
”Listening In”: Social Signal Detection for Crisis Prediction

Sabine Janzen
Deutsches Forschungszentrum

für Künstliche Intelligenz (DFKI)
sabine.janzen@dfki.de

Sebastian Baer
Deutsches Forschungszentrum

für Künstliche Intelligenz (DFKI)
sebastian.baer@dfki.de

Prajvi Saxena
Deutsches Forschungszentrum

für Künstliche Intelligenz (DFKI)
prajvi.saxena@dfki.de

Wolfgang Maaß
Deutsches Forschungszentrum

für Künstliche Intelligenz (DFKI)
wolfgang.maass@dfki.de

Abstract

Crises send out early warning signals; mostly
weak and difficult to detect amidst the noise of
everyday life. Signal detection based on social media
enables early identification of such signals supporting
pro-active organizational responses before a crisis
occurs. Nonetheless, social signal detection based on
Twitter data is not applied in crisis management in
practice as it is challenging due to the high volume
of noise. With OSOS, we introduce a method for
open-domain social signal detection of crisis-related
indicators in tweets. OSOS works with multi-lingual
Twitter data and combines multiple state-of-the-art
models for data pre-processing (SoMaJo) and data
filtration (GPT-3). It excels in crisis domains by
leveraging fine-tuned GPT-3FT (Curie) model and
achieving benchmark results in the CrisisBench dataset.
The method was exemplified within a signaling service
for crisis management. We were able to evaluate the
proposed approach by means of a data set obtained
from Twitter (X) in terms of performance in identifying
potential social signals for energy-related crisis events.

Keywords: Social signal detection, Crisis prediction,
Social media, Open-domain

1. Introduction

Crises send out early warning signals; mostly weak
and difficult to detect amidst the noise of everyday life
(Diks et al., 2019; Fu and Zhu, 2020). For instance,
before the financial crisis of 2008, there were several
signals indicating that the global financial system was
becoming unstable, e.g., a significant increase in the

use of complex financial instruments, the amount of
debt being taken, or the increase in housing prices. In
crisis management, signal detection mechanisms aim to
enable an early identification of such signals as well
as pro-active organizational responses before a crisis
occurs (Elsubbaugh et al., 2004; Hensgen et al., 2003;
Paraskevas and Altinay, 2013; Parnell and Crandall,
2021; Wolbers et al., 2021). In this context, we define
signals as indicators or pieces of information that may
suggest the occurrence or likelihood of a crisis event,
e.g., data points, patterns, trends, or anomalies (Imran
et al., 2015). By monitoring information sources, such
as social media, companies, government, and health
organizations as well as civil defense are able to detect
early signals and emerging trends for being prepared with
respect to potential conflicts and crisis events (Reuter
et al., 2018; Saroj and Pal, 2020). Here, the analysis of
tweets can be a useful approach due to the large amount
of data generated on Twitter by private users, companies,
and organizations1. Nonetheless, up til now, social
signal detection based on tweets is not applied in crisis
management in practice as it is challenging due to the
high volume of noise and irrelevant tweets (Barbosa and
Feng, 2010; Daniel et al., 2017), language and cultural
bias (Kruspe et al., 2021), as well as the limited context
of tweets induced by their restricted length (Bonaretti,
2018). So far, research on detecting signals for crisis
events based on tweets is focusing on restricted language
settings (Alharbi and Lee, 2022) and isolated application
domains, e.g., early detection of COVID-19 outbreaks
(Cheng et al., 2021; Gharavi et al., 2020), earthquakes

1For instance, in 2020, the number of active Twitter users
was 348 million posting 500 million tweets per day (source:
https://www.statista.com/statistics/303681/twitter-users-worldwide/).
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(Bügel and Zielinski, 2013; Poblete et al., 2018), or
situational awareness for emergency agencies (Cameron
et al., 2012).

A major challenge in using tweets for crisis
prediction is the handling of noise and irrelevant
tweets. Most approaches tackle this challenge by
applying natural language processing techniques, such as
sentiment analyses (Aslan et al., 2023; Mir, 2023), and
content analyses (Mir, 2023; Terpstra, 2012); showing
disadvantages due to the limited scope of training data
and thus, low performance in terms of accuracy.

In this work, we present OSOS – a method for
open-domain social signal detection of crisis-related
indicators in tweets. Our method works with
multi-lingual Twitter data and combines multiple
state-of-the-art models for data pre-processing (SoMaJo)
(Proisl and Uhrig, 2016) and data filtration (GPT-3FT

(Curie)) (Brown et al., 2020). It supports most of the
spoken languages in the world (e.g., Spanish, English).
The method is able to detect social signals in tweets for
open domains, e.g., energy, finances, and supply chains,
that can be directly adjusted by the user in terms of
keywords and crisis data obtained by Twitter.

One appeal of the method is the data filtration
approach, a combination of fine-tuned GPT-3 model
for classification and sentiment analyses to filter out
non-relevant tweets in real time. The fine-tuned
GPT-3FT (Curie) achieves benchmarking performance
in classification on the CrisisBench dataset (Alam
et al., 2021) with an accuracy of 88.2% compared to
other large language models such as XLM-RoBERTa,
DistilBERT, etc. Due to the ability of OSOS to
capture a multi-language setting, a high number of
tweets can be integrated. This enables the integration
of cross-cultural perspectives reducing biases when
applying tweet analysis for social signal detection
(Barbieri et al., 2015). Additionally, OSOS captures
trends by observing the exponential growth in the number
of filtered tweets for finding early signals of crises.

The method was exemplified within a signaling
service for risk and crisis management. We were able to
evaluate the proposed approach by means of a data set of
46.963 unprocessed tweets by Twitter posted in Germany,
the UK, and Spain from 01.01.2020 to 31.12.2022 in
terms of performance in identifying potential social
signals for energy-related crisis events.

2. Signal Detection in Crisis Management

Crisis refers to a time of great instability, where
the normal functioning or equilibrium of a system is
disrupted, often leading to significant consequences. As
crises can take many forms, there are several crisis

taxonomies given in the literature. According to (Gundel,
2005), in this paper, we focus on crisis events that are
characterized as predictable but hardly influenceable, e.g.,
a rise in energy prices, and disruptions in supply chains.
These events may not directly lead to civil unrest or an
increase in mortality, but they do represent significant
disruptions in economic stability and can have cascading
effects on various sectors, potentially leading to larger
crises if not managed appropriately. Understanding those
crises is crucial for preemptive crisis management that
covers four successive phases: mitigation, preparedness,
response, and recovery (Lauras and Comes, 2015).
Detecting early signals is the first step for mitigating
potential crisis events and being more resilient to
crises by encouraging organizational preparedness and
supporting a rapid and effective response (Bundy et al.,
2017; Mitroff, 1988). Here, signals are characterized as
data indicating a deviation from normality, e.g., in the
form of exceeding thresholds or abnormal user behavior
patterns (Imran et al., 2015).

Social media platforms have seen a huge increase
in the number of users in recent years and nowadays
play an active role in the daily business of private
users, companies, and government agencies (Auxier
and Anderson, 2021; Reuter et al., 2018). In the
context of crisis events, social media platforms form
extended social systems that enable the dissemination of
crisis-relevant information within and between official
and public channels. That makes the information-seeking
and self-organizing behavior of users visible, and thus
noticeable and traceable (Palen et al., 2009). Taking the
perspective of information retrieval, in social media a
signal is represented as a change in the number of posts
discussing a topic at a given time (Dou et al., 2012; Imran
et al., 2015). Several studies on natural disaster detection
(Earle et al., 2011; Li and Rao, 2010), emergency
response (Bügel and Zielinski, 2013; Cameron et al.,
2012; Imran et al., 2015), prediction of COVID-19 or
flu outbreaks (Gharavi et al., 2020) have shown that
collecting, processing, and analyzing social media data
is a useful approach for detecting early signals of crises
(Achrekar et al., 2011; Ashktorab et al., 2014).

3. Open-Domain Social Signal Detection
for Crisis Prediction

This serves as input for the Data Pre-processing
which handles data cleaning including the removal
of stopwords, punctuations, and duplicates as well as
performs tokenization and sentence parsing (cf. Figure
1). Resulting data are fed into the Data Filtration
which performs extensive filtering of tweets using a
state-of-the-art GPT-3 model (Brown et al., 2020) for
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Figure 1: Method for open-domain social signal detection of crisis-related indicators in tweets (OSOS)

text classification and DistilBERT (Sanh et al., 2019) for
sentiment analyses. Outputs of this step are transferred to
the Signal Detector which is charged with trend analyses
using burst detection (Imran et al., 2015; Zhang, 2006).
That means the frequency of relevant tweets is monitored
and time series with exponential growth in frequency are
identified (cf. Figure 1).
To introduce the proposed approach, we will give
an example course of social signal detection of
crisis-related indicators in Twitter data, starting with the
domain-specific keywords provided by the user, e.g.,

”Blackout OR (rising energy costs) OR (high energy
costs) OR (energy shortage) OR (supply security AND
energy) OR (energy crisis) OR (energy supply), etc”. The
example course ends with alerts for signals indicating
a potential energy-related crisis situation in the future.
We apply OSOS on tweets extracted using the Twitter
API2 that provides actual and historical data in real-time.
We extracted tweets from Germany (#21,251), the UK
(#7,016), and Spain (#18,696) starting from 2020 to
2022. For the following, imagine an end user, e.g., a
government organization or company looking for signals
for impending energy-related crisis situations due to
reduced availability or rising costs of energy such as
gas, oil, coal, etc.

3.1. Data Pre-processing

Pre-processing of extracted tweets is done by
removing special characters, converting them to
lowercase, and deleting duplicates and empty strings
in tweets (cf. Figure 1). Following this, all punctuation is

2https://developer.twitter.com/en/docs/twitter-api

removed from the data. By applying the tokenizer library
SoMaJo (Proisl and Uhrig, 2016), tweets are split into
sentences and tokens, e.g., [’new’, ’the’, ’energy’, ’crisis’,

’isnt’, ’just’, ’european’, ’problem’, ’it’, ’threatens’,
’to’, ’raise’, ’prices’, ’for’, ’millions’, ’around’, ’the’,
’globe’].

3.2. Data Filtration

As the extracted tweets often contain irrelevant and
noisy data, it’s crucial to filter the tweets based on
the user-specified crisis domain. Thus, we need a
classification model that can accurately classify tweets
within the crisis domain context. To achieve that, we
leverage the power of the pre-trained GPT-3 model
(GPT-3PT) (Brown et al., 2020), well known for its
capabilities in handling large-language tasks. However,
for more effective tweet classification, we need a model
that is tailored to work with the crisis context. Therefore,
we fine-tune the GPT-3 (Curie) model (GPT-3FT) on the
CrisisBench dataset (Alam et al., 2021) enhancing the
capability of GPT-3PT 3 classifier to effectively identify
crisis-related tweets. The dataset for fine-tuning consists
of 156,899 tweets, split into the train (#109,796), dev
(#16,008), and test (#31,095) sets.

The main objective of this fine-tuned GPT-3 model
(GPT-3FT) is to binary classify the crisis tweets into
two categories: ’informative’ and ’not informative’. All
tweets classified into the informative categories are the
ones that concern the crisis. Furthermore, we also
perform sentiment analysis using DistilBERT (Sanh
et al., 2019) and calculate the sentiments of each tweet

3https://platform.openai.com
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(’positive’, ’negative’, ’neutral’). DistilBERT offers an
advantage by being a transformer architecture (Vaswani
et al., 2017) and is 60% faster, and 40% smaller than
the traditional BERT model while retaining 97% of
its language understanding capabilities. Also, negative
and neutral sentiments are commonly associated with
crisis-related events or issues people face (Lambret and
Barki, 2017). Hence, we specifically focus on identifying
tweets with ’negative’ or ’neutral’ sentiments.

After performing these filtrations, the output of this
module is a data set of tweets classified as ’informative’
w.r.t. crisis events and having ”negative” or ”neutral”
sentiments. All other tweets are discarded as irrelevant
tweets. For our example, we first input the tweets: [new
the energy crisis isnt just a european problem it threatens
to raise prices for millions around the globe] to our
fine-tuned GPT-3FT (Curie) model. It classifies it as
’informative’ with a high confidence score of 95.14%
and is categorized as ’negative’ sentiment. Since it meets
both criteria (’informative’ and ’negative/neutral’), it can
now proceed to the next step of signal detection.

3.3. Signal Detector

The Signal Detector applies a burst detection method
for identifying early crisis signals (Imran et al., 2015;
Zhang, 2006). It takes the output from the Data Filtration
(cf. Figure 1), maps frequencies of tweets to time series
on a daily basis, and extracts the trend component of
the time series. Afterward, trends are analyzed with
respect to periods of exponential growth. To determine
these exponential periods, log scaling is applied to trend
component values, thus periods of exponential growth
can be detected as periods of linear growth on the scaled
values. Linear growth is given when scaled values differ
by 10%, i.e., they grow by an almost constant value.
Definition 1. A signal is defined by a period of
exponential growth that holds for a minimum of seven
days with an arbitrary threshold of 10% in (tweet)
frequency change.

Such a period triggers an alert for a detected
crisis-related social signal.

4. Implementation and Evaluation

Based on the proposed method OSOS (cf. Figure
1), we implemented a signaling service for open-domain
social signal detection in risk and crisis management4.
The system accepts keywords by users describing the
domain of interest in the form of plain text and can be
configured with respect to preferred countries, languages,

4Link to the code: https://github.com/InformationServiceSystems/
pairs-project/tree/main/Modules/OSOS

and time intervals. In order to be able to process tweets
from Twitter for detecting social signals, a pipeline
has been deployed by using Python 3.9, PyTorch5,
and the X respectively Twitter API6. Having confirmed
the keywords, the resulting pipeline returns potential
signals of an upcoming crisis event if any including
visualizations of detected signals as shown in Figure
2.

4.1. Setting

To evaluate our approach, we conducted a run-time
study with the implemented signaling service. The
objective of this study was to evaluate the performance
of the service in identifying potential social signals for
energy-related crisis events (i.e., decrease of availability
and increase of costs of energy like gas, oil, coal,
solar, and wind). As keywords for the domain of
interest, we determined [’Blackout’, ’rising energy costs’,

’high energy costs’, ’energy shortage’, ’supply security
AND energy’, ’energy crisis’, ’energy supply’, etc]
according to (Vrana et al., 2023) and (Commission,
2022). The set of keywords is characterized by different
languages. We applied a data set of 46,963 unprocessed
tweets by Twitter (X) from 01.01.2020 to 31.12.2022
posted in Germany, the UK, and Spain consisting of
multiple languages. Table 1 shows details of the
dataset with respect to the number of tweets after
pre-processing and sentiment analysis as well as the
distribution among various languages. For evaluation, we
identified three energy-related crisis events E in history
that were predictable but hardly influenceable according
to (Gundel, 2005). The crisis events E took place at
a time t0 between June 2022 and September 2022 in
Germany, the UK, and Spain:

• e1: Peak in electricity price (571.2 EUR/MWh):
In Germany, electricity price reached an all-time
high on 25th August 20227. A major reason for
this is the Russia-Ukraine war, that led to drastic
fluctuations in prices and overall market instability.

• e2: Peak in electricity price (481.38 GBP/MWh):
In the UK, electricity prices reached an all-time
high starting in August-September 20228.

• e3: Peak in gasoline price (2.29 EUR/L): In Spain,
there was a significant rise in gasoline prices in
June 2022. The initial rise in prices was driven by
the post-pandemic recovery in gas demands and

5https://pytorch.org/
6https://developer.twitter.com/en/docs/twitter-api
7https://tradingeconomics.com/germany/electricity-price
8https://tradingeconomics.com/united-kingdom/electricity-price
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Event (E) #tweets #data processing #languages #English #German #Spanish #data filtration
e1 21,251 20,243 39 15,003 4,240 247 3,036
e2 7,016 7,011 24 6,950 5 6 937
e3 18,696 18,572 39 15,023 1,338 673 3,069

Table 1: Distribution of tweets across different stages of OSOS for all events (E). Total extracted tweets (#tweets), post-processing
(#data processing), total languages (#languages), and count of ’informative’ tweets with ’negative’ or ’neutral’ sentiment
(#data filtration)

aggravated in early 2022 due to the Russia-Ukraine
war9.

The performance of the system in detecting signals for
those events E was evaluated for time intervals of 4 (t−1),
8 (t−2), and 12 (t−3) weeks in advance of the crisis event
e ∈ E (cf. Table 2).

4.2. Results

In summary, after data pre-processing and filtration
(cf. Figure 1), the final data set for the run-time study
covered 7042 tweets (e1: 3036; e2: 937; e3: 3069).
Figure 2 shows the performance of the signaling service
in identifying social signals for time intervals of 4 (t−1),
8 (t−2), and 12 (t−3) weeks in advance of energy-related
crisis events E between January 2020 to December 2022
in Germany, UK and Spain. For each point in time
t ∈ T , we examined the exponential growth in the
frequency of tweets for the events (E), i.e., the frequency
change (FC%). When points in time t ∈ T are marked
bold in Table 2, the signaling service detected social
signals for the respective crisis event e ∈ E based on
the frequency change (FC%) in relevant tweets that was
≥ 10% and continued for a minimum of seven days.
Results show a general growing trend in the frequency
of tweets relevant as indicators for energy-related crises
with respect to Germany, the UK, and Spain (cf. Table
2). The peaks for the events (E) were reached in late
Summer 2022 (cf. Figure 2). (e1: 08.2022; e2: 09.2022;
e3: 06.2022). For events e1, the signaling service was
able to detect early social signals at all points in time
interval T , i.e., 4, 8, and 12 weeks before the crisis
event with the significant increase in FC(%) (cf. Table
2). Also, burst periods and signal captured by OSOS
is visualized in Figure 2a. For event e2, the signaling
service detected early social signals 12 weeks before the
crisis event with a 35.0% frequency change (FC%) (cf.
Table 2), 8 weeks prior with a notable 90.0% increase
but couldn’t capture the trend 4 weeks ahead. However,
interestingly, in September 2022 (cf. Figure 2b), the
electricity price had a significant downfall after reaching
its peak, which was also captured by the OSOS 4 weeks
ahead with -15.0% FC%. Comparing e1 and e2 with

9https://tradingeconomics.com/spain/gasoline-prices

e3, we see smaller changes in frequencies of tweets in
e3 (cf. Table 2). This is raising interesting research
questions as the reasons could be issues in sampling for
signal detection (7 days trend score) but also underlying
effects of communication in perception of different crisis
types. According to (Malecki et al., 2021) and (Coombs,
2004), social and cultural factors, immediacy, uncertainty,
familiarity with similar crisis situations, personal control,
trust in institutions and media, etc can shape the response
to people in risk and crisis communication. Furthermore,
aspects of attributions of cause and responsibility to
organizations in crisis situations can have a positive or
negative influence on the need for communicating about
those events in social media (Schwarz, 2012). Applying
these approaches to crisis communication, we intend to
investigate the effect in e3. In this case, i.e., event e3,
the signaling service captured the overall dynamic of
increasing (tweet) frequency, but identified changes laid
below the threshold until t−1, so no signals until 4 weeks
before the event occurred were detected. Furthermore,
we evaluated the performance of the Tweet classification
model for the data filtration module (cf. Subsection
3.2) using the test set of CrisisBench dataset (Alam
et al., 2021), consisting of 31,095 crisis-related tweets.
We experimented with multiple state-of-the-art text
classification models to determine the best-performing
model for the data filtration module. These models were
fine-tuned and tested on the CrisisBench dataset, and
evaluated on metrics such as accuracy, precision, recall,
and f1 scores. As shown in Table 3, GPT-3FT model
outperformed other models for all the metrics, reporting
accuracy (0.882) and f1 score (0.905). Overall, the
results of the run-time study and model performance
evaluation indicate a positive evaluation of the signaling
service implementing OSOS regarding its ability to
identify potential social signals before a crisis event
occurs. This early identification of signals based on social
media data enables companies, governments, and health
organizations for pro-active organizational responses as
well as data-driven decision-making in expectation of
conflicts and crisis events.
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(a) Crisis event e1:’Peak in electricity price’, Germany, Jan 2020 - Dec 2022.

(b) Crisis event e2:’Peak in electricity price’, the UK, Jan 2020 - Dec 2022.

(c) Crisis event e3:’Peak in gasoline price’, Spain, Jan 2020 - Dec 2022.

Figure 2: Visualization of detected social signals for potential crisis events (E) with respect to the data set of tweets posted in
Germany, England (UK) and Spain between 2020 and 2022.
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Table 2: Results of run-time study for evaluating the performance of OSOS in identifying social signals for time intervals of 4 (t−1),
8 (t−2), and 12 (t−3) weeks in advance of energy-related crisis events E between January 2020 and December 2022 in Germany,
UK and Spain based on a data set of tweets (N = 46.963). (Legend: FC = Frequency change) Reporting averaged FC(%) score for
the time intervals in (T ) .

Event (E) Date of event (t0) Description t−1 FC(%) t−2 FC(%) t−3 FC(%)

e1 (in Germany) 08/22 Peak in electricity
price

07/22 89.0 06/22 45.0 05/22 23.0

e2 (in UK) 09/22 Peak in electricity
price

08/22 -15.0 07/22 90.0 06/22 35.0

e3 (in Spain) 06/22 Peak in gasoline
price

05/22 24.0 04/22 4.0 03/22 -25.0

Table 3: Classification results of different models on predicting
informativeness in CrisisBench dataset (Acc = accuracy, P
= precision, R = recall, F1 = F1 score, GPT-3PT = GPT-3
pre-trained, GPT-3FT = GPT-3 fine-tuned)

Model Acc P R F1

Monolingual model

CNN 0.828 0.827 0.828 0.828

fastText 0.821 0.820 0.821 0.820

BERT 0.873 0.872 0.873 0.872

DistilBERT 0.872 0.871 0.872 0.871

RoBERTa 0.880 0.879 0.880 0.879

Multilingual model

GPT-3PT 0.5992 0.8167 0.4464 0.5773

BERT-m 0.879 0.879 0.879 0.879

DistilBERT-m 0.873 0.872 0.873 0.872

xlm-RoBERTa 0.879 0.879 0.879 0.879

GPT-3FT(Curie) 0.882 0.897 0.912 0.905

4.3. Limitations

OSOS is able to detect early crisis-related signals for
diverse domains in multi-lingual tweets by using multiple
state-of-the-art models for data pre-processing (SoMaJo)
and data filtration (GPT-3FT (Curie)) in combination
with burst detection. The approach does not prove that
all crisis events can be predicted with the same level
of performance. As mentioned before, we focused
on crisis events that are characterized as predictable
but hardly influenceable, e.g., a rise in energy prices
(Gundel, 2005). That means only crisis events can be
predicted that are sending out processable signals in
advance. The model is fine-tuned on the most spoken
languages (English, French, Spanish, German, Italian,

Portuguese, Greek, Bulgarian, Russian, Turkish, Arabic,
Japanese, Corsican, Tagalog, Vietnamese, Indonesian,
Chinese, Hindi, Urdu, etc) and based solely on Twitter
data. Therefore, besides cultural biases as mentioned
before, OSOS might face the issue of poor quality
and increasing prevalence of misinformation and “fake
tweets” which can influence the results. As the main
data source for our model is Twitter posts, results
could be manipulated by targeted mass postings of
false or malicious tweets. This can be mitigated by
combining OSOS with models that process further
information sources for signal detection, e.g., newspaper
articles, stock market data, business reports, etc.
Future work will further involve verification techniques
to minimize these risks by investigating advanced
techniques such as transformer-based neural networks,
which leverage context-rich embeddings, graph-based
methods that analyze information dissemination patterns,
and multimodal approaches that cross-verify textual
content with associated media. These methods will
be integrated into the OSOS approach, providing a
comprehensive countermeasure against misinformation.
Furthermore, empirical user studies are planned with the
extended OSOS method for evaluating its performance
in social signal detection of crisis-related indicators with
domain experts from industry and civil defense.

5. Ethics Statement

Concerning the EU guidelines on ethical AI
(High-Level Expert Group on Artificial Intelligence,
2019), we consider potential risks and ethical issues
associated with the proposed approach, particularly
in relation to the principles of (1) respect for human
autonomy, (2) prevention of harm, (3) fairness, and (4)
explicability.
(1) Respect for human autonomy: Our approach aims
to support users, particularly companies, government,
and health organizations in proactively identifying to
crisis events. It respects human autonomy by providing
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organizations with decision-making support rather than
making decisions on their behalf. In this case, users keep
full and effective self-determination over themselves
having meaningful opportunities for human choice. The
intention of OSOS is to ”support humans by providing
emerging trends and signals of upcoming crisis situations,
and aim for helping the society”. (High-Level Expert
Group on Artificial Intelligence, 2019).
(2) Prevention of harm: AI systems should protect human
dignity as well as mental and physical integrity. The
proposed approach as well as the environment it operates
in is safe and secure as it utilizes individual tweet data and
does not generate any text but rather just filters tweets into
pre-defined categories. It prevents unauthorized access
and malicious use, and it understands and addresses
potential biases. It takes precautions while integrating
the large corpus of Twitter data to not create unintended
consequences or asymmetries of power or information.
(3) Fairness: The EU guidelines on ethical AI High-Level
Expert Group on Artificial Intelligence, 2019 describe
a substantive and a procedural dimension of fairness.
OSOS fully commits to both dimensions. Regarding
the procedural dimension, the proposed approach entails
the ability to contest against decisions made by OSOS
(High-Level Expert Group on Artificial Intelligence,
2019), i.e., to challenge tweets that were labeled as
informative.
(4) Explicability: We prioritize explicability for the
decision-making process, although the OSOS model
uses the GPT-3 model which is considered a black
box like many deep learning models. The model may
lack an explanation as to why it classified the tweet
as ’informative’ or ’not-informative’, However, due to
our fine-tuning we have explicitly extended the model
to work for the crisis domain restricting its output to
generate classification labels, ensuring no harmful or
irrelevant text is generated. Also, we tried to bridge
the gap for its black box nature and provide traceability,
audibility, and transparency in the communication of
the system’s capabilities (High-Level Expert Group on
Artificial Intelligence, 2019).

6. Conclusion

In crisis management, signal detection based on
social media enables early identification of crisis-related
signals supporting pro-active organizational responses
before a crisis occurs. Nonetheless, up until now,
social signal detection based on Twitter data has not
been applied in crisis management in practice as
it is challenging due to the high volume of noise.
Focusing on predictable but hardly influenceable crisis
events, we introduced OSOS, a method for open-domain

social signal detection of crisis-related indicators in
tweets. OSOS works with multi-lingual Twitter data
and combines multiple state-of-the-art models for data
pre-processing (SoMaJo) and data filtration (GPT-3FT

(Curie)), achieving benchmark results in CrisisBench
dataset. It supports multiple of the most spoken
languages in the world (e.g., Spanish, English) and is
able to detect social signals using burst detection in
tweets for open domains, e.g., energy, finances, and
supply chains. OSOS was exemplified within a signaling
service for risk and crisis management. We were able to
evaluate the proposed approach by means of a data set of
46.963 unprocessed tweets by Twitter posted in Germany,
the UK, and Spain from 01.01.2020 to 31.12.2022 in
terms of performance in identifying social signals for
energy-related crisis events (i.e., decreasing availability
and rapidly increasing costs of energy like gas, oil, coal,
solar, wind).
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