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Abstract

Artificial Intelligence (AI) research is intrinsically
innovative and serves as a source of innovation for
research and development in a variety of domains.
There is an assumption that AI can be considered
“revolutionary science” rather than “normal science.”
Using a dataset of nearly 300,000 AI publications, this
paper examines the co-citation dynamics of AI research
and investigates its trajectory from the perspective of
knowledge creation as a combinatorial process. We
found that while the number of AI publications grew
significantly, they largely follows a normal science
trajectory characterized by incremental and cumulative
advancements. AI research that combines existing
knowledge in highly conventional ways is a substantial
driving force in AI and has the highest scientific impact.
Radically new ideas are relatively rare. By offering
insights into the co-citation dynamics of AI research,
this work contributes to understanding its evolution and
guiding future research directions.

Keywords: artificial intelligence, scientific research,
knowledge combination, bibliographic data, knowledge
management, co-citation networks

1. Introduction

Knowledge creation is vital for organizations and
society’s economy.1,2 Among the most prominent forms
of recorded knowledge are scientific publications. The

1This paper is an adaptation of Chapter 2 of Jieshu Wang’s doctoral
dissertation Combinatorial Inventions in Artificial Intelligence:
Empirical Evidence and Implications for Science, Technology, and
Organizations, submitted to Arizona State University in 2023.

2This paper’s appendices can be accessed
via: https://drive.google.com/drive/folders/
1zmJ9bX4DqkscNMjyCXJJyaIYz4e2AjP8?usp=sharing.

research and development (R&D) efforts underlying
these publications involve information-intensive
activities, encompassing tasks like identifying
information needs, navigating solution spaces,
searching, processing, and validating information
to arrive at solutions (Meho & Tibbo, 2003; Wu
et al., 2009). Researchers in information systems
(IS) have delved into understanding the implications
of the knowledge encapsulated in these publications,
especially through their citation data. This involves
endeavors such as utilizing citation semantics to identify
research topics (Brockmann & Roztocki, 2015; Tong
et al., 2009), mapping citation networks to predict
patent quality (Wang et al., 2009), investigating the
implications of citation long tails (Wu et al., 2009),
and leveraging co-citation networks to identify central
works (Laine, 2009).

Economists and organizational researchers have long
emphasized the combination of existing knowledge
as a fundamental process of knowledge creation
(Nonaka et al., 2000; Schumpeter, 1950). Examining
the structures of knowledge combinations can offer
insights into the dynamics of invention and innovation,
illuminate scientific and technological trends, and
provide guidance on predicting and facilitating
high-quality knowledge generation (Uzzi et al., 2013).
This study initiates by forming co-citation networks
from scientific publications to analyze knowledge
combinations. It links these combinations to Thomas
Kuhn’s theory, which differentiates revolutionary
from normal science. The hypothesis is that these
two types of science may show distinct combinatorial
characteristics. Focusing on artificial intelligence
(AI) for its transformative potential in science and
technology, this research analyzes a dataset of about
300,000 AI publications and their co-citation networks.
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This research holds strong relevance to the IS
domain. It leverages digital data from a web-based
knowledge repository, aligning with IS’s core focus
on information retrieval and processing. Our
examination on knowledge search and manipulation
through digital data resonates with the main concerns
of the IS community — the design and management
of information and how it is transformed into
knowledge (Borko, 1968). The investigation into
combinatorial invention and incremental innovation
contributes to the discussion of knowledge management
and organizational learning, informing decision-making
to facilitate efficient information search, retrieval, and
management, fostering competitive advantage (Alavi &
Leidner, 2001). Moreover, by tracking the trajectory
of AI research, this study sheds light on the evolution
of scientific inquiry, aligning with IS’s interdisciplinary
nature, which evolves by integrating theories and
methodologies from diverse domains like computer
science and economics (Benbasat & Zmud, 2003).

This paper is structured in the following manner.
Section 2 reviews literature and poses research
questions. Section 3 describes the methodology and data
collection. Section 4 details the dataset and presents
the results. Section 5 discusses the implications, while
section 6 addresses limitations and future direction.

2. Background

AI research and applications are intrinsically
innovative and serve as a tool and source of
innovation for R&D in a variety of domains. AI
shows tremendous potential to affect the search for
information and solutions in many domains ranging
from medicine to transportation, from education to
manufacturing (Maynard, 2015). In IS research, AI’s
potential have been extensively explored, encompassing
domains such as AI-based group support systems
(Siemon et al., 2015), knowledge representation
(Fenstermacher, 2005), information retrieval (Pathak
et al., 2000), organizational knowledge management
(Hine et al., 1994), human-AI cooperation (Schelble
et al., 2021), and software engineering (Latinovic &
Pammer-Schindler, 2021). AI is widely expected to
become a general-purpose technology, serving as a
“new method of invention” that will transform the
very processes of scientific discovery, invention, and
innovation (Hastings, 2023).

The transformative potential of AI for invention can
be understood by its capacity to facilitate knowledge
creation through a combinatorial process. New
knowledge can be conceptualized as the recombination
of existing knowledge (Arthur, 2009; Schumpeter,

1950; Youn et al., 2015). As societal knowledge
accumulates, the scope of possible combinations
expands exponentially. Uncovering novel knowledge
within such a vast and complex space is akin to
a “needle-in-a-haystack” problem, which has become
prevalent in science and technology, challenging for
individual researchers (Agrawal et al., 2018). AI,
however, is poised to address these challenges by
excelling in searching complex solution spaces to
identify relevant information and viable, thus possibly
valuable knowledge combinations (Cockburn et al.,
2019).

The concept of “revolutionary science” versus
“normal science,” as elucidated by Thomas Kuhn
(1962), distinguishes radical novelty and paradigm
shifts (revolutionary science) from incremental
knowledge growth built upon well-accepted prior
knowledge (normal science). Viewing knowledge
creation through the combinatorial perspective,
revolutionary ideas would likely exhibit distinct
patterns from “normal” knowledge. Revolutionary
knowledge may entail relatively novel or infrequent
combinations, while normal knowledge would rely
heavily on frequently recurring and extensively used
combinations. The capabilities of AI in searching
combinations have led many people to believe that
AI is intrinsically revolutionary (Appenzeller, 2017;
Tegmark, 2017; Vatan et al., 2019), and it raises
intriguing questions about the extent of its potential for
revolution informed by its combinatorial nature. Is AI’s
combinatorial behavior indicative of its revolutionary
character, or does it align with the patterns seen in
previous changes in science and technology?

Researchers have been using scientific publications
to investigate knowledge evolution in AI research.
Some researchers attempt to identify significant trends.
Using AI publication datasets, Cockburn et al. (2019)
found that the AI community is shifting towards more
application-oriented research, while Niu et al. (2016)
surveyed where the highest productivity resides in AI.
Meanwhile, researchers like Raghupathi and Nerur
(1999) examined the author co-citation networks and
identified research themes. Others investigated AI
within broader knowledge landscapes, exemplified by
Frank et al. (2019), who explored the interdisciplinary
knowledge flows linked to AI through citations. On
the other hand, researchers have explored combinatorial
knowledge creation across wider domains. Uzzi
et al. (2013) developed methods to identify knowledge
combinations. Hofstra et al. (2020) examined
keywords combinations, while Strumsky and Lobo
(2015), Youn et al. (2015), and Kim et al. (2016)
explored how technical components are combined in
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patents. Nevertheless, no prior research has specifically
investigated the field of AI to uncover the dynamics of
combinatorial knowledge creation and evolution within
it.

This exploratory study aims to investigate how the
characteristics of knowledge combination inform the
extent of revolutionary nature in AI research. The study
addresses three sub-questions:

RQ 1 How is existing knowledge combined within the
field of AI to generate new knowledge? How
novel are those knowledge combinations?

RQ 2 How is knowledge recombination associated with
scientific impact?

RQ 3 How do the answers to the preceding RQs
illuminate the revolutionary nature of AI
research?

3. Method and Data

3.1. Knowledge Recombination Taxonomy

This study employed a variation of the method
developed by Uzzi et al. (2013), to identify and measure
the novelty of knowledge recombinations in scientific
literature.

The typicality of a knowledge combination is
defined as the frequency of two knowledge components
co-appearing together, standardized against all the
combinations during a select period. We consider
cited journals as representing the previous knowledge
combined in a publication. Thus, the pairwise
combinations of referenced journals are identified to
represent the recombination of existing knowledge. For
a co-cited journal pair i and j in year t, its cumulative
typicality, or z-score, can be computed using Eq. 1:

z(i,j),t =

Pt
n=1946 x(i,j),n � µt

�t
(1)

where x(i,j),n is the observed frequency of journal-pair
(i, j) in year n; µt is the mean frequency of all pairs up
to year t; and �t denotes its standard deviation.

Each AI publication is associated with a set
of z-scores, describing the standardized cumulative
frequency of each journal pair. Two statistical attributes
are extracted to characterize its conventional and novel
combinations.

The first attribute is Tail Conventionality (TCp),
defined as the 80th percentile of the z-scores associated
with paper p, featuring the typicality of its right tail,
where z-scores are relatively high, and pairs appear
more conventional. The TCp characterizes the paper’s

tendency to combine conventional pairs. A paper is
considered highly conventional if its TCp is in the upper
half of the TCp of all the papers published previously.
The second attribute is Tail Novelty (TNp), defined as
the 20th percentile of z-scores of paper p, characterizing
its more unusual journal combinations where novelty
might dwell. A paper is considered highly novel if its
TNp is less than 0.

A paper falls into one of four categories defined
by the Knoweldge Recombination Taxonomy described
by Mukherjee et al. (2016): Darwin’s Tower is a
category where papers have both high conventionality
and novelty (high TC and negative TN ). Avant Garde
papers have low conventionality but a high novelty.
Accepted Wisdom papers have high conventionality but
a low novelty. Platypus papers have low conventionality
and low novelty. 3

3.2. Assessing Scientific Impact

Citation counts are considered an indicator for
scientific quality and impact, especially at the
highly-cited end of the distribution (Phelan, 1999).
However, citation counts and citation rates (those
received in a given year) do not stay constant over
time (Ponomarev et al., 2012). Therefor, it becomes
problematic to directly compare the citation counts
of two papers published in different years. Instead,
researchers often select the mean annual citation rate
(or “annual citation”) to compensate for this time effect
of citation counts (Unger et al., 2018).

This study employs three metrics to gauge papers’
scientific impact: total citations, annual citations, and
its percentile ranking compared to papers published in
the same year. Total citations reflect the paper’s overall
impact, while annual citations indicate its average
impact over time. The percentile ranking compensates
for temporal variations in citations. Papers ranking high
in citation percentiles are referred to as “hit papers.”

3.3. Data

The AI publication dataset for this study was
compiled through keyword searching on WOS Core
Collection (Fig. 1).4 Our dataset was collected
through a snowball sampling that utilized the “Topic”
search5 in WOS in July 2020. Snowball sampling is

3A case example is offered in Appendix H to illustrates such
categorization process.

4 According to the institutional subscription available to the
authors, the WOS databases searched in this study include Science
Citation Index Expanded, Social Science Citation Index, Arts and
Humanities Citation Index, and Emerging Sources Citation Index
(only 2015-2020).

5The Topic field in WOS searches the title, abstract, author
keywords, and Keywords Plus of a record. Keywords Plus are words or
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Figure 1: The process of constructing AI research publication dataset.

a sampling technique commonly used in sociology to
recruit subjects through existing subjects (Biernacki &
Waldorf, 1981). It is also used in bibliometric research
to acquire further literature through the references in
existing literature (Roetzel, 2018). Here in this study,
we uses a snowball sampling process to obtain search
terms. Using a “seed set” of four keywords6, we
retrieved a seed dataset, from which more keywords are
obtained and fed into subsequent iteration of search. We
semantically aggregated synonyms for the top keywords
(Appendix B) and heuristically evaluated whether they
are unambiguously related to AI (Appendix C). The
keywords that may have ambiguous meanings or may
direct to non-AI papers are discarded.7

4. Results

4.1. Data Description

The compiled dataset contains metadata of 296,378
AI publications spanning from 1946 to 2020. These
publications reference 19,474 journals, resulting in
nearly 7.8 million distinct journal pairs.

The articles in our dataset are mainly from the fields
of engineering and computer science,8 accounting for
nearly 40% each. They are followed by the fields such
as chemistry, mathematics, and telecommunications.
Among the frequently used keywords, prominent terms

phrases generated by an algorithm to identify keywords that frequently
appear in the titles of an article’s reference but not in the title of the
article.

6The four seed keywords are “artificial intelligence,” “AI,”
“machine learning,” and “artificial neural network*.”

7Detailed data collection process can be found in Appendix A.
8We followed the research areas classified by WOS.

include “machine learning,” “genetic algorithm,” “deep
learning,” and “artificial neural networks.” Noteworthy
journals within our dataset include IEEE Access,
Expert Systems with Applications, Neurocomputing, and
Sensors. The paper with the highest citation count is
“Random Forests” by Breiman (2001), and most-cited
authors include Geofferey Hinton and Yoshua Bengio. 9

Topic modeling using the Non-negative Matrix
Factorization (NMF) technique on the publications’
titles revealed ten distinct topics, including data-driven
optimization and classification, model design, predictive
analytics using neural networks, and AI applications
regarding chemical and protein structures. 10

Figure 2: Histogram plot showing the distribution of AI
publications’ reference count (blue), referenced journal
article count (orange), and distinct journal count (green).

The distributions of previous works cited by AI
publication are shown in Fig. 2. On average, an AI

9A comprehensive dataset description can be found in Appendix E.
10A breakdown of these topics can be found in Appendix F.
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publication has 41 references, among which about 28 are
journal articles from roughly 16 distinct journals. This
implies that AI publications often cite multiple articles
from the same journals.

Upon examination of the journal pairs, several
observations emerge. First, most pairs were combined
only a few times. By the year 2020, approximately 40%
of the journal pairs have been cited once, while 73%
have no more than 5 co-citations. Secondly, frequently
co-cited pairs tend to come from the same or closely
related disciplines, for example, International Journal
of Remote Sensing combined with Remote Sensing
of Environment (both related to remote sensing), and
Bioinformatics combined with Nucleic Acids Research
(both related to biology). 11

4.2. Exponential Growth of AI Publications

AI papers are growing exponentially (Fig. 3a).
Before 1984, annual publications never exceeded 100.
It took another ten years for it to grow beyond 1,000. In
2019, over 50,000 publications were recorded.12

It is noticeable that there is a broader trend in
exponential growth amongst scientific publications, as
shown in Fig. 3a. However, the slope of the fitted
line for the natural logarithm of the annual count of
all scientific publications against time is 0.0484,13 less
than 30% of the magnitude for the coefficient of AI
publications. Consequently, the ratio of AI publications
compared to scientific publications is increasing, as
shown in Fig. 3b. By 2019, AI publications made up
1.73% of all scientific publications.

Fig. 3a shows that there were a few years where
the number of AI publications fluctuated and declined
slightly, particularly in the early 1970s and late 1980s,
corresponding to the historical periods referred to as “AI
winters,” when funding and interests in AI research were
drastically reduced (Howe, 2007). Nevertheless, AI has
seen steady growth over the past two decades. Indeed,
the world appears to be in the midst of an “AI spring.”

4.3. The Skewness of AI Research

AI publications have generated almost 6 million
citation counts in total. On average, each publication
is cited almost 20 times. However, the distribution
of citations received by AI publications is extremely
skewed (see Fig 4). This phenomenon has been

11This is illustrated in Appendix G, where a sample of the most
co-cited journal pairs is presented. These pairs often come from the
same field, such as bioinformatics, neural science, or chemistry.

12OLS regression between years and natural logarithms of annual
publication counts resulted in a coefficient of 0.1736 with an
R-squared of 0.97 and a p-value of 1.52⇥ 10�48.

13OLS regression result shows R2 = 0.949, p = 4.50⇥ 10�49

observed in information science (Wu et al., 2009) and
scientific publications in general (Seglen, 1992). We
found that 19% of AI publications have not been cited at
all. Ten percent have been cited once, and 50% have no
more than five citations. Moreover, AI publications can
serve as another empirical demonstration of the Pareto
principle of the 20/80 rule, which states that roughly
80% of consequences come from 20% of causes (Pareto
et al., 1964), as the AI publications ranked among the
top 20% in citations make up almost 80% of all citations.

4.4. Conventional Knowledge Driving AI
Growth

The category of Accepted Wisdom, which combines
high conventionality with low novelty, accounts for
the largest share (46.4%) in AI research, followed by
Darwin’s Tower (11.5%). The time series (Fig. 5)
reveals a significant trait: Accepted Wisdom in AI
research has been advancing steadily over the last
three decades. By 2020, new publications categorized
as Accepted Wisdom reached 52.4%. Avant Garde,
the second largest category, has been stable with a
slight decrease in recent years. Darwin’s Tower that
mixes high novelty with high conventionality has been
diminishing, from above 20% in the 1990s to only 6%
in 2020. This suggests that new knowledge that relies
heavily on conventional combinations has become a
significant driving force of AI.

4.5. Conventional Knowledge Exerting
Greater Impact

Section 4.3 shows that AI publications’ citations
exhibits a skewed distribution. The question is whether
a paper’s category relates to its impact. We found that
Accepted Wisdom is associated with high impact.

Among the publications highly ranked for citation
percentiles of the year, Accepted Wisdom occupies an
even greater percentage, 67% in the top 1% (Table
1). The higher the group’s rank, the larger its share
becomes. As addressed in Section 4.4, Accepted
Wisdom makes up 46% of all AI publications. In the
AI publications ranked in the top 10% among the papers
in the same year, this category accounts for as high as
60% of publications. In the top 5% and top 1%, this
percentage rises to 62% and 67%, respectively. In the 10
most-cited papers, seven belong to Accepted Wisdom. In
contrast, Avant Garde papers decreased relative to other
categories, with 35% in all papers yet declining to only
17% in the top 1% group. There is zero Avant Garde
paper in the top 10 papers. The share of Darwin’s Tower
category remains stable across percentiles, regardless of
whether top 1%, 5%, 10%, or all papers are considered.
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(a) (b)

Figure 3: Time Series of (a) the number of AI publications and the number of scientific publications in general (log
scale) and (b) the ratio of AI publications in scientific publications in general.

Table 1: Percentages of Each Category in Top AI publications Regarding Citation Percentile of the Year

Category % in all % in top 10% % in top 5% % in top 1% % in top 10papers % in most-cited 10 papers
Accepted Wisdom 46.39% 60.38% 62.21% 67.34% 100% 70%
Darwin’s Tower 11.54% 10.22% 10.23% 8.82% 0% 20%
Platypus 7.40% 6.72% 6.80% 6.77% 0% 10%
Avant Garde 34.68% 22.68% 20.76% 17.07% 0% 0%

co
un

t

total citation count by 2020

(a)

co
un

t

annual citation count by 2020

(b)

Figure 4: Distribution of AI publications’ (a) citation
counts and (b) average annual citation counts by 2020.

Figure 5: Time Series of AI publications’ composition.

Additional evidence for Accepted Wisdom’s
dominance in the top tiers are presented in figure 6,

Figure 6: Percentages of each category in AI
publications grouped by citation percentile of the year.
The leftmost group represents AI publications with the
highest citations among its peers in the same year,
ranked in the top 0.1%.

where AI publications are arranged into 12 groups
based on their citation percentiles. It clearly shows that
Accepted Wisdom (blue) is increasing towards the left,
while the Avant Garde category is decreasing.

Moreover, as shown in Table 2, Accepted Wisdom
accounted for more than half (51%) of all citations,
larger than its share in publication count (46%). It is
also highly ranked regarding mean and median annual
citations. The median citation percentile of Accepted
Wisdom is 46%. However, Darwin’s Tower has the
highest mean and median citation count. It suggests
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that Darwin’s Tower is less skewed in citations than
Accepted Wisdom and Darwin’s Tower has fewer papers
ranked at the bottom. Fig. J.1a confirms this by showing
that the orange curve that represents Darwin’s Tower
has the lowest curvature, indicating a smaller degree of
skewness in citations.

To further verify the relationship between the
categorization of an AI publication and its scientific
impact, a negative binomial regression analysis is
conducted. 14 The following regression equation can
be assumed:

lnY = �0 + �1C + �2t+ ✏ (2)

where Y denotes the number of citation counts an
AI publication receives as recorded in the dataset by
2020. C denotes the category of the AI publication
(a categorical variable), and t denotes the year of
publication. 15 The coefficient �1 for the four possible
values of variable C are computed as 1, -0.29, -0.46,
-0.52 for Accepted Wisdom, Darwin’s Tower, Platypus,
and Avant Garde respectively, with Accepted Wisdom
as the controlled value and the other three as treatments.
All p-values are smaller than 0.001. The coefficients
indicate that, among the four categories, an Accepted
Wisdom tends to have the highest citation counts,
followed by Darwin’s Tower and Platypus.

In summary, Accepted Wisdom exert a higher impact,
and they take the highest share among the articles with
the highest citations.

4.6. Accepted Wisdom Has High Hit-rate

We found Accepted Wisdom type of AI papers have
the highest probability of being ranked in the top tier in
terms of citations, annual citations, or citations among
its peers of the year. In other words, Accepted Wisdom
has the highest hit-rate (see Table 3, Fig J.1, and Fig
J.2). If hit papers are evenly distributed across the
four categories, the hit-rate would be identical across
categories (referred to as the background hit-rate). That
is to say, the top 10% hit-rate of Accepted Wisdom would
be the same as that of Avant Garde, which would be
exactly equal to 10%. However, we found evidence
suggesting otherwise. Nearly 13% of papers in Accepted
Wisdom are ranked in the top 10%. In contrast, only
less than 7% of papers in Avant Garde are ranked in
the top 10% (Table 3). Tests conducted with four

14Because citation is count data, a Poisson regression is generally
applicable. However, the variances of citation counts in each category
are substantially larger than the mean values (see Appendix K). Due
to this over-dispersion, the assumption of Poisson regression is not
satisfied. A negative binomial regression is considered a more suitable
model to compensate for such an over-dispersion.

15The summary of negative binomial regression results of Equation
2 can be found in Appendix L.

different hit rates (10%, 5%, 1%, and 0.1%) confirm
the robustness of such an observation — the hit-rate of
papers classified under Accepted Wisdom consistently
surpasses the background hit rate, consistently ranking
the highest among the four categories This indicates
that Accepted Wisdom papers are more likely to receive
more citations compared to other papers published in the
same year. Nevertheless, it is worth noting that a paper
in the Darwin’s Tower category, which exhibit both
high conventionality with high novelty, while having a
lower likelihood of ranking in top 10%, 5%, and 1%,
have a notably higher chance (0.16%) of achieving a
top 0.1% ranking than the background. This finding
suggests that Darwin’s Tower displays a polarized trend.
While the average paper in this category performs
moderately, there is a heightened probability of these
papers excelling and becoming among the best of the
best, falling within the top one thousandth.

We further examined the time series of hit rate of
each category (Fig. 7). It illustrates that the Accepted
Wisdom category (blue) has become the category with
the highest hit probability since the 2000s. In 2016,
almost 15% of Accepted Wisdom papers are ranked in
the top 10% papers, with a hit rate significantly higher
than the background rate (10%).

Figure 7: Time series of top 10% hit rate, with the
dashed black line representing the background hit rate.

5. Conclusion and Discussion

This study provides empirical evidence that AI
research has largely progressed incrementally and
follows conventional scientific inquiry, aligning with
the development patterns of normal science. Highly
conventional AI publications yield higher scientific
impact. Radically new research are rare. Our finding
does not contradict AI’s revolutionary potential; rather,
it portrays a revolutionary technology unfolding through
notably “normal” and incremental progress. This
observation suggests that revolutionary science and

Page 5604



Table 2: Selected Citation Features of the Four Categories

Category Total
count

Total
citation

Citation
percentage

mean
citation

median
citation

mean annual
citation

median annual
citation

median citation
percentile

Accepted Wisdom 137,481 3,034,185 51.31% 22.07 6 3.04 1.17 46%
Darwin’s Tower 34,203 971,780 16.43% 28.41 8 2.54 1.00 51%
Platypus 21,922 270,211 4.57% 12.33 3 1.97 0.78 52%
Avant Garde 102,772 1,636,783 27.68% 15.93 5 1.86 0.83 52%

Table 3: Hit rates of the Four Categories

Category Top 10% hit rate Top 5% hit rate Top 1% hit rate Top 0.1% hit rate
Accepted Wisdom 12.78% 6.52% 1.47% 0.16%
Darwin’s Tower 8.76% 4.36% 0.82% 0.13%
Platypus 8.94% 4.49% 0.94% 0.08%
Avant Garde 6.43% 2.93% 0.51% 0.06%

technology can emerge deliberately through routine
practices rather than hinging solely on extraordinary
breakthrough moments.

The merits of AI’s “normal” trajectory should not be
underestimated. Throughout history, revolutionary
technologies have not always translated into
unequivocal societal benefits, and they sometimes
rapidly impact the society and lead to unintended
consequences before full comprehension. By
predominantly relying on incremental and cumulative
progress, AI research maintains a pace advantageous
for necessary regulation and control, allowing for
adjustments that align with human values, emphasizing
stability, robustness, and sustainable growth.

Our examination of combinatorial knowledge
creation can serve as a model for understanding
the dynamics of knowledge integration within
IS-related domains. We emphasize incremental
knowledge creation, resonating with findings in IS
where foundational works often serve as cornerstone
references for extended periods (Webster & Watson,
2002). It provides insights into how knowledge
can be catalogued, accessed, searched, retrieved,
and disseminated in databases and digital libraries.
In organizations, combinotorial search can foster
R&D and organizational learning. Nevertheless, our
findings reveal a potential tension between novel
knowledge combinations and academic impact, as the
papers featuring conventional pairs tend to receive more
citations while highly novel papers are less cited, raising
questions about the reward mechanisms in academic
publishing, a concern echoed in IS community (Agarwal
& Lucas, 2005).

Furthermore, this research offers a valuable
literature review tool for researchers, particularly those
with interdisciplinary interests. For example, our
methodology unveils journal pairs that denote the most
prominent interdisciplinary intersection between IS and

AI, such as (1) Information Systems Research (ISR)
+ MIS Quaterly, (2) ISR + Management Science, (3)
ACM TOIS + Information Processing and Management,
(4) Expert Systems with Applications + Information
Systems, and (5) ACM TOIS + IEEE Transactions on
Knowledge and Data Engineering.

Furthermore, our approach can serve as a tool
to identify research gaps and potential opportunities
by highlighting journal pairs that are infrequently
co-cited, indicating less-explored areas. Here are
some examples of underrepresented co-cited journal
pairs within the context of AI and IS, pointing to
potential research gaps: (1) Information Systems and
Zootaxa: AI’s use in animal species categorization,
(2) The Information Systems Journal (ISJ) and The
Washington Law Review: addressing ethical and legal
aspects of AI and IS, such as data privacy, (3) Tourism
Economics and Information Systems: IS-related AI
applications in optimizing tourism, such as personalized
recommendations, (4)Teaching of Psychology and
ISR: AI-driven psychology education, (5) The ACM
Transactions on Asian and Low-Resource Language
Information Processing and Information Processing and
Management: AI’s role in processing underrepresented
languages, (6) Journal of Alzheimer’s Disease and
JMIS: AI’s contribution to medical research, such as
early diagnosis and information management.16

6. Limitations and Future Work

This study is based only on AI publications
that went through standard academic publishing
practice particularly the peer-review process of
journals. This excludes reports, non-reviewed
materials, and informal discussions such as those
found on platforms like arXiv, patents, Github

16Further discussion and examples can be found in Appendix M.
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records, and social media. In particular, limited by
our institutional subscription to WOS, conference
proceedings were not systematically searched in
this study, although our dataset does encompass
some conference proceedings if they are recognized
by WOS as academic journals.17 Conferences are
increasingly crucial for AI breakthroughs, yet many
impactful conference papers eventually find their way
into traditional academic journals.18 In addition, AI
researchers’ expanding presence on platforms like arXiv
and Github, often with code sharing, underscores the
need to consider these avenues in future assessments of
AI research.

This study is also limited by the search terms used
to construct the dataset. The data collection process
involves manual and heuristic evaluation regarding
whether the terms are unambiguously related to AI, and
it might have introduced ambiguities or inaccuracies in
synonym aggregation due to the authors’ AI knowledge
constraints. Moreover, the evolving nature of keywords
in AI research were not explicitly captured. Language
choice is another limitation; as WOS predominantly
comprises English publications, our dataset largely
mirrors this bias.19 Therefore, it will be crucial to
include non-English publications in order to achieve a
broader, culturally diverse view of AI research.

In addition, our premise that a journal represents
a unit of knowledge simplifies the complex nature of
academic journals, particularly those spanning diverse
themes, such as Science and Nature. A more
nuanced approach could involve keywords for a more
granular representations of knowledge (Hofstra et al.,
2020). Furthermore, delving into semantic analysis
of journal pairs, and systematically understanding
their contextual meanings rather than just counting
co-citation frequencies, would offer richer insights to
researchers interested in AI.

17For instance, papers published on Proceedings of the Association
for Information Science and Technology are included in our dataset.
However, we are uncertain about how WOS classifies certain
conference proceedings as journals while excluding others.

18For instance, the paper “ImageNet Classification with Deep
Convolutional Neural Networks” by Krizhevsky et al. (2012) was
initially presented at the Conference on Neural Information Processing
Systems (NIPS) in 2012, and later submitted and published in the
journal of Communications of ACM, and this paper is included in our
dataset. Similarly, Mnih et al.’s 2015 paper “Human-level control
through deep reinforcement learning,” published on Nature, was
based on their NIPS paper “Playing Atari with Deep Reinforcement
Learning” presented in 2013. It is also included in our dataset.

19Ninety-eight percent of papers in our dataset are written in
English, 0.5% in Chinese, 0.3% in Spanish, and 0.8% in others.
Nevertheless, China has become a significant player in AI research.
Although many Chinese-speaking authors chose to publish their works
in English journals (the dataset used in this research shows that authors
based in China have published more AI papers than in other countries,
and among the top 10 research institutions that have the most AI
publications, five are located in China), publications in the Chinese
language are likely to be significant in number.
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