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Abstract

Personalized healthcare powered by machine
learning (ML) is at the forefront of modern medicine,
promising to optimize treatment outcomes, reduce
adverse effects, and improve patient satisfaction.
However, simple ML models generally lack
the complexity to accurately model individual
characteristics, while powerful ML models require
large amounts of data, which are often unavailable in
the healthcare domain. We address this problem with
cluster-level personalization. In this method, similar
patients are grouped into clusters and a local ML
model is trained for each cluster. Since the amount of
patient data to train ML models naturally decreases for
each cluster, we introduce a novel objective function
called “coupling” that allows information to be
shared between clusters, so that smaller clusters can
also benefit from information from larger clusters,
thereby improving patient outcome prediction. Our
method provides a compromise between a single global
model for all patients and completely independent
local cluster models. We show that coupling leads to
statistically significant improvements on a simulated
and a real-world dataset in the context of diabetes.

1. Introduction

Personalized healthcare has gained significant
attention in recent years as an approach to tailor medical
treatments based on individual patient characteristics,
genetic information, and lifestyle habits [1, 2].
This approach aims to optimize treatment outcomes
and minimize adverse effects, ultimately leading
to a higher quality of care and better patient
satisfaction. Personalized healthcare is becoming
increasingly feasible due to advances in genomics,
data analytics, but also due to the development of

technologies such as smart wearables which give more
personalized information about patients [3, 4]. Besides
these developments, training of ML models that perform
accurately on a personalized level is difficult. One
of the most pressing issues is the lack of large-scale
and diverse data for training these ML models [5].
Collecting such data is often challenging due to
privacy concerns, limited access to patient records, or
incompatible data sources [6].

In general, there are two ways to develop ML models
to make predictions on a personalized level. First, very
powerful and complex ML models can be trained which
can accurately model individual’s characteristics [7, 8].
To achieve this, these models require large amounts of
diverse patient data, a condition that’s often difficult to
fulfill. The second approach is to train ML models for
each individual [9]. While this approach naturally leads
to a high degree of personalization, it is difficult to train
a robust ML model due to only few and homogeneous
datapoints available. Transferring information from
one patient to another could potentially mitigate this
challenge. However, the question remains from which
patients the information should be transferred.

In response to these challenges, a promising
approach emerges in the form of cluster-level
personalization [10, 11]. Instead of building ML
models that exclusively rely on individual or the
whole set of datapoints, this approach groups similar
datapoints or, in the context of medicine, patients into
clusters and creates a shared machine learning model
for each cluster [10]. To this end, we name these
models (local) cluster models. These models allow
us to leverage data from multiple patients who share
similar characteristics, thereby substantially enhancing
the available data for model training. It also enables
early reliable predictions for new patients based on their
cluster membership.

However, this approach must find a balance between
between-cluster heterogeneity and within-cluster
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homogeneity. By doing so, we leverage the
shared characteristics within each cluster while
still recognizing and utilizing the distinct variations
between different clusters [10]. This balance ensures
that the unique characteristics of each patient are
considered, thereby moving towards personalized care
while addressing the limitations of individual-level data
scarcity. As such, we attempt to answer the following
overarching research question: How can personalized
healthcare be realized through cluster-level learning?

This paper aims to make three key contributions
to the field of personalized healthcare and machine
learning.

1. We propose coupling, a novel objective function
for training neural networks on varying clusters.1

By incorporating the coupling mechanism to
train local cluster models, we manage to exploit
the heterogeneity between clusters for precise
model training, which results in more robust and
accurate models.

2. We use both a simulated dataset and a real-world
dataset in the context of diabetes to verify our
approach. We study in depth, how clustering can
lead to improved predictive performance, both for
independent and coupled cluster models.

3. We discuss the generality of our approach by
indicating that it can be applied to any neural
network architecture, from simple feed-forward
networks to more complex structures like
recurrent neural networks, convolutional neural
networks, or transformers.

We find that coupling leads to statistically significant
improvements ranging between 0.6% and 7.0% lower
mean squared error. The advantage of coupling was also
evident in the cluster-specific performance: the coupled
model consistently performed better in smaller clusters.
We also find that coupling can lead to the behavior of a
single global model, or independent cluster models. We
show that we can achieve both behaviors by setting the
regularization strength for our coupling approach.

Our work is relevant for healthcare organizations
in multiple ways. First, in the realm of chronic
disease management, such as diabetes, cardiovascular
diseases, and mental health disorders, our approach
can aid in developing precise treatment plans. Second,
healthcare providers could effectively predict disease
progression based on a patient’s cluster, enabling
proactive management of chronic conditions. This could
lead to fewer hospital admissions, decreased healthcare

1All code will be made available at https://github.com/
MathiasKraus/coupling-neural-networks.

costs, and improved patient quality of life. Third,
pharmaceutical companies could use this method to
conduct more efficient clinical trials. By identifying
clusters of patients who are likely to respond similarly
to a drug, researchers could better target their trials,
reducing the time and costs associated with bringing a
new drug to market. Fourth, healthcare policymakers
can use this method for population health management.
By identifying clusters of individuals who share certain
characteristics and health outcomes, policymakers can
tailor interventions at a community level, potentially
reducing disparities in health outcomes among different
population groups. Finally, our approach is also
suitable for collaborative data usage by transferring
information between naturally existing patient clusters,
e.g., data from different hospitals. Since no raw data
is exchanged between the clusters, coupling helps to
address the problem of data scarcity and homogeneity
while ensuring data privacy.

The remainder of the paper is structured as follows.
Section 2 gives an overview over related literature from
the fields of personalized healthcare, federated learning,
and cluster-and-predict ML models. Section 3 describes
our novel algorithm mathematically. Section 4 describes
the way in which we simulated our dataset for glucose
management. Section 5 introduces our evaluation
strategy and Section 6 compares our approach against
other, global, or fully decentralized methods, and
Section 7 discusses our findings.

2. Background

This research lies at the intersection of personalized
healthcare, federated learning, and cluster-and-predict
models. In the following we introduce the related work
in the respective fields.

2.1. Personalized Healthcare

Personalized healthcare is an approach that
takes into consideration individual differences when
providing medical treatment [1, 2]. The ultimate aim
is to offer the right treatment to the right patient at
the right time, based on a detailed understanding of
their unique characteristics, such as genetic makeup,
lifestyle, and environment [12]. By tailoring treatments
to individuals, personalized healthcare aims to improve
the effectiveness of care.

A major component of personalized healthcare is
predictive analytics [5]. Predictive analytics utilizes
machine learning models to predict patient outcomes
based on historical data. These approaches are
becoming increasingly feasible due to advances in
genomics, data analytics, and other technologies such
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as smart wearables which give more personalized
information about patients [3]. However, despite
its potential, personalized healthcare is still in its
infant stages. One key challenge is the need for
large and diverse datasets to train accurate predictive
models. Moreover, a significant variability exists
between patients, adding another layer of complexity
which a single, global machine learning model often
does not capture.

2.2. Federated Learning

Federated learning, a distributed machine learning
approach, offers a promising solution to the data scarcity
problem [13, 14]. By enabling the training of machine
learning models on decentralized data sources, federated
learning allows for the creation of more robust models
while maintaining patient privacy. Instead of sharing
raw patient data, model updates are shared among
participating devices, which are then aggregated to
improve the global model [15]. This method not
only alleviates privacy concerns but also enables the
utilization of diverse and large-scale data, which is
crucial for the development of accurate personalized
treatments [16].

Our coupling algorithm can be seen as an adaption
of the traditional federated learning algorithm [17].
Each cluster trains a local ML model on its centralized
data corpus and then shares the model parameters
with the other clusters, which incorporate the obtained
parameters into the training of their local model. In this
way, each cluster benefits from the knowledge gained in
the other clusters while no raw data is shared between
clusters. In the field of federated learning, a related idea
has been implemented using a global model that shares
information with the local cluster models to increase
robustness [18]. In contrast, we do not rely on a
global model and directly share parameters between the
clusters (decentralized approach).

2.3. Cluster-and-Predict Models

Cluster-and-predict ML models are a class of
machine learning algorithms that combine the strengths
of clustering techniques and predictive models [19,
11]. These models aim to identify and leverage the
underlying structure in the data, segmenting it into
distinct groups, or clusters, based on the similarity of
feature values. After the data is partitioned, a predictive
model is trained separately for each cluster, accounting
for the unique characteristics and patterns specific to
that group. This approach is particularly effective when
the data exhibits significant heterogeneity or when there
are interactions between the features that can be better

captured by dividing the dataset into homogeneous
subgroups. By training separate models for each cluster,
cluster-and-predict ML models can improve the overall
prediction performance, providing a more accurate and
nuanced understanding of the data [10, 19].

One notable example of a cluster-and-predict ML
model is the logit leaf model, which combines decision
trees and logistic regression [10]. In this approach,
a decision tree is first used to split the feature space
into clusters based on specific criteria or thresholds.
The tree structure enables the model to handle complex
interactions between features and identify distinct
regions in the feature space. Once the clusters are
formed, a logistic regression model is trained for each
leaf node in the decision tree. By fitting a separate
logistic regression model for each cluster, the logit leaf
model can capture the unique patterns and relationships
within each group, leading to more accurate predictions
than a single global model [10].

Although these models have shown strong predictive
performance, they have a major drawback of not fully
exploiting the information provided by the dataset. This
is because the feature space is split into disjoint clusters
i.e. small clusters with very little data disregarding the
information gained in other clusters.

As a remedy, we propose a novel approach which
clusters the feature space, but allows information to pass
between the clusters. We describe this approach in the
following.

3. Method

This section presents a novel approach for
combining clustering and prediction within a
single framework, building upon the concept of
cluster-and-predict ML models. Figure 1 illustrates our
setting. Here, n = 10 patients are clustered into three
groups based on their patient data. For each group, we
want to train a cluster-level ML model. In prior work,
each group trained an individual cluster-level ML model
or a global ML model (ignoring the groups). In contrast,
our approach allows to share information through a
novel objective function designed to encourage similar
patient behavior across clusters. We call this approach
“coupling” since the local cluster models are not
entirely independent but rather share information. This
design resembles federated learning, where clusters act
as independent data sources that exchange knowledge
gained from their data.

3.1. Clustering

The clustering phase can utilize various clustering
algorithms or even expert knowledge. In our case, we
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Figure 1. Illustration of our approach with three

clusters of patients, where each cluster has their own

cluster-level ML model that is connected to share

information with other models.

opt for the widely-used k-means clustering algorithm
due to its simplicity and effectiveness in partitioning the
data into meaningful groups [20]. By dividing the data
into clusters, we can identify groups of patients with
similar behavior, laying the foundation for personalized
predictive models in the next phase [21]. Note that
clustering algorithms require access to the entire data
space, thus privacy-preserving methods would require
different clustering based on, for example, expert
knowledge.

3.2. Prediction

For the prediction phase, we employ a specialized
neural network architecture. Our key contribution lies in
proposing coupling, a new objective function that seeks
to capture similar patient behavior across clusters.

Mathematically, for patient information
X1, . . . , Xm for m clusters that can be used to
predict the corresponding target values y1, . . . , ym, we
initialize m feed-forward neural networks f1, . . . , fm
which include parameters θ1, . . . , θm (also known as
weights). Thus, a prediction within cluster j can be
computed through fj(Xj , θj). In case of a regression
task, one commonly optimizes the parameters such, that
the mean squared error between the prediction and the
target values is minimized, i.e.,

min
θj

Lj = min
θj

(
fj(Xj , θj), yj

)2

, (1)

where Lj is also known as the loss for cluster j.
For all clusters, we can define the optimization

problem

min
θ1,...,θm

m∑
j=1

Lj , (2)

which sums up the losses for all clusters. Note that θj
can only influence the objective Lj and no other term,
thus θj and θi are completely independent from each
other for i ̸= j and no information is passed between
the cluster models.

As a remedy, we propose the coupling of the cluster
models. This allows the models to stay independent,
i.e., between-cluster heterogeneity can be exploited to
train precise cluster models, but information can be also
shared. Figure 2 illustrates this idea.

Mathematically, we extend the optimization problem
Equ. (2) through a regularization term,

min
θ1,...,θm

m∑
j=1

Lj + α

m∑
i=1

m∑
j=1

(
θi − θj

)2
︸ ︷︷ ︸

Lcouple

,
(3)

where (θi − θj)
2 measures the distance between

corresponding parameters from cluster i and j and
punishes high divergence. α denotes the regularization
strength. Thus, for a large regularization term α, the
cluster models tend to become very similar, as (θi−θj)

2

adds the highest weight to the overall objective. For
a small regularization term, the cluster models tend to
stay more independent from each other. As a result, our
method offers several benefits:

Robustness. Clusters with few data points can still
train reliable ML models, as information from other
clusters contributes to stabilization.

Improved prediction performance. Each cluster
trains its local cluster model, moving towards better
prediction for personalized healthcare.

Interpretability. The coupling of cluster models
enhances interpretability by allowing for an intuitive
understanding of how different clusters relate to each
other by observing shared parameters across models.

Cold start problem mitigation. Our method
addresses the cold start issue, where model performance
is generally poor until a sufficient amount of data is
collected from a patient. In our case, the patient’s
cluster membership can already enables good model
performance.

Generality. Our approach is general and can be
applied to any neural network architecture. Although
we use a simple feed-forward neural network in our
case, more complex architectures such as recurrent
neural networks, convolutional neural networks, and
transformers can be employed directly.

In conclusion, our method extends the
cluster-and-predict ML models by incorporating a
coupling mechanism that facilitates information sharing
among local cluster models. Our approach promotes
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Coupling 

Sharing parameters with others Adding coupling loss to local loss

Figure 2. Illustration of our coupling approach. Parameters θ0, θ1, θ2 define the local cluster models which are

then shared with others to compute the coupling loss which is then added to the local cluster loss. By doing this,

information can be shared between the individual models.

robust, personalized predictions, addresses the cold
start problem, and offers a general solution applicable
to various neural network architectures.

4. Data Simulation

In the context of diabetes management, effective
insulin treatment is critical to maintaining glucose
levels within a healthy range and preventing long-term
complications [22, 4]. Personalized insulin treatment
plans can lead to better glucose control, reduced
risk of complications such as hypoglycemia and
hyperglycemia, and improved overall quality of life
for patients [23]. However, achieving this level
of personalization requires continuous monitoring of
glucose levels and the development of predictive models
that can accurately estimate the effects of insulin on
individual patients.

In the following, we describe the process to create
simulated data for diabetes management in order to
evaluate our proposed algorithm. The simulation
resembles the case of diabetes management in which
medical devices should accurately forecast the glucose
level of patients (vector y) using six variables that
represent patient information (matrix X). The method
leverages clusters, which represent groups of patients
with similar behavior within the group but different
behavior between groups. In this simulation, the future
glucose level should be influenced by the following six
variables.

Insulin. Insulin is a hormone that helps regulate
glucose levels in the blood by allowing cells to absorb
and utilize glucose for energy. It represents the
treatment which is generally optimized in order to
control the glucose level.

Body-Mass-Index (BMI). BMI is a measure of
body fat based on height and weight, which can impact

how effectively the body processes glucose. Higher
BMI values are often associated with increased insulin
resistance, making it harder for the body to maintain
healthy glucose levels.

Age. As people age, their body’s ability to
process glucose can decrease. Factors such as reduced
muscle mass, changes in hormone levels, and decreased
insulin sensitivity can contribute to age-related glucose
fluctuations.

Gender. Men and women may have different
responses to insulin and glucose metabolism due to
hormonal differences and body composition.

Carbohydrates. Carbohydrates are a primary
source of glucose. Consuming carbohydrates raises
blood glucose levels.

Sports Activity. Engaging in sports or physical
activity generally can lower blood sugar levels by
increasing the uptake of glucose by the muscles, which
use it for energy.

Algorithm 1 describes our data generation process.
At the beginning of the procedure, we define the
feature covariance matrix (Σ) to capture the correlations
among the independent variables. We then establish
the feature means (µj) and coefficients (βj) for each
cluster j. These means and coefficients represent the
unique characteristics of each cluster, allowing us to
differentiate between patient groups. Next, we assign
a cluster (ci) to each patient i. This assignment
determines which group a patient belongs to and affects
the relationship between the patient’s information and
their glucose level.

For each patient i in the dataset, we retrieve their
cluster assignment j and the corresponding coefficients
βj and feature means µj . We then generate the patient’s
information Xi by sampling from a multivariate normal
distribution with mean µj and covariance matrix Σ. This
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process ensures that the patient’s information correlates
with the other features and is representative of the
patient’s cluster. Finally, we calculate the glucose
level yi for each patient by taking the dot product of
their information Xi and the coefficients βj and adding
Gaussian noise.

Algorithm 1 Data Generation Process
1: procedure GENERATEDATA(n patients(np),

n clusters(nc))
2: Σ← Define feature covariance matrix
3: µj ← Define feature means, j = 1, . . . , nc
4: βj ← Define coefficients, j = 1, . . . , nc
5: ci ← Cluster assigment, i = 1, . . . , np
6: for each patient i in np do
7: j ← Cluster assignment of patient ci
8: Xi ∼ N (µj ,Σ)
9: yi ← Xi · βj + ϵ, ϵ ∼ N (0, σ)

10: return X , y

4.1. Sampling

In our simulation, we generate a total of 400
datapoints, with 200 datapoints allocated for training
and another 200 for testing. This division allows us
to evaluate the performance of our proposed algorithm
on unseen data, which is crucial in assessing its
generalizability and robustness.

We set the covariance matrix to

Σ =


1.0 0.3 0.1 0.0 0.4 −0.3
0.3 1.0 0.2 0.1 0.2 −0.5
0.1 0.2 1.0 0.0 0.1 −0.2
0.0 0.1 0.0 1.0 0.0 0.0
0.4 0.2 0.1 0.0 1.0 −0.1
−0.3 −0.5 −0.2 0.0 −0.1 1.0


and sample the feature means µj from U(−2, 2) and the
coefficients βj from U(0, 1.5). We sample the noise ϵ
from a standard normal distribution N (0, 1).

In real-world scenarios, it is common to observe a
skewed distribution of patients across different clusters
[24]. Some clusters may contain a majority of patients,
reflecting common patterns in patient behavior or
characteristics. To simulate this phenomenon, we assign
patients to clusters based on probabilities. Specifically,
we assign a probability of 0.1 to cluster 0, 0.3 to cluster
1, and 0.6 to cluster 2. This probabilistic assignment
means that the majority of patients will belong to cluster
2, mirroring the likely presence of large clusters in actual
patient populations.

While we initially assume the existence of three
clusters in our data, we do not restrict our analysis to this
assumption. To further validate the effectiveness of our
data generation process and the subsequent algorithm,
we also employ cluster detection algorithms, specifically
the k-means algorithm. This approach allows us to

verify the cluster assignments and the number of clusters
without making any prior assumptions.

4.2. Visualization

Figure 3 shows three clusters of patients generated
with our data generation process. We applied
Principal Component Analysis (PCA) to reduce the
dimensionality of the patient information (matrix X)
[25]. Upon visualizing the reduced dataset, we observed
distinct clusters formed by the different patients based
on their patient information. The PCA visualization
confirms the effectiveness of our data generation process
in creating a dataset that exhibits both intra-cluster
similarities and inter-cluster differences.
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Figure 3. Visualization of three clusters generated

with the data generation process. Dimensions are

reduced using principal component analysis.

5. Evaluation

In this work, we primarily focus on linear models,
which aligns well with the structure of our proposed
coupling model. This choice is also reflective of
the common practices within the field of diabetes
management, where linear models have been frequently
employed due to their interpretability and simplicity
[26]. In the following, we describe the baseline models,
our evaluation strategy, and the hyperparameter tuning.

5.1. Baseline Models

In order to evaluate the effectiveness of our proposed
method, we compare it against two baseline models.
The first baseline model is a global model that estimates
the glucose level for the entire dataset, ignoring the
presence of clusters in our data. This model serves as a
benchmark for a traditional, non-personalized approach
to glucose level prediction.

The second baseline model consists of local cluster
models, which are trained completely independently
from each other. This model represents a more
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personalized approach to glucose level prediction, as
it takes into account the unique characteristics of each
cluster. However, it does not incorporate any mechanism
for information sharing between clusters, which is a key
feature of our proposed method.

5.2. Evaluation Strategy

Our evaluation strategy is divided into two stages.
In the first stage, we evaluate the performance of the
baseline models and our proposed coupled model under
the assumption that the cluster assignments are known,
i.e., relying on an “oracle”. This stage allows us to
assess the effectiveness of our method in a controlled
setting, where the true cluster assignments are used to
guide the model training process.

In the second stage, we relax this assumption and
use the popular k-means clustering algorithm to predict
the cluster assignments of the patients. This stage
simulates a more realistic scenario, where the true
cluster assignments are not known a priori and must be
inferred from the data. By comparing the performance
of our method under these two different settings, we
can gain insights into its robustness and adaptability to
varying conditions.

The performance of the models is evaluated using
mean squared error (MSE) and mean absolute error
(MAE) on the test set. We repeat the whole pipeline
consisting of data generation, model training, model
evaluation, 100 times for each model. Furthermore,
we conduct a Wilcoxon signed-rank test to determine
whether any observed differences in performance
are statistically significant. Thereby, we compare
corresponding models (e.g., local and coupled models
for 2 clusters). This rigorous evaluation strategy ensures
that our findings are robust and reliable, providing a
solid basis for the potential application of our proposed
method in real-world diabetes management scenarios.

5.3. Hyperparameter Tuning

Given our choice of model architecture, the main
hyperparameter to tune is the regularization strength for
the coupling, denoted as α in our objective function.
To determine the optimal value for this parameter, we
employ a grid search strategy over a range of potential
values: [0.0001, 0.001, 0.01, 0.02, 0.05, 0.1, 0.5,
1.0, 10.0, 100.0, 1000.0]. The grid search allows us
to explore a wide variety of potential regularization
strengths, from very weak to very strong regularization,
to find the balance that promotes shared information
across clusters while allowing sufficient independence
for individual cluster characteristics.

We train our neural networks for a total of 1000

epochs. Based on our observations, this number of
epochs was sufficient for the models to fully converge,
ensuring that we’ve achieved a stable model that is
unlikely to improve further with additional training.
Adam is used as the optimizer with a learning rate of
0.004 [27].

Lastly, for more efficient training, we initialize the
weights of the cluster-level models with the weights
from a globally trained linear regression model. This
strategy leverages the knowledge from a preliminary
global model to provide a good starting point for the
individual cluster models, promoting faster convergence
and improving overall computational efficiency. Again,
it should be noted that similar to the clustering
algorithm, global model initialization requires access
to the entire data space, which is not a given in all
conceivable use cases.

6. Results

In the following, we present the results of our model
evaluations. In Table 1, we vary the cluster assignment
of patients using an oracle, i.e., the correct assignment of
each patient to the cluster that she was assigned to during
the data generation process (line 5 in Algorithm 1), or
a k-means clustering with different number of clusters.
The statistical tests are performed between the coupled
version and the corresponding fully independent, local
version of the models.

We find that a global model performs worst across
both MSE and MAE on our generated data. For perfect
assignment, we find that coupling improves the MSE
by 2.3 percent and the MAE by 0.9 percent. When
using k-means for assigning patients to clusters, we find
that coupling consistently outperforms the non-coupling
models for both MSE and MAE. Improvements range
between 0.6 and 4.0 percent.

We further observe that as the number of clusters
increases from 2 to 4, the performance of the local
model degrades gradually, with the MSE and MAE
scores increasing. This trend indicates the challenges
associated with creating effective local models when the
true cluster structure is not accurately captured and the
clusters become smaller and, thus, comprise less data to
train robust ML models.

Conversely, the coupled model maintains relatively
stable performance across different numbers of clusters,
demonstrating its robustness to changes in cluster
assignments.

6.1. Cluster Results Analysis

Table 2 provides the results for the MSE within
each cluster. Notably, cluster 0, which is the smallest,
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Model Cluster MSE MAE
Assignment

Global — 1.414 0.944
Local Oracle 1.147 0.853
Coupled Oracle 1.121*** 0.845***
Local k-means(2) 1.313 0.910
Coupled k-means(2) 1.305*** 0.908***
Local k-means(3) 1.329 0.914
Coupled k-means(3) 1.303*** 0.906***
Local k-means(4) 1.383 0.931
Coupled k-means(4) 1.330*** 0.915***
*** p < 0.01, ** p < 0.05, * p < 0.1

Table 1. Predictive performance of ML models for

the simulated dataset.

Model Cluster Cluster 0 Cluster 1 Cluster 2
Assignment MSE MSE MSE

Global — 2.028 1.546 1.239
Local Oracle 1.709 1.130 1.063***
Coupled Oracle 1.322*** 1.133 1.091
Local k-means(2) 1.967 1.344 1.181
Coupled k-means(2) 1.910*** 1.340 1.169**
Local k-means(3) 1.933 1.336 1.223
Coupled k-means(3) 1.822*** 1.311*** 1.179***
Local k-means(4) 2.000 1.386 1.272
Coupled k-means(4) 1.781*** 1.328*** 1.187***
*** p < 0.01, ** p < 0.05, * p < 0.1

Table 2. Predictive performance of ML models for

individual clusters.

consistently shows significantly better results when
coupling is applied, which indicates the effectiveness of
the coupling approach in situations where the number of
patients in a cluster is limited.

This is also in line with the finding that coupling
becomes particularly important when the number of
clusters is higher (e.g., k-means(3) or k-means(4))
which, again, naturally leads to less patients within each
cluster. The coupled model consistently outperforms
the local model under these conditions, showing
significantly lower MSE values in all clusters.

6.2. Regularization Strength Analysis

Figure 4 presents the results for varying
regularization strengths. The versatility of the coupled
approach becomes apparent from these results. For
instance, when a very high regularization value is used,
the coupled model tends to behave similarly to the
global model, with comparable MSE scores. This can
be explained by the fact that the high regularization
forces the parameters of the local models to adhere
closely to each other, effectively producing a model that
generalizes the data in a similar manner to the global
approach.

On the other hand, when a very low regularization
value is utilized, the coupled model shows behavior

more akin to the local model, reflecting equivalent MSE
scores. This is due to the low regularization allowing for
the local cluster models to operate more independently
from each other, which is a defining characteristic of the
local approach.
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Figure 4. Mean squared error for varying

regularization strengths. x-axis is in log scale.

6.3. Real-World Data

In the following, we use a real-world diabetes dataset
[28]. The dataset includes ten baseline variables, age,
sex, body mass index, mean blood pressure, and six
blood serum measurements for 442 diabetes patients, as
well as the response of interest, a quantitative measure of
disease progression one year after baseline. We follow
the same evaluation as before (see Section 5.2). Since
we now do not know the true cluster assignment, we
cannot evaluate the oracle models, but only models that
use k-means clustering.

Table 3 shows our results. For two clusters, we
find that independent cluster models slightly outperform
coupled models. While the improvement is not
significant for the MSE (p=0.80), it is on the MAE
(p=0.03). However, for three and four clusters, the
independent cluster models deteriorate in performance
while the cluster models keep the performance or even
improve slightly. We find the largest improvements
for the MSE of 7.0 percent for four clusters. This
observation is in line with our previous finding in that
the benefit from coupling is especially pronounced for
small clusters of data.

7. Discussion

We attempted to answer the overarching research
question: How can personalized healthcare be realized
through cluster-level learning? Our research provides
valuable insights into personalized healthcare,
demonstrating that cluster-level personalization,
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Model Cluster MSE MAE
Assignment

Global — 0.509 0.577
Local k-means(2) 0.502 0.568**
Coupled k-means(2) 0.503 0.571
Local k-means(3) 0.515 0.574
Coupled k-means(3) 0.502*** 0.570***
Local k-means(4) 0.538 0.585
Coupled k-means(4) 0.503*** 0.570***
*** p < 0.01, ** p < 0.05, * p < 0.1

Table 3. Predictive performance of ML models on

our real-world dataset.

supported by our novel coupling function, can
improve prediction outcomes for individual patients
while benefiting from shared information across
clusters. This finding bridges the gap between global
and local machine learning models, offering an
effective compromise that preserves data privacy while
optimizing prediction outcomes.

Traditionally, most machine learning models in
healthcare have been global [7, 8], presuming a
single model can capture the inherent complexity and
diversity of individual patients. These powerful models,
though potentially able to handle this complexity,
require large datasets and often lack transparency and
robustness, limiting their suitability for many healthcare
applications [29].

In contrast, local machine learning models, which
are trained exclusively on data from individual patients,
offer higher levels of personalization but may suffer
from limited access to data, negatively affecting their
performance [9]. In this regard, our coupling approach
serves as an intermediary, allowing patient-specific
models to benefit from shared information across
clusters.

This approach also offers significant advantages
from a federated learning perspective. Coupling can
enhance the performance of local models trained on
private data without the need to share sensitive patient
data across different models [18]. In our method,
only model parameters are shared, thus maintaining the
privacy of the data within each cluster.

7.1. Limitations

While our research yields promising results, we want
to discuss several limitations. First, our main study
relies on simulated data. While this has allowed us
to take a closer look into the model performance, it
can not represent the complexity of real-world data.
Second, our study primarily focuses on linear effects
and the potential of coupling within a neural network
context. Hence, the outcomes might differ when applied

to other model architectures. Third, our research utilized
k-means clustering to create patient clusters. While
this method was effective for our needs, alternative
clustering methods could yield different results and
potentially improved predictive performance. Finally,
our current method assumes all model parameters are
coupled with equal strength. Although this approach
showed efficacy in our study, it might not optimally
capture the characteristics of individual patients in all
healthcare domains.

7.2. Future Work

Looking forward, our research opens several
exciting avenues. One of the compelling aspects of
our research is its applicability across diverse data types
and machine learning model architectures. While we
have demonstrated the efficacy of our approach within
the context of diabetes, the potential applications of
our method extend beyond this specific area. The
cluster-level personalization could potentially enhance
predictive modeling in any healthcare domain or even in
other sectors, such as marketing where personalization
is crucial for decision-making and outcomes [10, 30].

On a methodological level, the coupling function
could be extended to a variety of model architectures,
including deeper neural networks and more complex
structures like recurrent neural networks, convolutional
neural networks, or transformers. These architectures
might be more capable of handling complex and
high-dimensional data. Additionally, future studies
could investigate alternative clustering methods such
as decision tree-based clustering [10] or hierarchical
clustering. These methods might create more natural
and meaningful patient clusters. Finally, future
iterations of our method could consider a sparse
coupling approach, where some parameters are kept
entirely independent while others are tightly coupled.

7.3. Conclusion

In conclusion, our work presents a novel method
of integrating individualized healthcare through
cluster-level machine learning models. The proposed
coupling function is an effective compromise between
global and local models, improving patient outcomes
prediction, enhancing robustness, and maintaining
data privacy. We look forward to the impact and
potential further advancements this research may bring
to personalized healthcare and machine learning.
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