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Abstract

While anecdotal evidence highlights the value of
Internet-of-Things (IoT) data for business operations,
rigorous empirical validation is still limited. The
key challenge lies in integrating IoT analytics into
business evaluation. To address the issues, we
focus on the automotive industry and study the value
of telematics data, an important IoT application in
this domain, in terms of predicting maintenance,
repair, and operations (MRO) service demands. Our
approach involves building a prediction system with
users’ driving behavior, MRO service records, and
environmental data (weather and traffic). We show
a substantial improvement in prediction performance
upon incorporating user behavior information derived
from IoT data. Specifically, we find that hard
acceleration, hard braking, and speeding rank the
third, fifth, and sixth, respectively, in terms of their
contribution to the MRO prediction. Our results shed
light on the design of product-service systems (PSS),
an emerging trend to integrate product offerings with
service offerings.

Keywords: Internet of Things, demand prediction,
product-service systems

1. Introduction

The rise of Internet-of-Things (IoT) has generated
voluminous sensor data that can inform user behavior.
Wearables reveal users’ daily activities, like running,
walking and sitting. Smart cars reveal users’ driving
behavior, like speed. Insights into user behavior
can be further used to improve product and service
design. Despite the hype over the big volume of
sensor data, there is dearth of research on the value

of such large-scale sensor data. The research vacuum
is probably due to the unavailability of the sensor
data and a lack of an integration of IoT analytics into
business evaluation. Our work attempts to bridge the
gap by examining the value of massive sensor data when
applying predictive analytics.

Specifically, we place our investigation under the
automotive context where automobile manufacturers
have been collecting large-scale and fine-grained
telematics data through various embedded sensors in
vehicles (Ho et al., 2022, Choudhary et al., 2020). The
telematics data provides driver performance data such
as speed and acceleration as well as vehicles’ location
(see Figure 1 for an illustration of telematics data).
Speed and acceleration can be further used to capture
driving behavior, like hard braking, hard acceleration,
and speeding. The assessment of these driving
behaviors contributes to the measurement of driving
risks and enables insurance companies to innovate
risk assessment (Ho et al., 2022) and personalized
insurance pricing, like usage-based insurance (UBI)
(Choudhary et al., 2020, Soleymanian et al., 2019).
The telematics data also demonstrates value in fleet
management, as operators can efficiently manage their
fleets by monitoring drivers’ driving behaviors such as
route selection and timing (Wolski, 2016).

However, this granular level of telematics data has
not been utilized for predicting maintenance, repair,
and operations (MRO) service requests, possibly due
to a lack of collaboration between manufacturers and
dealers.

As an essential part of after-sales services, MRO
services are critical for the reliability and durability of
vehicles and customer satisfaction (Williams, 2007).
Most automotive manufacturers use franchised dealers
to provide MRO services. Thus, dealers are at the front
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Figure 1. Automotive telematics data

line of customer contact and the quality of services
provided by dealers may affect product sales, repeat
sales, and brand reputation (Golara et al., 2021). As
a response, manufacturers are increasingly extending
traditional offerings to the provision of integrated
product service bundles in recent years (Resta et al.,
2017). It represents a gradual transformation from
a “pure product” orientation towards an integrated
“product-service system” (PSS) perspective (Gaiardelli
et al., 2010). Although scholars have theoretically
advocated advantages of integrating products and
services, like enhanced customer satisfaction and
improved competitive edge (Adam et al., 2017, S. Kim
et al., 2019), the practical implementations of PSS
are still in its nascent stage. In automotive industry,
the management of supply chains for product-oriented
PSS requires collaboration between manufacturers and
dealers. However, the heterogeneity of dealer-originated
information, concerns about protecting sensitive
information (including issues of data ownership)
hinder the achievement of closer collaboration between
dealers and manufacturers (Infosys, 2018). Despite
the challenges in fostering direct collaboration, we
have devised a strategy to address this by manually
integrating telematics data from manufacturers with
MRO records from dealers, allowing us to predict
the MRO demand. This collaboration is crucial for
optimizing supply chain management and driving the
implementation of PSS in the automotive industry.

Previous studies on MRO demand prediction have
primarily relied on historical MRO records (Dangut
et al., 2021, Kobayashi et al., 2017, Patil et al., 2017) and
environmental factors such as weather and traffic (Chen
et al., 2021). However, no work yet has incorporated the
telematics data into demand prediction. Telematics data
provides valuable insights into user driving behavior,
such as hard braking, hard acceleration, and speeding,
which have been shown to be good indicators of unsafe
driving that may affect the frequency of vehicles’ repair
and maintenance (Choudhary et al., 2020, Soleymanian

et al., 2019). Intuitively, observing that a driver
frequently engages in hard braking provides substantial
information about the wear out of the vehicles’ brakes,
and thus the subsequent MRO service requests. Thus,
driving behavior could greatly affect a vehicle’s lifecycle
and thus contribute to the MRO demand at dealers.

Our work examines expanding the data in MRO
prediction to IoT data and, specifically, to large
scale fine-grained telematics data which informs users’
driving behavior. We attempt to answer the following
research question. Does this large scale fine-grained
telematics data add value to automobiles’ MRO
demand prediction? We collaborate with a large
automotive manufacturer and obtain the telematics data
that informs user driving behavior, including hard
braking, hard acceleration, and speeding. We further
combine this telematics data with (1) historical MRO
records obtained from our collaborative manufacturer’s
authorized dealers, and (2) environmental data including
weather and traffic conditions. To pre-process the
data, we slice the time-series data for each vehicle
by a time window of 4-week. By doing so, we
transform the problem of time series prediction into
a binary classification problem. Note that our final
dataset is highly imbalanced, as the number of negative
samples (i.e., no MRO request) is approximately 25
times higher than the number of positive samples (i.e.,
MRO request). We then employ light gradient-boosting
machine (LightGBM) for the classification problem and
address the imbalance issue by adjusting the weights of
positive samples during training.

The findings reveal that the inclusion of large-scale
fine-grained telematics behavioral data leads to
a discernible improvement in MRO prediction.
Specifically, the precision, recall, and f1-score improve
by 1.86%, 8.36%, and 2.37% respectively. This
improvement confirms that driving behaviors, including
hard braking, hard acceleration, and speeding, offer
valuable insights into the vehicle’s condition and
potential damage, and thus the MRO demand prediction
at dealers. This conclusion is further supported by
the results of feature importance. We find that hard
acceleration, hard braking, and speeding rank the
third, fifth, and sixth, respectively, in terms of their
contribution to the MRO prediction. To validate the
robustness of the outcomes, we adjust the time window
to 1 week and 8 weeks and results on prediction
improvement remain.

This study makes significant contributions in several
ways. We first add to the rapidly growing literature on
the value of the large-scale fine-grained data (Fu and
Fisher, 2023, Zhang and Moe, 2021, Adomavicius and
Tuzhilin, 2005, Martens et al., 2016) by demonstrating
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the predictive capability of IoT-based telematics data in
demand forecasting. By doing so, we also contribute
to the literature on the value of telematics data in
automotive industry. Previous works have revealed the
value of IoT-based telematics technology in assessing
driving risks in the context of Usage-based Insurance
(UBI) (Choudhary et al., 2020, Soleymanian et al.,
2019) and fleet management (Wolski, 2016). However,
our focus shifts to examining the issue of MRO
prediction from the perspective of manufacturer-dealer
relationship. We establish the predictive prowess of
behavioral data obtained from IoT-based telematics data
in predicting MRO service requests. This provides
concrete approaches for manufacturers and dealers
to engage in delivering “product service” bundles,
which have been theoretically advocated by scholars
(Williams, 2007). Thus, we also contribute to the
literature on PSS by taking a step forward to facilitate
the practical implementation of PSS from the conceptual
level to the operational level.

The remainder of the paper is organized as follows.
Section 2 reviews the literature. Section 3 describes the
data and empirical models and methodology. We present
results in Section 4, and conclude the paper in the final
section.

2. Literature review

Our work integrates three streams of literature:
(1) prediction based on large-scale fine-grained data,
(2) value of telematics data, and (3) product-service
systems.

2.1. Prediction based on large-scale
fine-grained data

In recent years, considerable attention has been
directed towards predictive analysis utilizing extensive
fine-grained data that informs user behavior. This
attention stems from the availability of granular
data ranging from social media interactions (Fu
and Fisher, 2023, Zhang and Moe, 2021), online
purchase transactions (Adomavicius and Tuzhilin,
2005), to payment records (Martens et al., 2016).
These works primarily focus on applications in the
marketing domain. By integrating these large-scale
fine-grained user behavior data with structured
demographic information, researchers have examined
consumer perceptions of brands (Zhang and Moe,
2021), predicted short-term market trend changes (Fu
and Fisher, 2023), and determined the likelihood of
consumer purchases for specific products or services
(Martens et al., 2016). Previous studies have empirically
confirmed the predictive effectiveness and scalability of

such large-scale fine-grained data analysis approaches.
The rise of the IoT opens up greater opportunities

to gather detailed user behavior information through
various sensors. Compared to non-IoT data, IoT
technologies offer greater diversity and real-time
capabilities in capturing user behavior information.
Non-IoT data sources are often limited to specific
platforms or service providers, constraining data
coverage, dimensions, and granularity. In contrast, IoT
data can be collected from a wider range of physical
devices and sensors, providing multi-dimensional
information (Brous et al., 2020). Furthermore, while
non-IoT data relies on users’ active behavior and
may introduce delays, IoT data can be collected and
transmitted in real-time through sensors, offering more
timely insights into user behavior without manual
intervention (Boos et al., 2013). Thus, the large-scale,
fine-grained data generated by IoT devices holds
tremendous potential for predictive analysis. Combining
it with non-IoT data enhances value compared to using
non-IoT data alone.

For instance, wireless technologies, such as the
Global Positioning System (GPS), radio-frequency
identification (RFID) chips, and contactless smart cards,
give rise to large-scale human-sensing data that captures
spatiotemporal dynamics of movement behavior (Wang
et al., 2022). Based on such data, the prediction of urban
mobility can contribute to the development of efficient
transportation management systems (Wang et al., 2022).

Telematics data, an important IoT application
in automotive industry, has been growing rapidly
in recent years. Based on telecommunication
components, vehicular sensors, wireless networking,
and data dashboards, telematics technology enable
the long-distance transmission of data from moving
transportation devices (Writer, 2022). Thus, telematics
data can offer insights into users’ driving behavior and
vehicles’ motion trajectories (Longhi and Nanni, 2020,
Ho et al., 2022). The availability of such granular
data has the potential to disrupt the automotive industry.
This study aims to enrich research on the predictive
capabilities of large-scale, fine-grained data by focusing
on telematics data in automotive industry.

2.2. Value of telematics data

The telematics data typically measures vehicle’s
physical features such as speed and acceleration,
from which we could infer user driving behavior.
Additionally, it captures the motion trajectories of
vehicles equipped with GPS technology. This
large-scale fine-grained information about vehicles
and users is crucial for optimizing services in
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mobility-related companies (Longhi and Nanni, 2020).
By monitoring driving behaviors such as route selection
and timing, fleet operators can manage their fleets
more efficiently (Wolski, 2016). Using comprehensive
measurements of driver behaviors and trajectory
characteristics, insurance companies can evaluate risks
at both the trip and driver levels(Ho et al., 2022)and
promote the adoption of UBI (Soleymanian et al., 2019).
UBI brings a host of benefits: insurers gain product
distinction and cost savings, consumers enjoy premium
control and behavior-based perks, and society sees
improved road safety (Soleymanian et al., 2019).

The availability of data on driver behavior and
driving trajectories enabled by IoT-based telematics
technology could benefit not only insurance companies
and fleet management, but also MRO services at dealers.
Wolski (2016) highlights that telematics technology can
steer driver behavior towards greater safety, thereby
reducing fleet maintenance costs such as windshield
replacement. However, research in this field remains
limited, particularly regarding the use of telematics
data for predicting MRO service requests at dealers.
Effective dealership management, as a crucial link
between manufacturers and end customers, enables
manufacturers to provide high-quality after-sales service
to customers and contributes to the overall success
of their business (Resta et al., 2017). Thus, this
study aims to explore the value of telematics data on
after-sales service. Specifically, we investigate whether
incorporating driving behavior that is obtained from
telematics data at the manufacturer side could improve
MRO prediction at dealers. Our results could drive
the delivery of a “product service” bundle rather than
a single product.

2.3. Product-service systems

PSS is defined as combining marketable products
and services to satisfy customer needs (van Halen MSc
and te Riele MSc, 1999). It can be categorized
into three types: product-oriented, use-oriented, and
result-oriented according to Tukker (2004). Through
blurring the traditional boundary between products and
services (Mont, 2002), PSS strives to provide customers
with holistic and customized solutions, facilitating the
cultivation of robust customer relationships (S. Kim
et al., 2019). Concurrently, PSS endeavors to optimize
resource allocation and enhance production efficiency
(Brehm and Klein, 2017), thereby engendering
sustainable development within organizations
(Williams, 2007). Constructing a PSS requires an
in-depth analysis and understanding of customer
needs, encompassing actual, latent, and psychological

demands, as well as expectations regarding product and
service quality, pricing, and convenience (K.-J. Kim
et al., 2012). In the automotive industry, customers seek
more than just vehicle ownership through traditional
sales; they desire comprehensive post-sales services,
such as maintenance contracts or extended warranties
(Williams, 2007), to ensure long-term functionality.
Specifically, MRO services aid customers in addressing
potential faults, maintaining vehicle performance, and
extending its lifespan. This product-oriented PSS could
effectively satisfy customer requirements throughout
the entire automotive life-cycle and improve customer
satisfaction.

The construction of a PSS often requires
collaboration with partners who possess the necessary
capabilities and resources, particularly in areas where
the company may be lacking (K.-J. Kim et al.,
2012). For instance, in the automotive industry,
manufacturers may partner with dealers who provide
after-sales services. By integrating telematics data
from manufacturers with MRO records from dealers,
accurate forecasting of MRO demand can be achieved.
This enables dealers to effectively plan and manage
their inventory, ensuring timely availability of repair
and maintenance parts (Chen et al., 2021). Moreover,
within the vertical cooperation relationships in a
product-oriented PSS, manufacturers can adjust
production plans and logistics arrangements based
on the predicted results. This could further facilitate
efficient supply chain management. Thus, our work
attempts to bridge the gap in previous research that
has predominantly remained at the conceptual stage
regarding PSS supply chain design and management
(Resta et al., 2017) and promote the transition and
development of PSS into practical implementation.

3. Research data and methods

3.1. Data description

Previous studies largely depend on traditional MRO
data, like historical MRO records, to predict the demand
of MRO at dealers (Dangut et al., 2021, Kobayashi et al.,
2017, Patil et al., 2017). More recently, Chen et al.
(2021) integrate environmental data with MRO data to
build a prediction model. They validate that weather and
traffic are key factors in influencing vehicle lifecycle,
and thus could add predictive power to service requests
at dealers. The major contribution of this project is
to further incorporate driving behavior data which are
obtained from telematics data into the prediction model.
See Figure 2 for an illustration of the data we use in
our model. Below we will describe (1) driving behavior
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data; (2) MRO data; and (3) environmental data in
details.

Figure 2. Illustration of the data we use in model

prediction

Driving behavior data. We collaborate with a large
automotive manufacturer and use its IoT based remote
monitoring service to collect telematics data which is
collected every 10 seconds for unidentified vehicles.
The manufacturer started remote monitoring service in
2018. The telematics data reveals (1) driving behavior
measured in terms of car performance, like speed and
acceleration, and (2) vehicle trips, like when (time)
and where (location) vehicles are running. Due to the
sheer volume of the telemetry data, we first propose a
sampling approach to select representative vehicles for
analysis. Then, we extract data on aggregate driving
behavior. We detail the major steps as below.

Step 1: Car Sampling. We are interested in
examining whether vehicle use data can help improve
predicting MRO service request. Since we infer vehicle
use data from automotive telematics data, we focus
on cars whose drivers subscribe to the manufacturer’s
telematics service between 2018 and 2019. Due to the
sheer amount of the telematics data, we randomly select
10% of the total vehicles. Next, we extract aggregate
driving behavior for those sampled vehicles.

Step 2: Aggregate driving behavior data. Hard
braking, hard acceleration, and speeding have been
shown to indicate unsafe driving behavior (Choudhary
et al., 2020, Simons-Morton et al., 2009, Soleymanian
et al., 2019). Hard braking occurs when a driver
uses more force than necessary to stop a vehicle; hard
acceleration occurs when a driver uses more power than
necessary to pull off from a dead stop 1.

In this study, we use hard braking, hard acceleration,
and speeding as proxies for risky driving behavior. For
each sampled car from 2018 to 2019, we aggregate daily
driving behavior in terms of the total number of hard

1Mix Telematics: How Harsh Braking and Acceleration Impacts
Your Fleet

braking events, total number of hard acceleration events,
and the total number of speeding events. A hard-braking
event is identified if the deceleration is 6.5 MPH/S. A
hard acceleration event is identified if the acceleration is
8.5 MPH/S. A speeding event is identified if the speed
of the car is greater than the sum of the average speed
and one standard deviation within an area based on 3
decimals of latitude and longitude.

Besides, we extract the daily mileage for each
vehicle by calculating the difference between the
mileage record at the end of the day and the mileage
record at the start of the day.

MRO data. We extract MRO records for sampled
vehicles between 2018 and 2019 from our collaborative
manufacturer’s authorized dealers. The MRO data
includes the open / close date of the service, the
service type, the cost paid by the customer, and the
basic information of the vehicle. On average, each
vehicle conducts 1.25 times MRO service during our
observation time. We consider a dummy variable for
MRO, which is equal to 1 is a service request is recorded
on a day for a vehicle. This is our dependent variable we
would like to predict.

We integrate the MRO data with the driving behavior
data based on the day and location. Vehicles that do not
have any records in the MRO data are removed.

Environmental data. Finally, we extract
environmental data on weather and traffic. Given
a certain location (combination of one decimal of
latitude and longitude) and a date, we obtain (1) average
daily temperature from OpenWeather2 and (2) traffic
density from National Neighborhood Data Archive3.
The traffic density refers to the average volume of traffic
passing through a ZIP Code Tabulation Area (ZCTA) in
a given period of time (Finlay et al., 2021).

Since the traffic density data includes ZCTA and
our data includes latitude and longitude. We first
obtain ZCTA for our data based on the latitude and
longitude, then merge our data with the traffic density
data. As the platform only provides data on an
annual basis, we obtained and matched the average,
maximum, and minimum traffic density values for each
location-year combination. Subsequently, employing a
normal distribution, we generated daily traffic density
data for each geographic coordinate.

Additionally, we also obtain data on car attributes
and driver attributes from our collaborative automotive
manufacturer. Car attributes contains vehicle model,
vehicle trim, purchase time, and engine size. And driver
attributes contains gender, age, and income level. We
consider a dummy variable for gender, where a value

2OpenWeatherMap
3National Neighborhood Data Archive (NaNDA)
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of 1 represents male. The final dataset combines user
driving data, MRO data, environmental data, as well as
car attributes and driver attributes. Table 1 summarizes
statistics of major variables at vehicle-day level.

Table 1. Statistics summary of sampled cars
(16,287,690 observations)

Mean Min Max
MRO 0.01 0.00 1.00

Hard braking 4.98 0.00 26.00
Hard acceleration 1.06 0.00 7.00

Speeding 3.04 0.00 18.50
Mileage 53.73 0.02 202.00

Engnine size 4.66 1.40 6.60
Driver age 51.87 16.00 99.00

Driver gender 0.76 0.00 1.00
Temperature 15.30 -40.00 43.10

Traffic Density 19383.23 1.00 359348.00

3.2. Models and methods

Data preprocess. We first aggregate the original
vehicle-day level data into vehicle-week level data. We
do so for several reasons. First, our dependent variable is
highly imbalanced, with an average MRO request ratio
of 100:1 compared to non-request. Aggregating the
data to the weekly level helps mitigate this imbalance
(approximately 25:1), leading to more reliable and
accurate prediction outcomes. Second, despite the
aggregation, the weekly-level data retains a relatively
fine-grained granularity, providing valuable temporal
and periodic information compared to longer time spans,
such as monthly or quarterly aggregation. Finally,
predicting MRO demand for the upcoming week holds
greater significance for PSS, enabling longer-term
decision-making in supply chain aspects, including
logistics arrangements, inventory management, and
distribution planning. This augmentation improves
the operational efficiency of PSS by ensuring the
timely availability of necessary maintenance and repair
components. Regarding the specific aggregation
process, temporal features, such as driving behavior data
and MRO indicator, are aggregated through summation,
while weather and traffic density are averaged. Constant
features, such as vehicle attributes and driver attributes,
remain unchanged.

Then, we divide the variables of hard braking,
hard acceleration, and speeding by mileage to
eliminate the correlation among variables and improve
the model accuracy. Intuitively, as a vehicle
travels a greater distance, it is expected to exhibit
more instances of bad driving behavior. After

this transformation, the driving behavior information
derived from telematics data is summarized into the
following three variables: Hard braking per mile,
Hard acceleration per mile, and Speeding per mile.

Currently, each vehicle i has a weekly-level time
series. Every timestamp (week t) in the records
includes information about the vehicle’s MRO demand,
users’ driving behavior information, environmental
factors, and other constant features such as vehicle
attributes and driver attributes for that particular week.
Denoting temporal features (i.e. driving behavior and
environmental factors) as sit and constant features as hi,
each entry can be expressed by:

MROit = {sit, hi}
Since training and predicting on each individual

vehicle’s time series would be time-consuming due
to the large number of vehicles, we transform this
time series problem for multiple vehicles into a
binary classification problem by reshaping the dataset.
Specifically, we slice the temporal part by time window
N (N < t), which can be expressed as:

s
′

it = {si(t−N), si(t−N+1) , ..., si(t−1)}
Then, we combine these reshaped temporal features

with constant features. In this case, MROit = {s′

it, hi}
After this reshaping process, we enrich the

information of each entry from containing the current
week to containing the past N weeks. In other words,
we utilize information from the past N weeks to predict
the MRO demand of the current week. The whole data
reshaping process is shown in Figure 3.

Figure 3. Process of data integration

In our context, we set time window N as 4-week.
The final expression for vehicle i is:

MROit = {si(t−4), si(t−3), si(t−2), si(t−1), hi}
Model Establishment. Our goal is to expand the

data in MRO prediction to IoT-based telematics data,
and further confirms the value of such large scale
fine-grained behavioral data within the automobile
context. Thus, in the base model, we use car

Page 5022



attributes, driver attributes, and environmental data
to predict MRO service as in previous studies (Dangut
et al., 2021, Kobayashi et al., 2017, Patil et al.,
2017, Chen et al., 2021). We add driving behavior
as predictors in our model. The comparison of
features used in the base model and our model
is shown in Table 2. Hard braking per mileit,
Hard acceleration per mileit, and
Speeding per mileit indicate the times of hard
braking, hard acceleration, and speeding every mile of
car i on week t, respectively.

CARic represents vehicle attributes c for car i,
including model, trim, purchase time, and engine
size. DRIV ERid represents driver attributes d for
car i, including gender, age, and income level. Car
attributes and driver attributes do not change over
time. ENV IRONENTite represents environmental
attributes e, including temperature and traffic density, in
the area (i.e., in terms of one decimal of latitude and
longitude) where car i is running on weekt.

Table 2. Feature comparison between base model
and our model.

Model Features

Our model

∑t−1
t−NHard braking per mileit∑t−1
t−NHard acceleration per mileit∑t−1
t−NSpeeding per mileit∑
cCARic∑
dDRIVERid∑
eENVIRONMENTie

Base model

∑
cCARic∑
dDRIVERid∑
eENVIRONMENTie

We employ LightGBM, a fast and high-performance
gradient boosting framework based on decision tree
algorithms, to predict the MRO service request. It
offers advantages such as faster training speed, lower
memory consumption, and support for parallel learning
(Li et al., 2022). With its improved efficiency and
higher model accuracy, LightGBM is an ideal choice
for predicting repair and maintenance requests at the
vehicle-week level. Despite aggregating daily-level data
to the weekly level, the data imbalance issue persists,
with a substantial disparity between the number of
negative (i.e., MRO = 0) and positive (i.e., MRO = 1)
samples. Specifically, the number of negative samples
is approximately 25 times higher than the number of
positive samples.

To address the issue, we adjust the weights of
the samples during training. Specifically, we increase
the weights of the positive samples (minority class)
to enhance their influence on the loss calculation. In

our experimental context, positive samples represent
occurrences of MRO events. Thus, this weighting
strategy enables the model to focus more on accurately
classifying the minority class, thereby better capturing
MRO demand.

We randomly split the vehicles into 80% of training
data, and 20% of testing data. Best hyper parameters
are determined using five fold cross validation on the
training data. After the training, we apply the model to
the testing data to obtain results.

4. Results

4.1. Experimental results

As time window is set to 4 weeks when reshaping
the temporal features, we predict the MRO demand for
the current week using the information during the last
4 weeks (i.e., last month). After training the model
on the training set and determining the optimal model
parameters through cross-validation, we evaluated the
model on the test set. We use precision, recall,
and f1-score as evaluation metrics because our binary
dependent variable is highly imbalanced.

To showcase the value of IoT data in MRO
prediction, we compared model with and without
the incorporation of user driving behavior information
inferred from telematics data. The results are shown in
the Table 3.

Table 3. Results of MRO prediction.

Precision Recall F1-score
Our model 0.049 0.566 0.091
Base model 0.048 0.522 0.089

Our results reveal that the incorporation of user
driving behavior information has yielded notable
improvements in the precision, recall, and f1-score of
the classification model. Specifically, precision, recall,
and f1-score improve by 1.86%, 8.36%, and 2.37%
respectively. It is crucial to highlight that our main
focus is to accurately capture the entire MRO demand
for these vehicles. Therefore, we place significant
importance on the recall score of our model, which
has shown substantial improvement. Thus, our results
corroborate the effectiveness of integrating user driving
behavior information in predicting MRO demand within
the classification framework.

Additionally, user behavior are top features in
predicting MRO demand. We calculate the importance
of each feature based on the number of times
the feature is used in the model. This means
that each time a feature is chosen as the splitting
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criterion in the tree, its importance score increases.
For temporal features, we aggregate the importance
scores of multiple features generated by slicing.
For example, we sum up the importance scores
of Temperature1, Temperature2, Temperature3,
and Temperature4 to obtain the overall importance
score of the Temperature variable in the model.
According to Figure 4, all three driving behavior
features are among the top six features out of the total
twelve features, with Hard acceleration per mile,
Hard braking per mile, Speeding per mile ranking
the third, fifth, and sixth. This emphasizes the
significance of including driving behavior features in
our predictive models.

Figure 4. Feature importance.

4.2. Robustness checks

To ensure the robustness and generalizability of
our findings, we conducted additional experiments
to examine the impact of varying time windows
on the performance of our MRO prediction model.
Specifically, we explored two different time window
settings: a shorter duration of 1 week and a longer
duration of 8 weeks. By doing so, we sought to gain
insights into the temporal dynamics and stability of the
model’s performance.

Our results consistently demonstrate the efficacy of
integrating user behavior and vehicle usage information
in MRO prediction (see Table 4). The precision, recall,
and f1-score increase by 1.09%, 9.55%, and 1.83%
respectively when using the past week’s data to predict
the next week’s MRO demand. The precision, recall,
and f1-score increase by 1.07%, 2.81%, and 1.21%
respectively when using the past 8 weeks’ data to predict
the next 8 weeks’ MRO demand.

Thus, we demonstrate that the inclusion of user
behavior information derived from telematics data
yields significant improvements in predicting MRO
demand. These findings reinforce the notion that

Table 4. Results of MRO prediction with various
time windows (incremental gains).

Time window δPrecision δRecall δF1-score
1 week 1.09% 9.55% 1.83%
8 weeks 1.07% 2.81% 1.21%

incorporating large-scale fine-grained IoT data can
provide valuable insights into the MRO demand in
automotive industry.

5. Conclusions and discussions

Recent years have witnessed the tremendous growth
of IoT data, which has opened up new opportunities
for business operations4. In automotive industry,
telematics data is an important IoT application and
has grabbed attention of different players in this field.
Previous works have studied the value of telematics
data in innovative insurance design (Choudhary et al.,
2020, Soleymanian et al., 2019) and fleet management
(Wolski, 2016). However, little work has focused on the
dealership management, which is critical to the success
of high-quality after-sales service in automotive industry
(Resta et al., 2017).

Our work attempts to bridge the gap. We integrate
telematics data from the manufacturer into MRO
service prediction at dealers. The telematics data
informs important information of user driving behavior.
Our empirical findings unequivocally highlight the
significant improvement achieved by incorporating
user driving behavior information facilitated by IoT
technology. This improvement highlights the value of
large-scale fine-grained IoT data in demand prediction.

Additionally, the implications of our findings extend
beyond the domain of demand prediction and have
profound implications for the broader field of PSS
provision. With PSS increasingly recognized for its
potential to revolutionize customer satisfaction and
loyalty, dealers are confronted with new challenges in
managing their supply chains effectively (Resta et al.,
2017). The design and optimization of these supply
chains, which lie at the heart of PSS implementation,
are currently in their nascent conceptual stages. By
leveraging our research insights to predict MRO demand
at the dealer level, we empower dealers to proactively
design efficient and rational supply chains that align
with the demands of PSS. This practical guidance
facilitates the transition of PSS from a conceptual
idea to a tangible reality, enabling dealers to deliver
superior services and stay ahead in a competitive market

4McKinsey Report: The Internet of Things: Catching up to an
accelerating opportunity
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landscape.
Looking ahead, our research holds tremendous

potential for expansion and application beyond the
realm of MRO demand prediction. The methodology
and insights gained from integrating IoT data can
be leveraged in diverse domains to unlock new
opportunities for decision-making and innovation.
Industries such as healthcare, sports, and beyond
can benefit from harnessing the power of large-scale
fine-grained IoT data to gain actionable insights,
optimize operations, and enhance overall performance.
By venturing into these uncharted territories, we
aim to further contribute to the advancement of IoT
analytics and foster fruitful collaborations with industry
practitioners and researchers across various domains.
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