuminates how individuals 
attribute decision performance when employing AI 
advice. AR-HLM results show that people build AI-
LOC and trust in AI over time. Interestingly, after 
recognizing outcomes and evaluating the causes [37], 
people do not attribute their outcomes to AI despite 
their increasing trust in AI. These results demonstrate 
that assigning responsibility may not be error-free 
[11]. Such biased perceptions may distort the 
perception of performance benefits from AI. 

Though the HLM results show the relationships 
over the three sessions, the CL-SEM results highlight 
the distinct impacts of decision performance on AI-
LOC and trust in AI within the sessions. As Figure 2 
demonstrates, when we scrutinized the CL-SEM 
results, decision performance negatively affected AI-
LOC only in session 1 and positively influenced trust 
in AI only in session 3. These findings indicate that 
individuals may initially attribute their performance to 
themselves rather than to AI, showing a self-serving 
bias. However, they may realize they have less control 
over decision contexts and begin attributing their 
performance to AI, which helps build trust in AI over 
time. A correlation between AI-LOC and trust in AI 
was not significant in sessions 1 and 2 but became 
significant (r = .164, p < .05) in session 3. These results 
further support the notion that these two psychological 
constructs can be distinct and be developed differently 
over time. These demonstrate that attribution theory 
may indeed have great potential in revealing a new 
mechanism of responsible AI research (e.g., [6], [13]). 

How does trust in AI impact AI use? A dominant 
view in this stream of research on trust in AI has been 
that if users successfully complete a task with a certain 
technology, they are likely to build trust and use that 
same technology again in the future [2, 4, 21]. Our 
research extends this stream of studies by 
demonstrating that individuals’ trust in AI tends to 
show a dynamic pattern over time [35], and its 
outcome behaviors may arise from egocentric 
reasoning [14, 39]. Thus, even though they trust AI 
and intend to accept the inherent vulnerability of 

taking its advice based on their trust, individuals may 
still evaluate both the potential outcomes of their trust 
and the responsibility for the outcomes [13]. 
Therefore, researchers should focus on the dynamic 
coping strategies employed over time when 
individuals make decisions using AI advice to better 
understand the roles of trust in AI and its (continued) 
use (e.g., [42]). This issue is particularly important in 
decision contexts where correct answers can only be 
stochastically expected because users are at risk of 
incorrect decisions. 

How does AI-LOC enhance AI use over time? 
This study identifies the new concept of AI-LOC. AI-
LOC is an external LOC and reflects an individual’s 
belief about the degree to which AI determines 
decision performance. This, in turn, tends to be 
developed in parallel with trust in AI in their 
attribution processes. The results indicate that AI-LOC 
tends to increase future use behavior. Similar to the 
findings about the relationship between engagement in 
the decision process and outcome responsibility 
reported in attribution studies (e.g., [13], [14], [21]), 
when individuals perceive that AI is responsible for 
their performance outcomes, they may become 
disengaged in the decision processes. This could be 
because individuals may perceive that their 
capabilities cannot outweigh AI accuracy. Thus, their 
dependence on AI advice may increase in 
discretionary decision-making contexts. That is, if 
users realize that AI is better at making credit rating 
decisions, they may perceive their aptitude in 
performing the tasks to be lacking (e.g., “I’m not good 
at making credit scores” in this research context). In 
turn, they are more likely to disengage cognitively 
from the tasks while increasing their dependency on 
and continued use of AI. Therefore, our results 
contribute to contemporary explainable AI research 
[13, 33] in that when decision-makers recognize that 
the cause of their experienced outcome is controllable 
by AI and is stable, their perception of AI-LOC may 
be an important determinant of AI use behaviors, even 
without losing trust in AI.  

6.2. Limitations & Directions for Future 
Research 

As with other research, this study has several 
limitations. First, we administered a single item to 
measure AI-LOC. Hence, this paper is limited in fully 
identifying its psychometric properties. Future studies 
must delve into AI-LOC’s psychological nature as a 
part of the external LOC. Second, we argued that 
individuals may disengage from their decision-
making, which can increase their dependence on AI 
advice. If so, an area of further research is whether AI 
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use can increase automatic cognitive processes. If this 
is the case, users’ learning about leveraging AI advice 
may facilitate but limit their learning about tasks 
(credit ratings in this study). Future studies must delve 
into the cognitive processes that combine learning and 
attribution, which can offer unique aspects of AI-
assisted decision-making. 

7. Conclusion  

This research demonstrates that employees’ daily 
decision-making events can lead to the emergence of 
divergent beliefs in and attitudes toward AI over time. 
In this context, organizations may expect that accurate 
AI can help employees improve decision performance 
and increase their initial trust in AI, enhancing their 
subsequent AI use. The results uncover that the 
implementation strategy based on such expectations 
may not always occur. Instead, while attributing the 
decision accuracy to AI and building trust, employees 
may disengage in the decision processes. Hence, 
organizations must highlight who is responsible for 
decision outcomes so that employees are aware of this 
when using AI to make decisions. 
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