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Abstract

Venture capital investments play a powerful
role in fueling the emergence and growth of
early-stage startups. However, only a small fraction
of venture-backed startups can survive and exit
successfully. Prior data-driven prediction based or
recommendation based solutions are incapable of
providing effective and actionable strategies on proper
investment timing and amounts for startups across
different investment rounds. In this paper, we develop a
novel reinforcement learning-based method, AlphaVC,
to facilitate venture capitalists’ decision-making.
Our policy-based reinforcement learning agents
can dynamically identify the best candidates and
sequentially place the optimal investment amounts
at proper rounds to maximize financial returns for a
given portfolio. We retrieve company demographics
and investment activity data from Crunchbase. Our
methodology demonstrates its efficacy and superiority in
both ranking and portfolio-based performance metrics
in comparison with various state-of-the-art baseline
methods. Through sensitivity and ablation analyses,
our research highlights the significance of factoring
in the distal outcome and acknowledging the learning
effect when making decisions at different time points.
Additionally, we observe that AlphaVC concentrates
on a select number of high-potential companies, but
distributes investments evenly across various stages of
the investment process.
Keywords: venture capital, reinforcement learning,
portfolio optimization

1. Introduction
Venture capital (VC) firms play a crucial role in the

entrepreneurial finance market, providing considerable
impetus to the growth and development of startups.
In recent years, there has been a significant increase
in global venture capital investments, with investment

amounts surpassing $670 billion in 2021 (KPMG,
2021). Despite the strides made by the venture capital
industry, it continues to experience a high rate of
investment failure. Evidence shows that only 25% of
venture-backed startups (those that have received at least
one round of venture capital investments) are able to
survive and grow (Gage, 2012). This high investment
failure ratio creates an empirical puzzle that attracts
scholars’ attention to the topic of VC decision-making.

Indeed, the literature on VC decision-making
has been growing exponentially since 2009. The
literature that investigates how VCs make decisions
can be organized along three major traditions: (1) the
trait-based view (e.g., Dimov et al., 2007; Malmström
et al., 2017), (2) the cognition/behavior-based view
(e.g., Baum & Silverman, 2004; Maxwell et al., 2011),
and (3) the knowledge-based view (e.g., Carpentier &
Suret, 2015; Zacharakis & Meyer, 2000). Each tradition
provides factors that explain VCs’ decision-making
strategies. Although existing studies offer extremely
rich insights into how VCs make decisions, our
current understanding of VC decision-making faces
three challenges. First, very few scholars investigate the
overall decision quality, i.e. whether invested ventures
will receive the next round of investment and eventually
go to IPO. Most scholars focus on understanding
whether VCs have invested or not or whether VCs have
the willingness to invest. Second, existing research
treats each VC decision in isolation. This means that
whatever VCs decide to do in one situation at time
t does not influence their decision-making in another
situation at time t + 1. We have little knowledge of
the learning effect of an earlier investment decision
on a later decision. Finally, as a consequence of not
considering the distal outcome or the learning effect
between actions, most research focuses on demystifying
VC’s decision-making process instead of prescribing
good solutions that help VCs make better decisions.

In this paper, our primary aim is to empirically
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examine the optimal way of investing. Specifically,
we ask the following research question: how could
investors determine the timing and amount of investment
in target startups? To capture the dynamic nature of
the investing process, we propose to tackle this problem
from a reinforcement learning (RL) perspective. The
main objective of our RL model, AlphaVC, is to
instruct the agents (acting as investors) on how to
distribute specific portions of funds among various
startups across multiple rounds of investment. Extensive
experimentation has been performed to assess the
efficacy of our proposed AlphaVC model on datasets
associated with two industry sectors, namely Financial
Services and Information Technology. The experimental
results show that AlphaVC outperforms other baseline
models concerning both ranking and portfolio-based
performance metrics. Our sensitivity analysis also
shows that without considering the overall decision
quality, i.e., whether the invested ventures will receive
the next round of investment and reach IPO, and the
agents’ past decisions, AlphaVC would experience a
sharp decline in her decisions to an optimal investment
portfolio. Moreover, through a sensitivity analysis on
investment strategy parameters and through comparing
AlphaVC with human agents, we find that AlphaVC
focuses its attention on a few high-potential companies
but disperses the investment amount in a balanced
manner across different stages in the investment process.
2. Theoretical background
2.1. Literature of VC Decision Making

The literature around VC decision-making can
be organized along three major traditions: (1) the
trait-based view, (2) the cognition/behavior-based view,
and (3) the knowledge-based view.

In the first tradition (the trait-based view), scholars
primarily examine the influence of entrepreneurial
characteristics, such as gender and passion, on
investment decisions (e.g., Malmström et al., 2017).
Scholars also investigate how the traits of VC investors,
such as their consistency, finance capacity, portfolio,
reputation, and confidence level (e.g., Drover et al.,
2017; Petty & Gruber, 2011; Zacharakis & Meyer,
2000) influence their investment decisions. In this
approach, good decision-making is assumed to belong
to a particular type of VC. The point of this tradition
has been to enumerate a set of characteristics that could
describe good VCs as an entity. Those VCs with
good reputations, good financial capability, and who
are confident are more likely to make good decisions.
Underlying this tradition is the assumption that only the
VCs with the right traits could make good decisions.

The second strand of research, the cognitive/
behavior-based view, shifted the focus from who the

right VCs are to what the VCs do. In this tradition,
research focuses on looking at cognitive antecedents
of VC decision-making processes. For example,
the research investigates the link between investment
decisions and the similarities between venture capitalists
and members of a venture team (e.g., Forlani &
Mullins, 2000). Other factors such as perceived
uncertainty (e.g., Forlani & Mullins, 2000), escalation of
commitment (Devigne et al., 2016), and cognitive biases
on investment decisions (e.g., Baum & Silverman,
2004; Maxwell et al., 2011) are also considered factors
that affect VC decision-making quality. In general,
the cognitive/behavior-based view proposes a variety
of decision-making criteria that influence investors’
willingness to invest.

Finally, in the stream of knowledge-based view,
researchers focus on studying how VC’s accumulated
knowledge influences VC investment decisions.
Specifically, scholars aim to understand which types
of past experiences in startup teams can lead to
greater success and interest from VCs and how VCs’
experiences in specific industries or with certain types of
companies may inform their investment decisions. For
example, factors such as past financial expertise (e.g.,
Baum & Silverman, 2004; Dimov & De Clercq, 2006),
past VC experience (e.g., Shepherd & Zacharakis,
2002; Shepherd et al., 2003; Wesley II et al., 2022),
past industrial experience (e.g., Franke et al., 2008;
Wesley II et al., 2022), social network (e.g., Wang,
2016) are all examined to understand how and why VCs
make decisions to select and to invest in entrepreneurs.
2.2. Challenges of Understanding VC

Decision Making
Although existing studies offer extremely rich

insights into how VCs make decisions, our current
understanding of VC decision-making faces three
challenges. First, the empirical focus of the VC
decision-making process is incomplete (McMullen
& Dimov, 2013). Most existing papers focus on
proximate outcomes, measured by whether VCs make
the decisions to invest (e.g., Dimov & De Clercq, 2006;
Franke et al., 2008; Wang, 2016) or whether VCs have
the willingness to invest (e.g., Drover et al., 2017;
Wesley II et al., 2022). Very few scholars investigate
distal outcomes of VCs’ decisions, such as the overall
decision quality, i.e. whether the invested ventures
will receive next round of investment and eventually
go to IPO. Without knowing the overall quality of
VC decisions, we cannot advise how VCs could make
investment decisions in practice to enhance new venture
survival and success.

Second, the lack of empirical focus on studying the
quality of VC decisions may be due to the persistence of
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early conceptualization that a VC investment decision is
a single-moment event, which happens in isolation from
the overall decision-making process. Indeed, existing
research treats each VC decision in isolation. This
means whatever VCs decide to do in one situation
at time t does not influence their decision-making in
another situation at time t + 1. Under this assumption,
we could not tell, for example, how a VC could
sequentially learn to make better decisions of investing
based on their past actions. For example, in the
behavior/cognition research strand, research typically
focuses on specific moments when decisions were made.
We have little knowledge about whether a VC’s decision
to invest in a venture at a nascent stage has any influence
on the VC’s decision to invest when the venture is at
a later stage. Even for longitudinal studies that intend
to capture the dynamic nature of the investing process
(McMullen & Dimov, 2013), scholars rarely assume any
learning effect among decisions. In fact, most scholars
map out decision points without talking about how
earlier decisions influence latter ones (e.g., Carpentier &
Suret, 2015; Dimov & De Clercq, 2006; Petty & Gruber,
2011; Wang, 2016).

Third, the focus on approximate outcomes may be
a result of empirical limitations that have inhibited
scholars’ ability to “see” over a longer span of
time. That is, most research does not take objective
retrospective historical data into account; rather,
scholars rely on survey, experimental, and longitudinal
data generated through VC’s own perceptions (Gompers
et al., 2009; Nanda et al., 2020). The existing
research designs do not deepen our ability to recognize
important patterns of possible investment actions and
their consequences. Retrospective data, on the other
hand, can provide us with more fine-grained levels
of analysis, such as temporal dynamics of decisions
effects over distal outcomes. To date, research has
clearly highlighted the importance of considering VC
decision-making process. Evidence shows that there
are differences in the apparent relevance of criteria at
different stages of the VC decision-making process.
For example, Petty and Gruber (2011) find that the
main reasons for rejecting a business proposal in the
early stages of the fund lifecycle are not the same as
the main reasons for rejection later on in the life of
the venture fund. Because VC decision-making is a
complex and long-term task that often involves multiple
rounds of investment spanning over several years (e.g.,
Dimov & De Clercq, 2006; Petty & Gruber, 2011;
Wang, 2016), it becomes necessary for scholars to
consider the process aspect of VC decision-making. The
consequence of not considering process is that most
research focuses on demystifying VC’s decision-making

process instead of prescribing good solutions that help
VC make decisions. Therefore, to capture the dynamic
nature of the investing process, we propose a new
paradigm of methods that could advance our current
understanding of VC decision-making.
2.3. Addressing Theoretical and Empirical

Incompleteness
To address the theoretical and empirical

incompleteness, we propose to study VC
decision-making in two steps. First, we use real,
enriched VC-investing-startup data that includes
IPO labels to do research. In addition to collecting
information on whether a VC invested in a company, we
also gather data on the subsequent development of the
invested company, such as whether it progresses to the
next funding round and eventually achieves a successful
IPO. Such data mining approaches have become
popular and have been used to predict business success,
such as company strategy (Yankov, 2012), collective
intelligence (Dellermann et al., 2021), ventures’ success
rate (Bonaventura et al., 2020; Zhang et al., 2021). By
conducting analyses on this more comprehensive data,
we aim to gain a new understanding of how to assist
VCs in making qualified investment decisions.

Second, building on the rich empirical data,
we introduce the Markov Decision Process (MDP)
as a mathematical framework for modeling
decision-making. MDP falls under reinforcement
learning, which is defined as actors learning what to do
- how to map situations to actions - so as to maximize a
numeral reward signal (Sutton & Barto, 2018). Scholars
have used reinforcement learning in risk management
(Buehler et al., 2019), optimizing portfolio (Moody &
Saffell, 2001), and asset allocation (Almahdi & Yang,
2017), among others. In our case, we use MDP as a
reinforcement learning technique and look at how VC
investors take different actions to maximize reward
under different situations.
2.4. Technical Methods for VC Investment

There are numerous studies aiming to seek signals
of business success using machine learning and data
mining approaches. Yankov (2012) studied 42 success
prediction models and major success factors, identifying
industry structure, company strategy, and interaction of
strategy with structure as a successful model pattern.
Hadley et al. (2018) instead included a people-centric
network for analyzing the startup’s success. Zhang et al.
(2021) modeled VC firms, people, and startups into a
heterogeneous business information network and used a
scalable heterogeneous graph Markov NN to predict if
early-stage startups could receive a series-A round.

Additional research that is highly pertinent to
our study includes portfolio optimization through the
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application of reinforcement learning techniques. This
line of research can be traced back to (Moody & Saffell,
2001) and has drawn more attention due to the heat
of deep neural network-boosted reinforcement learning.
Besides, Almahdi and Yang (2017) adopts recurrent
reinforcement learning (RRL) for asset allocation and
variable weight portfolio allocation. Their proposed
coherent risk-adjusted objective function yields better
return performance than other objective functions, i.e.
the Sharpe ratio and the Sterling ratio.

3. Research Problem and Data
Supposed that we consider N investment rounds

{t1, t2, ..., tN} and a predetermined set of M startups
{c1, c2, ..., cM} for investment. Our objective is to
allocate a proportionate amount of funding to a selected
group of companies across various rounds, with the aim
of maximizing the financial return within the portfolio.
The output of the model is an allocation matrix, denoted
as A ∈ RN×M , where each element aij ∈ [0, 1]
indicates the proportion of the total funding assigned
to company cj in round ti, subject to the constraint of∑

ij aij = 1.
Our data is sourced from Crunchbase, a widely

acclaimed dataset for its comprehensive coverage
of entrepreneurial activities and venture capital
investments. This platform provides access to a vast
network of market intelligence and analytics spanning
a broad range of industries and geographies. We
utilize Crunchbase to gather a substantial amount of
information about startups, investors, and investment
activities for our study. We collected data on companies
founded between 2010 and 2018, as well as investment
activities during the same period. Our data covers
a wide range of industries, including financial
services, information technology, healthcare, and
consumer goods. These companies are located in
various countries, including but not limited to the
United States, China, and the United Kingdom. To
obtain a more comprehensive characterization of the
startups, we undertake feature engineering with our
sample data. Table 1 presents the features focusing
on four perspectives of characterizing the startups,
including investments, investors, location, and industry
(Sharchilev et al., 2018; Xu et al., 2022).

4. Research Methodology
4.1. Startup Screening

To facilitate subsequent training of the RL model,
it is imperative that we undertake a screening process
to eliminate startups that are unlikely to succeed in the
follow-on round. This will enable us to focus the efforts
and resources of our RL model on startups that have
a greater potential for success and a more promising

future. By incorporating a binary label indicating
the likelihood of a company receiving funding in the
subsequent round, we can train our XGBoost model
effectively using the prepared features (see Table 1) and
make accurate predictions about the funding prospects
of the startups. Compared to optimizing a sequential VC
portfolio, predicting follow-on investment rounds is a
simpler task that could potentially yield higher accuracy.
Using this approach and integrating the predictions
generated by the XGBoost model into our framework (as
illustrated in Figure 1), the RL agent can better assign
funding ratios to those unmasked companies and reduce
the frequency of errors.

4.2. RL-based Investment Strategy Learning

4.2.1. States. In our setting, the agent refers to
the venture capital investor. The state of our VC
agent includes relevant investment details of the VC
environment being observed, as well as historical
decision data of the agent. Assuming there are a total of
T investment rounds, for each round t ∈ {1, 2, ..., T},
the VC agent’s state is denoted as St ∈ RM×2d. At
each investment round t, we establish the agent’s state
St, which consists of two parts: the factual state St

f ∈

RM×d and the decision state St
d ∈ RM×d. The agent

states are formed by concatenating both states:
St = St

f ⊕ St
d, (1)

where ⊕ is the concatenation operator. The factual
state St

f typically includes the financial features of the
company and industry. It is calculated based on the
factual statistical features of companies in a given pool.
The decision state St

d contains information about the
agent’s historical investment decisions. It is calculated
using the hidden states of the Long Short-term Memory
Networks (LSTMs) (Hochreiter & Schmidhuber, 1997)
in the agent’s policy network (see Section 4.2.2).

Factual states. The factual state St
f contains factual

information collected from all M startups in the
pool. Specifically, to form the initial representation
of St

f during each investment round t, we use the
K = 14 features as summarized in Table 1, namely
{f t1, f t2, ..., f tK}, that can be gathered and computed for
each company at every investment round. The initial
representation is denoted as S̃t

f ∈ RM×K and is
computed by concatenating the features together, i.e.,
f t1⊕f t2⊕, ...,⊕f tK . Subsequently, a fully-connected layer
is applied to the initial fourteen-dimensional feature
vector, which projects the vector into a hidden space
consisting of d dimensions, resulting in the formation
of St

f ∈ RM×d:

St
f = σ(W1 ∗ S̃t

f + b1), (2)
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Table 1: Summary of Our Extracted Features
Category Feature Remarks

Investments
INVEST COUNT Total number of investments it has received
INVEST FREQ Average months per investment since its establishment
LAST INVEST AMOUNT Amount of the last investment
LOG LAST INVEST AMOUNT Logorithmed amount of the last investment

Investor
AVG INVESTORS PER ROUND Average number of investors per investment round
AVG INVEST COUNT BY INVESTOR Average number of the past investments per its investors
REPEATED INVESTOR COUNT Number of investors who has invested this company more than once

Location
IPO RATIO BY CITY Ratio of companies IPOed in its city
IPO RATIO BY CITY 1Y Ratio of companies IPOed in its city in recent 1 year
IPO RATIO BY CITY 3Y Ratio of companies IPOed in its city in recent 3 year

Industry
AVG IPO RATIO BY INDUSTRY 1Y Average ratio of IPO exits among its industry terms in recent 1 year
AVG ACQ RATIO BY INDUSTRY 1Y Average ratio of companies which got acquired among its industry terms in recent 1 year
AVG IPO RATIO BY INDUSTRY 3Y Average ratio of IPO exits among its industry terms in recent 3 year
AVG ACQ RATIO BY INDUSTRY 3Y Average ratio of companies which got acquired among its industry terms in recent 3 year

where W1 ∈ Rd×K and b1 ∈ RM×d denote the
parameters of the fully-connected layer, and σ denotes
the common sigmoid function for non-linear activation.
Decision states. Unlike factual states, which only
contain factual information about the environment,
decision states serve the purpose of encapsulating the
past decision-making behavior of the RL agent. In our
agent’s policy network, decision states are derived from
the hidden states generated in the previous time step
(denoted as ht−1 ∈ RM×dh ) using the LSTM modules.
The decision states are calculated as follows:

St
d = σ(W2 ∗ ht−1 + b2), (3)

where W2 ∈ Rd×dh and b2 ∈ RM×d are the
parameters of the second fully-connected layer, which
projects the hidden states to a d-dimensional space.
LSTMs are ideal for this problem as they can capture
both current and past information about an agent’s
hidden states. Further information regarding the LSTM
networks can be found in Section 4.2.2.
Actions. In our context, we assume that the RL agent
will take a sequence of T actions corresponding to T
investment rounds. Suppose that we have M startups in
the pool, each of these actions is equivalent to a specific
row At in the funding allocation matrix A ∈ RT×M .
However, each At (t ∈ {1, 2, ..., T}) is independent of
the others, we inadvertently sacrifice the preservation of
sequential patterns across different rounds.

To mitigate this issue, we have established a two-part
framework for the agent’s actions. These are defined as
the stage-wise action denoted by as ∈ RT×1 and the
company-wise action, which is represented by Ac ∈
RT×M . We can then obtain the final funding allocation
matrix A by combining these two actions. A stage-wise
action involves investors determining the allocation of
funding at each round based on the total available
funds. A company-wise action involves determining
the percentage of funding that each individual company
receives based on the prior stage-wise action.
Stage-wise action. For each round t, the scalar ats ∈
as represents the total funding investment ratio at the
current round. The stage-wise action adheres to the
constraint

∑T
t=1 a

t
s = 1 to ensure that all funding is

invested by the last round. Our empirical results suggest

Agent

Round i Round i+1

...

Startup 1

Startup 2

Startup n
...

Funding
proportion

Target
startups

invest

Agent

Previous
states

Previous
states

Pretrained
XGBoost

Excluding 

low-potential

startups ...

Startup 1

Startup 2

Startup n

...

Pretrained
XGBoost

Funding
proportion

Target
startups

... ... ... ...

Figure 1: Our RL-based Model Framework

restricting 0 ≤ ats ≤ 0.5 to prevent potential bias in
the loss function during model training. We found that
this bias could occur when assigning disproportionate
weight to an early investment stage.

Company-wise action. Each investment round t
involves a company-wise action atc ∈ Ac, which is
a vector with M dimensions, where M represents the
number of companies in the pool. Specifically, the
value of each element atc[i] ranges from 0 to 0.5 to
indicate the proportion of funding invested in the i-th
company for the current round, where i ∈ {1, 2, ...,M}.
It is imperative that the sum of all elements in atc,∑M

i=1 a
t
c[i], equals 1 to conform to our constraint.

The final allocation matrix A can be computed
through a series of steps that involve the orthogonal
actions described above. Specifically, each row At

can be derived by taking the product of the column
vector atc and the corresponding scalar ats. By repeating
this process for all rounds, we can generate the entire
allocation matrix A that meets the required constraints.

4.2.2. Policy network. We present our framework in
Figure 1 to provide a more comprehensive overview.
Our framework involves assessing the state of all
companies in the investment pool and passing this
information to the agent’s policy network in every round
of investment. Before investment decisions are made
at each round, we first utilize an XGBoost model to
identify and exclude companies that are likely to fail
in the subsequent rounds (as discussed in Section 4.1).
The agent’s responsibility is then to make projections for
the best funding allocation matrix (A) that designates
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the most suitable companies to invest in and determine
the corresponding ratio of funding. Its final goal is to
achieve the highest possible cumulative reward.
LSTM network. Within our policy network, it is
imperative to properly capture the sequential patterns
in the agent states. Following its original definition
(Hochreiter & Schmidhuber, 1997), given a sequence of
input data xt ∈ Rn, a memory cell ct ∈ Rd and a hidden
state ht ∈ Rd, we denote the LSTM unit as:

(ht, ct) = LSTM(ht−1, ct−1,xt, θ), (4)
where θ represents all the model parameters. In our
policy network, the input at each time step for the LSTM
network is the agent state at the current round: xt = St.

Multi-task prediction layer. In addition to capturing
sequential patterns in the agent states, it is also
imperative to develop a component that predicts the next
stage-wise and company-wise actions. We thus design
the following multi-task prediction layer based on the
current LSTM hidden state ht and RL agent state St:

F1(A
t
c|St) = σ(St ReLU(W3ht)), (5)

F2(a
t
s|St) = σ(W5 (S

t ⊕ ReLU(W4ht))), (6)

where W3 ∈ R2d×dh , W4 ∈ R2d×dh , W5 ∈ R2d,
are the matrices of learnable weights. ReLU(·) and
σ(·) denote the ReLU activation function and softmax
layer, respectively. The function F1(·) is responsible
for predicting the company-wise actions, while F2(·) is
tasked with predicting the actions at the stage level.

4.2.3. Reward. In the context of optimizing a VC
portfolio, the reward should align with the potential
financial returns to investors while portfolio companies
continue to grow and expand. Although the most
reliable option for the reward function is to utilize the
realized investment return, it is challenging to obtain
the actual investment return due to the non-disclosure
of startup valuations before or after investment rounds.
Consequently, an alternative option is to use significant
milestone events, such as acquisitions or public listings,
as proxies for successful exits to approximate the
investment return. However, these events are sparse, and
our experiments reveal that they have limited capacity to
improve the RL model effectively.

To this end, we design the reward to capture startups’
ability to secure subsequent investments to determine
their sustained pattern of growth and success over time.
We define the reward of our RL model as follows:

Lreward = Es,At
i
∼ π(θ; ·)

N∑
t=ti+1

γt−(ti+1)H(At
i), (7)

where π(θ; ·) denotes the previously defined policy
network, ti indicates the current investment round of
startup i, and γ is the discounted rate. In particular,
H(At

i) is an indicator of whether the startup secures a

follow-on investment:

H(At
i) =

{
1, receiving a follow-on investment
0, otherwise

(8)

Note that “receiving a follow-on investment” indicates
that the startup has successfully obtained additional
funding for a subsequent round of investment.

To promote diversity and prevent the RL agent
from concentrating on a restricted set of startups, a
regularization term is added into the loss function. This
term uses the KL-divergence KLD(·, ·) to evaluate the
similarity between two investment decision matrices At

and Ât on a round-by-round basis:

Ldiv =
1

T

T∑
t=1

KLD(At, Ât), (9)

where Ât denotes the estimated At. Finally, the training
objective is to minimize the loss:

L = −(Lreward − βLdiv), (10)
where β is a hyperparameter that determines the
significance of diversity regularization.

5. Strategy Evaluation
5.1. Experimental Setup
Data Summary. Our experimental study specifically
targets the Financial Services (FS) and Information
Technology (IT ) sectors. We have provided the
data summaries for these two industries in Table 2.
The datasets comprise approximately 10,000 investment
transactions between venture capital firms and startups
over a span of 20 years (2000-2021). The FS dataset
consists of around 2.6K startups and 1.9K investors,
whereas the IT dataset has a slightly higher volume
(3.7K startups and 2.4K investors). Also, we observe
that the FS dataset has slightly more investment rounds
per startup (4.01) compared to the IT dataset (2.99).
Additionally, the average amount of funds raised per
startup in the FS dataset (USD 16.5M) is significantly
greater than that in the IT dataset (USD 7.1M). Further
information regarding the datasets is in Table 2.

Baselines. We have conducted a comparative
analysis using two existing lines of research. The
first group includes various ML models designed
for one-step-ahead forecasting, i.e., predicting the
follow-on investment round. This category includes the
following baselines: Logistic Regression (Kleinbaum
et al., 2002), LSTM (Hochreiter & Schmidhuber, 1997),
GRU (Chung et al., 2014), and XGBoost (Chen &
Guestrin, 2016). The second set comprises RL-driven
methodologies for making sequential decisions, such
as DQN (Mnih et al., 2015), Dueling DQN (D-DQN)
(Wang et al., 2016), PPO (Schulman et al., 2017), and
DDPG (Lillicrap et al., 2019).
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Financial Services (FS) Information Technology (IT )
# Total Investment Records 10,482 11,006
# Total Companies 2,614 3,681
# Total Investors 1,887 2,353

Mean Std Min Max Mean Std Min Max
# Invested companies per investor 1.57 1.73 1 42 1.42 1.27 1 31
# Investments received per company 4.01 4.75 1 43 2.99 3.17 1 31
# Investment rounds received per company 1.36 0.72 1 6 1.27 0.61 1 5
$ Money raised per company 16.5M 67.2M 1,000 1,435.9M 7.1M 22.1M 524.29 350.6M
$ Money raised per company per year 11.5M 42.1M 1,000 1,104.6M 5.4M 16.0M 524.29 350M

Table 2: Summary of Our Data Sample

Financial Services (FS) Information Technology (IT )
TR RC Hits@10 RR TR RC Hits@10 RR

LR 0.086 1.560 0.321 0.549 0.042 1.153 0.183 0.474
GRU 0.040 1.226 0.167 0.696 0.060 1.333 0.400 0.757
LSTM 0.077 1.375 0.500 0.959 0.078 1.396 0.308 0.945
XGBoost 0.129 1.095 0.964 0.921 0.137 1.188 0.992 1.043
DQN 0.208 1.218 0.364 0.208 0.176 1.546 0.273 0.176
D-DQN 0.404 1.091 0.636 0.404 0.349 1.407 0.455 0.349
PPO 0.208 1.250 0.333 0.208 0.208 1.250 0.333 0.208
DDPG 0.150 1.273 0.273 0.150 0.208 1.273 0.364 0.208
AlphaVC 0.311 1.667 0.852 1.202 0.316 1.672 0.857 1.507

Notes. We highlight the best approach in bold and the runner-up underlined.

Table 3: Overall Performance

Evaluation metrics. (1) Total rewards (TR)
computes the total rewards received by the agent, given

by TR =
Ms∑
i=1

T∑
t=1

γt−(ti+1)H(At
i), where Ms is the

number of selected companies.
(2) Average investment round count (RC) calculates
the average number of investment rounds, given by

RC = 1
Ms

Ms∑
i=1

Ti, where Ti stands for the number of

investment rounds considered for company i.
(3) Hits@k represents the percentage of companies
receiving follow-on investments that are also ranked

within top-k positions: Hits@k =
Pu,q∩Ru,q(k)

k , where
Pc is a set of selected companies, and Rc(k) records the
top-k matched invested companies. Here k = 10.
(4) Risk-adjusted Return (RR) indicates the
expected differential return per unit of systematic
risk: RR = Er/σr, where Er is the average return
and σr is the weighted average of the probabilities of
XGBoost-based positive predictions at each round.

5.2. Main Results
We present the performance results of both the

baseline models and our proposed AlphaVC in
Table 3. There are several interesting findings.
First, our model has demonstrated outstanding
performance in discovering high-potential startups, as
evidenced by achieving either the highest or runner-up
performance on both datasets across all metrics. This
finding reaffirms that our model excels in overall
performance, proving its reliability in effectively
identifying high-potential startups. We have also noted
that our model exhibits a considerable lead over the
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Figure 2: Ablation Analysis

runner-up with respect to RC and RR performance
metrics. This observation implies that our model has
a propensity to take into account more investment
rounds (higher RC), resulting in an increase in portfolio
return over time (higher RR). Second, regarding the
evaluation metrics of Hits@10, it was observed that
XGBoost exhibits the best performance while our
model ranks second. Although XGBoost is highly
effective in identifying startups that are likely to
receive follow-on investments, it has exhibited limited
potential in generating enduring investment returns,
as reflected by its inferior performance on the RR
metric compared to our model. Third, our AlphaVC has
demonstrated consistently strong performance across
multiple industries, which attests to the resilience of
our portfolio-based returns optimization strategy. This
stability is a testament to the efficacy of our framework
in producing dependable and consistent results.
5.3. Ablation Analysis

In our study, we utilize the ablation analysis to
investigate the effect of 1) the XGBoost-based masking
module, 2) the reward function, or 3) the decision states
on the performance of our AlphaVC. We present the
findings of our ablation analysis for the FS dataset are
presented in Figure 2. Similar results are also achieved
with IT , affirming the consistency of our conclusion.

Our investigation begins with the unique design
of the masking module based on XGBoost. The
primary goal of this module is to eliminate low-potential
companies, thus reducing the search space for the
agent. Lacking this module could potentially impede the
agent’s ability to effectively identify the most promising
prospects, given a larger pool. The outcomes obtained
from the figure’s comparison between AlphaVC and
“w/o Mask” led us to affirm that the exclusion of the
XGBoost-based masking module results in a substantial
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Figure 3: Varying Investment Strategy Parameters

decrease in our model’s performance. The results
provide compelling evidence that the module is an
indispensable component of our model.

The reward function is designed to direct the agent
towards making coherent investment decisions, thereby
enhancing their investment returns. Without it, the agent
would not expect distal investment returns from the
portfolio companies, similar to VCs who fail to take
into account future investment returns. Our model’s
performance significantly declines when we compare it
to ”w/o Reward” in Figure 2, highlighting the crucial
role of the reward function in our model. Ignoring the
future returns can lead to poor investment decisions, i.e.,
the overall quality of the investment decisions.

The decision states in our model encapsulate the
investment decisions made by the agent in the past, and
removing them would result in the agent disregarding
past actions when making future investment decisions.
This approach is disadvantageous for the agent since
previous investment experience could provide valuable
insights into future investment scenarios. We find
that our model’s performance experiences a significant
decrease when we compare it to “w/o Decision States”
in Figure 2. This finding underscores the importance of
past investment decisions and implies that an investor
could sequentially learn to make better investment
decisions based on their past actions.
5.4. Sensitivity Analysis on Investment

Strategy Parameters
The results presented in Figure 3 evaluate the

impact of three crucial parameters of the investment
strategy on the model performance: the number of
investment rounds, the stage-wise investment ratios, and
the investment diversity coefficient. First, we vary
the maximum number of investment rounds from 2 to
8 to examine its effect on the model’s performance.
Note that a greater number of investment rounds
grants the agent more flexibility in making investment
decisions concerning stages. The result shows a
noticeable upward trend in the model’s performance as
the parameter’s upper bound increases. This illustrates
that our agent is capable of making intelligent decisions
when confronted with more adaptable investment
scenarios. Second, we find that a smaller upper
bound for stage-wise ratios is linked to higher future
rewards. This result supports the notion that a
diversified investment strategy across stages leads to

Figure 4: Human Investors vs. AlphaVC

better outcomes, as discussed in our first finding above.
As such, we suggest that investors diversify their
investments across different stages to maximize their
returns. Third, the company-wise diversity coefficient
has a significant impact on performance. Specifically,
we find that smaller coefficients lead to a higher level of
performance. This finding suggests that a viable strategy
for achieving optimal results may involve limiting an
agent’s focus to a few companies with high potential
rather than spreading investments across a larger number
of mediocre companies. By doing so, agents can
potentially achieve superior results and enhance the
overall performance of their investment portfolios.
5.5. Investment Strategies of AlphaVC vs.

Human Investors
We perform a comparative analysis of the investment

strategies developed by AlphaVC and two human
investors: the best and the worst performers in the
FS sector. Figure 4 displays heatmaps depicting their
investment strategies, with each heatmap showing the
investment rounds (up to eight) on the vertical axis
and portfolio companies on the horizontal axis. The
investment activities on the portfolio companies are
represented by tiny vertical sticks, where a darker shade
indicates a higher proportion of funding. Then we
discovered several interesting findings. Notably, the
top-performing human investor appears to be risk-averse
and devotes a higher proportion of their investments
towards later-stage companies. The worst performer
appears to exercise greater caution, investing in fewer
companies in general. We also discover that both human
investors made significant investments in a small pool
of companies, evidenced by the lack of dark sticks in
their heatmaps. On the other hand, our AlphaVC agent
tends to distribute money across an adequate number of
companies that span various stages – from early to late
stages. This investment approach emphasizes balance
and diversification, with the objective of achieving
superior future returns.

6. Conclusion
In this paper, we developed a novel reinforcement

learning-based model, AlphaVC, to aid venture
capitalists in making intelligent investment decisions.
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To demonstrate the effectiveness of our method, we
sourced VC investment data from Crunchbase and
conducted an assessment of our model within Financial
Services and Information Technology industry sectors.
Our method demonstrated clear superiority over various
baseline methods, as shown by the experimental results,
which evaluated both ranking and portfolio-based
performance metrics. Through the ablation analyses,
we show the importance of considering the distal
outcome and of assuming a learning effect in between
decisions made at different points in time. Compared to
other available solutions, our proposed approach offers
a significant advantage of intelligently determining the
optimal investment timing and amount to maximize
financial returns across the entire portfolio.

We are also aware of several limitations of our
work. First, VC investment strategies may depend
on the financial performance of portfolio companies,
which, unfortunately, is unavailable in our current
dataset. As part of our future plans, we intend to
explore alternative data sources that provide financial
performance information for portfolio companies to
improve our RL model. Second, our current evaluation
metrics primarily focus on assessing which startups to
invest in, such as TR and Hits@k. Another question
pertains to the extent to which the model effectively
allocates funds in proportion. In the future, it is
worth considering additional metrics in assessing the
allocation of investment in an optimized portfolio.
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