

Unveiling Challenges and Opportunities in Low Code Development
Platforms: A StackOverflow Analysis

Edona Elshan

VU Amsterdam, Netherlands
e.elshan@vu.nl

Olivia Bruhin
University of St.Gallen, Switzerland

Olivia.bruhin@unisg.ch

Niklas Schmidt
University of St.Gallen, Switzerland

niklas.schmidt@student.unisg,ch

Dominik Siemon
LUT University, Finland
dominik.siemon@lut.fi

Damian Kedziora
LUT University, Finland

Kozminski University, Poland
damian.kedziora@lut.fi

Abstract
As the rapidly expanding digital

transformations at multiple organizations require
development of growing number of software
solutions, low code development platforms (LCDPs)
started to be widely used by pretrained business
users, in such use-cases as process automation and
rapid application development. Our study explores
the challenges of LCDPs use for developers, by
investigating 30 000 of their posts at one of the most
prominent fora StackOverflow. It is conducted with
text-mining approaches, primarily Latent Dirichlet
Allocation (LDA), aiming to identify challenges for
users of LCDPs. As they were from the areas of
visualization, third-party integration, database and
table management, datatype conversion,
programming languages, and file handling, we
further discussed them to propose possible
enhancements for users of LCDPs.

Keywords: Low Code Development Platforms;
Latent Dirichlet Allocation; StackOverflow

1. Introduction

As the impact of digital transformation (DT) on
organizations is rapidly evolving (Wessel et al., 2021),
the need for the quick response and transilient
adoption to changing market requirements is growing

(Sanchis et al., 2019). However, due to a massive
shortage of skilled software developers at the labor
market (Danhieux, 2022), many organizations face the
challenge of the demand for information systems (IS)
that is way higher than what can be provided by their
IT department (Waszkowski, 2019).What is more, the
predictions that the demand for skilled IR
professionals will continue to grow faster than the
supply provided by the market (Torres, 2018)
,organizations are forced to consider faster and
cheaper ways to adapt to their growing software
development needs (Fryling, 2019). On the other hand,
the burgeoning realm of technology offers a multitude
of avenues for individuals and organizations to
enhance their productivity and redefine their creative
boundaries. From this perspective, low code
development platforms (LCDPs) became a
revolutionizing trend on the software development
landscape (Kedziora, 2022), aiming to address this
challenge by democratizing software development and
thus accelerating the development and deployment
process (Alamin et al., 2023). LCDPs are usually
cloud-native services (often categorized as platform-
as-a-service) that enable the development of
applications with use of pre-automated and AI-driven
design tools. LCDPs are therefore part of a larger trend
of technology democratization (Brinker, 2018),
referring to any assignment that traditionally required
coding but can now be accomplished by a pre-trained
business user.

Until now, there are already more than 400
LCDPs (Ugur, 2021) for a wide variety of use cases,

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 7269
URI: https://hdl.handle.net/10125/107258
978-0-9981331-7-1
(CC BY-NC-ND 4.0)

including process automation and rapid application
development. However, despite its huge potential and
growing adoption, LCDPs are not without challenges
and risk areas (Elshan et al., 2023). As citizen
developers and professional software engineers
explore the potentials of LCDPs, they inevitably
confront a myriad of issues. Recognizing and
understanding these problems is a foundational step.
Only when we have a clear picture of these challenges
can we move towards crafting effective solutions.Until
now, it remains unclear if the aforementioned problem
can be resolved with the help of LCDPs or not. Prior
studies qualitatively investigated the challenges and
obstacles of LCDPs (e.g., Elshan et al., 2023; Prinz et
al., 2022). In this work, we focus on problems faced
by developers and therefore look at online developer
communities to extract those. One of the largest
Question & Answer (Q&A) sites is StackOverflow,
with around 23 million questions and 12 million
registered users (StackOverflow, 2022). So far, posts
on StackOverflow have been used to conduct research
on blockchain, microservices, or recently low code
development (Alamin et al., 2023; Luo et al., 2021).

While the mentioned studies provide a
comprehensive overview of LCDPs topics and their
prevalence within development phases, our research
aims to delve deeper into the underlying challenges
developers face, especially in the realms of
customization and platform integration. We aim to
identify specific pain points within the customization
and platform adoption phases, hoping to provide
actionable insights for LCDP designers and
developers. Our focus is not just to catalog the issues
but to understand their root causes, something not
extensively covered in the previous research. This
would aid in evolving LCDPs to be more intuitive and
adaptable, catering to the growing demands of modern
software development.

 Therefore, we pose the following research
question (RQ):

RQ: What are the most prominent problems that
developers face when using low-code development
platforms?

To answer this research question, we investigate
developers’ posts on LCDPs on StackOverflow.
Therefore, we examined more than 30’000 posts using
text-mining approaches. In particular, we adopt Latent
Dirichlet Allocation (LDA) to uncover important
topics addressed by the developers. We then take the
identified issues and propose possible enhancements
for users of LCDPs and how the boundaries of the
platform can be overcome. Our findings contribute to
a better understanding of the actual problems
developers face, have practical implications for the use

of LCDPs, and help to close the skill gap faced in
developer applications.

2. Theoretical Background

LCDPs emerged as a transformative set of tools
designed for a diverse range of users, from seasoned
programmers to novices with no coding experience
(Adrian et al., 2020; Bock & Frank, 2021; Kletti,
2021). Not only do they democratize software
development, but also enable the production of high-
quality software in a compressed timeframe (Sanchis
et al. 2019) Typically, designed as cloud-based,
Platform-as-a-Service (PaaS) products- LCDPs create
a fertile ground for application development,
leveraging preautomated, and AI-driven design tools
and visual aids.

Equipped with reusable components and
configuration settings, LCDPs substantially reduce
time required for manual programming (Khorram et
al., 2020). The application logic, user interface, or
integrations to various data services are created with
the help of user-friendly visual tools and can be
supplemented by manual code components if needed
(Di Sipio et al., 2020). Users who start to gain their
programming and IT skills, yet already have business
domain expertise, or so-called "citizen developers,"
are, therefore, one of the main target groups of such
platforms (Tisi et al., 2019).

The terms "low code" and "no code" are often
used interchangeably. However, for the purposes of
this paper, we distinguish between the two based on
the possibility of developing custom code. If no self-
written code is possible, we use the term "no code"
development (Daniel et al., 2020) and when self-
written code is still required, albeit in a simplified or
limited form, we refer to it as "low code" development.
Regardless, for the scope of our study, we employ
"low code" as an overarching term encompassing both
low code and no code tools, given that most low code
solutions offer the flexibility to access and edit code
directly.

In general, the idea of low code is not new, as the
approaches in which people without computer science
knowledge are enabled to build systems independently
have been present for a long time. However, external
influences such as the rise of digital platforms have
changed the IS development landscape. In
consequence, platform-centricity is central to the
permeation of low code in work environments. To this
end, LCDP vendors (such as OutSystems or Mendix)
usually provide various tools to support the application
development process from initial ideation and
modeling, to implementation and maintenance
(Almonte et al., 2020). Furthermore, there is an

Page 7270

emerging generation of tech-savvy, digitally native
workforce who already have some of the necessary
qualifications. Factors such as increased affinity for
technology, consumerization, and advancing
digitalization are opening up a whole new target group
for the low code movement (Woo, 2020).

Visual tools are usually operated according to the
drag-and-drop principle, which can simplify and
accelerate the software development process and
reduce development costs (Rymer et al., 2019). Thus,
LCDPs enable rapid and agile development of new IT
artifacts and require low technical understanding,
which is often prevalent in business development
(Pantelimon et al., 2019). In this sense, this leads to
faster development, easier understanding, and a basis
for better exchange of feedback and ideas
(Waszkowski, 2019). Based on visual, model-driven
development techniques and visual application
designs, LCPDs make it easier to understand the
development of an IT project compared to manual
programming techniques (Frank et al., 2021). Low
code integrates a combination of approaches and IT
trends. Rapid application development (RAD), fourth-
generation programming languages (4GL), computer-
aided software engineering (CASE) tools, and model-
driven engineering (MDE) principles are often
mentioned in this context. The low code approach
takes these concepts and embeds them in full
application lifecycle support (Baumgarten et al.,
2020). However, admittedly, the increase in attention
has not been matched by comparable breakthroughs in
the conceptualization of LCDPs (Bock & Frank,
2021). Thus, LCDPs are of particular interest as a
subject of research.

3. Methodology

Our research process consists of five steps: (1)
Identify keywords and posts, (2) filter candidate posts,
(3) extract data, (4) code data and (5) analyze data.
First, we will discuss our data collection process to
find StackOverfow posts that are related to LCDPs. In
a next step, we discuss our pre-processing and topic
modeling steps.

3.1. Data Collection

For our analysis, in June 2022, we collected posts
from StackOverflow The contents of the "Post.xml"
file were used, which contained information about
each post such as the unique ID, type (Question or
Answer), title, body, associated tags, creation date,
view-count, and so on. Then the general approach was
to fetch all LCDP’s related posts or questions from this

dataset. This was conducted by filtering the tags of the
posts according to a list of predefined tags. For this
step, we created a list for posts that contain tags such
as “low code”. To find relevant tags, we first compiled
a list of LCDPs by assessing platforms of market
leaders by Gartner (Vincent et al., 2019), Forrester
(Rymer et al., 2019), related research work (Sahay et
al., 2020), and other online resources. Our compiled
list contained 34 platforms such as Mendix, Microsoft
Power Platform and Appian. This list was evaluated
and discussed iteratively by two authors before being
completed. In a last step, we extracted the LCDPs
related posts from the dataset based on the tag list. For
each post, it includes body, title and metadata (e.g.,
CreationDate, ViewCount, Tags, CommentCount
etc.).

3.2. Topic Modelling with LDA

One of the most powerful text mining techniques
for discovering latent data and discovering
relationships in text corpora is topic modeling (Jelodar
et al., 2019). The Latent Dirichlet Allocation (LDA)
method is the most widely used topic modeling
method, and it is used in many scientific disciplines
and other practices to identify the most relevant and
frequently mentioned topics in specific texts
(Asmussen & Møller, 2019; Jelodar et al., 2019). The
idea behind LDA is that” the documents are
represented as random mixtures over latent topics,
where each topic is characterized by a distribution
over words” (Blei et al., 2003, p. 996). To model the
topics, we took three actions. First, we pre-processed
the posts, then we calculated the optimal number of
topics. Lastly, we generated the topics.

3.2.1. Pre-Processing. For the cleaning of the data, we
followed the guidelines suggested by Albon (2018)
and started by removing noise (i.e., punctuation and
white-spaces). We eliminated the platform's name
(i.e., PowerBi, Mendix etc.) from the dataset since
previous work (Al Alamin et al., 2021) has shown that
the resulting topics sometimes are grouped around
platforms rather than the technical hurdles addressed.
Furthermore, we tokenized the text. In this realm,
tokenization is a fundamental step in NLP as it splits
the text into words or sentences (Sun et al., 2017). This
allows to handle individual words from a text. The
tokenization can be done for instance, by using the
word tokenize library from nltk, Stanford Tokenizer or
OpenNLP Tokenizer (Bird, 2006, Sun et al., 2017). On
top of the suggestions from Albon (2018), Sun et al.
(2017) point out that nltk provides a stemming library.
Stemmers remove morphological affixes from tokens
resulting only in the word stem (Bird, 2006). This is

Page 7271

especially helpful when dealing with probabilities
based on word occurrences, which might be the case
for development or developing; and thus teaches the
algorithm to treat the two words as one. For this reason
we chose to work with nltk. After stemming our posts,
we iterated through the posts and wrote the ”Body”
content of the top posts per topic into a .txt file, which
was later used for the analysis. To provide a concrete
example of our pre-processing steps, we will dissect a
representative post on StackOverflow: “I've recently
started working with a LCDP and am running into
some issues with data binding. I have a form
component on a page, and I'm trying to bind it to a
data object that I've defined in the platform. However,
every time I try to submit the form, the data doesn't
seem to be updating.”

• Noise Removal: Our first step cleans out any
superfluous information or symbols. This
would refine our example post to: “I've
recently started working with LCDP and am
running into some issues with data binding."

• Tokenization: This stage breaks down the
sentence into its basic word components. Our
refined sentence from the previous step
would be tokenized into the following:
["I've", "recently", "started", "working",
"with", "LCDP"].

• Stemming: This procedure simplifies words
to their root form to ensure consistency
across various usages. For instance, the word
“working” from our tokenized list would be
stemmed down to its root: “work”.

In a next step, we use a normalization for the posts,
which defines a relevance score to each post, which is
being composed by scaling the number of views,
scores, and answers between 0 and 1 (normalization).

3.2.2. Finding Optimal Number of Topics. Once the
data is cleaned, we perform probabilistic topic
modelling with the use of an LDA algorithm. A
considerable part of this procedure is hyper-parameter
tuning. Hyper-parameter tuning is an iterative process
that aims to find the best definition of parameters for
the specific model (Bardenet et al., 2013), which is a
common process in software engineering research
(Abdellatif et al., 2020; Arun et al., 2010;
Bagherzadeh and Khatchadourian, 2019).
For this step, our objective is to determine the optimal
number of topics K for our dataset B to ensure that the
coherence score is high, i.e., underpinning topic
encapsulation. For large data-sets a higher number of
topics tends to work better, whereas smaller data-sets
generate better results with a smaller number of topics
(Hasan et al., 2021). We conducted hyper-
parameterization on a subset and optimized it for the

coherence score. Following previous work (Röder et
al., 2015), we used the Gensim package (Rehurek &
Sojka, 2010) to calculate the coherence score (which
is described within section 3.3). We tested our subset
with different values of K ranging from 5, 10, 15, 20,
25, 30, 35, 40, 45, 50, 55, 60, 65, and 70 and run it on
our dataset for 1000 iterations for each value
(Bagherzadeh & Khatchadourian, 2019). Then, we
investigated how the coherence score changes in
relation to K. During this phase we tested with how
many topics and how many iterations the model
performs most accurately. Thus, the topic model with
the highest coherence score is chosen. In our case, this
was with 10 topics. Once we found the optimal
composition of the LDA model, we initiated the model
and analyzed the returned topics.
3.2.3. Generating Topics. Topic modeling is a
technique for extracting a set of topics from a
collection of documents that lacks a predefined
classification system. Each document has a topic
probability distribution, and each topic has a set of
related word probability distributions. Thus, the LDA
model will return a list of the most important words
for every topic as displayed in Table 1.

Table 1: Generated topics.

Topic Keywords Subject
Areas

1 Graphical user
interfaces

page, make,
visualforce,
button,display

Visualization

2 Creating,
modifying and
filtering tables

slicer, column,
table, select

Database and
table
management

3 Characteristics
of tables

date, calculate,
month

Database and
table
management

4 API requests API, rest, access Third party
integration

5 File handling save, load,
report, view,
embed

Handling
files

6 Local and
interconnected
database
management

SQL, connect,
database, server

Third party
integration

7 Third-party
program
integration
and support

third-party
integration

Third party
integration

8 Other aspects pass, record, use Other aspects
9 Database

querying
query, type,
function, soql

Database and
table
management

Page 7272

10 Visualization
problems

show, field,
chart, trigger

Visualization

3.2.4. Model Evaluation. The next question that
arises, is how well the model performs. When it comes
to LDA there are several evaluation methods. The aim
of those is to give insights on the model’s
performance. For LDA models there are two metrics
that are most often used. One of them being the
coherence score and the other one being the perplexity
score (O’callaghan et al., 2015). The coherence score
is a metric that evaluates the degree of semantic
similarity between relevant words in the topic
(O’callaghan et al., 2015). The perplexity score on the
other hand measures how surprised the model is when
getting fed with new unseen data and is measured as
the normalized log-likelihood of a held-out test set
(Shashank, 2019). However, Shashank (2019) as well
as O’callaghan et al. (2015) state that the optimizing
for perplexity score oftentimes does not make sense as
it does not yield human interpretable topics. Therefore,
we chose to optimise for coherence score. A set of
sentences are ”coherent” if they support one another
(Shashank, 2019). There exist six different ways how
to measure coherence. Accordingly, to prior research
(see Al Alamin, 2023), we use the Cv measure, which
is based on a sliding window and uses an indirect
confirmation measure that uses normalized pointwise
mutual information as well as the cosine similarity. As
a first step, we need to figure out, with which
parametrization of the POS() method leads to the best
coherence score. Therefore, we construct a for loop
creating different data frames with different POS
parameters. Three settings were compared: the first
allowing all POS tags, n v regarding nouns and verbs
and n a regarding nouns and adjectives. For each of
those data frames, the LDA algorithm was applied
three times. Because of computing reasons, all model
tuning steps are applied on a subset of the data,
containing 3000 randomly assigned posts. Since we do
not know the correct parametrization of the number of
topics and the number of iterations, we will always
train the model for 7 topics and 500 iterations. This
decision stems from various test-cases indicating a
fairly nice coherence score with these parameters.
Afterwards, we could compare the resulting average
coherence score for each of the POS parametrizations
resulting in: 0.5178 for all words, 0.516 for nouns and
adjectives and 0.530 for nouns and verbs. The
coherence score is thus maximized when looking only
at nouns and verbs. As in our research context
sentiments are not relevant, this makes sense since
adjectives could create noise.
Next we had to decide, whether we want apply the
LDA model based on the ”body” or the ”title” attribute

of each post. Arguably, the informational value is
more condensed in the title column. On the other
hand, the ”body” attribute of a post might contain more
detailed information. Again we compare the two
settings relying on the coherence score as a
performance indicator. On top of that we manually
interpret the results of the model. To do so, we apply
the LDA algorithm to both settings and compare the
coherence score. On top of that, the result of the
algorithm was manually inspected. The resulting
coherence scores were 0.5133 for “Body” and 0.3963
for “Title”.

4. Findings

The following section will illuminate the key
trends and patterns observed in our data set and
subsequent analysis. We will subsequently outline
potential solutions to the challenges that developers
commonly face.

4.1. Descriptive Results of Data Set

Initially, we conducted a descriptive analysis of
our data set to better understand the time-frame and
scope of the issues faced by developers. Figure 2
shows that low-code related posts on StackOverflow
increased in the last years. This growth indicates
increasing attention for LCDPs and thus justifies
further research efforts in this area.

Figure 2. Number of posts per year.

Upon examining the distribution of posts across

platforms, we observe a distinct emerging trend.
Power BI has witnessed a significant surge in
discussion accounting to almost 80% of posts in 2022.
This contrasts with Salesforce and Progress, which
both have seen a decline in their representation in SO
posts; particularly Progress is scarcely mentioned in
recent posts. Interestingly, Google-app-maker, which
enjoyed popularity between 2017 and 2019, has since
lost importance. However, interpreting those trends
warrants caution, since it is ambiguous. An increase in
posts for a platform could be attributed to its
expanding user-base. Conversely, it might also

Page 7273

suggest heightened challenges faced by users,
potentially stemming from software updates or other
changes. Yet, irrespective of these interpretations, one
observation is clear: Power BI's dominant presence in
discussions.

By analyzing the number of views and answers as

well as the score (likes - dislikes), we can make a
statement about the relevance of a post. The data set
has the following properties:

Table 2. Relevance metrics.
Column Max Mean Median SD Wei

ght
Views 125’7

13
1’223 274 3’647

.09
0.5

Score 3 0.63 0 1.81 0.2

Answers 13 1.02 1.0 0.8 0.3

Rele-
vance

0.81 0.0297 0.0253 0.029
3

In order to work with a definitive metric, we

normalize each of the attributes between 0 and 1 and
weigh the normalized values according to the”
Weight”. By doing so, we get an even deeper
understanding of the relevance of the posts. Indeed,
the data reveals some intriguing trends regarding user
engagement on posts about LCDPs. It shows that more
than 50% of all posts have exactly one answer. The
vast majority of posts receive fewer than five
responses, suggesting that posts with more than five
answers are a rarity. In terms of post scores, a
significant number register a score of 0, indicating
limited user endorsement or recognition. Conversely,
posts with scores exceeding 5 are a rarity. As for
views, a prominent pattern emerges: over 5000 posts
have attracted between 0 and 50 views, but as the view
count rises, the number of corresponding posts
decreases markedly.

These trends, when taken collectively, suggest an
interesting dynamic: while individual posts might not
always garner extensive engagement, the cumulative
metrics underscore the escalating relevance of LCDPs
in ongoing discussions. Further, in recent years, the
number of answers grew, indicating a larger active
community among the users of LCDPs. A peak of
around 5.9 million total views becomes apparent in
2018. However, all metrics drop sharply from 2018
onwards. This could be an indicator that these
platforms have lost their attractiveness or that the
challenges faced by the community have become more
difficult to solve and thus members are more reluctant
in terms of answering questions. The fact that the total
number of posts increased (see Figure 2) suggests that
the latter is the case. Therefore, it is important to
analyze the problems in detail.

4.2. Subject Areas

Initially, we identified 10 LCDPs-related themes.
To achieve this, we first conducted a stratified
sampling of the vast dataset of 30,000 StackOverflow
posts. By selecting representative samples across
various timeframes and topics, we ensured that we
captured the essence of the broader dataset. After this
sampling, our team manually reviewed and labeled
these selected posts. These themes covered a broad
range of topics and encapsulated the diverse problems
developers encounter while using LCDPs. To better
comprehend the nature of the challenges, we sought to
consolidate these themes into high-level categories.
This process involved examining the core issues
within each theme and identifying commonalities or
overlaps with other themes. For example, themes that
addressed user interface problems or visualization
challenges were grouped under the "Visualization"
category.

After careful deliberation, we grouped the initial
10 themes into five high-level categories: (1)
Visualizations, (2) Database and table management,
(3) Third party integration, (4) Handling files, and (5)
Other aspects. Each category represents a broad area
of concerns related to LCDPs and encapsulates several
of the initial themes.

Each category and its constituting themes were
then revisited and evaluated to ensure a logical,
meaningful consolidation that accurately represents
the issues encountered by developers when using
LCDPs.

The subject area of “Visualization” contains
questions regarding User-Interfaces (94.3%) and
displaying tables (5.7%). 20% of the questions
concern front-end problems, 42.9% back-end
problems and 31.4% are about problems that arise
when connecting the front and the back end.
Programmers tend to have problems visualizing
objects in visualforce and also updating the UI’s after
the user made an action. The category “Database and
table management” consists of two sub-fields and
covers the area of creating and modifying tables
(90.5%) and databases (9.5%). When it comes to
filtering and querying (42.9%) tables with boolean
expressions, a typical question would be ”How to filter
my sales table for products including a discount”.
These questions tend not to be too complex and rather
repetitive. This is similar for the table creation and
modification (28.6%), which includes general
questions regarding how to establish tables. Lastly,
calculations (19.0%) include basic numerical
calculations with tables. An example is how to add a
column containing the total of the previous two
columns. Most posts in this area concern getting the

Page 7274

total amount across rows and columns. The
complexity of this subcategory is rather low again.

The second sub-field is especially concerned with
database creation. This includes entity relationship and
normalization problems. A representative question is
”How can I create a database in Zoho?”. We note that
the complexity of these questions is higher compared
to the table-related questions.

The area “Third-party integration” covers API-
related questions (Requests 20.7% and authentication
31.0%) and regards the migration to other platforms
and services. API-related questions can be divided into
request-related and authentication-related questions.
While request-related questions mostly concern best
practices on how to handle certain responses from
API. Most questions in this subcategory are related to
the Salesforce API. Authentication-related questions,
on the other hand, are mostly asked by developers
having problems sending the correct parameters and
tokens when requesting access to a certain API. Again,
we note that these questions have a high degree of
complexity. Lastly, third-party integration regarding
other platforms and services includes the automated
distribution of emails (8.6%) as well as different
migration problems (39.7%). Migration problems
occur whenever one tries to connect two or more
individually working implementations together.
Typically, these questions indicate that users have two
separate, functional environments, but they encounter
issues when attempting to integrate or migrate
between the two. .

The fourth category, “Handling Files” is
concerned with two major problems. One would be the
loading and saving of files (50.0%). This problem
arises whenever programmers want to import or save
local files via LCDPs. The second issue considers
upcoming problems when sharing files (50.0%) via
LCDPs.

Fifth, the area of “Other aspects” is concerned
with syntax and comparison. The subarea syntax

(71.1%) includes questions that address problems
when switching from another programming language
to a platform. In this context, our analysis indicates
that Python, Java, and JavaScript were mostly
mentioned. The second sub-category includes
comparison (28.9%) which consists of questions
people asking which LCDP is best suited to do certain
tasks. A typical question would be” Which platforms
is suited best to populate a customer’s database.

Next, we analyzed the relationship between the
subject areas and the LCDPs’ providers and if one of
the LCDPs is disproportionately mentioned. Within
our analysis we see that “Database and table
management” seems to be tied to Power BI since
Power BI has an over-representation of 45.7%. The
over-representation simply comes from the following
consideration. Power BI is associated with 51.8% of
all posts whilst being associated with 75.4% of the
posts that are assigned to this category. It also becomes
apparent that problems related to this category occur
below average for Salesforce, UI path, and Google-
app-maker. Further, we can see that ”Third-party
integration” problems are strongly tied. We note that
Google-app-maker is mentioned surpassingly within
the said subset. Additionally, we can deduce that
problems within this subject are less likely to appear
with Power BI. Considering the ”Visualization”
category, we can clearly see that it seems to be tied to
Salesforce as it is overrepresented by 63.4%. Along it
becomes apparent that these problems are less
important for Power BI and Google-app-maker. It

follows that this is an issue for Salesforce especially.
Looking at the fourth graph, we can see that Zoho and
UI path are overrepresented by 88.6%, respectively
59.4%, indicating that connecting to other
programming languages seems to be a major problem
in Zoho and UI path. Lastly, our investigation
indicates that ”File handling” problems occur above
average in Power BI and Zoho whilst being less
problematic for Google-app-maker. In summary, it

Figure 3. Overview of initial topics.

Page 7275

can be stated that Power BI has problems regarding
”Database and table management” whilst Salesforce
is above average mentioned in the context of
”Visualization”. Google-app-maker is often
mentioned regarding ”Third-party integration” while
problems concerning ”Other aspects” appear above-
average in Zoho and UI path.

5. Discussion

Our analysis unveiled novel insights into the
challenges faced by users of LCDPs. The overarching
concern revolves around creating, filtering, and
modifying tables, followed by issues with third-party
integration and visualization. Our findings, however,
go beyond mere identification of these problems and
have profound implications for the understanding of
LCDPs and their effective utilization. In essence, we
have highlighted the nuances of the issues that arise
within each subject area, providing direction for
addressing these concerns. We observed that most
questions pertaining to creating and modifying tables
are relatively non-complex and can be readily
addressed with step-by-step instructions or video
tutorials. This finding not only underscores the
educational needs of LCDP users but also highlights
an area for LCDPs to improve user guidance, thereby
enhancing their user experience and efficacy.

Whilst manually labelling the posts became
apparent that the most relevant questions in this
subject area are non-complex and easy to solve
problems. We therefore suggest that LCDP’s
introduce step-by-step instructions or video-tutorials
covering the most basic techniques of creating and
modifying tables. In case there is a need for
prioritization, they should first focus on filtering, then
on table creation, and lastly on basic calculations. It
showed that problems concerning ”Database and
table management” are mostly tied to Power BI.
Additionally, the manual labeling part revealed
problems with converting date-time row entries into
other formats.

Given that ”Third-party integration” is the
second most prominent subject area over all and in
2022 our next proposition is to address these problems
as a second priority. The first subarea consists of
problems regarding accessing and authorizing API’s.
Manually labelling these posts revealed the
complexity of them. However, problems with the basic
authorization requests repeated often. Therefore, we
advise LCDPs to publish concrete examples with
instructions on how to access API’s from or through
LCDPs. The most prominent subarea of ”Third-party
integration” concerns the migration to other platforms
and services. The manual labelling part showed that

these questions are very diverse. Therefore, we advise
LCDPs to extend customer support and specifically
hire professionals who answer these questions
individually. Such a service would satisfy the needs of
developers. When it comes to the “Visualization”, this
subject area mostly covers UI related problems. In
case there is a need for prioritization, LCDPs should
first focus on problems dealing with the connection
from front and back-end, then focus on front-end
problems and lastly on back-end problems. Since the
term ”visualforce” appeared in 6.64% of the posts in
this subject area, LCDP’s should especially enhance
the connectivity to that platform. Our analysis shows
that ”Visualization” related problems are especially
important to address for Salesforce. Based on our
findings we suggest LCDP’s to address the
”Visualization” related questions by uploading
tutorials explaining the basic concepts of front and
back-end handling. It has also been shown that the
most common issues arise in connection with python,
java and Javascript. Therefore, we recommend that
LCDP’s focus more on the development of interfaces
with these three programming languages. In the
manual labelling process, it became clear that in about
one third of the posts in this topic area people asked
which LCDP is best suited for a particular task. As
these are again individual concerns, LCDPs are
encouraged to educate their customer service staff on
the pros and cons of their respective platform. Even
though ”File handling” only represents 6.4% of all
posts in 2022, it showed a very stable development
throughout the observed period. Manual labelling
revealed that the questions in this subject area are
mostly very simple and repetitive. Furthermore, we
assume that these problems will always exist,
regardless of the development of technology, as
almost every program will contain some sort of
loading and storing files.

Our research is not without limitations. First,
despite having many observations, the dataset is still
somehow limited, since LCDPs are a novel
technology. Furthermore, we only looked at
StackOverflow posts. Having in mind that citizen
developers might act differently from professional
developers, it remains unclear, if they look for help on
StackOverflow and if they share their knowledge in
this kind of online community. Future research could
combine this LDA approach with an interview study
and thus clarify where especially citizen developers
would post their issues. Thirdly, we had a holistic view
on all of the LCDPs. Thus, another limitation arises
from the data sources used. Because many LCDP
providers have their own forums, some LCDPs may
not have a lot of useful discourses on StackOverflow.
Richer insights might result from analyzing posts for

Page 7276

one particular LCDP, for instance, Mendix. Lastly, we
did not take any sentiments into consideration.
Therefore, in the future, more aspects of the posts
could be addressed. Our study has opened the avenue
for several potential areas of future research. While
our focus was on analyzing StackOverflow posts, it
would be intriguing to explore other online forums or
communities where LCDP discussions occur. Citizen
developers' behavior and preferences could be
analyzed more deeply, possibly by comparing
different platforms or geographies. Additionally, a
sentiment analysis of the posts could reveal the
intensity of challenges faced by developers, providing
deeper insights into the severity of specific issues. A
comparative analysis between different LCDPs might
also offer a more granular understanding of individual
platform strengths and weaknesses.

6. Conclusion

Recent years have seen an increasing uptake of
low code development platforms in organizations.
Especially factors such as increasing affinity for
technology development across all user groups,
consumerization of development, and advancing
digitalization are opening a new target group of
developers for the low code movement. Within
companies, low code development platforms are a
novel paradigm for developing applications with the
minimal effort needed. In this paper, we present an
empirical large-scale study by specifically
investigating LCDPs-related questions on
StackOverflow. We extracted LCDP-related posts
from StackOverflow and then used advanced topic
modelling to cluster different issues that developers
face when developing with LCDPs. After obtaining
different topics, we used the gathered metadata to
investigate the dataset descriptively. We found that
LCDP-related issues and questions on StackOverflow
cover a great variety of topics in more than 30’000
posts. With our research we contribute to practice by
uncovering what developers, citizen or professional
software engineers, consider as the most challenging
by shedding light on how those “how to”-type
questions could be addressed. Further, we contribute
to the ongoing debate about the challenges and issues
with LCDPs. Thus, we contribute to this emerging
literature stream.

7. References

Abdellatif, A., Costa, D., Badran, K., Abdalkareem, R., &
Shihab, E. (2020). Challenges in chatbot development:
A study of stack overflow posts. Proceedings of the

17th International Conference on Mining Software
Repositories, 174–185.

Adrian, B., Hinrichsen, S., & Nikolenko, A. (2020). App
development via low-code programming as part of
modern industrial engineering education. International
Conference on Applied Human Factors and
Ergonomics, 45–51.

Al Alamin, M. A., Malakar, S., Uddin, G., Afroz, S., Haider,
T. B., & Iqbal, A. (2021). An empirical study of
developer discussions on low-code software
development challenges. 2021 IEEE/ACM 18th
International Conference on Mining Software
Repositories (MSR), 46–57.

Alamin, M. A. A., Uddin, G., Malakar, S., Afroz, S., Haider,
T., & Iqbal, A. (2023). Developer discussion topics on
the adoption and barriers of low code software
development platforms. Empirical Software
Engineering, 28(1), 1–59.

Albon, C. (2018). Machine learning with python cookbook:
Practical solutions from preprocessing to deep learning.
O’Reilly Media, Inc.

Almonte, L., Cantador, I., Guerra, E., & de Lara, J. (2020).
Towards automating the construction of recommender
systems for low-code development platforms.
Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings, 1–10.

Arun, R., Suresh, V., Veni Madhavan, C. E., & Murthy, N.
(2010). On finding the natural number of topics with
latent dirichlet allocation: Some observations. Pacific-
Asia Conference on Knowledge Discovery and Data
Mining, 391–402.

Asmussen, C. B., & Møller, C. (2019). Smart literature
review: A practical topic modelling approach to
exploratory literature review. Journal of Big Data, 6(1),
1–18.

Bagherzadeh, M., & Khatchadourian, R. (2019). Going big:
A large-scale study on what big data developers ask.
Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and
Symposium on the Foundations of Software
Engineering, 432–442.

Bardenet, R., Brendel, M., Kégl, B., & Sebag, M. (2013).
Collaborative hyperparameter tuning. International
Conference on Machine Learning, 199–207.

Baumgarten, C., Simeon, A., & Wilhelm, M. C. (2020).
Citizen Developers Driving the Digital Campus.
European Journal of Higher Education IT, 1.

Bird, S. (2006). NLTK: The natural language toolkit.
Proceedings of the COLING/ACL 2006 Interactive
Presentation Sessions, 69–72.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent
dirichlet allocation. Journal of Machine Learning
Research, 3(Jan), 993–1022.

Bock, A. C., & Frank, U. (2021). Low-Code Platform.
Business & Information Systems Engineering, 63(6),
733–740. https://doi.org/10.1007/s12599-021-00726-8

Brinker, S. (2018, May 29). Democratizing martech:
Distributing power from IT to marketing technologists
to everyone. Chief Marketing Technologist. h

Page 7277

Danhieux, P. (2022). Council Post: Navigating The
Developer Shortage Crisis: A Time To Define The
Developer Of The Future. Forbes.

Daniel, G., Cabot, J., Deruelle, L., & Derras, M. (2020).
Xatkit: A multimodal low-code chatbot development
framework. IEEE Access, 8, 15332–15346.

Di Sipio, C., Di Ruscio, D., & Nguyen, P. T. (2020).
Democratizing the development of recommender
systems by means of low-code platforms. Proceedings
of the 23rd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems:
Companion Proceedings, 1–9.

Elshan, E., Dickhaut, E., & Ebel, P. (2023). An Investigation
of Why Low Code Platforms Provide Answers and
New Challenges. HICSS.

Frank, U., Maier, P., & Bock, A. (2021). Low code
platforms: Promises, concepts and prospects. A
comparative study of ten systems. In ICB Research
Reports (No. 70; ICB Research Reports). University
Duisburg-Essen, Institute for Computer Science and
Business Information Systems (ICB).

Fryling, M. (2019). Low code app development. Journal of
Computing Sciences in Colleges, 34(6), 119–119.

Hasan, M., Rahman, A., Karim, M., Khan, M., Islam, S., &
Islam, M. (2021). Normalized approach to find optimal
number of topics in Latent Dirichlet Allocation (LDA).
Proceedings of International Conference on Trends in
Computational and Cognitive Engineering, 341–354.

Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y.,
& Zhao, L. (2019). Latent Dirichlet allocation (LDA)
and topic modeling: Models, applications, a survey.
Multimedia Tools and Applications, 78(11), 15169–
15211.

Kedziora, D. (2022) Botsourcing, Roboshoring or Virtual
Backoffice? Perspectives on Implementing Robotic
Process Automation (RPA) and Artificial Intelligence
(AI), Human Technology, Vol. 18, No. 2, pp. 92-97

Khorram, F., Mottu, J.-M., & Sunyé, G. (2020). Challenges
& opportunities in low-code testing. Proceedings of the
23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems:
Companion Proceedings, 1–10.

Kletti, N.-L. (2021). Trends der Fertigungs-IT 2021.
Zeitschrift Für Wirtschaftlichen Fabrikbetrieb, 116(5),
276–278.

Luo, Y., Liang, P., Wang, C., Shahin, M., & Zhan, J. (2021).
Characteristics and Challenges of Low-Code
Development: The Practitioners’ Perspective.
Proceedings of the 15th ACM/IEEE International
Symposium on Empirical Software Engineering and
Measurement (ESEM), 1–11.

O’callaghan, D., Greene, D., Carthy, J., & Cunningham, P.
(2015). An analysis of the coherence of descriptors in
topic modeling. Expert Systems with Applications,
42(13), 5645–5657.

Pantelimon, S.-G., Rogojanu, T., Braileanu, A., Stanciu, V.-
D., & Dobre, C. (2019). Towards a seamless integration
of iot devices with iot platforms using a low-code
approach. 2019 IEEE 5th World Forum on Internet of
Things (WF-IoT), 566–571.

Prinz, N., Huber, M., Riedinger, C., & Rentrop, C. (2022).
Two Perspectives of Low-Code Development Platform
Challenges – An Exploratory Study. PACIS 2022
Proceedings. https://aisel.aisnet.org/pacis2022/235

Rehurek, R., & Sojka, P. (2010). Software framework for
topic modelling with large corpora. In Proceedings of
the LREC 2010 Workshop on New Challenges for NLP
Frameworks.

Röder, M., Both, A., & Hinneburg, A. (2015). Exploring the
space of topic coherence measures. Proceedings of the
Eighth ACM International Conference on Web Search
and Data Mining, 399–408.

Rymer, J. R., Koplowitz, R., Leaders, S. A., Mendix, K., are
Leaders, S., ServiceNow, G., Performers, S., MatsSoft,
W., & are Contenders, T. (2019). The Forrester
WaveTM: Low-Code Development Platforms For
AD&D Professionals, Q1 2019. Forrester Research.

Sahay, A., Indamutsa, A., Di Ruscio, D., & Pierantonio, A.
(2020). Supporting the understanding and comparison
of low-code development platforms. 2020 46th
Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), 171–178.

Sanchis, R., García-Perales, Ó., Fraile, F., & Poler, R.
(2019). Low-code as enabler of digital transformation
in manufacturing industry. Applied Sciences, 10(1), 12.

Shashank, K. (2019). Evaluate Topic Models: Latent
Dirichlet Allocation (LDA) | by Shashank Kapadia |
Towards Data Science. https://towardsdatascience.
com/evaluate-topic-model-in-python-latent-dirichlet-
allocation-lda-7d57484bb5d0

StackOverflow. (2022). Newest Questions. Stack Overflow.
https://stackoverflow.com/questions/

Sun, S., Luo, C., & Chen, J. (2017). A review of natural
language processing techniques for opinion mining
systems. Information Fusion, 36, 10–25.

Tisi, M., Mottu, J.-M., Kolovos, D. S., De Lara, J., Guerra,
E. M., Di Ruscio, D., Pierantonio, A., & Wimmer, M.
(2019). Lowcomote: Training the next generation of
experts in scalable low-code engineering platforms.
STAF 2019 Co-Located Events Joint Proceedings.

Torres, C. (2018). Demand for programmers hits full boil as
us job market simmers. Bloomberg.

Ugur. (2021, August 19). How many Low-Code/No-Code
platforms are out there? SpreadsheetWeb.
https://www.spreadsheetweb.com/how-many-low-
code-no-code-platforms-are-out-there/

Vincent, P., Iijima, K., Driver, M., Wong, J., & Natis, Y.
(2019). Magic quadrant for enterprise low-code
application platforms. Gartner Report.

Waszkowski, R. (2019). Low-code platform for automating
business processes in manufacturing. IFAC-
PapersOnLine, 52(10), 376–381.

Wessel, L., Baiyere, A., Ologeanu-Taddei, R., Cha, J., &
Blegind-Jensen, T. (2021). Unpacking the difference
between digital transformation and IT-enabled
organizational transformation. Journal of the
Association for Information Systems, 22(1), 102–129.

Yang, X.-L., Lo, D., Xia, X., Wan, Z.-Y., & Sun, J.-L.
(2016). What security questions do developers ask? A
large-scale study of stack overflow posts. Journal of
Computer Science and Technology, 31(5), 910–924.

Page 7278

Page 7279

