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Abstract

To generate safe and trustworthy Reinforcement
Learning agents, it is fundamental to recognize
meaningful states where a particular action should be
performed. Thus, it is possible to produce more accurate
explanations of the behaviour of the trained agent and
simultaneously reduce the risk of committing a fatal
error. In this study, we improve existing metrics using
Q-values to detect essential states in Reinforcement
Learning by introducing a scaled iterated algorithm
called IQVA. The key observation of our approach is
that a state is important not only if the action has a
high impact but also if it often appears in different
episodes. We compared our approach with the two
baseline measures and a newly introduced value in
grid-world environments to demonstrate its efficacy. In
this way, we show how the proposed methodology can
highlight only the meaningful states for that particular
agent instead of emphasizing the importance of states
that are rarely visited.

Keywords: Explainable Reinforcement Learning,
Safe Reinforcement Learning, Importance Analysis,
Important States.

1. Introduction

Reinforcement Learning (RL) has gained a lot of
popularity after superhuman performances have been
achieved in solving problems with high complexity,
for example, playing chess and driving autonomous
cars (Isele et al., 2018; Silver et al., 2017). Since
then, its application to real-world problems relative
to logistics, supply chain and intelligent transportation
systems have been addressed (Milani, Moll, and Pickl,
2023; Yan et al., 2022). However, RL agents do

not reason about their choices but depend principally
on trial-and-error interactions with the environment.
Therefore, this creates a problematic situation for human
users, who are not able to completely understand and
explain their behaviour. In this way, instead of helping
in the decision-making process, the algorithm leads to an
increase in confusion (Simkute et al., 2021). Moreover,
RL agents do not know why a particular action should
be preferred over a different one or what the most
favourable states to visit are (Sequeira and Gervasio,
2020). Hence, identifying relevant situations to be
summarized or focused on to generate a trustworthy
explanation becomes a fundamental task. It stands to
reason that in many occasions it is not important to know
what the RL algorithm would do in all states, but there
are a few important circumstances that really matter.

To this end, in this paper, we present the Iterated
Q-Value Algorithm (IQVA), an iterated extension of
metrics already used in the literature (Bellemare et al.,
2016; Torrey and Taylor, 2013) to detect critical
states. Through our approach, we were able to discover
the states that are, at the same time, important in
terms of choice of action and with a high frequency
of visits. The proposed methodology was evaluated
in grid-world environments and compared to two
baseline importance metrics: advising and action gap
importance. Afterwards, a new metric is derived and
compared to the ones present in the literature, in both
cases, i.e., static and iterative. The results show
that using our algorithm, we can drastically reduce
the states identified as essential and, in particular, we
can discriminate high-risk situations through a simple
comparison of values.
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2. Background

We introduce in this section the RL framework for
the discrete scenarios that we analyse in the following.
At any time step t = 0, 1, 2, . . . , T the RL agent gets the
state st ∈ S from the environment and chooses action
at ∈ A, where S and A are the state and action spaces,
respectively (Sutton and Barto, 2018). Consequently,
the agent receives a numerical reward rt+1 ∈ R and
the environment provides a new state st+1. The choice
of the actions is performed by the agent to maximize
the sum of discounted rewards Rt =

∑T−1
i=0 γirt+i+1

where γ ∈ [0, 1] is a discounting factor (Sutton and
Barto, 2018). Fundamental for the description of
the proposed algorithm is the Q-function Qt

π(s, a) =
Eπ[

∑∞
k=0 γ

krt+k+1|st = s, at = a] evaluated under
policy π, which is defined as a distribution over actions
in given states: π(a|s) = P(at = a|st = s), where P(·)
represents the probability.

The RL methods considered for our applications are
two model-free algorithms: Q-learning (Watkins and
Dayan, 1992) and SARSA (Sutton and Barto, 2018). The
general concept behind these methods is the same. At
the beginning of the learning process, a matrix defined
as Q-table (Q(st, at) ≈ Qt

π(st, at)), with dimensions
|S|×|A|, is initialized as a null matrix. After taking
action at at state st, the Q-table is updated using the
following rule:

Q(st, at)← Q(st, at) + α

[
rt+1

+ γmax
a∈A

Q(st+1, a)−Q(st, at)

]
,

where α ∈ (0, 1] denotes the learning rate. In the case
of SARSA, because we use an on-policy method, we
consider the behaviour policy as a target policy in the
updating formula. Therefore, the rule is as follows:

Q(st, at)← Q(st, at) + α

[
rt+1

+ γQ(st+1, at+1)−Q(st, at)

]
,

where at+1 is the action chosen following the
behavioural policy.

3. Literature Review

The first studies that chronologically dealt with the
introduction of metrics to evaluate the importance of a
state were Torrey and Taylor, 2013 and Bellemare et al.,
2016. In both cases, they relied on the Q-values related
to the specific state to calculate their importance. In

particular, we focused on these two measures to build
our approach.

Specifically, Torrey and Taylor, 2013 considered
the difference between the maximum Q-value and its
minimum, that is, IA(st) = maxa∈A Q(st, a) −
mina∈A Q(st, a) as an indicator of state importance.
This measure was first introduced by Clouse, 1996
but it was used to approximate a learner’s confidence.
In fact, this idea was developed in the context of
student-teacher Reinforcement Learning as advising
importance (O. Amir et al., 2016; Torrey and Taylor,
2013), and later applied to the extraction of important
trajectories for summarizing the RL agent’s behaviour
(D. Amir and Amir, 2018).

In the other case, Bellemare et al., 2016 used the
action gap importance of a state which represents
the difference between the maximum and second
maximum Q-value, that is, IAG(st) = Q(st, a

∗) −
maxa∈A∗ Q(st, a) where a∗ = argmaxa∈AQ(st, a),
and A∗ = A \ {a∗}. However, in this case, the initial
scope of this measure is to increase the consistency of
tabular methods and lessen the effects of approximations
and estimation errors using induced greedy policies.

A similar metric was later developed (Huang
et al., 2018) by considering the difference between the
maximum Q-value and the mean, that is, IMM(st) =
maxa∈A Q(st, a) −

∑
a∈A Q(st, a). In this manner,

Huang et al., 2018 defined critical states as those where
acting randomly generates a much worse result than
acting optimally.

The last approach relevant for our paper was
proposed by Jacq et al., 2022, where the authors
introduced the concept of laziness, which involves
deferring the decision-making process to a default
policy in particular simple states. Specifically, they
considered as a metric for determining these critical
states the lazy-gap: the difference between the
maximum Q-value and the expected value when the next
action is chosen following the default policy, that is,
ILG(st) = maxa∈A Q(st, a) − EπD

[Q(st, a)], where
πD is the default policy.

4. Methodology

In this section, first, we introduce the Iterated
Q-value Algorithm and the results obtained using the
proposed approach. Afterwards, it is possible to present
a new metric derived from the previous ones, in both the
static and iterated forms.

4.1. Iterated Q-Value Algorithm

While interesting on their own, none of the
aforementioned works explicitly try to identify
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important states that are recurrently visited in different
episodes. In fact, these metrics only focus on the
importance of taking the correct action in high-risk
states without considering that failing an action that
would cause a small change in the return in a state that
is frequently visited would lead to an increase in the
number of trajectories that are not at the optimal value.
Consequently, it is fundamental to pay attention to the
frequent states that can occur during multiple episodes.

Algorithm 1 IQVA
Require: Number of episodes E, discounting factor γ̂.

1: I(s)← 0, ∀s ∈ S
2: for episode = 1, · · · , E : do
3: for t = 0, 1, · · · , T : do
4: Read state st
5: if train then
6: Update Q-table
7: end if
8: Update Importance Vector:

I(st)← I(st) + γ̂tIM (st).

9: end for
10: end for
11: Normalization:

I(s)← I(s)

E
, ∀s ∈ S.

12: Return I .

Therefore, we introduce an iterated algorithm that
can bear in mind this aspect. In particular, we
define the Iterated Q-Value Algorithm (IQVA), shown
in Algorithm 1, considering any Q-value importance
metrics IM . The major assumption of this methodology
is that the Q-function must be available; otherwise, it
is impossible to compute the presented metrics. At
the beginning of our algorithm, we initialize a column
vector I ∈ R|S|, with the same dimensions as the state
space, as a null vector. Successively, we can start an
episode. At each time step t, the agent will visit a
state s̄ then we will update the importance vector in that
component following the rule:

I(s̄)← I(s̄) + γ̂tIM (s̄)

where γ̂ ∈ (0, 1] is a discounting factor (that could be
different from the discounting factor γ), and IM (s̄) is
an importance metric value of the state s̄ (e.g., M ∈
{A,AG}). The exponent t of the discounting factor was
used to decrease the contribution of states that appear far
in the future. In fact, at the end of the episodes, the states
should be nearer to the end goal of the problem; thus, the

Q-value differences should be greater. This concept is
taken from the exponential smoothing, a rule-of-thumb
technique for assigning larger weights to more recent
observations (Gardner Jr, 1985). We continued this
process until the end of the episode and iterated it for
a fixed number of episodes. Finally, we normalized the
values obtained by dividing the importance vector I by
the number of episodes. In this way, we can generate a
vector storing the importance relative to each state and
depending on both the amount of time we visited a state
and the importance of taking the correct action.

For the computational analysis reported in the next
subsection, we focused on using the two metrics,
advising and action gap importance, in the iterated
form. In particular, we will call IQVA-A our approach
considering the advising metric and IQVA-AG for the
action gap case.

4.2. IQVA Results

To test this novel methodology, we consider three
grid-world environments (Lava lake, Key-door and
Taxi), as shown in Figure 1, to directly visualize the
results. Then, we compared the computational results
obtained by our approach, applied during and after the
training of the RL agents, with the metrics presented.
In this manner, we can characterize and differentiate
important states in both situations.

Figure 1. Environments used for the computational

analysis of the proposed methodology: (a) Lava-lake,

(b) Key-door, (c) Taxi.

In Lava Lake, a custom map derived from the
well-known Frozen Lake, the agent, starting from the
top-left corner, must reach the opposite corner of the
map by traversing a lava lake. At any step, it receives
0 as a reward and 1 if it reaches its goal state. In
this environment, we used SARSA for training the
RL agent, and we considered as parameters for IQVA
10000 episodes and a discounting factor γ̂ = 0.95.
The results are shown in Figure 2, where we used the
suffixes post and train to describe whether the method
was applied after or during the learning process. In
particular, it is possible to notice how using IQVA-A,
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we are able to identify the position between the lava in
the post-training phase, while for the training phase, the
states that are near the lava in the upper part are more
important. On the other hand, only during the learning
procedure, it is possible to recognise the important state
in the centre of the map using IQVA-AG. However, a
significant difference is visible when compared to the
usual metrics, where the focus is on the states next to
the goal position.

Figure 2. Importance Heat-maps for each state in

the Lava lake from Figure 1a environment calculated

using different metrics.

The second environment considered is the Key-door.
In this case, the goal of the RL agent is to first pick up
the key that is in one random position in the first room,
and then be able to enter the second room and reach the
end position. In this case, the reward is 0 for each time
step, forcing the agent to complete the task to receive
1. In this scenario, we used a Q-learning algorithm for
solving this problem and, for the evaluation of the states’
importance, we chose 1000 episodes and γ̂ = 0.95. The
results, divided into before and after picking up the key,
are presented in Figure 3. For conciseness, we restricted
the analysis of the ”before pick up” scenario when the
key is in the same position as in Figure 1b. However, the
major differences between the metrics are in the second
part (”after pick up”). In fact, we can notice that for both
measurements (using the advising importance or action
gap), the iterated approach is able to find the bottleneck
caused by the door and consider it a crucial state. The
focus was on the position next to the terminal state only
in the case of IQVA-AG-train. This is principally related

to the choice of a high value for the discounting factor
γ̂.

Figure 3. Importance Heat-maps for each state in

the Key-door environment (before and after picking

up the key) from Figure 1b calculated using different

metrics.

The last environment is a simplified version of a
real-world problem in which a taxi must pick up a
passenger and drop it off at the correct destination. In the
Taxi environment, there are four possible positions for
the passenger and the destination that are marked by a
letter on the map. Here, the reward is always −1 at each
step, unless we try to pick up or drop the passenger in the
wrong place, receiving in this way a reward of −10 or if
we complete our task, earning 20. We trained a SARSA
agent for this task using 5000 episodes and γ̂ = 0.95.
As in the previous case, we divided the analysis before
and after picking up the passenger to obtain a complete
overview. In both situations, the iterated approach can
identify the subset of states that are more interesting
during training and after the learning process. In fact,
the baseline metrics are giving high importance to states

Page 1404



that are not often visited by the agent, and, therefore,
characterizing these side states as central.

Figure 4. Importance Heat-maps for each state in

the Taxi environment (before and after picking up the

passenger) from Figure 1c calculated using different

metrics.

4.3. Difference Metric

In the previous subsection, we focused on the
analysis of metrics concerning the difference between
the maximum Q-value and the second-best or minimum.
In this way, it is possible to consider the disparity
of taking the best action instead of an alternative
one. However, they take into account only the best
and worst-case scenarios, without going deep into the
comparison of both of them. Therefore, we introduce
a third metric that is strictly related to the advising and
action gap measures considered before. In particular, we

define the difference measure as follow:

ID(st) = max
a∈A∗

Q(st, a)−min
a∈A

Q(st, a)

= max
a∈A∗

Q(st, a)−max
a∈A

Q(st, a)

+ max
a∈A

Q(st, a)−min
a∈A

Q(st, a)

= −IAG(st) + IA(st),

where it can be written as the difference between the
second-best and minimum values or the advising and
action gap measures. Using the last formulation can
help us to find directly the difference importance values
ID in the environments already examined. In the same
way as before, the iterated version of this new metric,
called IQVA-D, is derived for each of the two phases
considered, i.e., during the training and post-training.

Comparing the results obtained in the Lava lake
environment, shown in Figure 5, we can notice that
the bottleneck in the middle of the map is already
recognised as being one of the most salient states,
together with the positions next to the lava in the
upper part. The latter ones are recognised also during
the training phase from the IQVA-D, while the central
location has been addressed as important only for the
IQVA-D-post. In this scenario, the static formulation
performs better than the iterated version due to the
high-risk states present in the environment.

Figure 5. Importance Heat-maps for each state in

the Lava lake from Figure 1a environment calculated

using the difference metric.

However, the same can not be stated for the other
cases. In the Key door environment, after picking up
the key, we obtain that the bottleneck of the door is
recognized by the IQVA-D-train but not from the simple
difference metric, as represented in Figure 6. For the
post-training version, we observe that the central path
is highlighted from the other states, nonetheless, the
focus is still on the last states before the goal. This
could be caused by a large scaling factor for the iterated
algorithm.
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Figure 6. Importance Heat-maps for each state in

the Key-door environment (before and after picking

up the key) from Figure 1b calculated using the

difference metric.

Finally, the major distinctions between the static
approach and the iterative for the difference measure are
obtained in the Taxi environment, shown in Figure 7. In
fact, both the states preceding picking up the passenger
and dropping off are relevant for the IQVA-D while,
for the pure metric, the results are still not convincing,
since the focus is spread all across the map. Moreover,
the bottlenecks are also considered as important due
to the high visitation rate discovered by our proposed
approach.

5. Discussion

In the previous section, we noticed how IQVA
can precisely detect the important states, not giving
relevance to less visited states. Thus, we can focus
on the real subset of states that must be analyzed and
considered carefully. However, all approaches related
to Q-values present a downfall. In fact, different agents
could have different approximations for the action-state
value function, resulting in a diverse representation of
the important states. Nonetheless, to this extent, we are
able to strictly characterize the choices of that particular
agent in order to generate a specific explanation for the
RL algorithm that we trained and that we will exploit.

Moreover, we considered two tabular value-based
approaches, i.e., an off-policy (Q-learning) and an
on-policy (SARSA), obtaining in both cases satisfying
results in terms of recognition of the important states
and restriction of the subset of relevant information.

Figure 7. Importance Heat-maps for each state in

the Taxi environment (before and after picking up the

passenger) from Figure 1c calculated using different

metrics.

Therefore, our approach has been tested to be
independent of the type of techniques adopted for
finding the optimal policy. In addition, this methodology
can be applied directly to more complex algorithms,
e.g., deep learning methods like Deep Q-Network.

Another remark concerns the representation of these
important states. For our experiments, we considered
only the grid world environments, where each state
corresponds to a particular position on a map. However,
we can extend this idea by considering the network
associated with the states visited during the training.
In this way, we can rely on the measurements of the
importance that we found with the previously presented
methods in order to visualize it. Moreover, we can
notice that, in the reported experiments, a chain of
important states is found. This can be strictly related to
the concept of distal action (Madumal et al., 2020), and,
more specifically, of distal information (Milani, Moll,
De Leone, et al., 2023), where, in order to achieve a
particular state or perform a particular action, we first
need to enable it by generating a sequence of actions or
visiting determined circumstances. With our approach,
this information is quickly detected owing to the iterated
procedure adopted.

Furthermore, considering the advising and action
gap importance in both the original and iterated versions
can lead to the classification of important states. In
fact, we can characterize the physically important states
as those that present high values in the measurements
obtained by IQVA and lower significance from the
static ones. Moreover, we can rank the risk in each
of these states by considering the difference between
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the advising and action gap metrics. Thus, we can
measure the difference between the second-best Q-value
and minimum. Therefore, great values of the difference
will be related to high-risk situations, where choosing
an incorrect action can lead to huge troubles, and
low-risk states, where the choice made is not so relevant.
Consequently, using advising and action gap metrics
can lead to a general classification of important states,
relying on a third possible importance measure that can
be directly obtained by subtracting the previous values.

However, having a wide set of different metrics can
help human users to characterise better the problem
studied. Nonetheless, it is fundamental to recognise the
advantages or disadvantages of using a measure instead
of a different one. This is a well-known problem in
the network analytics field, where there is a multitude
of measures for concepts like centrality (Vignery and
Laurier, 2021).

6. Conclusion and Future works

As more problems become solvable by RL agents, it
is important to identify crucial states that can help in the
generation of complete and trustworthy explanations.
In this way, the human-artificial intelligent agent
interactions can be improved substantially, drastically
reducing the risk of taking a wrong decision. This
paper introduces an iterative algorithm called IQVA
for the detection of important states by relying on
well-known metrics obtained from the action-state value
function. We present an approach that can identify
the information, that is relevant to a particular trained
agent by considering the number of visits in a specific
situation. Moreover, we introduce a new measure
derived from the ones present in the literature and we
apply to it our methodology. Our computational results
on three grid-world environments show that significant
benefits in terms of conciseness and focus on critical
states can be achieved for all three measures considered.

There are several potential directions for future
research. For example, being able to automatically tune
the parameters relative to the number of episodes to
operate and the discounting factor is a possible starting
point. In fact, both of these values have a great influence
on the results, and changing them can lead to a different
characterization of the important states. Moreover, it
may be useful to consider these measurements during
the training of RL agents. Thus, it is possible to limit
exploration on occasions where the risk importance
values are high. Therefore, the agent can focus on
deviating from safer trajectories instead of going into
critical scenarios.

Acknowledgments

Rudy Milani is funded by dtec.bw—Digitalization
and Technology Research Center of the Bundeswehr
project RISK.twin. dtec.bw is funded by the European
Union—NextGenerationEU.

References

Amir, D., & Amir, O. (2018). Highlights: Summarizing
agent behavior to people. Proceedings of the
17th International Conference on Autonomous
Agents and MultiAgent Systems, 1168–1176.

Amir, O., Kamar, E., Kolobov, A., & Grosz, B.
(2016). Interactive teaching strategies for agent
training. In Proceedings of IJCAI 2016.

Bellemare, M. G., Ostrovski, G., Guez, A., Thomas, P.,
& Munos, R. (2016). Increasing the action
gap: New operators for reinforcement learning.
Proceedings of the AAAI Conference on
Artificial Intelligence, 30(1).

Clouse, J. A. (1996). On integrating apprentice learning
and reinforcement learning. University of
Massachusetts Amherst.

Gardner Jr, E. S. (1985). Exponential smoothing: The
state of the art. Journal of forecasting, 4(1),
1–28.

Huang, S. H., Bhatia, K., Abbeel, P., & Dragan,
A. D. (2018). Establishing appropriate trust
via critical states. 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS), 3929–3936.

Isele, D., Rahimi, R., Cosgun, A., Subramanian, K.,
& Fujimura, K. (2018). Navigating occluded
intersections with autonomous vehicles using
deep reinforcement learning. 2018 IEEE
international conference on robotics and
automation (ICRA), 2034–2039.

Jacq, A., Ferret, J., Pietquin, O., & Geist, M.
(2022). Lazy-mdps: Towards interpretable
reinforcement learning by learning when to act.
arXiv preprint arXiv:2203.08542.

Madumal, P., Miller, T., Sonenberg, L., & Vetere, F.
(2020). Distal explanations for model-free
explainable reinforcement learning. arXiv
preprint arXiv:2001.10284.

Milani, R., Moll, M., De Leone, R., & Pickl, S. (2023).
A bayesian network approach to explainable
reinforcement learning with distal information.
Sensors, 23(4), 2013.

Milani, R., Moll, M., & Pickl, S. (2023). Advances
in explainable reinforcement learning: An
intelligent transportation systems perspective.

Page 1407



In Explainable ai for intelligent transportation
systems. CRC Press.

Sequeira, P., & Gervasio, M. (2020). Interestingness
elements for explainable reinforcement
learning: Understanding agents’ capabilities
and limitations. Artificial Intelligence, 288,
103367.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I.,
Lai, M., Guez, A., Lanctot, M., Sifre, L.,
Kumaran, D., Graepel, T., et al. (2017).
Mastering chess and shogi by self-play with
a general reinforcement learning algorithm.
arXiv preprint arXiv:1712.01815.

Simkute, A., Luger, E., Jones, B., Evans, M., & Jones, R.
(2021). Explainability for experts: A design
framework for making algorithms supporting
expert decisions more explainable. Journal of
Responsible Technology, 7, 100017.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement
learning: An introduction. MIT press.

Torrey, L., & Taylor, M. (2013). Teaching on a budget:
Agents advising agents in reinforcement
learning. Proceedings of the 2013 international
conference on Autonomous agents and
multi-agent systems, 1053–1060.

Vignery, K., & Laurier, W. (2021). A methodology and
theoretical taxonomy for centrality measures:
What are the best centrality indicators for
student networks? PLOS ONE, 15(12), 1–32.
https://doi.org/10.1371/journal.pone.0244377

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine
learning, 8, 279–292.

Yan, Y., Chow, A. H., Ho, C. P., Kuo, Y.-H., Wu, Q.,
& Ying, C. (2022). Reinforcement learning
for logistics and supply chain management:
Methodologies, state of the art, and future
opportunities. Transportation Research Part
E: Logistics and Transportation Review, 162,
102712.

Page 1408


