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Abstract

This paper evaluates the performance of several
automated data augmentation (AutoDA) methods for
image classification problems suited for scenarios with
limited and potentially imbalanced data sets. We
compare one-stage, two-stage and search-free methods.
These are explored in the context of a case study to
identify/count feral cats in rural Victoria. Our results
show that a trade-off exists between accuracy and
efficiency, with one-stage methods being faster but less
accurate than two-stage methods. Search-free methods
are fastest, but have limited improvement in the resultant
classification accuracy.

Keywords: AutoDA, deep learning, computer vision,
data augmentation, hyperparameter tuning

1. Introduction

Nowadays, data augmentation (DA) is regarded as
an essential step for training effective deep learning
systems. DA is used to increase the size and diversity
of a dataset by artificially generating new data samples
based on existing data. This is particularly useful in
scenarios where the available training data is limited or
imbalanced. In the computer vision domain, a variety of
basic image transformation functions, such as rotation,
scaling and colour adjustment, are commonly used for
image data augmentation. DA is widely used in many
state-of-the-art models, including data-driven models
that typically rely on a large amount of labelled data,

and few or zero-shot learning models that require data
diversity.

However, despite the ubiquity and importance of
image data augmentation in computer vision tasks, there
has been less focus on establishing the most suitable
DA strategies for specific tasks. One reason for the
current research gap is that the search space for data
augmentation policies can be very large, making it
difficult to identify the best policy (Cubuk et al., 2019).
The effectiveness of augmentation policies can be highly
dependent on the specific task and dataset, making it
challenging to generalize data augmentation policies
across tasks (Krizhevsky et al., 2012). The selection of
DA strategies still heavily depends on human expertise,
which can be subjective and error-prone.

In recent years, there has been a growing interest
in the field of automated machine learning (AutoML),
which has stimulated the development of a number
of innovative techniques designed to improve deep
learning systems. One of these techniques is
automated data augmentation (AutoDA), which has
gained significant attention (Yang et al., 2023). Unlike
traditional image augmentation that largely relies on the
knowledge and experiences of human experts, AutoDA
aims to automatically generate optimal DA policies
based on potentially small amounts of input data to help
improve the final performance of deep neural networks.

In this paper, we present a case study exploring
existing state of the art AutoDA algorithms using a
representative case study related to feral cats around
Victoria. Individual feral cat identification is a
particularly challenging task due to the insufficient
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and imbalanced data sets that are captured by motion
cameras (Yang et al., 2021). The objective of
this paper is to explore the effectiveness of AutoDA
techniques in this context. The rest of the paper is
structured as follows. In Section 2, we introduce
related works. In Section 3 we introduce the data and
associated methodology. In Section 4, we introduce the
experiments and present the results. In Section 5 we
discuss the results in more detail before concluding the
work and identifying areas of future work in Section 6.

2. Related Works

Data augmentation (DA) is an essential technique
to increase the size and diversity of a dataset, which is
particularly useful when the available data is limited or
imbalanced. The resulting augmented dataset can then
be used to train more robust deep learning models that
can generalize better to new data and new scenarios.
Generally, larger and more diverse datasets achieve
higher accuracy and better generalization performance
(Sun et al., 2017). This is because a large training set
provides a great number of data samples for models to
learn from and ensures that models are exposed to a
wider and more diverse range of data variations that may
be encountered in the real world. Additionally, class
imbalance problems can also be addressed by generating
new data for minority classes. Thus, DA is typically
critical in order to acquire sufficient and diverse datasets
for deep learning.

As an oversampling method, the major objective
of DA is to mitigate the negative effects of limited or
imbalanced data by increasing the size of the training
data set. The diversity of data is a crucial factor
for model training. Merely duplicating existing data
samples is unlikely to achieve a significant improvement
in model performance (Deng et al., 2009). To
achieve better generalization, it is necessary to introduce
variations and complexities to the training data by using
various image transformations. Examples of standard
manipulations include rotations, translations, flips, and
distortions.

One of the early examples of image DA can be traced
back to the 1980s where it was applied to character
recognition tasks (Rabiner and Juang, 1993). Geometric
transformations were applied to handwritten characters
to artificially create new examples. Another notable
example of image DA can be found in object detection
tasks, where researchers used affine transformations
to simulate changes in illumination and viewpoint to
enhance data diversity (LeCun et al., 1998). Since then,
the concept of image data augmentation has been greatly
extended and widely applied to various deep learning

models, including AlexNet model, VGG, ResNet and
Inception (Krizhevsky et al., 2012).

When it comes to applying DA in the field
of computer vision, a variety of basic image
transformations are available, such as scaling,
translation, rotation, and more. However, selecting
the most effective DA policies for a specific computer
vision task or dataset can be challenging, as different
tasks may necessitate application of distinct techniques
due to the nature of the dataset. For instance, geometric
transformations and colour adjustment are common DA
strategies for general image classification tasks, such
as CIFAR-10/100 and ImageNet where they are used
to simulate different environmental scenarios. While
for character or digit recognition datasets, rotation or
flipping might not always be a reasonable choice as it
may fail to preserve the original label of the data sample
(Simard et al., 2003), e.g., a 9 can become a 6.

Hitherto, the selection of augmentation strategies
often relies on intuition and prior knowledge of human
experts Cubuk et al., 2019. However, human decisions
can be influenced by biases and errors. Moreover,
there is often no theoretical evidence to show that
manually-decided DA policies can bring the best
performance improvement for a given task and dataset.
To address this issue, researchers have been exploring
automated methods for finding the most effective
DA policies. One such approach is automated data
augmentation (AutoDA). AutoDA offers a technique
that can automatically construct the best DA policies for
a given task and dataset (Yang et al., 2023).

The first attempt to AutoDA was made by
transformation adversarial networks for data
augmentations (TANDA) (Ratner et al., 2017).
This work inspired the design of later works such as
AA in 2019 (Cubuk et al., 2019). Similar to TANDA,
AA utilizes reinforcement learning to conduct the
augmentation search. During the search, augmentation
policies are sampled via a recurrent neural network
(RNN) controller and these are used for model training.
These policies are then fed into a simplified neural
network for evaluation to select the best one so that the
final classification model can yield the highest validation
accuracy on the target task. The AA algorithm achieved
0.4% and 0.6% accuracy improvement on ImageNet
and CIFAR-10 data respectively when compared to
state-of-the-art at that time. More importantly, the
policies acquired from ImageNet and CIFAR-10 could
be transferred to effectively enhance model performance
to various other datasets. Despite its success, AA often
requires thousands of GPU hours to complete a given
search, even under a reduced setting (Cubuk et al.,
2019). Therefore, subsequent research has focused on
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improving the search efficiency of AutoDA models.
While AutoDA has been successfully applied

to many standard image classification datasets, its
effectiveness in real-world scenarios is not well defined.
In this paper, we explore the use of various AutoDA
algorithms on a customized dataset composed of images
of feral cats with the goal of counting individual
(unique) cats. Our aim is to investigate whether AutoDA
can improve the performance of classifiction models on
this type of dataset and if so, identify the most effective
AutoDA algorithm for the given task. We compare the
performance of models trained on the original dataset
and on the augmented dataset generated by multiple
AutoDA models. We then evaluate the impact of
different DA policies on model accuracy. By conducting
such a case study, we aim to provide insights into
the applicability of AutoDA techniques to customized
datasets and to demonstrate the potential of different
AutoDA techniques for enhancing the generalization
of deep learning models in challenging real-world
applications.

3. Data and Methodology

3.1. Dataset
Feral cats are a menace to native species in Australia

and ecologists need to know their abundance. The
feral cat image data for individual cat identification
was gathered from 938 trap camera sites located the
Great Otway National Park and Otway Forest Park,
in Victoria, Australia (38.42 °S, 142.24 °E). At each
trap site, a sensing camera was installed with infrared
flash and temperature-in-motion detector. This was
triggered to capture five consecutive photographs when
the camera detected the movement of nearby animals.
The majority of cameras used were Reconyx Hyperfire
HC600, while a small proportion consisted of PC900’s
HF2X’s infrared camera.

Originally, manual data processing (labelling of
unique cats) was done by at least two independent
observers to ensure accuracy (Rees et al., 2019). This
was based on comparison of the unique markings of
feral cats. Each individual cat was assigned a unique
identifier for later model training and identification.
The data itself was often challenging to deal with in
classifying the case as seen in the examples shown in
Figure 1.

In order to ensure that the feral cats were the primary
focus of the photographs, it was necessary to take into
account the settings of the cameras. The position of
all trap cameras were fixed during data collection. As
a result of this positioning, in most images captured
by the cameras, the feral cat was only a small part

Figure 1. Examples of low quality images.

of the entire picture. This made it somewhat more
difficult for the model to identify the cat in the image,
as there may be other distinct objects or background
elements that could potentially impact on the inference.
That is, the presence of background elements in the
image can be a source of confusion or noise for the
model, making it harder for the model to isolate the
cat compared to its surroundings. In addition, cameras
typically use burst mode once triggered and take a
series of photographs in a rapid succession. This
feature results in a large number of images with similar
backgrounds and of the same object (i.e. the same
cat with minimal changes in its position in the image),
which can further affect the model’s ability to effectively
learn and extract meaningful feature information. Figure
2 shows four photographs directly collected from the
same trap camera in a short period of time. The captured
images of feral cats tend to show the animal at a small
scale, which makes a series of consecutive photographs
appear highly similar due to the camera’s fixed position
and the cat’s relatively stationary posture.

Figure 2. Example images with similar surroundings.

To reduce the potential impact of environmental
surroundings and to better focus on the object of interest
in each photograph, the raw data was pre-processed
before applying the different AutoDA approaches. The
observed object was centred in each photograph and
cropped accordingly. All cropped images were then
resized to a uniform size of 32 × 32 pixels using
0-padding to ensure consistency across the dataset. This
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Table 1. Statistics of the Feral Cat Dataset.

Region Class# Image#
Annya 7 858
Cobboboonee 12 354
Hotspur 8 342
Mt Clay 9 462
Otways 87 10,644
Total 123 12,660

pre-processing step was necessary to ensure that the
feral cats were the primary focus of the dataset and to
improve the data quality.

Table 1 shows the statistics of the feral cat dataset
used for testing the AutoDA models. The dataset
consists of a total of 12, 660 images with a uniform
resolution of 32 × 32 pixels (after pre-processing).
There were 123 classes, i.e. individual / unique feral
cats in the dataset, with each class containing different
number of images. The class distribution was highly
skewed as shown in Figure 3, with some classes having
significantly more images than others. To address the
class imbalance issue, we used stratified sampling to
split the dataset into training and testing sets, ensuring
that each class was represented proportionally in both
sets. Specifically, we used a 5 : 1 train-test split,
resulting in 10, 550 images for training and 2, 110
images for testing.

3.2. Automated Data Augmentation
Image data augmentation has been shown to

improve the performance of deep learning models,
particularly when working with small datasets
(Shorten and Khoshgoftaar, 2019). However, manual
data augmentation can be time-consuming and
labor-intensive. Automating this is desirable, but it may
not always be possible to find the optimal augmentation
strategy through trial and error (Cubuk et al., 2019),
e.g., image rotations may have no effect on the model
accuracy.

Automated Data Augmentation (AutoDA) is a
technique that automates the process of finding the
optimal data augmentation policies for a given dataset
(Yang et al., 2023). In the context of image data
augmentation, a DA policy refers to a collection
of various image transformations, such as rotation,
translation, flipping, cropping, zooming, contrast ratio
manipulation, scaling and mosaicing. These operations
are often applied randomly to each image in the
training set during the training process, resulting in
a larger and more diverse set of data. The primary
objective of AutoDA is to maximise the effectiveness
of the generated DA policies, in order to improve

the performance of deep learning models trained with
the augmented data. By automating the process of
selecting the best DA policies, AutoDA eliminates the
need for human expertise and reduces the trial-and-error
process in finding the optimal DA policies. This results
in significant savings in terms of time and resources
required for manual design data augmentation. In this
study, we apply a variety of state of the art AutoDA
algorithms. The details of the AutoDA methods and
their implementation are described in the following
subsections.

3.2.1. Problem Formulation AutoDA involves
finding an optimal data augmentation policy to enhance
the performance of deep learning models. To achieve
this goal, most research works formulate the generation
of the optimal DA policy as a standard search problem
(Hataya et al., 2020; Li et al., 2020). A typical
AutoDA model comprises three key components: a
search space, a search algorithm, and an evaluation
function. The search space defines the set of possible
data augmentation operations that can be applied to the
input images. The search algorithm aims to identify the
optimal set of operations that maximize the performance
of the deep learning model. The evaluation function is
responsible for evaluating the performance of the model
using the augmented data.

More formally, given a dataset D and a search space
of possible augmentation policies Θ, the goal of the
AutoDA search problem is to find the optimal data
augmentation policy θ∗ that maximizes the performance
of the deep learning model on the target task. This can
be formulated as an optimization problem:

θ∗ = argmax
θ∈Θ

Ex,y∼D[L(fω(x′), y)] (1)

where x and y denote an input and its label drawn
from D, x′ is the augmented version of x using the DA
policy θ, fω is the deep learning model parameterized
by ω, and L is the loss function. The augmentation
policy θ consists of a set of transformation functions
T = t1, t2, ..., tn with corresponding probabilities
p1, p2, ..., pn, and intensity parameter α and can be
given as:

θ = (ti, pi, αi)
n
i=1, (2)

where ti is a transformation function with
probability pi and intensity αi. The search problem
can be solved using a search algorithm that samples
different sequences of data augmentation policies from
the search space Θ, and an evaluation function that
evaluates their performance on the validation set. It
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Figure 3. Class Distribution of the Feral Cat Dataset.

updates the next candidate policy based on the obtained
reward signal.

3.2.2. Existing AutoDA Approaches A standard
AutoDA pipeline involves two stages: a generation
stage and an application stage (Yang et al., 2023).
In the generation stage, an optimal data augmentation
policy is generated for a given dataset by a search
algorithm that samples candidate strategies from a
defined search space. The efficacy of the searched
policies is then evaluated using an evaluation function.
In the application stage, the learned policy is applied
by augmenting the target dataset using the obtained DA
policy to increase both the data quantity and variety. The
classification model is then trained on the transformed
training set.

Based on the application of these two stages,
existing works can be divided into two major categories:
one-stage and two-stage approaches. Two-stage
approaches involve separate generation and application
stages. The optimal augmentation policy is generated in
the first stage and then applied to the training set to train
the model in the second stage. In contrast, one-stage
approaches combine generation and application through
the use of gradient approximation methods, allowing
simultaneous optimization of the augmentation policy
and classification model.

This study aims to evaluate the performance of
various AutoDA methods. Specifically, we conduct
tests on 4 two-stage approaches and 2 one-stage
approaches to determine their respective strengths and
weaknesses. The two-stage approaches we tested
included TANDA, faster AutoAugment (faster AA)
(Hataya et al., 2020), RandAugment (RA) (Cubuk
et al., 2020), UniformAugment (UA) (LingChen et al.,
2020). TANDA, being the first proposed method in

the automated DA field, has inspired the development
of subsequent AutoDA approaches. Comparing other
methods with TANDA highlights recent advancements
in this field. However, since most two-stage approaches
are extremely resource-intensive, we use Faster AA
due to its balance between performance and efficiency
(Cubuk et al., 2019; Hataya et al., 2020). In
addition, we include two search-free AutoDA methods
to highlight the contrast between these approaches and
classical two-stage methods that rely on optimization
algorithms. The one-stage approaches we test included
differentiable automatic data augmentation (DADA)
(Li et al., 2020) and automated dataset optimization
(AutoDO) (Gudovskiy et al., 2021). Using both
two-stage and one-stage AutoDA approaches, we
compare the model performance on feral cat data in
terms of accuracy, efficiency, and generalization ability.
We also provide insight into which approach may be
more suitable for different applications.

3.3. Baseline
We include two baseline models to compare the

performance of the AutoDA methods. The first baseline
model was a model trained on the original dataset
without any data augmentation, which we refer to as
the no augmentation baseline. This baseline model
helps to determine how much the AutoDA methods
improve the accuracy of the model compared to just
training on the raw (non-augmented) data. The second
baseline model used was a model trained on a randomly
augmented dataset, which we refer to as the random
augmentation baseline. Random augmentation involves
applying a random set of DA transformations to the
training data, which can improve performance to some
extent, but is not tailored to the specific dataset or task
at hand. It allows to measure the effectiveness of data
augmentation with some level of data manipulation, but
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without any optimization or intelligence in the policy
selection.

By comparing the performance of AutoDA methods
against these baseline models, we quantify the
performance improvement that AutoDA can achieve and
hence the strengths and weaknesses of each approach. In
addition, we also compare the additional computational
cost and time required for each AutoDA method
against the two baselines, as this is an important
consideration in many real-world applications. Overall,
our experiments provide a comprehensive evaluation
of the performance of different AutoDA methods,
and highlight the potential trade-off of using AutoDA
between model accuracy and training efficiency.

3.4. Evaluation Metrics
The evaluation metrics used in this study were

selected to provide a comprehensive and informative
evaluation of the performance of the different AutoDA
methods tested. These include:

Accuracy: The accuracy metric is a widely used and
standard metric for measuring the performance of deep
learning models. In our study, we measure the accuracy
of the models on a test dataset that was independent
from the training data. The test dataset was carefully
chosen to ensure that it represented a diverse range of
examples and was not biased towards any particular
class or feature of the data. By measuring accuracy, we
were able to determine how well the different AutoDA
methods improved the performance of the baseline
models and compare their relative performance.

Efficiency: Efficiency is a crucial factor in
evaluating the performance of different AutoDA
methods. In addition to measuring accuracy, we also
measured the computational cost and time required for
each AutoDA method. This included different aspects
such as the maximum memory usage and the total GPU
hours. Memory usage was measured as the maximum
amount of memory used during policy training, while
the GPU hours reflected the total time used for policy
generation and end model training.

By considering these evaluation metrics, we were
able to gain insight into the performance of the different
AutoDA methods. The combination of accuracy and
efficiency metrics also allowed us to make informed
decisions when selecting specific AutoDA methods for
different applications.

4. Experiments and Results

In this section, we present the experimental
evaluation for the different AutoDA approaches
including TANDA, Faster AA, RA, UA, DADA and
AutoDO using both the CIFAR-10 dataset and feral cat

dataset, and compare results with two baseline models.
Our goal was to empirically evaluate the performance
of these methods based on their accuracy and efficiency.
We initially conducted experiments using 6 AutoDA
methods on the CIFAR-10 data (Section 4.2.1). We
compared our results with the results reported in their
original papers. Our findings indicate that the tested
AutoDA methods were largely reproducible, as there
was not much difference between our results and
those published in the literature. Next, we investigated
the generalization ability of AutoDA methods across
datasets using feral cat data (Section 4.2.2). The dataset
used in these experiments was significantly different
from the ones used in their original studies, since the
feral cat data comprised a skewed class distribution
and many low quality images. Our results showed that
some AutoDA models can improve the final accuracy of
classification models even for new tasks and datasets,
while some approaches, e.g. search-free models, could
potentially result in a performance drop without prior
knowledge of the target domain. In addition to accuracy,
we also assessed the computational efficiency of the
different AutoDA methods. Overall, our experiments
provide a comprehensive evaluation of different
AutoDA methods and highlight the potential trade-off
of using AutoDA between model accuracy and training
efficiency.

4.1. Experimental Setup
Most AutoDA algorithms follow the same problem

formulation as AA (Cubuk et al., 2019). Specifically,
each policy is comprised of five sub-policies, where
each sub-policy includes two augmentation operations.
Although the search space in different AutoDA
models may vary slightly due to different image
processing libraries used (e.g. Python’s Pillow and
PyTorch), we ensured that the same basic image
processing operations were included, namely: ShearX,
ShearY, TranslateX, TranslateY, Rotate, AutoContrast,
Invert, Equalize, Solarize, Posterize, Contrast, Color,
Brightness, Sharpness, Cutout, and Sample Pairing.

Consistent with previous studies, we utilized
Wide-ResNet-28-10 as the base model for both
CIFAR-10 and feral cat datasets except TANDA due to
implementation limitations. To align the experiments
with the design of TANDA algorithm, we utilized
an all-convolutional CNN with four convolutional
layers and leaky ReLU activations as the discriminator,
while the generator was implemented using ResNet
hence ensuring that it was aligned with the original
work (He et al., 2016; Ratner et al., 2017). The
implementation of each AutoDA method was adapted
from its original source code with minor adjustments
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made for deployment purposes. In order to ensure
a consistent and fair comparison, we adhered to the
default experimental settings used in the original works
for the CIFAR-10 data. For feral cat data, we reduced
the batch size to 32 to accommodate the limited data
size and further improve the final model performance.
During the policy application phase, all classification
models were trained with 200 epochs before being
evaluated on the testing set. To consistently assess the
efficiency of each method, we conducted all experiments
except TANDA on the NVIDIA GeForce 1080Ti GPU to
eliminate any potential variability that might arise from
different hardware configurations.

4.2. Results

4.2.1. CIFAR-10 In Table 2, we compare the results
obtained from our experiments on the different AutoDA
methods and the results reported in the original papers.
One additional and important aspect of the work is to
assess the reproducibility of the methods. We reported
average accuracy values over three separate runs based
on the same experimental settings. The results presented
in the table indicate that our implementations achieved
comparable accuracy to the original works with only a
slight performance drop. It is worth noting that some
of the results in the original papers were reported with
different evaluation metrics based on their (individual)
experimental settings, which makes it challenging to
make an exact comparison. However, all AutoDA
approaches investigated here were subjected to identical
(collective) experimental conditions, and we employed
the same evaluation metrics to mitigate any potential
impacts from external factors. Overall, our results
confirmed the effectiveness and robustness of the
AutoDA methods and provide evidence of their practical
applicability.

4.2.2. Feral Cat Data Table 3 presents the
experimental results of various AutoDA methods
on the feral cat data and their comparisons with the
two baseline methods. The Top1 accuracy of the final
classification model trained on the augmented data
was measured. The reported accuracy values were
obtained by taking the highest accuracy achieved out
of the three runs. Additionally, the total GPU time and
maximum memory usage were recorded for efficiency
comparisons. The total GPU time included the time
used for both policy generation and model training.

In terms of accuracy, the results show that the
best performance was achieved by Faster AA, which
obtained a Top1 accuracy of 0.5422. It should be
emphasised that there were 123 unique classes (feral

cats) with challenging data, e.g., cats with many similar
markings, hence accurate classification is especially
challenging compared to other image classification
scenarios. The random augmentation baseline method
had a relatively low accuracy of 0.2453, while the no
augmentation baseline performed even worse with a
Top1 accuracy of 0.2603. DADA also achieved good
accuracy at 0.2953 and was the second-best performing
method. The RA and UA methods achieved Top1
accuracies of 0.2332 and 0.2299 respectively. The
AutoDO method achieved a Top1 accuracy of 0.2246,
slightly worse than both baselines.

We observed that TANDA had the Top1 accuracy
between 0.2043 to 0.3632. However, it is worth noting
that TANDA has a large variation in performance due
to the multiple models trained in one run. The reported
values represent the worst and best accuracy achieved
out of three runs. Moreover, we did not measure the total
GPU time for TANDA as it was originally designed to
be executed on a CPU instead of a GPU.

In terms of efficiency, AutoDO was the most
time-efficient method with a total GPU time of 3.4238
hours, followed by RA with 8.399 hours. However, both
methods had relatively low accuracy values of 0.2488
and 0.2332 respectively. UA had the highest maximum
memory usage of 3, 059MiB, while DADA used the
most GPU memory with 4, 275MiB.

5. Discussion

Our results demonstrate the effectiveness and
potential of different AutoDA methods for improving
model performance and reducing the need for manual
hyperparameter tuning. Specifically, we compared
the performance of TANDA, Faster AA, RA, UA,
DADA and AutoDO. Two baselines (no augmentation
and random augmentation), were used to evaluate the
effectiveness of the AutoDA methods. The results
indicated that some AutoDA methods tested were able
to improve the performance of the final classifier, as
compared to both baselines. This indicates that selecting
the appropriate AutoDA method based on the given task
can effectively improve image classification models.
Additionally, it can address the limitations of traditional
manual data augmentation methods.

Faster AA achieved the highest accuracy on both
datasets, followed by TANDA. Both methods are
based on two-stage AutoDA approaches, in which
the generation of augmentation policies requires a
resource-demanding search phase based on the original
data. Therefore, Faster AA used the most total GPU
time to complete one run. Due to the difference in
deployment, we were unable to compare the efficiency
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Table 2. Accuracy of Results on CIFAR-10 using different AutoDA Methods

AutoDA method Accuracy (ours) Accuracy (original) Deviation
TANDA 0.732± 0.046 0.815 0.0826
Faster AA 0.952± 0.002 0.963 0.011
RA 0.966± 0.001 0.973 0.007
UA 0.973± 0.003 0.973 ∼ 0
DADA 0.937± 0.002 0.945 0.008
AutoDO 0.946± 0.005 0.951 0.005

Table 3. Summary table of performance and efficiency results using different AutoDA methods on feral cat data.

AutoDA method Top1 accuracy Total GPU time (hrs) Max memory usage
No-aug (baseline) 0.2603± 0.017 - -
Random-aug (baseline) 0.2453± 0.034 - -
TANDA 0.2828± 0.114 - -
Faster AA 0.5422± 0.021 39.525 1057MiB
RA 0.2332± 0.055 8.399 993MiB
UA 0.2299± 0.057 7.012 3059MiB
DADA 0.5090± 0.028 29.179 4275MiB
AutoDO 0.2488± 0.024 3.424 2097MiB

of TANDA with other methods. However, it took
more than 48 hours to complete the training and testing
of the CNN in TANDA. Our findings are consistent
with previous studies that have shown the effectiveness
of two-stage approaches for optimizing deep learning
models (Hataya et al., 2020; Ratner et al., 2017; Yang
et al., 2023). However, it is important to note that these
methods are computationally expensive and require a
significant amount of computational resources.

In our experiments, DADA achieved comparable
accuracy levels to some of the TANDA models
while requiring less time to complete. However, as
a one-stage AutoDA method, DADA only showed
modest improvement in accuracy when compared
to no augmentation baseline. On the other hand,
AutoDO was the least effective method among all
tested models except two search-free approaches,
achieving an accuracy of only 0.2488 on the feral
cat data. This performance loss can be attributed to
the gradient approximation used in one-stage AutoDA
algorithms. In order to accelerate the overall training
time, one-stage methods estimate the gradient of
augmentation parameters and simultaneously generate
and apply the DA policy. This approach could lead
to sub-optimal DA policies because the estimation
process may be inaccurate during the parameter tuning,
especially when compared to two-stage approaches.

We also observed that not all AutoDA methods
resulted in performance improvement. Indeed RA and
UA had a negative impact on the model performance.
These methods fall under the category of search-free

AutoDA as they bypass the search phase of DA policies.
Instead, RA and UA directly sample DA policies
from a predetermined range via random sampling and
uniform sampling respectively. The augmentation
policies are selected from a set of image transformation
functions that are empirically chosen based on prior
knowledge of the given task. As a result, the final
performance of search-free methods largely depends on
the decision of the policy range. Although search-free
approaches greatly enhance the efficiency of generating
DA policies, they can lead to a loss in performance as
the augmentation policies are not necessarily optimised
for the target data. For the feral cat task, the policy range
might not include the optimal DA operations due to the
lack of knowledge about the data, which could impede
the effectiveness of the methods.

Overall, our results suggest that the performance of
AutoDA methods is highly dependent on the specific
algorithm and the search strategy used. Two-stage
approaches have shown promising results, but their
computational cost can be significant. While DADA
showed promising results in terms of time efficiency
and accuracy, one-stage AutoDA methods, in general,
may not be as effective as two-stage methods due to
the potential for sub-optimal DA policy generation.
Search-free methods are recognized for their efficiency
and require the least amount of computational resources,
however, their effectiveness is limited and can even
have a negative impact on model performance. Future
research could focus on developing improved gradient
estimation techniques for one-stage methods or refining
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the policy range of search-free approaches.
Figure 4 indicates the trade-off between accuracy

and efficiency in AutoDA methods. In general,
one-stage methods such as DADA and AutoDO,
demonstrate much faster performance in terms of
computational resources and time required for training
when compared to two-stage methods. However,
one-stage methods often achieve limited improvements
in accuracy when compared to two-stage methods.

Figure 4. Trade-off between performance and

efficiency of AutoDA methods on feral cat

classification task. The plot displays the relationship

between total GPU time used for policy generation

model training (y-axis) and top 1 accuracy of the final

classification model after training (x-axis).

In contrast to one-stage methods, two-stage AutoDA
methods tend to produce improved results but require
more computational resources as shown in Figure 4.
TANDA and Faster AA are two examples of two-stage
methods that use gradient-based optimization to search
for the best augmentation policies. Although these
methods require more GPU hours than other methods,
they achieve the highest accuracy. This is likely
due to the fact that they can take advantage of the
information from the proxy task during the search
phase to optimize the augmentation policies, albeit the
accuracy improvement achieved by two-stage methods
comes at the expense of longer training times and higher
GPU usage.

Furthermore, search-free methods, such as RA
and UA, were the most efficient as they did not
require any policy search, with total time equaling the
network training time. However, the performance of
search-free approaches largely depends on the selection
of the augmentation policy range, which can lead to
performance degradation if the range is not properly
chosen.

The choice between one-stage and two-stage
approaches as well as search-free and search-based
methods should be carefully considered depending
on the specific use case and the available resources.
For instance, search-based methods can offer higher
accuracy but require more computational resources,
while search-free methods are more efficient but may
not always result in optimal performance.

Depending on the type of data being used, the
augmentation policies selected by AutoDA techniques
can vary greatly. For instance, when working
with CIFAR-10 data, AutoDA models predominantly
choose color-based transformations, such as Brightness,
AutoContrast, Color, and Solarize, which is in line with
prior research (Cubuk et al., 2019). However, geometric
transformations like ShearX and ShearY are rarely used
in successful policies for CIFAR-10 data.

On the other hand, when dealing with feral cat
classification task, geometric transformations such
as ShearY, ShearX, and TranslateY are commonly
employed in the final policies generated by AutoDA
models. Furthermore, we observed that Cutout is
extensively utilized to augment the raw data. This is
possibly due to the tendency of feral animals to hide
behind environmental objects, which often results in
occlusion in the training set. As such, it is crucial
to prepare the model to accurately classify the cat
even when it is obscured by environmental objects.
In contrast, color-based transformations like Solarize
and Equalize are less frequently selected by AutoDA
models. This may be attributed to the fact that the
dataset mainly comprises images captured at night with
an infrared camera, resulting in black and white images
that limit the effectiveness of color adjustments.

6. Conclusions and Future Work

In this study, we evaluated the performance of
several AutoDA methods for image classification
tasks. Our results demonstrated a trade-off between
accuracy and efficiency of AutoDA methods, with
one-stage methods being faster but achieving modest
improvements in accuracy, while two-stage methods
produce more consistent and higher accuracy results but
require more computational resources. We also found
that search-free methods were the most efficient but that
an inappropriate selection of policy range could lead to
performance loss.

This work study has several limitations that should
be addressed in future research. Further studies are
needed to evaluate the performance of AutoDA methods
on a wider range of datasets and deep learning models.
Such studies can help determine the generalizability

Page 1167



and scalability of these methods and their applicability
for various real-world applications. The AutoDA
methods evaluated in this study are all computationally
expensive, making them challenging to use in many
real-world scenarios. Future research might explore
more efficient AutoDA methods that can be used on
large-scale datasets and with more complex models.
This can help overcome the computational limitations
of current AutoDA methods and enable their broader
adoption in various domains.

AutoDA methods also have the potential to improve
the efficiency and accuracy of deep learning models, but
there is still much to explore and improve in this field.
As deep learning continues to advance and become more
widely adopted, the development and optimization of
AutoDA techniques will become increasingly important.
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