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Abstract. Species distribution models play a central role in informing wildlife management. For models to be useful,
they must be based on data that best represent the presence or abundance of the species. Data used as inputs in the
development of these models can be obtained through numerous methods, each subject to different biases and limitations

but, to date, few studies have examined whether these biases result in different predictive spatial models, potentially
influencing conservation decisions. In this study, we compare distribution model predictions of feral pig (Sus scrofa)
relative abundance using the two most common monitoring methods: detections from camera traps and visual surveys of

pig sign. These data were collected during the same period using standardised methods at survey sites generated using a
random stratified sampling design.We found that although site-level observed sign data were only loosely correlated with
observed camera detections (R2 ¼ 0.32–0.45), predicted sign and camera counts from zero-inflated models were well

correlated (R2 ¼ 0.78–0.88). In this study we show one example in which fitting two different forms of abundance data
using environmental covariates explains most of the variance between datasets. We conclude that, as long as outputs are
produced through appropriatemodelling techniques, these two commonmethods of obtaining abundance datamay be used
interchangeably to produce comparable distribution maps for decision-making purposes. However, for monitoring

purposes, sign and camera trap data may not be used interchangeably at the site level.
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Introduction

Feral pigs (Sus scrofa) are among the most problematic mam-
malian invasive species due to their impacts on biodiversity and

agricultural and livestock production (Massei and Genov 2004).
Feral pigs occupy six continents, having been intentionally
introduced by humans for food provisioning and game recrea-
tion (Barrios-Garcia and Ballari 2012). They are often referred

to as ecosystem engineers, fundamentally altering ecosystems
through a suite of impacts on soil properties, plant and animal
communities, and hydrological processes (Hone 2002;

Nogueira-Filho et al. 2009; Cole and Litton 2014; Hess 2016;
Wehr 2018). Additionally, feral pigs negatively impact agri-
culture and livestock production through predation, competi-

tion, habitat disturbance and disease transmission (Gentle et al.
2015). In the United States alone, damages from feral pigs cost
approximately US$1.5 billion per year (Pimental 2007) and

globally threaten native species in over a quarter of the world’s
countries (IUCN 2017).

These impacts have been particularly severe throughout the

Pacific region where native and endemic species are naive to the
threats from introduced ungulates (Parker et al. 2006; Desurmont
et al. 2011). Feral pigs throughout the Pacific have effects across
trophic levels ranging from disturbing the soil microbiome (Wehr

et al. 2018) to creating habitat for mosquitoes and thus facilitating
the spread of avian malaria that has led to the precipitous decline
and extinction of numerous endemic avifauna (LaPointe et al.

2012;Wehr et al. 2018). Furthermore, feral pigs have proved to be
effective predators on many island ecosystems, including the
Galapagos, where they contributed to the decline of an endemic

rail via egg predation and nest disturbance (Donlan et al. 2007).
Monitoring of impacts of feral pig populations has become

a growing concern among non-government organisations,
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government entities, and private land owners (Engeman et al.

2013). Estimates of distribution and abundance are important for

this purpose, enabling managers to locate areas of high feral pig
abundance for targeting and evaluating the effectiveness of
management actions (Wilson et al. 2006). Monitoring data for

feral pigs are commonly collected using two methods: detection
rate using remotely triggered camera traps (Holtfreter et al.

2008; Rovero and Marshall 2009; Bondi et al. 2010; Bengsen

et al. 2011; Chauvenet et al. 2017; Keuling et al. 2018; Massei
et al. 2018) and visual surveys of signs unique to feral pigs
(Engeman et al. 2001, 2013; Massei et al. 2018). These two
methods of data collection each have their own limitations and

their use is often dependent on the amount of resources and
personnel available to an agency, researcher or private land-
owner (Engeman et al. 2013). Camera traps have been widely

used due to their appeal in remote monitoring of abundance,
providing greater data resolution for reduced time in the field
compared with sign surveys (Silveira et al. 2003; Rowcliffe

et al. 2008; Bengsen et al. 2011). A disadvantage is the
considerable up-front costs of purchasing cameras, but Rovero
and Marshall (2009) found that reduced labour costs over time
significantly decrease the overall cost of camera trapping

compared with transect surveys. Cost of cameras may also limit
sample size due to limitations on the number of cameras
purchased, and the volume of photographs recorded will influ-

ence the cost and time required to process camera trap data. Sign
surveys or tracking plots have been widely adopted as an index
of monitoring the abundance and distribution of feral pigs by

recording the presence or abundance of physical signs of feral
pigs activity (Engeman et al. 2013). As detection probability can
change through time (Watson et al. 2008; Southwell and Low

2009), sites may need to be visited on multiple occasions to
confirm presence or absence of the focal species (Kéry et al.

2006), resulting in significant labour costs varying on the basis
of the frequency of site visits and distance to field sites (Field

et al. 2005; Hauser and McCarthy 2009). Reliability of this
method is also influenced by observer ability and environmental
factors such as precipitation, vegetation, and soil type

(Fitzpatrick et al. 2009; Moore et al. 2011).
A common application of monitoring data is the creation of

species distribution models. These models are used to map the

predicted suitability, species occurrence probability, or relative
abundance of a focal species over a region of interest (Guisan
and Thuiller 2005; Sarre et al. 2013). For invasive species, these
distribution models are often used in conservation decision

making by overlaying the distribution of the invasive species
on the distribution of the target conservation asset to determine
the level of threat posed by invasive species to species of

conservation concern (Evans et al. 2011; Tulloch et al. 2015).
However, model outputs may differ depending on the type of
input data used and thereby influence management decisions

made from perceived threats.
Given the extensive impacts of feral pigs and the widely

available monitoring methods, it remains difficult to accurately

predict the abundance of their populations. Most studies focus
on the probability of presence, and a few studies have attempted
to quantify the abundance of feral pig populations, but none
within the Pacific region (Engeman et al. 2001) or at a resolution

appropriate for informing management actions within an island

or large conservation area (e.g. National Park). Recognising the
importance of monitoring abundance for the management of

this species, and the lack of conformity across approaches to
monitoring feral pig populations, we developed this study with
two objectives in mind. First, our study introduces methodology

to extrapolate estimates of relative feral pig abundance across
diverse landscapes using common forms of monitoring data.
Second, we compare the effect each monitoring data type has on

the respective estimates of relative abundance and speculate on
how these differences may influence management decisions.
We compare the relatability between these two data sources
using regressions of observed data and data fitted to predictive

models. The results from this study provide individuals with the
methodology to monitor feral pig abundances across islands
throughout the Pacific region and areas of similar scale and

complexity (e.g. National Parks, agricultural lands, or other
nature reserves). Furthermore, this study elucidates the similar-
ities and differences between two of the most common

approaches to monitoring ungulates and provides discussion
regarding which approach may be most beneficial to agencies
and individuals with varying access to resources.

Materials and methods

Study area

The island of O‘ahu is one of the eight main Hawaiian Islands
and has a land area of 1546 km2. There are two main mountain

ranges, theKo‘olau range of easternO‘ahu,with elevations up to
960 m, and the Wai‘anae range of western O‘ahu with a maxi-
mum elevation of 1227 m. Mean annual rainfall varies greatly

across the island from 200 mm to 7000 mm but is highly cor-
related with elevation and temperature (Giambelluca et al.

2012). Additionally, windward systems receive a higher mean

annual rainfall than their leeward counterparts (Giambelluca
et al. 2012). Community assemblages of vegetation can range
from dry coastal shrubland to high-elevation wet forests, all of

which can vary between native, mixed, and non-native
assemblages.

For access reasons, all survey sites were restricted to forest
reserves or privately held land with pre-established access

permission. There are 240 km2 of forest reserves comprising
nearly 16% of O‘ahu’s land area with 101 km of existing
ungulate-proof fencing within these reserves. These fences

separate feral pigs from species of concern such as threatened
and endangered plants, nesting seabirds, and forest birds. Areas
with ungulate-exclusion fencing were excluded from the site

selection process.

Site selection

Research sites to record feral pig abundance data were allocated

using a random stratified sampling design. Several environ-
mental factors are known to strongly correlate with altitude
on the Hawaiian islands, hence research sites were divided
equally into three altitudinal bands (0–333 m, 334–666 m and

667–1200 m) to prevent disproportionate sampling of the more
frequent, low-altitude habitats and ensure thorough sampling
across ecological gradients. An equal number (n ¼ 15) of

research sites were randomly drawn from these three altitudinal
bands, resulting in 45 total research sites across O‘ahu. Potential
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sites were allocated by drawing from a 500 m by 500 m (25 ha)
raster grid of O‘ahu, created using R packages ‘raster’ (Hijmans

et al. 2017) and ‘rgdal’ (Bivand et al. 2018). Sites were located
at the centroid of each raster cell and drawn from land recog-
nised as a reserve using the Hawai‘i state government reserve

outline and privately held land with pre-established access
permission. To ensure research sites were spatially independent
of each other, separate sites were generated using this process

for each year of data collection. Extensive areas of fallow
agricultural land and urban areas were excluded from this study
due to the diversity of ownership and relatively small parcel
sizes of privatised agricultural land in Hawai‘i. When a ran-

domly selected site could not be reached due to safety reasons
(slope, topography), the site was moved to the closest analogous
location within 500 m that could be safely accessed, or else was

excluded from the study.

Survey design

Research sites were surveyed for a 2-week period between the
months of June and November of 2016 and 2017 using camera
traps and sign surveys. Each research site consisted of an array

of six cameras (Bushnell Trophy Cams, Bushnell, Overland
Park, KS) distributed at regular 50-m intervals. Cameras were
programmed to take two consecutive images for each trigger and

reset after 3 s. Cameras were deployed at each research site for a
2-week period under one of two configurations: (1) a rectangular
array, with cameras deployed in two parallel lines of three; or (2)

a linear array, with all six cameras deployed along a transect.
Linear arrayswere deployed only on areaswhere topography did
not allow for a rectangular array, such as on ridge crests with

steep receding slopes on either side. Cameras were deployed in a
manner that maximised the probability of detection, such as
focused on a clearing, trail or area with obvious previous pig
activity within a 10-m radius of randomly pre-selected GPS

coordinates. Based on previous experience deploying camera
traps throughout diverse landscapes in Hawai‘i, we chose 10 m
as a reasonable radius that would allow us to set up cameras to

maximise detection probability while retaining the randomness
of our site selection process. Cameras were attached to vege-
tation at approximately waist height and angled on a level to

slightly downward facing trajectory with the ground. Camera
data were reviewed manually using Irfanview photo-editing
software (www.irfanview.com) so that photos containing ima-
ges of feral pigs were filtered into a final database for analysis.

At each of the six camera locations within each research site,
signs of feral pig presencewere recorded in four quadrats (10mby
10 m), resulting in 24 quadrats and a total surveyed area of

2400 m2 per research site. Surveys of sign were standardised at
a 2-min search period for each quadrat. Quadrats were structured
in a square configuration around the camera location except in

areas where steep terrain prevented access to more than 10 m
surrounding the camera location, in which case quadrats were run
along a linear transect similar to tracking plots (Engeman et al.

2013; Massei et al. 2018). In each quadrat we recorded the
presence or absence of old and new signs of tracks, scat, digging
and browsed vegetation. New sign was defined as having likely
occurred no later than 2 weeks earlier, based on leaf fall on top of

sign, desiccation of soil, layered disturbances, or other visual cues

of time since the sign was produced. Sign surveys were conducted
both upon the deployment and recovery of cameras from each site.

Model development

Total counts of camera-captured observations of feral pigs at each
research site over the standardised 2-week sampling period were
averaged by the number of cameras deployed at each site to

estimate average counts of camera-captured observations of feral
pigs per site. Presence and absence data from the sign surveys at
each quadratwere collated across the 24 quadrats per research site
to quantify the total abundance of all recorded sign per site. The

sign survey data were also filtered by the type of sign recorded to
obtain the total abundance of tracks, scat, digging and browsed
vegetation per research site. Previous studies identify that these

types of abundance data gathered from camera traps and surveys
of pig sign have been shown to accurately reflect the abundance
and distribution of feral pigs and so were used as the response in

separate models of species abundance (Rovero and Marshall
2009; Bengsen et al. 2011; Chauvenet et al. 2017; Massei et al.
2018). The abundance data used in model building included:
average counts of camera-captured observations per site

(camera), abundance of all observed sign per site (all sign),
abundance of observed tracks per site (all track), abundance of
observed scat per site (all scat), abundance of observed digging

per site (all dig), and the abundance of observed browsed vege-
tation per site (all vegetation). A small number of covariates were
used in the modelling process because of a limited number of

survey sites (n ¼ 42) and inherent autocorrelation among many
environmental covariates in Hawaiian systems. Collinearity
between predictors was considered using pairwise Pearson

coefficients (R2) and any predictors with R2 greater than 0.75
were excluded (Elith et al. 2010; Dormann et al. 2013). Covari-
ates were selected based on an a priori hypothesis of response–
covariate relationship. These hypotheses were developed based

on an understanding that our covariates must include biotic and
abiotic factors that adequately describe the quality of the habitat
and the ecological requirements of feral pigs (Diong 1982). In

doing so, we identified four covariates that best represented these
requirements, which included:mean annual rainfall as a proxy for
available water and habitat quality, vegetation height as protec-

tive and thermal cover and available forage, vegetation density as
habitat quality and accessibility, and percentage native vegetative
cover to distinguish between plant community composition.

We used generalised linear models (GLM) with Poisson and

negative binomial distributions from the ‘stats’ and ‘MASS’
(Venables and Ripley 2002) packages respectively and zero-
inflated models with the same distributions from the ‘pscl’

package (Zeileis et al. 2008) within the programR (R Core Team
2017). This method was chosen over commonly adopted model-
ling techniques using presence-only data such as Maxent (Elith

et al. 2011) due to the nature of occupancy by feral pigs at a site on
O‘ahu. Feral pigs are broadly distributed across O‘ahu and are
present in nearly all areas; however, their abundancemay vary by

several orders of magnitude. Hence, our adopted modelling
method was required to discriminate between relative abundance
of feral pigs between sites, not simply the probability of presence.

Models were constructed using the average number of camera

detections (camera) and frequency of sign (all sign, all track, all
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scat, all dig, and all vegetation). These six forms of abundance
data were treated as the response variable in the model-fitting

process using different configurations and interactions between
each of the covariates. The same covariate configurations were
used with each of the six abundance data types and were fitted to

models of increasing complexity to identify best-fit models.
These models were: GLM Poisson, GLM negative binomial,
zero-inflated Poisson, and zero-inflated negative binomial. Zero-

inflated models are two-component mixture models that estimate
the distribution output based on two separate model components,
the first component modelling the likelihood of excess zeroes

(zero component) and the second component modelling the
positive counts (count component) (Zeileis et al. 2008). We
included covariates for the zero component that might explain
excess zero counts inherent in environmental observation data.

The covariate configurations with terms for the zero component
were excluded when fitted to GLMs as these models do not
provide a means of separating these two processes. A stepwise

process was used to consider first- and second-order relationships
for the four environmental covariates. Best-fit models were
chosen based on Akaike Information Criteria (AIC) and the

predicted outputs of each model were visually inspected for any
signs of model overfitting.

Regression analysis

Linear regressions were used to determine directionality and
correlative strength between the different forms of abundance

data collected for this study in Program R 3.3.2 (R Core Team
2017). Program R package ‘ggplot2’ was used to generate
regressions of sign data (all sign, all track, and all dig) against
camera data for both our observed data and predicted data from

zero-inflated distribution models (Wickham 2016). Variance
and significance for each regression were reported using R2-
values and P-values, respectively.

Results

Data were collected from 42 sites over a 2-year period between
the months of June and November of 2016 and 2017. Feral pigs
were detected by camera traps at 21 of the 42 sites. For siteswhere

feral pigs were detected, an average of 31� 6 (s.e.) photographs
of feral pigs per camera were captured over the 2-week sample
period, with a maximum of 311 captures at a single site. In

comparison, sign was detected at 27 of 42 sites; feral pigs were
detected by camera traps at 18 of these 27 sites. Approximately
seven times more sign was detected at sites where feral pigs were

captured on cameras, compared with sites where no feral pigs
were detected by cameras (camera detection 7.19 � 1.26 (s.e.),
no camera detections 1.14 � 0.42 (s.e.)).

Zero-inflated negative binomialmodels performedbest for the

camera and all sign models (Table 1). Model summary results
from Poisson and negative binomial GLMs are excluded from
Table 1 due to AIC suggesting a considerably worse fit than their

zero-inflated counterparts. Vegetation density and native vegeta-
tive coverwere excluded as covariates for the count component of
these models as AIC suggested a better model fit without them

(Table 1). However, vegetation density and native cover were
included as covariates for the zero component of the sign and
camera models, respectively, as they were found to be significant
predictors for the likelihood of zero counts (all sign, P ¼ 0.011;

camera, P¼ 0.036). All sign, all dig, and all track formed similar
yet weaker relationships while all scat and all vegetation did not
produce significant relationships (Table 2). Scat and browsed

vegetation data collected for this study were included in the all
sign analysis but lacked the replicates required to be analysed
individually. Scat and browsed vegetation were observed at only

5 and 10 sites respectively. The camera and all sign models were
taken as the best species distribution model of relative feral pig
abundance (Fig. 1). However, all track and all dig produced

similar distribution maps and formed similar regressions.
Spatial maps resulting from the best-fit models from camera

and all sign data depict subtle differences in the allocation of
relative feral pig abundance (Fig. 1). Both models show higher

Table 1. Covariates for the count and zero components of the zero-inflated models generated from camera and all sign data

Akaike Information Criteria (AIC) values are shown as an estimate of model predictive performance. ZIP and ZINB represent zero-inflated Poisson and zero-

inflated negative binomial respectively. AIC values are not comparable across data types. This is a subset showing four of the best-fit covariate configurations

Model Camera All sign

Count component Zero component AIC (ZIP) AIC (ZINB) AIC (ZIP) AIC (ZINB)

Rain, rain2, vegetation height Vegetation density 399.7 239.0 218.2 197.3A

Rain, rain2, vegetation height Native cover 394.7 234.1A 221.7 197.5

Rain, rain2, vegetation height, vegetation density n.a. 398.3 239.3 227.4 203.9

Rain, rain2, vegetation height, vegetation density, native cover n.a. 362.0 234.9 228.0 203.5

ABest-fit models.

Table 2. Model summaries for each of the best-fit model configura-

tions for the different abundance data types

Each model represented in this table was modelled using a zero-inflated

model with negative binomial distribution

Model Count component Zero component

Covariate P Covariate P

Camera Annual rainfall 0.075 Native cover 0.036

Annual rainfall2 0.074

Vegetation height #0.001

All sign Annual rainfall 0.012 Vegetation density 0.011

Annual rainfall2 0.03

Vegetation height 0.11

All track Annual rainfall 0.068 n.a.

Vegetation height #0.001

All dig Annual rainfall 0.17 n.a.

Vegetation height 0.014
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relative feral pig abundances constrained along an altitudinal
band with very low abundance predicted above a threshold

elevation in the Ko‘olau mountain range. The resulting map
from camera data shows similar patterns in the distribution of
relative feral pig abundance but is more diffuse across the

landscape primarily throughout the lower elevations. The gen-
eral trend between both maps shows the highest abundance of
feral pigs at mid-elevation in both the Wai‘anae (west) and

Ko‘olau (east) mountain ranges.
All forms of observed data showed weak correlations with

high variance (Fig. 2).Much of the variance of the observed data

was explained by fitting the data to zero-inflated models. After
model fit, all predicted data exhibited significant strong correla-
tions with low variance (all sign: P , 0.001, R2 ¼ 0.7807; all
track: P, 0.001, R2 ¼ 0.879; all dig: P, 0.001, R2 ¼ 0.8313).

Discussion

Despite only weak correlative relationships between the different
forms of abundance data (Fig. 2a, c, e), the predicted outputs from
models constructed with these different data types formed much

stronger correlations (Fig. 2b, d, f). This is partially due to the
zero-inflation process correcting for false negatives, but also
because someof the variance between raw count data is explained
by environmental covariates. As a result, the final species

distribution models built using different forms of abundance data
are largely analogous (Fig. 1) in their output and would likely

result in similar management recommendations.
We developed our models based on an understanding of feral

pig habitat suitability and utilisation (Ballari and Barrios-Garcı́a

2014). Covariate sets were constructed from this understanding
and although some covariates were not significant predictors for
the count component of our zero-inflated models, they were

found to be significant predictors for the zero component
(Table 2).We had predicted that vegetation density would likely
be an important covariate for feral pig abundance but only found
it to be significant for the likelihood of zero counts of feral pig

sign (Table 2). This supports the idea that the observer ability to
detect sign is influenced by the amount of vegetation (i.e.
likelihood of zeroes increases with increasing vegetation

density). Dense vegetation may be influencing presence or
absence of sign of feral pigs in two ways. Sign of feral pigs
may be obscured by thick vegetation, and/or feral pigs may keep

to pre-established game or hiking trails in densely vegetated
areas in contrast to roaming more freely in areas with lower
vegetation density. In areas of high-density vegetation, camera
traps may provide higher-resolution data by capturing feral pigs

moving through areas in which their sign would otherwise be
difficult to detect, providing more useful data as inputs into a
model of species relative abundance. Similarly, native cover

was found to be a significant covariate for the zero component of
our game camera model (i.e. likelihood of zero counts increases
with increasing proportion of native to non-native cover).

Standardised sign survey methods likely provide more useful
data for modelling the relative abundance of feral pigs within
these environments since the disturbance of this vegetation by

feral pigs is typically easily observed due to the tunnelling
through, trampling or rooting of understorey ferns.

Feral pigs are present in over a quarter of the world’s countries
(IUCN2017) and there is substantial variation across these regions

with respect to two of the most limiting factors to collecting
adequate data: availability of funds and accessibility of labour
(Engeman 2005; Thomas et al. 2013). In regions limited by funds,

sign survey methods of collecting data on feral pig abundance
might bemore feasible if field personnel incorporated a systematic
methodology of acquiring data during their typical field opera-

tions. In regions limited by field personnel, data collected from
remote camera trapsmay bemore feasible due to their ability to be
deployed over extended periods with reduced labour when com-
pared with sign survey methods (Silveira et al. 2003; Rovero and

Marshall 2009). However, the volume of photographs recorded on
camera traps will also influence the cost and feasibility of this
approach. Recent advancements in utilising artificial intelligence

and machine learning algorithms to identify unique photographs
of species captured by camera traps suggest that costs associated
with processing data from camera traps may be greatly reduced in

the near future, making thismonitoring methodmore amenable to
agencies with limited funds (Norouzzadeh et al. 2018). Regard-
less, wepropose that researchers and agencies across these regions

may prioritise the method of data collection based on these
limiting factors with confidence that either data type will yield
comparable results for wildlife management, as long as data
collection is distributed at appropriate scales to capture environ-

mental variation associated with distribution.

Sites

Relative abundance
High

Low 0 5 10 20 km

N

(a)

(b)

Fig. 1. Relative abundance of pigs (Sus scrofa) on O‘ahu as predicted by

(a) the average number of camera detections per site and (b) average counts

of sign per site. Areas of highest relative abundance are indicated in red

based on 42 spatially independent sites accessed between June and Novem-

ber of 2016 and 2017. Black circles indicate the locations of survey sites.
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This study provides an example in which these two common
types of monitoring data result in comparable spatial outputs of

species abundance. However, future studies may further explore

the relatability between these two data types, particularly in
continental landscapeswhere environmental gradientsmay occur

over much larger distances. The methods employed in this study
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Fig. 2. Regression analysis between camera and sign abundance data for observed values and predicted values from

fitted model. Observed data has higher variance and weaker correlations than fitted predictions. Predicted values from

zero-inflated models show strong correlation with low variance between data types, implying that outputs from both

data sets will inform synonymous management decisions.
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can likely be applied to any area with abundant widespread
populations of feral pigs where it is important to know the relative

abundance of feral pigs across the landscape, as opposed to their
occupancy (presence or absence). Examples of these regions
could be islands throughout the Pacific region, national parks or

other natural areas throughout Australia, New Zealand, and the
United States, or any other region with high feral pig abundance.
From amanagement standpoint, occupancymodels in these areas

generated from presence-only or presence-absence data provide
little information as to the perceived benefit of a management
action if the output estimates a uniformly distributed high
probability of feral pig presence across the study area. However,

models of relative abundance enable managers to weight the
benefit of management actions and target areas of high feral pig
abundance. We propose that our method of modelling relative

abundance using either form of abundance data might be a better
alternative in these regions where occupancy models might not
provide adequate information to inform management decisions.

Finally, we reiterate that standardised survey designs with survey
locations stratified across environmental gradients are imperative
for ensuring that data are comparable and representative (Guisan
and Zimmermann 2000; Hirzel and Guisan 2002; Maggini et al.

2002; Vaughan and Ormerod 2003).
Although the results from this study indicate strong related-

ness across data types for distribution modelling, each data type

may provide key information that may be beneficial tomanagers,
landowners, or researchers at individual sites. For example,
camera detections may provide additional data on the quantity

of individuals in each frame, and their behavioural patterns; they
have also been useful in mark–recapture studies for density
estimates (Silver et al. 2004; Holtfreter et al. 2008; Rovero and

Marshall 2009). Likewise, sign data have been widely adopted as
a metric for direct impact, allowing researchers to quantify extent
of impact from the focal species (Engeman et al. 2013). None-
theless, we provide an example in which two of the most

commonly collected abundance data for monitoring and model-
ling purposes are highly correlated in their spatial outputs.

Management implications

Our comparison of two methods of monitoring feral pig abun-

dance demonstrates that, given an appropriate sampling design
andmodel development to minimise bias, the two data types can
yield comparable results. Environmental agencies, researchers,
or non-governmental organisations are typically limited by

either their ability to have personnel in the field or the funding
available for data collection. As such, the feasibility of each
methodmay vary across agencies and regions. For organisations

with personnel consistently in the field, the additional collection
of data on the abundance of sign requires minimal additional
cost given they can survey a randomly generated site during

their normal operations. For organisations with limited field
personnel, the deployment of game cameras provides long-term,
passive data collection for conservation decision making. Our

results indicate that resource managers, researchers and private
landowners may prioritise methods of data collection based on
resources or personnel available with confidence that spatial
outputs will be significantly correlated at the landscape scale,

resulting in analogous wildlife management decisions.
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