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Abstract 
The modern power system is becoming significantly 

more reliant on weather-dependent generation 
technologies. Existing resource adequacy metrics are 
not adequate for systems with a high penetration of 
weather-dependent, stochastically behaving renewable 
resources. This paper provides an overview of the 
Stochastic Nodal Adequacy Platform (SNAP), a novel 
approach for evaluating the adequacy of a large-scale 
electrical grid at the nodal level while accounting for 
the stochastic nature of weather-dependent system 
components, the physical operation of the system, and 
the economics and market design governing unit 
commitment and dispatch. The output of a SNAP 
analysis is a set of metrics that quantify the adequacy of 
the system and the physical contribution and economic 
value that each individual system component 
contributes towards overall system adequacy. The latter 
metric – the SNAP value – is an hourly marginal 
resource adequacy price at every node in the system that 
can be integrated into existing power market design. 

 
Keywords: Advanced Weather Science, Monte Carlo 
Methods, Nodal Resource Adequacy, Stochastic 
Analyses, Value of Lost Load.  

1. Introduction  

Ensuring resource adequacy of a bulk power system 
is one of the primary functions of system planning. 
Traditionally, system planners have studied resource 
adequacy using such probabilistic criteria as Loss of 
Load Probability (LOLP), Loss of Load Expectation 
(LOLE), or Loss of Load Hours (LOLH), which then 
lead to the determination of planning reserve margin 
requirements.1 Maintaining an amount of installed 
capacity equal to the planning reserve margin 
requirement ensures the desired probabilistically 
measured level of resource adequacy.  The economic 

 
1 LOLP typically refers to the probability of load curtailment under 
predefined extreme conditions (e.g., peak hours). LOLE is generally 
defined in terms of the expected number of days in which load 
curtailments occur; under different conditions, loss of load in a given 
day may take place over a different number of hours, but that would 

justification behind this approach can be traced to the 
well-known relationship between the LOLH criteria, the 
Value of Lost Load (VOLL), and the annualized 
marginal cost of generation capacity (MCC) [14]: 

 
 𝐿𝑂𝐿𝐻 × 𝑉𝑂𝐿𝐿 = 𝑀𝐶𝐶.     (1) 
 
The economic principle underlying this formula is 

well understood; generation capacity should continue to 
be built while the per unit annualized cost of adding 
capacity remains lower than the cost associated with the 
loss of load. When the incremental damage equates to 
the cost of adding capacity, as shown in Equation (1), 
the optimal level of resource adequacy is achieved. The 
annualized cost of capacity reflects the ratio of the 
generator’s annual revenue requirement over its 
unforced capacity. The revenue requirement (positive or 
negative) equals the difference between the avoidable 
fixed costs of a generator and the revenues it receives in 
the market from sales of energy and ancillary services, 
as well as any additional revenue earned under 
regulatory rules in place (e.g., the production tax credit 
for qualifying technologies). The unforced capacity of a 
generator reflects its availability to meet system load at 
the time of need. Using these annualized capacity costs, 
a capacity merit order is formed. The last generator in 
the merit order needed to satisfy Equation (1) is the 
marginal generator and determines the value of MCC. 
In practice, the value of MCC is often approximated by 
the cost of new entry (CONE), i.e., the annualized cost 
of a peaking generator with a relatively low capital cost 
but high heat rate. Under this assumption, CONE is 
simply equal to the sum of the annualized capital costs 
and fixed O&M costs, while revenues from the energy 
and other markets are either ignored as insignificant or 
estimated based on the historical performance of similar 
generators in the market. Given that approximation, for 
systems that are short on capacity, Equation (1) is often 
restated in the following form: 

still count as a single loss of load event for purposes of the LOLE 
calculation. LOLH is probably the most informative metric and 
accounts for not only the frequency of interruptions but also for their 
durations. 
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 𝐿𝑂𝐿𝐻 × 𝑉𝑂𝐿𝐿 = 𝐶𝑂𝑁𝐸.     (2) 
 
Equation (1) leads to the following optimal level of 

LOLH: 
 

 𝐿𝑂𝐿𝐻ை =
ெ஼஼

௏ை௅௅
.     (3) 

 
Using the CONE approximation, the optimal 

LOLH level is determined as 
 

 𝐿𝑂𝐿𝐻ை =
஼ைோ

௏ை௅௅
.     (4) 

 
Thus, the values of VOLL and MCC dictate the 

optimal value of the LOLH criterion, which in turn leads 
to the optimal level of planning reserve margin. The 
corresponding level of reserve margin is typically 
determined by running a series of probabilistic “loss of 
load studies” in which reserve margins vary until the 
benchmark level of LOLE or LOLH is achieved with 
required precision.  See, for example, New York State 
Reliability Council [8]. The reserve margin is then used 
as a surrogate planning criteria applied in Integrated 
Resource Planning or in capacity market design. 

This approach to resource adequacy emerged in the 
middle of the past century and was intended for 
relatively self-sufficient, concentrated territories served 
by vertically integrated utility companies. It is, however, 
inapplicable to large regional entities such as power 
pools and regional transmission organizations and 
independent system operators (RTO/ISOs) exposed to 
significant transmission constraints.  See Rudkevich et 
al. [10, 11] and Rudkevich [12] for a more detailed 
discussion of the shortcomings of traditional adequacy 
criteria in transmission constrained systems and the 
need to address the resource adequacy problem at the 
nodal level. 

Moreover, with the increasing penetration of 
weather-dependent, stochastically behaving renewable 
generation technologies such as wind- and solar-
powered generation, system planning is facing a number 
of additional challenges rendering the traditional reserve 
margin criteria obsolete and largely misleading [3]. For 
example, the probabilistic nature of modern electrical 
systems has become significantly more complicated.  
Whereas, in years past, it consisted of relatively 
infrequent and largely independent outages of otherwise 
predictable central station generating units, it now 
involves a much larger number of stochastic objects 
exhibiting significant temporal and spatial correlation in 
their availabilities, load conditions, grid system 
characteristics, and outages, all of which depend on 
weather.   

Furthermore, in response to these challenges, the 
planning and control system becomes more complex.  
System operators presently seek better ways to 
understand these uncertainties, improve system 
forecasting and visibility, and design more sophisticated 
methods of control and classes of ancillary services (see, 
for example, [16], [5], [6], [1], and [4]).  As a result, the 
assessment of system adequacy cannot be properly 
accomplished without including these controls into 
analytical models addressing the adequacy problem. 

A need exists for a new approach to assessing 
system adequacy that incorporates more frequent, closer 
to real-time analysis and produces more granular results. 
This paper provides a summary description of the 
Stochastic Nodal Adequacy Platform (SNAP), a 
modeling platform and approach designed to evaluate 
the adequacy of a large-scale electrical grid at the nodal 
level. SNAP accounts for the probabilistic dependency 
of the system on weather, detailed modeling of the 
physics of the system, its economics and market design, 
and explicit modeling of system controls, represented in 
the model as decision cycles.   

Rooted in the fundamental theory of the spot 
pricing of electricity [13], SNAP extends and applies the 
nodal mathematics of power network economics to the 
valuation of system adequacy. The objective of SNAP 
is not to provide a new system planning rule but rather 
to serve as a process for assessing: (1) the adequacy of 
the system and (2) the physical contribution and 
economic value that each individual system component 
(e.g., generating unit or transmission line) contributes 
towards overall system adequacy.  In other words, 
SNAP can be thought of as a mechanism underlying a 
spot market for adequacy. 

It is important to note that, despite the increased 
complexity of the system, this approach to resource 
adequacy relies on the same economic principle of 
equating the marginal cost of additional capacity to the 
marginal damages associated with probable inability to 
serve consumers’ demand.  At the nodal level, Equation 
(1) takes the following form:   

 

𝐄[𝑀𝐶𝐶௡] = 𝑉𝑂𝐿𝐿 × ∑
డ

డ௅೙
𝐄[𝜃௡(𝑡, 𝜔)𝑈(𝑡, 𝜔)]்

௧ୀଵ ,    (5) 

 
where E[MCCn] is the expected value of the 

annualized marginal cost of adding a resource at node n 
of the electrical system, θn(t,ω) is a random capacity 
factor for that marginal resource at time interval t under 
stochastic scenario ω, and U(t,ω) is the unserved energy 
in the entire system during time interval t under 
stochastic scenario ω. The derivative is taken with 
respect to electricity demand, L, at the location of the 
marginal resource.  As the right-hand side of Equation 
(5) indicates, what is equated to the marginal cost of 

Page 3134



adding a resource is the incremental damage of unserved 
load valued at VOLL and apportioned to the capacity 
factor of the resource at the time of scarcity, if and when 

the latter occurs. Considering that VOLL×
డ௎(௧,ఠ)

డ௅೙
 is the 

component of the locational marginal price (LMP) at 
node n caused by shedding system load, it follows that 
the compensation of the marginal resource in excess of 
revenues accrued in markets for energy and ancillary 
services at each point in time is determined by the nodal 
component of the price that is set by load shedding in 
the system.  However, that price depends on the location 
of the resource, which determines its ability to relieve 
load shedding.  Furthermore, the compensation depends 
on the resource availability at the time of scarcity. 
Equation (5) effectively establishes the compensation 
rule for any resource in the system for its contribution to 
system adequacy and is applicable to nodal networks 
and to systems with variable resources with weather 
dependency. 

The remainder of this paper unfolds as follows. 
Section 2 introduces the various nodal metrics that form 
the output of a SNAP analysis and the computational 
approach to calculating them. Section 3 discusses the 
advanced weather science underlying SNAP. An 
overview of the SNAP modeling platform is presented 
in Section 4, and the results of a 24-hour case analysis 
are presented in Section 5.  

2. SNAP nodal metrics 

The structure of SNAP is designed to provide an 
efficient, general Monte Carlo-based computational 
process for assessing the contribution to system 
adequacy of each resource at every node of the electrical 
system and over time.   

2.1. Description of metrics 

As introduced in the previous section, Equation (5) 
is the basis for calculating the compensation owed to 
various types of components of the power grid for their 
contribution to the reliability of the system. The various 
nodal metrics calculated by SNAP are shown in Table 
1.  

 
Table 1. SNAP adequacy metrics. 

Load Generation 
and Storage 

Transmission 

Adequacy 
Payment 

Adequacy 
Payment 

Adequacy Payment 
to/from 
Supporting/Supported 
Neighbor 

Conditional 
Load at Risk 
(CLaR) 

ELCCd Adequacy Rent 

Expected 
Unserved 
Energy 

  

 
Let us define the hourly and locational value of the 

right-hand side of Equation (5) to be SNAPn(t,ω), the 
stochastic nodal adequacy price of location (node) n at 
time t and stochastic scenario ω: 

 

 𝑆𝑁𝐴𝑃௡(𝑡, 𝜔) = 𝑉𝑂𝐿𝐿 ×
డ

డ௅೙
𝑈(𝑡, 𝜔),         (6) 

 

and SNAPn(t) = VOLL×
డ

డ௅೙
𝐄[𝑈(𝑡, 𝜔)] to be the 

adequacy price at location n and time t. At each nodal 
location in the system, SNAPn(t) represents the value of 
injecting or reducing an additional unit of MW at 
location n for adequacy of the entire system. If there is 
no load shed event, SNAPn(t) is equal to zero. Efficient 
calculation methods for the key component of SNAPn(t), 

expected marginal unserved energy, 
డ

డ௅೙
𝐄[𝑈(𝑡, 𝜔)], are 

discussed in a later section. 
In the event of scarcity, load participants at location 

n are assumed to be paying for the net load consumption 
(demand minus shed load): 

 
𝐴𝑃௡

௅௢௔ௗ(𝑡) = 𝐄[𝐿௡(𝑡) − 𝑈௡(𝑡, 𝜔)] × 𝑆𝑁𝐴𝑃௡(𝑡, 𝜔).  (7) 
 

Similarly, generating units and storage resources 
are compensated for their contribution to adequacy 
according to: 

 
𝐴𝑃௜

ீ௘௡(𝑡) = 𝐄[𝑃௜|௜ ௜௡ ூ೙(𝑡, 𝜔) × 𝑆𝑁𝐴𝑃௡(𝑡, 𝜔),           (8) 
 
where In is the set of generating and storage units at 

location n. If, during a scarcity condition, a generating 
unit does not dispatch power, it is not compensated for 
contribution to system adequacy. In fact, effective load 
carrying capability on demand, ELCCd, is a 
performance measure for each generating and storage 
unit, calculated as the conditional dispatch at the time of 
scarcity, that can be used to evaluate the contribution of 
different types of generating resources to system 
reliability. At time t, ELCCd of unit i is given by: 

 
𝐸𝐿𝐶𝐶𝑑௜(𝑡) = 𝐄[𝑃௜(𝑡, 𝜔) | 𝜔 ∈ 𝜔ௌ೟],           (9) 
 

where Pi(t,ω) is the dispatch of unit i at time t and 
stochastic scenario ω, and ωSt is the set of scenarios with 
scarcity at time t. 

Conditional load at risk, a parallel metric to 
conditional value at risk (CvaR) widely used as a risk-
focused financial metric, measures the system’s 
vulnerability specifically under tail events unlike more 
commonly used LOLE and LOLH: 
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𝐶𝐿𝑎𝑅௡(𝑡) = 𝐄[𝑈௡(𝑡, 𝜔) | 𝜔 ∈ 𝜔ௌ೟ .           (10) 

 
Given the scarcity conditions, CLaRn(t), measures 

the severity of system risk. 
The nodal adequacy price, SNAPn(t), also allows 

measuring the economic adequacy contribution of 
transmission resources. Adequacy payment to 
supporting neighboring entities from area a can be 
calculated as: 
 
𝐴𝑃௔

்௫(𝑡) = ∑ 𝐄[𝐼௔ᇱ,௔(𝑡, 𝜔) × ∆𝑆𝑁𝐴𝑃௔ᇱ,௔(𝑡, 𝜔)௔ᇱ∈௔಴  (11) 
 
where a' is a neighboring entity, aC is a set of 

neighbors of area a, and Ia',a(t,ω) is the total transfer 
from area a to neighboring entity a'. ΔSNAPa',a(t,ω) is 
the difference between area level SNAP values between 
area a and neighboring entity a'. Area level metrics can 
be calculated as the weighted average of SNAP values 
at all nodal locations belonging to the area. 

Similarly, adequacy revenue collected from a 
neighboring entity supported during a scarcity event is 
given as: 

 
𝐴𝑅௔

்௫(𝑡) = ∑ 𝐄[𝐼௔,௔ᇱ(𝑡, 𝜔) × ∆𝑆𝑁𝐴𝑃௔,௔ᇱ(𝑡, 𝜔)௔ᇱ∈௔಴  (12) 
 

where Ia,a'(t,ω) is the total transfer from neighboring 
entity a' to area a. Lastly, adequacy rent for a given 
branch b can be calculated as: 

 
𝑅௕

்௫(𝑡) = 𝐄[𝑓௕(𝑡, 𝜔) × ∆𝑆𝑁𝐴𝑃௕(𝑡, 𝜔)]     (13) 
 
where fb(t,ω) is the flow on branch b and 

ΔSNAPb(t,ω) is the difference in SNAP values between 
the beginning node and the ending node of branch b. 

2.2. Computational approach to metrics 

Computational realization of the metrics 
represented above requires evaluating a statistically 
significant size of stochastic scenarios such as system 
outage conditions and weather. Depending on the type 
of stochastic scenarios, multiple layers of scenario and 
variance reduction techniques have been employed to 
balance computational requirements with statistical 
significance and operational model detail.  

System outage conditions are evaluated through a 
multi-step integrated scenario reduction method where 
the initial filtering of critical outage conditions is based 
on an estimation of scarcity conditions on a simplified 
mathematical model of the system. Only those critical 
outage conditions are solved in full operational detail. 

A stratified sampling approach has been adopted to 
allocate computational resources efficiently to 

stochastic weather scenarios and time periods based on 
the variance of the estimated scarcity rate.  

These methods are discussed in detail in another 
work that is currently in preparation [9]. The 
development of the stochastic weather scenarios 
underlying SNAP is further discussed in the next 
section. 

3. Application of advanced weather science 

SNAP recognizes and is built upon the reality that 
the largest supply and demand uncertainties in today’s 
electric power sector are weather driven. The stochastic 
availability of renewable resources in front of the meter 
(wind and solar), the impact of renewable and other 
technologies operating behind the meter (DERs), and 
the impact of extreme weather events resulting from 
climate change have made the forecasting of resource 
adequacy far more challenging.   

SNAP utilizes the dramatic advances in weather 
science developed by IBM, The Weather Company [21]. 
The forecasts used in the stochastic weather scenarios 
are based on inputs from 87 different numerical weather 
prediction models and their ensemble members on a 
4km-by-4km grid worldwide.  An ensemble copula 
coupling quantile technique is used to derive 100 
synthetic weather system scenarios wherein each of the 
100 scenarios has the same probability of occurrence 
[18, 19, 20]. Within each forecast scenario, the variables 
are internally consistent in space and time.  Figure 1 
shows the underlying 2,000 METAR weather stations, 
wind and PV sites, and cities and towns with 
populations of 20,000 or more in the Midcontinent 
Independent System Operator (MISO) territory. 
 

 
Figure 1. METAR locations in MISO. 

 

Page 3136



Figures 2a and 2b show the forecasted spread (gray 
shaded area) and the actual temperature (blue line) for 
an extreme cold period in Jackson, Mississippi 
(February 11-19, 2021) and an extreme warm period in 
Minneapolis, Minnesota (June 4-17, 2021), 
respectively.  

Using the single variable of temperature as an 
example, Figure 2 illustrates that the probability spread 
can be quite large, capturing the uncertainty in any 
central tendency forecast. The broader the range, the 
more uncertain is the outcome, i.e., the less certain is the 
mean value to be a reliable forecast. When extended to 
locational forecasts of wind and solar availability or 
consumer demand, the stochastic nodal value of weather 
variables provides the input to the SNAP calculation of 
supply adequacy or inadequacy.  

 

 
 

 
Figure 2a (top) and 2b (bottom). Forecasted and 

actual temperatures during an extreme cold period 
in Jackson, Mississippi (top) and an extreme hot 

period in Minneapolis, Minnesota (bottom). 
 

A key challenge to the implementation of SNAP is 
the ability to translate the 100 probabilistic forecasts of 
individual weather variables into an equal number of 
forecasts of electric generation from each renewable 

resource in the system, as well as forecasts of net 
demand acknowledging behind the meter generation 
and weather affects.  SNAP builds upon the weather 
variable forecasts to develop 100 equally probable 
location-specific, hourly forecasts of wind, solar, load, 
and outages to create stochastic scenarios of hourly 
resource availability and net demand.   

To produce the probabilistic wind forecast, for 
example, each wind farm is modeled at the turbine level. 
The probabilistic wind forecast, provided at ground 
level at the location of each wind farm, is interpolated 
with a deterministic wind forecast provided at several 
different heights to create a probabilistic wind speed 
forecast at each turbine’s individual hub height. Wind 
turbine power curves, which parameterize power output 
as a function of wind speed, are used to convert wind 
speed to wind power generation for each probabilistic 
scenario. Power curves are empirical functions based on 
observed data, and height- and manufacturer-specific 
power curves are used for each turbine, even within a 
single wind farm. 

Wind energy represents a highly stochastic input to 
the resource adequacy mix for any system operator.  
Building upon a combination of wind speed, air density, 
humidity, hub height, and specific turbine 
characteristics, SNAP generates probabilistic forecasts 
of wind output for each windfarm.  These probabilistic 
forecasts become an input into the expected quantity of 
resource adequacy as the operator looks forward 
multiple hours or multiple days.  Figure 3 illustrates the 
value of the stochastic forecasting of wind energy. The 
solid blue line provides the mean value of the 100 
scenarios for an example wind farm in MISO, while the 
blue shaded area shows the full range across all 
scenarios.  It is important to note that, while the mean 
may remain high, there is often a non-zero probability 
that the actual output will be dramatically lower (zero) 
or higher. 

 

 
Figure 3. Generation from an example wind farm in 

MISO (Walnut Wind) on June 10, 2021 over 100 
probabilistic scenarios. 

 
The process for converting forecasts of weather 

variables into energy from utility scale solar 
installations parallels that of wind energy.  Multiple 
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weather variables are combined to create solar-to-
energy forecasts.  As with wind, the forecast space is 
100 independent forecasts for each utility scale solar 
installation in MISO.  

Weather-based net demand forecasting for MISO 
follows a similar logic to that of wind and solar but 
requires a more complex calculation procedure. To 
produce the probabilistic load forecast, MISO is 
subdivided into its 38 constituent local balancing 
authorities (LBAs). Each LBA is assigned a 
probabilistic forecast based on representative weather 
station(s) in the urban areas within that balancing 
authority. An ensemble machine learning model 
developed by Newton Energy Group produces a load 
forecast for each probabilistic weather scenario. This 
weather-to-load model is trained on 11 years of 
historical data from the period January 1, 2009 to 
August 16, 2021.  The data are organized by MISO LBA 
and include load, temperature, dew point, wind speed, 
cloud cover, solar radiation, and rainfall. Figure 4 shows 
an example demand forecast for the Alliant Energy – 
East LBA, where the solid blue line shows the mean 
value, and the blue shaded area shows the full range, of 
the 100 weather scenarios. 

 
 

 
Figure 4. Forecasted demand for an example MISO 

LBA (ALTE) on June 10, 2021. 
 

The final stochastic dataset incorporated into SNAP 
is the probability of outage of traditional generation and 
transmission resources which reflects the analytic levels 
used by the RTO/ISOs in analyses of resource adequacy.  

4. The SNAP platform  

The SNAP modeling platform is comprised of two 
core components: Power System Optimizer (PSO), a 
Security Constrained Unit Commitment (SCUC) and 
Security Constrained Economic Dispatch (SCED) 
power system simulator, operating within the 
ENELYTIX modeling environment, a cloud-based data 
and processing environment. Each weather-based 
scenario of a power system is paired with scenarios 
simulating random behavior of grid equipment – 
generating units and transmission outages, availability 
of demand response measures, and inter-market 

transactions. Through a uniquely flexible representation 
of decision cycles in PSO, system operational 
planners/operators are able to use SNAP to assess 
system adequacy (inadequacy) at different decision 
points in time, including expansion planning, 
maintenance scheduling, week-ahead scheduling, day-
ahead scheduling, intra-day scheduling, and real-time 
scheduling.  

Figure 5 provides, schematically, the calculation 
structure of SNAP.  External to the calculation process 
of ENELYTIX, SNAP accesses the commercially 
available probabilistic weather forecasts produced by 
IBM, the Weather Company.  In addition, ENELYTIX 
accesses a full catalogue of data on the existing 
condition of the grid that includes the initial and forward 
status of all generation, the topology and availability of 
all elements of the transmission system and the current 
plan to cover adequacy for each hour of the operational 
planning horizon.  

Given access to the external data, and internal to the 
ENELYTIX platform, the weather dependent (and 
standard utility) probability analyses are parallelized for 
rapid computation.  Once the full deck of resources and 
load is available, supply and demand outage values are 
incorporated to create roughly 100,000 Monte Carlo 
draws. ENELYTIX operates on the AWS cloud and 
automatically manages the entire SNAP workflow from 
managing data feed to parallelization of computations, 
provisioning and monitoring of machine instances, post-
processing results, and providing access to results.  

Developed for SNAP, ENELYTIX optimally 
allocates resources to specific parallel tasks to deliver 
high precision adequacy estimators quickly and at low 
costs.  ENELYTIX architecture pairs 100 weather-
driven scenarios load forecasts, wind and solar 
resources and transmission line ratings with over 1,000 
scenarios of generation and transmission outages. The 
system is capable of running through over 100,000 
simulation scenarios of security constrained unit 
commitment of a large electrical system the size of 
MISO. ENELYTIX processes the results of the 
parallelized computations and reports the metrics 
described in Section 2. 

The computational efficiency of the SNAP 
implementation was shown in a case analysis of June 10, 
2021 that utilized 100,000 stochastic scenarios of 
SCUC/SCED analyzed for the entirety of MISO using 
500 Virtual Machines with a solution delivered in 45 
minutes at a cost of $200 using on-demand VM 
instances or $120 using spot VM instances. This case 
analysis is discussed in the next section. 
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5. Case analysis: MISO – June 10, 2021  

The SNAP methodology was tested on a 24-hour 
period, June 10, 2021, for which the authors had a full 
set of data. The date was chosen by project partners at 
MISO as a representative date on which the MISO 
system was significantly stressed. 

After running the SNAP analysis, output data is 
displayed in a graphical dashboard, allowing 
operational planners easy access to the results. The 
dashboard is designed to help operators answer the 
following questions: 

 WHEN is there potential for inadequacy? 
 WHERE will the inadequacy occur? 
 WHY is there potential for inadequacy? 
 WHAT options are available to avoid the 

inadequacy? 
Figure 6 shows the “Load View” dashboard page, 

which displays results at the LBA level. A table in the 
bottom-right allows operational planners to quickly 
identify hours in which there is potential inadequacy 
while a map displaying LBAs color-coded to the 
probability of inadequacy allows operational planners to 
quickly identify where the potential inadequacy is 
located. Additional summary statistics are displayed, 
including load, expected unserved energy, and the 
SNAP value. As shown in Figure 6, for the period 
analyzed, there is a nonzero probability of inadequacy 
in the Big Rivers Electric Corporation (BREC) LBA 
between the hours of 12:00-9:00 pm, which peaks at 
0.016 during the 4:00 pm hour. 

A “Generator View,” shown in Figure 7, allows 
operational planners to drilldown to generator-specific 
information. In this example, multiple key generating 
units in BREC had a relatively high outage probability 
during the at-risk hours (e.g., ranging from 0.07-0.15 
during the 4:00 pm hour) which was coupled with 
generally low production from wind facilities in MISO-
N (where BREC is located) during those same hours. In 
Figure 7, the Walnut Wind facility is shown as a 
representative example. Similar visualizations exist in 
the dashboard for other weather-dependent variables, 
including solar generation and net demand. Operational 
planners can use this same information to identify 
potential actions to avoid a shortage event. For example, 
a planner could quickly identify units with the requisite 
capacity and location that are on planned outage but 
could be brought online to provide additional 
generation. 

6. Conclusions  

The increasing penetration of weather-dependent 
renewable resources necessitates new methods for 

analyzing and quantifying resource adequacy, 
especially in large-scale electric systems exposed to 
significant transmission constraints. 

SNAP provides an efficient Monte Carlo approach 
allowing for the development and solution of 
approximately 100,000 SCUC/SCED analyses 
principally derived from the stochastically applied 
forecast of weather variables developed by IBM, The 
Weather Company. 

Using PSO and ENELYTIX, it is possible to solve 
the 100,000 stochastic scenarios in a period of less than 
45 minutes at a cost of between $120 to $200 as a 
function of spot or demand machine time on the AWS 
cloud. 

The resulting metrics provide operational planners 
with the information needed to identify when and where 
a potential for inadequacy exists, what system 
conditions lead to inadequacy, and what options are 
available to prevent a shortage event. 

In addition, the SNAPn(t) value, the adequacy price 
at location n and time t, is an hourly marginal resource 
adequacy price at every node in the system that can be 
seamlessly integrated into existing power market 
design. 
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Figure 5. SNAP schematic flow diagram. 

 

 
Figure 6. SNAP “Load View” visualization showing a nonzero probability of inadequacy in the BREC LBA at 

4:00pm on June 10, 2021. 
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Figure 7. SNAP “Generator View” visualization. 
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