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Abstract

This paper proposes a robust Multi-Agent
Reinforcement Learning (MARL) approach to optimize
the charge schedule and price offered by EV charging
stations competing to maximize profits, i.e. the
differences between the payments collected by the
charging stations and the electricity price set from a
distribution system operator. It is assumed that, to
prevent energy congestion on the distribution grid, each
charging station pays the locational marginal price
(LMP) of electricity to serve its customer, determined
to be the dual variable of the optimal power flow
(OPF) problem. Our proposed RL algorithm trains
multiple agents to make optimal charging and pricing
decisions at each time step, based solely on past event
observations. Additionally, the algorithm takes into
account the randomness caused by user behavior,
such as travel and wait times, and user flexibility.
We observe that, when they are profit maximizing,
competing agents vie for higher profits. This intense
competition can often lead agents to adopt inefficient
policies, mainly due to the disruptions caused by the
actions of their competitors. To address this issue, we
incorporate constant-sum game theory in the RL policy
training. This approach utilizes the minimax policy
gradient to maximize the reward of a robust agent,
while considering the worst-case scenarios created
by competing agents. Simulation results validate that
robust agents are capable of generating greater profits
than competing agents that do not undergo minimax
training and that their presence stabilizes the training.
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1. Introduction

The increasing popularity of electric vehicles
(EVs) has raised concerns about the additional power
grid infrastructure capacity required to serve them,
particularly in the case of uncoordinated EV charging
[1]. However, EV charging has a lot of spatio-temporal
flexibility and the EVs’ batteries can also be utilized
to provide grid services, potentially making the power
grid even more stable and secure through the use of
vehicle-to-grid (V2G) technology [2].

Figure 1. Parameters of Users DP function.

Figure 1 depicts the interconnection between
transportation networks and power grids, facilitated by
V2G technology. This technology enables EVs to return
energy to the grid, transforming them from merely
shiftable loads into distributed energy sources [3]. One
of the challenges is how to harness this flexibility.
Dynamic pricing and scheduling algorithms informed
by grid congestion have emerged as promising solutions
to incentivize peak shaving, or valley filling. Dynamic
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pricing allows charging providers to adapt prices for
end-users based on various factors such as demand, time
of day, availability of renewable energy sources and
price of electricity, which reflects the congestion on
the grid. The price posted would motivate end-users
to change their electricity consumption decisions in
response to financial incentives [4], [5]. In response
to a price signal, dynamic scheduling can enhance
grid reliability [6], reduce charging operational costs
[7], enable auxiliary services [8], and facilitate the
integration of renewable generation in commercial
microgrids [9], leading to a more efficient and
sustainable energy system.

In this work, we aim to solve the Charging Station
Dynamic Pricing and Scheduling (CSDPS) problem by
MARL in a competitive environment. In our model,
each EV selects a station for charging by comparing
a score that depends on various factors (e.g. price,
wait-time, travelling time to the charging station, etc.)
and charging requests may be continuously issued by
EV drivers at any time of the day. Several charging
stations are available to serve the EVs’ demand and
attract customers providing a competitive dynamic price
for the charge requested and an estimated waiting
time, that in turn affects each EV driver’s station
selection; the dynamic price is chosen to maximize their
operational effectiveness from a competitive market of
charging stations services. In particular, since the
stations’ available charging resources are limited, and
an EV’s charging process may occupy the charging spot
for several hours, the charging stations’ past pricing
incentive and scheduling decisions for a charging
request will have long-term effects on the future feasible
actions. To develop long-term optimal real-time pricing
policies in such a highly dynamic charging market
environment, it’s intuitive one could apply RL to solve
the CSDPS problem, optimizing a long-term business
profit goal.

In an urban area with a large number of available
charging stations, a centralized RL method that manages
the entire system using a single agent would be
unrealistic [10] and it is natural to envision market
forces at play for matching economically demand and
supply. To tackle the CSDPS problem, we present a
MARL approach, Minimax Multi-agent Twin Delayed
Deep Deterministic Policy (M3TD3), which draws
inspiration from the Twin-Delayed Deep Deterministic
(TD3) framework introduced in [11] and is inspired by
[12]. In our approach each charging station acts as an
independent agent. This approach enables the creation
of a scalable and efficient distributed multi-agent
management system, while also emphasizing the
robustness of each agent against perturbations caused

by competing agents. Reviews on cooperative and
competitive multi-agent learning have addressed these
challenges from a theoretical perspective [12]–[14].
Various techniques have been considered to improve the
robustness of the main agent, such as robust MARL
and adversarial perturbations. Inspired by competitive
multi-agent learning methods, this paper makes two
contributions.

• Our first contribution is adapting the robust
Deep Reinforcement Learning (DRL) called the
Minimax Multi-agent Deep Deterministic Policy
Gradient (M3DDPG) algorithm proposed in [12]
to the CSDPS. We train multiple agents to
optimize their charging and pricing decisions at
each time step. To address competition between
these agents, we have integrated constant-sum
game theory with RL policy training. Specifically,
we employ the minimax policy gradient technique
to maximize the reward of a robust agent, even
in the presence of worst-case scenarios created by
competing agents.

• We include market grid congestion signals
through Distribution Locational Marginal Prices
(LMPs) computed by a distribution system
operator (DSO) for each of the EV charging
stations involved, so as to ensure the high
efficiency and reliability of grid operations as
they serve the charging station demand. We
consider the presence of distributed renewable
energy resources and explore how they can reduce
the energy costs for the DSO and the EV charging
stations operators.

The remainder of this paper is structured as follows.
Section 2 introduces the level model for the charging
station, and introduces Markov Decision Processes in
this context. In Section 3, we model the distribution
power level using LMPs for EV charging stations.
Section 4 presents the robust M3TD3 reinforcement
learning framework for addressing the CSDPS problem.
To validate the proposed M3TD3 approach, we present
numerical results in Section 5. Finally, Section 6
concludes this paper.

2. Charging Station Agent Model

2.1. System Model

In this study, we examine the operation of multiple
EV charging stations agents (EV-CSA) over a time
horizon divided into T time slots. EVs generate
charging station demand at random times, following a
Poisson distribution. We denote by Rt, the set of EVs
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who just arrived at the charging station, Jt, the set of
EVs that are currently waiting to be charged, It, the set
of EVs who started charging at the beginning of time slot
t, andLt, the set of EVs that are currently being charged.
These four sets correspond to queues that are managed
on a First In First Out (FIFO) basis. At each time slot
t, the EVs that have been served will be departing from
the queue Lt. At the same time, when the queue Lt

has empty seats, cars from the waiting set Jt will move
to Lt. The new-arrival EV users Rt will move to the
waiting set Jt. When the chosen charging station is full,
EVs will be redirected to another station.

There is also a limit on both the charging set |Lt| ≤
Bc and waiting set |Jt| ≤ Bw. For all EVs i ∈ It,
let ti, τi, and di denote the time at which charging
begins (or when the contract is signed), parking time,
and charging demand, respectively. In particular, the
demand di must be satisfied before the departure of EV
i at time ti + τi that is also referred as the deadline. At
each slot t, a charging station determines the charging
rate of each EV i ∈ Lt, denoted as xit kWh. The
charging rates are constrained by

xmin ≤ xit ≤ xmax, t = 1, . . . , T, ∀i ∈ Lt (1)

ta,i+τi∑
t=ta,i

xit = di, ∀i (2)

where xmax (xmin) is the maximum (minimum)
individual charging rate and we will assume no upper
bound on the aggregate charging rate due to the limited
seats availability. Moreover, Eq. (2) ensures that the
charging demand, denoted as di, required by the EV
user i within the designated time window, starting from
its beginning charging time, ti, and concluding at its
departure time, ti + τi.

The CSA sets a dynamic charging price λi $/kWh
∀i ∈ It at time t for all EVs that start charging then.
Prices differ for EVs accepting contracts at varied times,
mirroring real scenarios where EV owners agree to listed
prices upon beginning to charge. We assume EVs are
price sensitive. In response to λi, an EV i ∈ It sets its
charging demand as di = Di (λi) kWh, where Di(·)
is the Price Demand (PD) function shown in Fig. 2.
Notably, if charging prices are high, EV users might
choose a different station, setting demand to zero. Thus,
for an elastic user i, Di(λi) is zero whenever λi exceeds
the threshold λi, which can be seen at 0.4, 0.5 and 0.7
$/kWh. At the same time, an inelastic user will have
a constant demand, independent of the price set by the
charging station.

Note that in Fig. 2, EV drivers are classified into
four different classes, with some being price-sensitive

and others not. The sensitivity to pricing is the first
source of randomness that must be taken into account
by our pricing and scheduling algorithm.

Figure 2. Demand price function for EV users.

2.2. EV User Model: Randomness of Arrivals

We define the time when the EV driver opts to charge
their vehicle by to, the time when it arrives at the station
by ta, and the time when it begins to charge by:

t =

≜ta︷ ︸︸ ︷
to + τr(to)+τ̂w(ta), (3)

where τr(to) is the time it will take the EV to reach
the CSA if the journey starts at to, and τ̂w(ta) is the
predicted waiting time at the car’s arrival at the EV CSA,
ta. In Fig. 1, the selection of the most cost-effective
charging station for EVs can be achieved by defining
a score function based on the charging price at time
t, the forecasted waiting time τ̂w(ta) of the charging
stations, and the travel time to reach each of the stations.
Travel times are determined by the distances from an EV
driver’s starting point to each of the charging stations.
The score function can be defined to incorporate these
factors:

scr = wp · λ̂t + wr · τr(to) + wt · τ̂w(ta), (4)

where λ̂t and τ̂w(ta) denotes the forecasted ground-truth
price λt and forecasted ground-truth waiting time
τw(ta). The weights wp, ww, and wt should be assigned
based on the driver’s priorities.

To forecast λ̂t and τ̂w(ta) one can use features that
describe the current state, such as current prices, waiting
times and departures of the charging station and apply
a regression algorithm of choice. In this paper we do
not focus on optimizing this prediction, but rather on
modeling the whole decision process.

2.3. Markov Decision Process

At the start of each time slot t, the CSA sets the
charging price and schedule based on observed past and

Page 3032



current events such as EV charging demand, departure
times, and electricity prices. This decision influences
future charging demands. Therefore, the optimal choice
is an MDP solution. For clarity in this subsection, we’ll
use simplified notations for a single agent, eliminating
the agent index k:

• St denotes the CSA’s system state at time t.

• At denotes the CSA’s action at time t.

• rt denotes the CSA’s reward function at time t.

System State: The state at time t is described by:

St =
(
{Jt,Lt}, {(d̃ti, τ̃ ti , λi),∀i ∈ Lt}

)
, (5)

where d̃ti and τ̃ ti are the residual charging demand and
parking time of EV i at time t.

Action and Transition Function: Based on St and
the observation of the real-time electricity price µt, the
charging station decides the charging price λt to the EV
drivers It and the charging rate of each EV xit for the
charging EV seats i ∈ Lt. As such, the action At at time
t is described by a high-dimensional vector, i.e.,

At = ({λi,∀i ∈ It}, {xi,t,∀i ∈ Lt}) (6)

Under the charging schedule xit, we have

d̃t+1
i = d̃ti − xit, ∀i ∈ Lt (7)

at the beginning of time slot t+1 and the initial residual
charging demand is Xi = Di(λi).

Meanwhile, the residual parking time decreases as
time increases from t to t+ 1, i.e.,

τ̃ t+1
i = τ̃ ti − 1, ∀i ∈ Lt (8)

where τ̃ t+1
i = 0 or d̃t+1

i = 0 indicates that EV i
departs. Thus, when the charging commences at time t,
the car will continue to charge either until t+ τi or until
the remaining charging demand is fully met, whichever
occurs first. A higher value of xmin guarantees that
the initial charging demand can be adequately met
within the specified charging deadline, t + τi. The
state transition function is referred to with the following
notation:

St+1 := T (St, At, It) (9)

where µt represents LMP at time t.

Reward Function and Decision Problem: The
reward function is the profit of the charging station, the
benefit of EV customers, the social welfare, etc. Without
loss of generality, we suppose that the objective is to
maximize the profit of the charging station. The reward
function observed by the charging station at time t is
the difference between the payment it collects and the
electricity bill it pays. That is,

rt (St, At) :=
∑
i∈It

λiDi (λi)− µt

P ev
t︷ ︸︸ ︷∑

i∈Lt

xit (10)

where µt denotes the LMP, while P ev
t represents the

electric demand to charge the vehicles, that couples the
EV charging stations decisions drawing power from the
same distribution network.

3. Power Network’s Level Model -
Multiagents

In this section, we will discuss multiple agents that
represent various EV charging stations, coupled with
distribution power grids. The distribution power grid
can be depicted as a graph G(N , E), where N denotes
the set of buses, and E denotes the set of distribution
lines. The set of EV charging stations connected to the
grid forms a subset of N , denoted by K ⊆ N with
cardinality |K| = K.

As illustrated in Fig. 1, the dynamic pricing from the
power grid is important to maintain power grid stability
and avoid demand congestion. For instance, if an EV
charging station agent (EV CSA) k ∈ K sets a lower
price, it may attract more customers and increase the
bus congestion in the vicinity of EV CSA k ∈ K.
Therefore, it becomes imperative to consider power
flow constraints. Locational marginal prices (LMP) can
signal EV CSA k ∈ K about the tightness of such
constraints on a certain bus. Each CSA will have to
charge higher prices due to high electricity costs and, in
turn, this will divert EV users to other charging stations.
Fig. 3 depicts the workflow connecting the EV-CSAs
and the distribution grid, illustrating how the LMP links
the DSO and EV-CSAs at time t.

To model power flow constraint congestion, we
utilize the AC OPF problem to calculate the LMPs for
each bus that connects a charging stations in the set
K ⊆ N , where N is the complete set of buses in the
grid. Let Y be the nodal admittance matrix, where
Ynm = Gnm + jBnm for line (n,m). Note that Gnn =
gnn −

∑
n ̸=m Gnm and Bnn = bnn −

∑
n̸=m Bnm.

min
∑
n∈G

Cn(PGn,t) + β
∑
n∈N

∣∣|Vn,t| − v0
∣∣2
2
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EVCS System Operator 

Step 3: EVCS system operator received 
the LMP 𝜇t from DGO and received the 

total charging demand                        and 
charging price λt   from the EVCS NN 
agent to compute the reward at time t.

Distribution Grid OperatorEVCS NN Agent 

Step 1: Agent provides the charging price  λt   
and xit  charging rates to EV drivers and the 
total charging demand                         to the 
distribution grid operator at time t.

NN outputs: 

λt  : the charging 
price for all EV 
drivers who 
arrive at time t.

xit  : the charging 
rate for EV 
driver i at time t.

Step 2: Distribution Grid Operator 
(DGO) receives the total charging 
demand                        from EVCS 
at time t. DGO calculates the 
locally marginal price (LMP)  𝜇t  to 

EVCS system operator at time t.
Pev
t = ∑

i

xit

Pev
t = ∑

i

xit Pev
t = ∑

i

xit

Figure 3. Flow of pricing information: Distribution Network and EV CSA.

s.t.PGn,t − P ev
n∈K,t − Pn,t =

∑
m∈δ(n)

ℜ
{
Y ∗
nmV ∗

m,tVn,t

}
,

QGn,t −Qn,t =
∑

m∈δ(n)

ℑ
{
Y ∗
nmV ∗

m,tVn,t

}
,

PGn,t ≤ PGn,t ≤ PGn , QGn,t
≤ QGn,t ≤ QGn

,

|Snm| = |Vn(V
∗
n − V ∗

m)Y ∗
nm| ≤ Smax

nm (11)

Vn ≤ |Vn,t| ≤ Vn, (12)

where where δ(n) is the set of neighboring buses of bus
n, G denotes the set of buses which have generators,
n ∈ K denotes the EV charging station that connects
with the nth bus of the power grid. Our optimization
problem involves two objectives. The first objective
aims to minimize the fuel costs, while the second
objective focuses on maintaining the voltage regulation.
To balance these two objectives, we introduce a constant
weight β. ℜ{·} and ℑ{·} denote the real and the
imaginary part of a complex number, respectively.
PGn,t, QGn,t, Pn,t, Qn,t represent the active and
reactive power at the bus n. Similarly, PGn

, Q
Gn

and

PGn
, QGn

correspond to the lower bounds and upper
bounds for the active and reactive power generation.
|Vn| corresponds to the voltage magnitude at bus n,
and Vn, Vn the associated lower and upper bounds. Let
v0 represent the desired voltage magnitude, which is
typically set at 1 per unit.

For simplicity, let ut denote the vector of all
control variables, including PGn

, QGn
, and φt denote

the vector of all state variables, including the voltage
magnitude and angle at every bus and phase. We define
Hh(φt,ut) ≤ 0 to represent the inequality constraints
in (12). The Lagrangian function of the formulated AC

OPF problem can be written as:

Lag(φt,ut,µt,νt,ρt) =
∑

Gn∈G
Cn(PGn,t)−

∑
n∈N

µn,t

(
PGn,t − P ev

n∈K,t − Pn,t −
∑

m∈δ(n)

ℜ{Y ∗
nmV ∗

m,tVn,t}
)

−
∑
n∈N

νn,t

(
QGn,t −Qn,t −

∑
m∈δ(n)

ℑ{Y ∗
nmV ∗

m,tVn,t}
)

+
∑
h∈H

ρh,tHh(φt,ut) (13)

where µn,t and νn,t are the Lagrange multipliers
corresponding to the active power balance equation, and
the reactive power balance equation. ρh is the Lagrange
multiplier associated with the inequality constraint
Hh(φt,ut) ≤ 0. From the optimal solution (φ∗,u∗)
of the AC OPF problem in (12), the LMP is:

µn,t =
∂Lag

∂P ev
n,t

= Lagrange Multiplier of bus n ∈ K

(14)
where µn,t represents the locally marginal price of bus
n ∈ K with an EV charging station connected. Recall
that the LMP µn,t determines the CSA reward (10).

4. Minimax Multi-Agent Twin Delayed
DDPG (M3TD3)

In this section we introduce the instance of M3TD3
algorithm we adapted to solve the CSDPS problem,
which is inspired by M3DDPG [12]. This algorithm
builds on top of MARL formulations, with the aim
of improving the robustness of the learned policies.
The M3DDPG approach has two main features. The
first one involves incorporating a minimax optimization
into the learning objective, drawing inspiration from
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game theoretical concepts. The second one is using
Multi-Agent Adversarial Learning (MAAL) techniques
to address computational intractability issues.

4.1. Preliminaries: Twin Delayed Deep
Deterministic Policy Gradient (TD3)

The TD3 method utilizes an actor-critic framework,
where the policy function’s parameters are updated
based on an approximate value function, known as the
critic [11]. The actor is a policy function πθ that is
parameterized by θ for action selection and the critic is
a state-value function Qξ, which is parameterized by ξ
and provides a critical evaluation of the actor’s chosen
action. Q-learning utilizes temporal difference learning
[15] to learn the value function, based on the Bellman
equation [16]. Deep Q-learning involves updating the
network through temporal difference learning, using a
critic network Qξ(S,A) to maintain a fixed objective y
over multiple updates:

y = r + γQξ(S,A), A ∼ πϕ(A|S), (15)

where actions are picked from a target actor network πϕ.

Target Networks: To enhance the stability of
deep reinforcement learning and minimize function
approximation errors, researchers commonly
incorporate target networks [11]. In our setup, we
utilize two critic networks, Qξ1 and Qξ2 , in conjunction
with two corresponding target networks, Qξ′1

and Qξ′2
.

The Clipped Double DQN algorithm [11] utilizes the
target networks by taking the minimum value estimate
between the two, as follows:

y = r + γmin{Qξ′1
(S,A), Qξ′2

(S,A)}. (16)

Critic Networks: The critic networks update their
parameters by:

ξj=1,2 ← arg min
ξj=1,2

1

N

∑
(y −Qξj=1,2

(S,A))2, (17)

where N is the batch size and y is calculated using the
target networks as defined in (16). Following the update
of the critic networks, the target networks’ weights are
adjusted at each timestep by a constant factor χ applied
to the respective critic network’s weights [11]:

ξ′1 ← χξ1 + (1− χ)ξ′1, ξ
′
2 ← χξ2 + (1− χ)ξ′2. (18)

where the critic networks with parameters ξ1 and ξ2
correspond to Eq. (17), while the target networks with
parameters ξ′1 and ξ′2 correspond to Eq. (15). To achieve
stability and reduce function approximation errors, the
target networks and critic networks are alternatively
updated by each other [11].

4.2. M3TD3

One of our key contributions is the extension of
Minimax Robust Learning, as outlined in [12], to the
multiagent TD3 RL framework. One way to expand
MDPs to multiple agents is through the use of partially
observable Markov games [17]. A Markov game for
K agents is defined by a set of states, in our case are
S describing the joint observations S1, · · · , SK of all
agents with each agent representing one EV CSA, and
A describing the joint actions A1, · · · , AK of all agents,
and A−k ≜ A/Ak describing the set obtained from
A by removing the element Ak. Each agent k uses
a stochastic policy πϕk

: Sk 7→ Ak, parameterized
by ϕk, which produces the next state according to the
state transition function S × A 7→ S ′. To extend the
notation from a single agent to multiple agents, we can
replace the variables S and A with the sets S and A,
respectively. For the kth CSA critic network, we can
revise the Bellman equation in (19) as follows:

Qk
ξ (S,A) = rk+γE[Qk

ξ (S ′,A′)], A′ ∼ {πϕk
(A′

k|S′
k)}.

(19)
where rk represents the reward of CSA k (10).
Likewise, the double target networks of agent k in (16)
are:

yk = rk + γmin{Qk
ξ′1
(S,A), Qk

ξ′2
(S,A)}. (20)

The parameters of the critic networks can be updated
using the same approach as described in (17) and (18).
In RL, the objective is to find the optimal policy πϕk

,
with parameters ϕk, which maximizes the expected
return J(ϕk) = EAk∼πϕk

[r0]. Using the Q function
defined previously, the gradient of the policy has two
parts:

∇ϕk
J(ϕk) =

1

N

∑
∇Ak

Qk
ξ1(S,A−k, Ak)

∣∣∣∣
Ak=πϕk

(Sk)

∇ϕk
πϕk

(Sk) (21)

where N denotes the training batch size. We can
utilize Eq. (21) to maximize the Q function, thereby
maximizing the reward. However, the above strategy
for agent k is sensitive to other agents’ behavior and
can easily lead to oscillations in the learning curves.
Therefore, we will begin with the following formulation
of the minimax learning objective to train a robust agent
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k, which is inspired by [12]:

∇ϕk
J (ϕk) =

1

N

∇ϕk
πϕk

(Sk)∇Ak
Qk

ξ1

(
S,A⋆

−k, Ak

)
Ak

A⋆
−k


Ak = πϕk

(Sk) ,

A⋆
−k = argmin

A−k

Qk
ξ1 (S,A−k, Ak)

The embedded optimization is subsequently modified
through the application of Multi-Agent Adversarial
Learning (MAAL) [12], which entails replacing the
inner-loop minimization process with a single-step
gradient descent. This minimization considers the the
worst-case scenarios created by competing agents and
leads to the revised equation:

∇ϕk
J (ϕk) =

1

N

 ∇ϕk
πϕk

(Sk)∇Ak
Qk

ξ1

(
S,A⋆

−k, Ak

)
Ak

A⋆
−k = A−k − α−k∇A−k

Qk
ξ1
(S,A−k, Ak)

 ,

Ak = πϕk
(Sk)

A⋆
−k = argmin

A−k

Qk
ξ1 (S,A−k, Ak) (22)

where α1, ..., αK represent the gradient step sizes. In
the extreme scenario where α = 0, the M3TD3 method
reverts to the original MATD3 algorithm. Conversely,
as α increases, the policy learnt becomes more robust,
but the optimization grows more challenging. The
generative adversarial network proposes calculating the
gradient descent with a fixed norm, specifically g =
∇xfθ(x; y) where x signifies the classifier’s input data,
and y represents the label [18]. Consequently, within
our M3TD3 algorithm, we can adaptively determine the
gradient by

gk =
∇Ak

Qk
ξ1
(S,A−k, Ak)

∥∇Ak
Qk

ξ1
(S,A−k, Ak) ∥

. (23)

5. Experimental Results

In this section, we present the results of our
numerical experiments. In Fig. 4, LMPs were calculated
considering two charging stations connected to the IEEE
18-bus distribution network at buses 3 and 8 for the
2-station case, and at buses 3, 8 and 9 for the 3-station
case. The active and reactive demands are scaled from
the Texas time-series datasets 1. The PYPOWER 5.1.16

1https://electricgrids.engr.tamu.edu/
activsg-time-series-data/

G

1 2 3

12131417

18 15 16

4 5 6 7

8910

EVCS 1

EVCS 2EVCS 3

Figure 4. IEEE 18-bus system with EV CSAs.

r ∈ [0,R]

EV

CSA 1 CSA 2θ ∈ [0o,360o]

r ∈ [0,R]

EV

CSA 2

CSA 1θ ∈ [0o,360o]

CSA 3

Figure 5. The travelling time sampling.

is utilized to compute the LMP for each EV CSA.
To simplify notation throughout the following sections
and figures, 1 iteration constitutes 2000 updates to the
model’s parameters, and we average over 500 updates.
In the case of 2 agents, the training process is run for 300
iterations and the testing for 100 iterations, while in the
3-agents case the testing phase is run for 40 iterations.

Figure 6. Convergence of Weights.

In Fig. 5, we illustrate the method used for sampling
the travel time of each EV driver. For instance, if
there are two EV CSAs within a circular area, each
EV user’s initial location is determined by uniformly
sampling a radius between [0, 2km] and an angle from
[0, 360]. Subsequently, the distances to the two CSAs
are calculated. These distances are then divided by the
average velocity to estimate the travel time. To estimate
the waiting time τ̂w(ta) and the price λ̂t, we use the
1-hidden layer NN regression model. To predict τ̂w(ta)

Page 3036

https://electricgrids.engr.tamu.edu/activsg-time-series-data/
https://electricgrids.engr.tamu.edu/activsg-time-series-data/


(a) Training Performance: Robust (M3TD3)
vs Non-Robust (TD3).

(b) Testing Performance: Robust (M3TD3)
vs Non-Robust (TD3).

(c) Non-averaged Testing Performance:
Robust (M3TD3) vs Non-Robust (TD3).

Figure 7. M3TD3 Performance: 2-Agents.

Figure 8. Charging prices λ given by two agents.

we use the waiting time τ̂w(to), count of EV drivers
arriving at the station during τr(to), number of users
departing during τr(to), and current charging prices at
to as inputs. These factors help forecast the waiting time
at ta. We also use the previous 24-hour price samples to
forecast the next 8-hour price samples, with the specified
future price at t determined by the sum of estimated
waiting time and travel time. The testing normalized
mean square errors for waiting time and price are 0.0371
and 0.2377, respectively.

In practical scenarios, travel time holds greater
significance for EV drivers compared to waiting time
and pricing, as they tend to prioritize locating the nearest
charging stations. Thus, we assign the weights wp,
wr, and wt as 2, 30, and 1, respectively. We also
conduct an evaluation of the ground-truth EV station
selection, which is based on the minimal score function,
and compare it to the predicted EV station selection. The
accuracy of the predicted EV station selection reaches
97.38% due to the overriding importance of travel
time compared to the other two factors. We allocated
10 chargers and waiting seats in each station for the
experiments below. We utilized Python 3.9.16 and
PyTorch 1.11.0 to develop and train our CRL methods.
All the algorithms were executed on a Mac OS machine
equipped with an Arm-based M1 chip, 8 cores, and

16GB RAM for the development phase, and then using
NVIDIA’s RTX 2060 GPU.

EV charging requests follow a Poisson distribution
with an average of 6 per hour, and charging periods
uniformly span from 1 to 3 hours 2. If a charging
spot is vacant, the first waiting EV occupies it. New
arrivals check charging availability first, move to waiting
spots if all chargers are full, or else proceed to another
station. This environment setup can generate a variety
of scenarios ranging from both stations being fully
occupied, one being occupied while the other is empty,
or both having vacancies. Furthermore, every individual
charging spot within the station can support a charging
rate ranging from 4 kW to 10 kW.

5.1. Hyperparameter Exploration

We conducted experiments based on the following
general assumptions: the action space has a dimension
of 11, which includes one price for newly arriving cars
and ten charging rates for each of the currently occupied
slots. Regarding command line parameters, the default
values are configured as follows: the exploration noise
is set to a standard normal Gaussian with a value of 0.1,
the batch size is set to 256, the discount factor is 0.99,
the policy noise (during critic update) is 0.2, the noise
clip is 0.5, and a delayed policy (update) frequency of
2 is employed. After conducting numerous simulations
to fine-tune the hyperparameters, we have selected a α
value of 0.1, keeping α = 0 for non-robust agents.

5.2. Two-Agent EV Setting

We utilized two agents to distinguish between the
TD3 policy and the robust approach. Fig. 6 provides
an initial insight into the convergence of our proposed
method for both agents over the 300 iterations, 20
of which represent the pure exploration phase, while

2In this setting, it is almost impossible that all the charging stations
are full.
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(a) The total demand (including the base
demands and charging demands) of the bus to
which EV CSA Agent 1 is connected, along
with its associated LMP, expressed in $/kW.

Figure 9. LMP-Demand Curves.

(a) Testing: 2 Robust (Green, Blue) vs
Non-Robust (Red).

(b) Testing: 3 Robust Agents.

Figure 10. M3TD3 Performance: 3-Agents.

for the rest a mix of exploration and exploitation is
employed. The L2 norm of the weights’ difference
approaches close to 0, with occasional spikes observed
during the initial 70 iterations that gradually diminish
over time. Throughout the training process depicted in
Fig. 7(a), we computed the average performance across
500 updates. Interestingly, we observed no significant
performance disparities between the two agents.

During the testing process, we observed a significant
performance difference between the two agents, as
illustrated in Fig. 7(b). The robust agent, represented
in blue obtained an additional profit of over 20%
compared to the non-robust one. Although at various
points during the testing process, we observed brief
periods when the traditional TD3 competitor obtained
better profit averages, over the long term, the M3TD3
agent continued to average higher. A detailed look
at Fig. 7(c)’s non-averaged graph reveals oscillating
profit differences between the two agents. However, a
performance average shows the robust M3TD3 agent
outperforming its non-robust counterpart. Importantly,
negative profits occur during periods with high marginal
prices or significant demand prediction discrepancies.

In Fig. 8, the robust CSA not only provides
prices that are more stable than those of the non-robust
CSA, but also tends to be slightly cheaper most of
the time, which is likely to draw a larger number of
EV drivers to avail their services, thereby potentially
increasing the CSA’s profits. Figure 9 illustrates the
correlation between power demand, encompassing both
base, charging demands, and LMPs ($/kW). As depicted
in Fig. 9, during periods of increased demand, power
congestion is rising correspondingly. This relationship
continues into Fig. 9, illustrating that higher levels
of power congestion drive up the LMPs. The surge
in LMPs is a mechanism to prevent power congestion,
acting as a deterrent to overloading the system.

Figure 11. Testing Performance 10 Agents: Robust

(M3TD3) vs Non-Robust (TD3).

5.3. K-Agent EV Setting

To better model the real-time electricity market,
which typically involves a larger number of agents,
we extended our analysis to include K-Agents. To
demonstrate performance with noticeable differences
among agents, we selected three agents for the analysis.
Two of these agents employed the M3TD3 robust policy,
while the third agent directly implemented the TD3
approach without considering robust actions.

For the three-agents cases, testing revealed superior
overall performance of the robust agents (Green, Blue)
compared to traditional TD3 policies, as illustrated in
Fig. 10(a), and subsequently shown by average profits
with $34.45 and $34.11 for the two M3TD3 agents
versus $24.87 for the third, a 35% improvement. An
additional plot represents the environment populated
by three robust agents, each trying to maximize their
minimal rewards. The training process has a similar
curve with the scenarios above, while Fig. 10(b)
illustrates the testing scenario. We observe that the
curves fit much closer to each other, with profits being
spread more even between the agents. In Fig. 11, the
scalability of the proposed method is demonstrated with
10 agents, of which 3 are robust and the remaining 7 are
non-robust. In terms of computational cost, the runtime
scales linearly with respect to the number of agents,
spending 360 minutes to solve a 100-agent instance with
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majority of time spent solving the OPF problem.

6. Conclusion

In this paper, we adapted a robust MARL approach,
M3TD3 to efficiently solve the Charging Station
Dynamic Pricing and Scheduling (CSDPS) problem in
a highly dynamic and uncertain EV charging market.
Our approach, which employs minimax policy gradient
in competitive reinforcement learning settings, yielded
up to 35% additional profit compared to non-robust
RL managed stations that only maximize expected
profits. By coupling our problem with the distribution
network using LMPs, we ensure efficient and reliable
grid operation while promoting the use of renewable
energy resources, resulting in reduced costs for both the
DSO and EV charging station management companies.
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