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Abstract 

Extending IS theories of data and strategy that 
assume data are ultimately used for predictive 
analytics, this paper explores how data may be used 
as a strategic resource beyond the statistical 
predictions of analytics tools. Our point of view is that 
a choice exists of which relations in data — abstract 
statistical relations for predictive analytics, or 
domain-specific conceptual relations for 
understanding — are to be enrolled in knowledge 
creation. We present evidence from the choice of data 
variables in 162 scientific papers in a subfield of 
metagenomics, supplemented by analysis of 231 
patents from the same subfield. We discuss how 
accounting for the strategic use of data beyond 
analytics has important implications for IS theories 
regarding the value of domain knowledge and the 
location of bottlenecks in digital ecosystems. 

Keywords: Data, strategy, metagenomics, data 
relations, knowledge creation, data analytics. 
 
 
1. Introduction 
 

Amid the proliferation of data and data tools 
in the digital economy, many researchers and 
practitioners observe that data have become strategic 
resources [1, 2]. Data can be strategic across firm, 
industry, and ecosystem levels. Firms perform better 
when data-driven predictions routinely inform their 
decisions [3]. Data pipelines for analytics are strategic 
for innovation in many industries, such as the real-time 
processing of incoming sensor data from cars to 
develop capabilities in autonomous vehicles. The 
massive scale of data servers and processors that 
power predictive analytics are key bottlenecks of 
digital ecosystems occupied by firms such as Amazon 
and Google [4].  

Much strategic management discourse 
highlights how the strategic value of data has been 
driven by the greater volume, variety, or velocity of 

data now available to firms [5]. IS researchers have 
argued for attention also to how the value of data is 
contingent on the context-specific mechanisms by 
which data are constructed into data objects [6]. 
Structuring data into data objects involves the 
“definition and specification of formal relations 
between data items and fields” [7]. Insight into how 
such relations in data are defined and specified is 
important in that data are not simply raw materials like 
oil, so much as they are flexible mediums for shaping 
knowledge creation processes underlying sense-
making and decision-making [8]. 

As in the strategic management field, 
however, emerging IS theories of data and strategy 
have mostly taken for granted that the ultimate use of 
data, and thus their ultimate strategic value, is for 
predictive analytics — techniques such as machine 
learning that generate statistical predictions from data 
to inform decision-making [9]. In predictive analytics, 
the strategic value of data derives from abstract 
statistical relations in the data — that is, from patterns 
among large numbers of data points that can be 
interpreted based on statistical ideas (e.g., mean, 
variance) rather than based on domain knowledge. 
Using data, however, does not necessarily draw on 
their statistical relations. Many types of more 
semantically rich relations among data specific to the 
conceptual structure of a domain can also inform 
knowledge creation [10]. A physician’s insights about 
a patient, to pick just one example, are commonly 
informed by scanning over data whose relations are 
purposely structured and displayed in an electronic 
health record (EHR) [11]. 

The potential for domain-specific conceptual 
relations in data to be of strategic value can be 
observed across the data infrastructure that firms use. 
The vast majority of firms still rely on relational 
databases (e.g., Oracle, Microsoft Access) that enable 
creating queries or functions based on how columns of 
data are related conceptually within a domain. While 
digital twins are often understood as technologies to 
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support analytics, they are also designed with the 
motivation of enabling rich communication about how 
data across entire physical processes specific to a 
production setting are related [13]. Emerging 
generative AI tools allow domain experts to interact in 
natural language with semantically rich relations 
among data, beyond the abstract statistical relations in 
their data. 

While we have a growing understanding of 
the use of abstract statistical relations in data as a 
strategic resource for predictive analytics, we have 
less insight into the question of how domain-specific 
conceptual relations in data may be used strategically. 
The common use of such conceptual relations in data 
to inform sensemaking and decision-making in firms 
suggest room to broaden theories of data as a strategic 
resource beyond the ultimate use of data for predictive 
analytics. 

To develop insight into this gap, we explore 
evidence from the use of metagenomics data in R&D 
on nuruk, a Korean fermentation agent with diverse 
consumer and industrial biotechnology applications. 
Metagenomics data refer to data on the genetic 
material of communities of microorganisms. 
Analyzing the use of such data can offer broader 
theoretical insight into the strategic value of data. For 
one, scientific data has become a strategic resource 
across many industries, from drug discovery in the 
pharmaceutical industry, to boosting crop yields in 
agriculture. More generally, metagenomics data 
typically have high volume and variety, characteristics 
that are central to the emergence of data as a strategic 
resource in other industries, such as the explosion in 
the volume and variety of sensor data available to 
manufacturers. Our particular setting within 
metagenomics was ideal in that nuruk R&D is 
characterized by two distinct uses of metagenomics 
data — both for abstract statistical relations and 
domain-specific conceptual relations — that allowed 
close comparison and surfacing the strategic choices 
at play in defining and specifying relations in data. 

Based on analyzing 487 data variables from 
162 scientific papers published between 2011 to 2022, 
and supplemented by analysis of 231 patents from the 
same period, we surface how the uses of 
metagenomics data were contingent on two strategies 
for knowledge creation. First, a “predictive analytics 
strategy” involved specifying statistical relations to 
optimize a mapping between isolated strains and 

specific functions (e.g., maximizing the production of 
a specific enzyme), while ignoring most other process 
and outcome variables. The other “conceptual 
relations strategy” involved specifying relations to 
understand how whole metagenomes, and multiple 
process and outcome variables were interdependent, 
while ignoring the optimization of any specific 
function. 

Our findings contribute to IS theories of data 
by showing how the strategic value of data is a choice 
contingent on strategies for knowledge creation. Our 
findings offer novel implications, firstly, regarding the 
relationship between data and domain knowledge in 
the digital economy [7]. Using data as a resource for 
prediction has been found to diminish the value of 
domain knowledge in place of domain-independent 
knowledge of analytics techniques [13, 14]. In 
contrast, domain-specific knowledge should be a core 
complementary resource to data stored and processed 
in terms of their conceptual relations. Our findings 
also contribute to IS theories of digital ecosystems 
strategies that have been premised on massive scale in 
storing and processing data [12]. Making available 
domain-specific conceptual relations in data should 
enable a digital ecosystem’s strategic use of data to be 
less about scale in data storage and processing and 
more about the richness of interaction with data (e.g., 
through domain-specific user interfaces). 
 
2. Data as Strategic Resources 
 

Predictive analytics extract statistical 
relations in data to enable a form of knowledge 
creation based on a process of “explor[ing] through 
perpetual experimentation” [8:1]. Certain features of a 
dataset are treated as if they are a vast number of 
isolated “trials” with which to experiment. Analytics 
techniques are then applied to generate statistical 
correlations between each of the vast number of 
isolated “trials” and a specific function [16]. 
Optimizing the function often depends on processing 
a large volume and variety of data to make the 
statistical correlations precise. The rise of predictive 
analytics has led to a shift towards viewing knowledge 
creation as increasingly a process of algorithm-driven 
predictions based on statistical relations in large 
volumes of data. 
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Consider the synthetic biology company 
Ginkgo Bioworks, which engineers isolated strains of 
organisms to perform specific functions (e.g., 
maximizing the production of a certain enzyme) for 
clients from many domains. Ginkgo’s1 strategy is 
driven by its database of over 35 million genetic 
sequences that identify strains and their characteristics 
(proteins, enzymes, metabolic pathways, etc.). To 
engineer a strain, Ginkgo treats its 35 million 
sequences as isolated “trials” to experiment with, 
using analytics to statistically correlate data about each 
sequence to the target function and predict which 
“trials” (e.g., which genetic sequences) optimize the 
target function. Ginkgo codifies knowledge gained 
from the statistical correlations (e.g., X strain 
maximizes Y enzyme) to inform how it engineers 
compounds for future clients. The potential strategic 
value of its data rests in statistical relations among the 
abstract data that can be “discovered” by analytics 
tools. The data in such predictive analytics uses are 
largely “homogenized” or “liquified” into sets of 
features, tokens, or bitstrings that are “divested from 
the material forms and situations to which they refer” 
[17:404]. 

By conceptual relations in data, we refer not 
so much to conventional uses of data for operations or 
managerial decision-making that are collected in a 
stable way, such as the data for a traditional sales 
forecasting tool used in a classic multidivisional firm. 
We use the term conceptual relations to refer to how 
the principles of domains, or material realities of 
situations, can be defined and specified in data, in 
ways that can be flexibly interacted with and 
interpreted by domain experts. Data are not so much 
abstract features, as they are domain- and situation-
specific “annotations” that are enrolled in expert-
driven knowledge creation processes of diagnosing, 
troubleshooting, and otherwise qualitatively reasoning 
to understand the world [18]. Such conceptual 
relations in data may be contained informally in any 
data object (e.g., a summary of key variables in a 
dashboard), or formally in a database schema or a 
query of the schema. Tables that display conceptual 

 
1 “Grow with Ginkgo, 2021 Update and Business Review” 
https://s28.q4cdn.com/823357996/files/doc_financials/2021/q4/Q4
-2021-Earnings-Slide-Flow-FINAL-3.30.2022.pdf; 
Ginkgo Bioworks, 2021 Annual Report 
https://s28.q4cdn.com/823357996/files/doc_financials/2021/ar/202
1-Annual-Report-(1).pdf  

relations can be flexibly used by experts to reason 
about data from many points of view to piece together 
knowledge of a situation specific to their domain. 

Compare the use of data at Ginkgo to the use 
of data by the biotechnology company Biome Makers2 
to analyze soil for winemakers. As at Ginkgo, Biome 
Maker’s core data are genetic sequences of 
microorganisms. Yet the value comes from drawing 
also on the data on 14 million taxonomic references 
(phylum, order, species, etc.) and over 35,000 soil 
samples from 40 countries to generate a “soil 
assessment report” for each vineyard. The report is 
essentially a collection of tables of data, each 
displaying multiple variables of data that are known to 
be important to managing soil in vineyards. One six-
page report, for example, displayed 23 tables on 77 
types of data about soil composition. The tables of the 
assessment report reflect knowledge about subsets of 
data, with tables of data given domain-specific 
headings such as “biocontrol”, “hormone production”, 
and “stress adaptation”. The value of the report is to 
enable clients to view the various tables together to 
reason about the current state of their soil and diagnose 
problems or consider possible treatments. Rather than 
algorithmically creating knowledge based on massive 
numbers of experiments, the data are used to describe 
the single situation of a specific soil sample. 

While extant theory has focused on the use of 
statistical relations in data for predictive analytics, we 
know less about how firms such as Biome Makers may 
use domain-specific, conceptual relations in data as a 
strategic resource. The uses are hardly mutually 
exclusive. As Rutschi, Berente, & Nwanganga [12] 
note, even within predictive analytics, there is growing 
acknowledgement that value depends on “thorough 
assessment of the [domain]” and of “distinctive 
situations”. Suggestive in the two examples of Ginkgo 
Bioworks and Biome Makers, however, is that views 
of the value of data may influence firms’ underlying 
processes for storing, structuring, and otherwise 
interacting with data to create knowledge.   

Different views of the value of data in 
knowledge creation have important and novel 

2 Biome Makers, “BeCrop Microbiome Analysis Report”. 
https://biomemakers.com/becrop-test; Biome Makers, “BeCrop 
Technology, Setting the Standard for Soil Health”, 
https://biomemakers.com/becrop-technology/. 
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implications for strategy making. For example, in an 
analytics view, data generation and use are more in 
service of abstract knowledge contained in optimized 
functions, rather than the knowledge of “expert 
cultures” in a specific domain and in line with the 
stable and long-run goals of an organization [7]. In this 
paper, our point of view is that the relations in data that 
underpin the mechanisms of data generation are a 
strategic choice — the choices are not just towards this 
metric or that, but between abstract statistical and 
domain-specific conceptual relations in data as a basis 
for knowledge creation. We ask: can data be used as 
strategic resources not just for their statistical relations 
as inputs to predictive analytics, but for their domain-
specific, conceptual relations? What are the 
contingencies in determining how data are used 
strategically? To explore such questions, we first 
theoretically frame, then present empirical evidence 
from, the use of metagenomics data. 
 
 
3. Setting: Metagenomics Data  
 

Metagenomics data refer to data on the 
genetic material of microbiomes, or communities of 
microorganisms (yeasts, bacteria, molds) contained in 
biological samples such as soil, water, or the human 
gut. The emergence of cost-efficient technologies for 
DNA sequencing over the past few decades has led to 
a proliferation in the availability of metagenomics data 
[19]. These data include genetic sequences (the 
“genome”) of microorganisms, as well as data on 
transcription sequences, protein sequences, 
metabolites, and metabolic pathways. Metagenomics 
datasets also may include other data describing 
microorganisms, such as taxonomic references, 
enzymatic or chemical functions, data on microbiome 
samples (pH, humidity, temperature, etc.), and details 
on collection techniques or experimental methods. 

The strategic value of metagenomics data is 
in how they may help address a fundamental 
bottleneck in microbiology, which is that the vast 
majority of microorganisms cannot be cultured in 
isolation in a lab. Analysis of microbiome samples 
address this bottleneck by allowing the genetic 
sequencing of hundreds or thousands of unculturable 
microorganisms. In terms of downstream strategic 
value for businesses, the advantages of metagenomics 

data in enabling the study of unculturable 
microorganisms include: (1) dramatically expanding 
the overall population of microorganisms that a firm 
can collect data on when innovating new products (as 
in Ginkgo Bioworks’ strategy to innovate novel 
compounds); (2) dramatically expanding data about 
specific populations of microorganisms that a firm can 
analyze to create and share knowledge about specific 
settings (as in Biome Makers’ strategy to provide site-
specific “assessment reports” to clients). 

The value of metagenomics data is, however, 
contingent on their use. One use of metagenomics data 
is simply to expand the population of individual 
organisms that can be experimented with in 
biotechnology applications that use predictive 
analytics. As a famous example, Craig Venter’s 
Global Ocean Sampling Expedition collected a dataset 
of 7.7 million genetic sequences from samples of 
ocean water, where one of the goals was to use 
predictive analytics to identify novel biocatalysts for 
specific functions required in healthcare applications 
[19]. Another use of metagenomics data focuses more 
on understanding the diverse ways in which a 
community of organisms in a microbiome interacts 
with its environments. For example, in the Human 
Genome Project, one of the goals was to understand 
the diverse ways in which variations in the flora of the 
gut microbiome affected health outcomes. 
 Stevens [20] notes that genetic sequence data 
are typically stored similarly to sequences of 
characters in text, such that the proliferation of this 
data has led to an understanding of genetic processes 
as resembling the techniques of search engines that 
find statistical correlations between strings of 
characters in web text. He points out that, given that 
even the genome of a single organism may be more 
dense and non-linear than correlations in text, such 
assumptions may “limit the kinds of ways in which 
[the genetic sequence data] can be understood and 
manipulated” [20:353]. Such assumptions may also 
have scale-related implications for the strategic use of 
data. Using genetic sequence data for predictive 
analytics requires larger teams of data scientists and 
engineers and the ability to store and process data at 
massive scale. 

Though different uses of data are not 
mutually exclusive, the use of metagenomics data in 
practice can be viewed as a strategic choice to the 
extent that it is driven by assumptions about how data 
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are to be enrolled in processes of knowledge creation. 
To explore contingencies that may drive the strategic 
use of data, we next present evidence from the use of 
metagenomics data for both abstract statistical 
relations for analytics and for domain-specific 
conceptual relations in R&D on the Korean 
fermentation agent nuruk. 
 
4. The Contingent Value of Metagenomics 
Data in Nuruk R&D 
 

Nuruk is a fermentation agent traditionally 
used in Korean brewing. Nuruk is made by shaping 
finely or coarsely milled grain (wheat, rice, etc.) into 
discs and exposing the discs to air under controlled 
temperature and humidity. Each nuruk disc has a 
unique microbiome of hundreds or thousands of 
strains of microorganisms (yeasts, molds, bacteria) 
derived from the surface of the grains in the nuruk and 
ambient air in which the nuruk is fermented. Beyond 
brewing, nuruk has diverse consumer and industrial 
applications, with nuruk-related patents issued for 
functions ranging from food additives to therapeutics, 
cosmetics, textiles, and biomaterials. At the basic 
science level, nuruk microbiomes are a potentially 
valuable source of novel organic compounds for 
synthetic biology. 

Cost-efficient DNA sequencing technologies 
for collecting and analyzing metagenomics data 
became used to study nuruk from the late 2000s. The 
newfound data helped enable a steady stream of 
scientific papers on nuruk, with an average of 15 
papers published per year between 2011 and 2022 
(based on our review of the scientific literature on 
nuruk). Some of these papers studied individual strains 
isolated from nuruk metagenomes to optimize specific 
functions, analogous at a small scale to how Ginkgo 
Bioworks engineered organisms for its clients from its 
massive library of individual genetic sequences. For 
example, one paper extracted 481 fungi strains from 
16 nuruk samples, then selected 11 strains for high 
ethanol production. Other papers did not isolate 
strains, and instead measured aggregate properties to 
map entire nuruk metagenomes to a network of 
functions, roughly analogous to how Biome Makers 
provides winemakers with “soil assessment reports” 
that analyze how properties of the soil may affect 
diverse aspects of winemaking. For example, one 

paper analyzed the fungal and bacterial diversity of 58 
samples of nuruk for brewing, then analyzed the 
effects of each sample on 12 outcome variables, 
ranging from pH to aromatic compounds. 

The different uses of metagenomics data in 
these scientific papers provide an empirical illustration 
of how the use of data can be contingent and suggest a 
strategic choice. To explore where these contingencies 
come from, and thus to gain insight into the strategic 
use of nuruk data, we compared the full set of data 
variables used across scientific papers on nuruk. We 
take the full set of data variables as fundamental 
constraints on how data may be used as a resource for 
creating and capturing value from nuruk R&D in 
downstream applications developed in firms. 

We extracted the data variables from the 
tables and figures of 162 scientific papers (link to 
reference list here) on nuruk published between 2011 
and 2022. We compiled a dataset of 487 data variables 
(the columns of our dataset) along with the papers in 
which each of the variables appeared (the rows of our 
dataset). We then manually coded each paper into a 
type (“statistical relations” type or “conceptual 
relations” type) based on the outcome variables of 
interest, drawing on the first author’s domain 
knowledge about the nuruk setting. Based on our 
coding, we identified 86 of the 162 papers as primarily 
studying the effects of isolated strains, or individual 
microorganisms isolated from the nuruk metagenome. 
We identified the other 76 papers as instead primarily 
studying the effects of properties of whole 
metagenomes, or properties of the communities of 
microorganisms that made up the nuruk metagenome 
(properties included: taxonomic composition, yeast 
diversity, bacterial diversity, fungal diversity, relative 
abundance). 

Second, we analyzed the use of explanatory 
(non-outcome) data variables for the two types of 
paper. We ran pairwise comparisons tests across all 
data variables, which provided initial evidence that the 
two types of scientific papers had systematic 
differences in their composition of variables. We next 
aggregated the data variables into coarser-grained 
categories to make sense of and summarize the 
systematic differences. Drawing on the table and 
figure headings, and based on interviews and 
conversations with three nuruk scientists, we divided 
the remaining data variables into the subcategories of: 
(i) Process variables, or variables (inputs, times, 
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temperatures, etc.) regarding a downstream value-
adding process in which nuruk is used (e.g., the 
fermentation process for brewing alcohol using nuruk, 
or the manufacturing process for making cosmetics 
with nuruk); (ii) Outcome variables, or variables on 
any outcomes of a process, such as assays of the 
aromatic or volatile compounds in brewing or 
cosmetics, or basic sensory properties such as flavor, 
taste, and color; (iii) Specific functions, which refer to 
highly targeted metabolite functions (e.g., cytokine 
production, ethanol tolerance), as well as enzyme 
activity. 

Based on the three categories of data 
variables, we constructed simple frequency tables to 
explore the hypothesis that differences in the use of 
metagenomics data (“isolated strains” versus “whole 
metagenome”) imply differences in the type of 
relations (statistical versus conceptual) in data that are 
used.  
 

Metagenomic 
Data 

Other Data Variables 

Process 
Variables 

Outcome 
Variables 

Specific 
Functions 

Isolated 
Strains 31.0% 35.5% 67.4% 

Whole 
Metagenome 69.0% 64.5% 32.6% 

Table 1. Data Used in Scientific Papers on Nuruk 
 
 

We find two complementary results, depicted 
in Table 1 above. First, the two categories of papers 
differed dramatically not just in their use of 
metagenomic data (“isolated strains” versus “whole 
metagenome”), but also in the other data variables that 
were included. The scientific papers in the “whole 
metagenome” category were far more likely than the 
“isolated strains” category to include data on process 
and outcome variables, while papers in the “isolated 
strains” category were far more likely to include data 
on specific functions. Second, the analysis of these 
data variables differed. Papers in the “whole 
metagenome” category presented values of process 
variables, outcome variables, and the metagenomic 
properties of the nuruk without characterizing any 
optimal value for these data variables. Given the lack 
of any optimized functions, we infer that the ultimate 
use of this data depended on conceptual reasoning by 

a domain expert about how metagenomic properties 
related to multiple process and outcome variables and, 
equally, about how process and outcome variables 
were themselves related. Conversely, papers in the 
“isolated strains” category highlighted which isolated 
strains produced optimal values for specific functions, 
consistent with a predictive analytics approach.           

We interpret these results as evidence of two 
strategies for using data in nuruk R&D. We 
characterize a “whole metagenome strategy” in nuruk 
R&D as using a semantically rich set of conceptual 
relations in data among diverse process and outcome 
variables (brewing, physicochemical, and sensory 
characteristics) to understand the effects of nuruk at 
the metagenome level. In contrast, we characterize an 
“isolated strains strategy” as generating statistical 
relations in a narrower set of data, between a 
population of isolated strains and specific functions. 
We depict these two strategies in Figure 1 below. 

To uncover evidence of a strategic choice 
specifically about the value of data, we conducted a 
further round of coding of the downstream 
applications targeted by the scientific papers, which 
included brewing, cosmetics, therapeutics, and food 
additives. We found that “isolated strains” and “whole 
metagenome” categories had no significant 
differences, such that there was no clear evidence that 
downstream applications drove the use of data at the 
research-level. For example, 52 of the 162 scientific 
papers related to brewing applications, and these were 
virtually equally likely to be from either category. 
Overall, we interpret our results as evidence that the 
use of metagenomics data in our setting was 
contingent on the strategy of the researcher to create 
knowledge from either statistical relations or 
conceptual relations in their data. 
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Figure 1. Strategies for Nuruk Metagenomic Data 
 

To explore how our findings on scientific 
papers may connect to the strategic use of data in 
downstream applications of nuruk, we also analyzed 
231 nuruk-related patents issued between 2011 and 
2022. We manually coded the patents into the same 
categories of “isolated strains” (84 patents) and 
“whole metagenome” (147), based on whether an 
isolated strain was patented. The “whole 
metagenome” category was distributed across the full 
range of categories. The “isolated strains” category 
had little or negative correlation with most 
applications, but it was strongly correlated with 52 of 
the patents on brewing methods — that is, with the 
joint patenting of both a brewing method and an 
isolated strain. We interpret these latter results as 
evidence that the “isolated strains strategy” consistent 
with predictive analytics involved the strategic use of 
metagenomics data under an assumption that 
conceptual relations in data (e.g., across brewing 
processes) are held constant (e.g., a brewing method is 
fixed and patented). This assumption is well-known in 
the Korean brewing industry, which has long been 
oriented towards a cost (as opposed to differentiation) 
strategy based on tightly controlling an industrial-style 
brewing process using isolated strains. The strategic 
use of statistical, as opposed to conceptual, relations in 
data about strains of isolated nuruk may thus be 
contingent on industry-level strategy, and not inherent 
to the strategic value of nuruk data. 
 
5. Discussion and Conclusions 
 

We have challenged an assumption in most 
extant theories of data as a strategic resource, which is 

that the value of data ultimately is in their statistical 
relations, extracted using predictive analytics 
techniques and for the purposes of optimizing specific 
functions. We have framed the strategic value of data 
as instead also potentially deriving from how 
conceptual relations in data enable domain experts to 
understand a network of process and outcome 
variables, beyond optimizing specific functions. Our 
setting provided evidence that the ultimate use of the 
same type of metagenomics data was contingent on 
how relations in data — statistical or conceptual — 
were emphasized in processes of knowledge creation. 

We open up a novel view of data as strategic 
resources not just in the competitive strategy sense of 
storing and processing proprietary data at massive 
scale, but in the resources and capabilities sense — 
that a firm faces a strategic choice of how to link its 
data resources to firm-specific processes of knowledge 
creation. Our analysis showed how the use of 
metagenomics data in nuruk R&D for predictive 
analytics (e.g., to discover isolated strains that 
optimized specific functions, such as ethanol 
production) involved ignoring semantically rich and 
domain-specific relations among multiple downstream 
process and outcome variables. Conversely, 
accounting for these conceptual relations (e.g., to 
understand how whole metagenomes behave, such as 
the overall characteristics of a particular type or batch 
of nuruk) involved ignoring the specific functions. The 
strategies can be framed as two views of how to use 
data for knowledge creation that are driven by either 
“perpetual experimentation” (statistical relations 
view) or making sense of multiple domain-specific 
variables (conceptual relations view).  

We argue that our framing of this strategic 
choice can be applied to a broad range of datasets 
beyond the idiosyncrasies of the metagenomics setting 
studied here. Even in classic settings for predictive 
analytics (e.g., behavioral data on a social media site), 
we propose that firms have a choice of whether to map 
statistical relations to specific functions (e.g., users’ 
“engagement” with the site) or to extract conceptual 
relations that reflect a deeper understanding of users’ 
engagement with the site in particular situations.            

Based on our framing and analysis of our 
findings, we draw two broader implications for IS 
theories of data and strategy, one regarding the value 
of domain knowledge in the strategic use of digital 
data and another regarding digital ecosystems strategy.  

Page 6237



 

First, we heartily agree with the point of view 
in recent IS research on data and strategy in which the 
constructive processes and mechanisms underlying 
how data are generated, transformed and used are 
given a central role [17]. Yet in this literature’s focus 
on the ultimate use of data for predictive analytics, it 
has been rather pessimistic about the prospects for the 
strategic value of domain experts’ knowledge. 
Strategies for using data to routinely inform decisions 
also depend on how well conceptual relations in data 
are made accessible to the firm’s domain experts [15]. 
We argue for extending theories of how data objects 
are constructed to account for how experts interact 
with conceptual relations in data. We have in mind 
processes of constructing data objects from conceptual 
relations that are far more domain-specific than 
constructing abstract metrics for analytics, while 
extending well beyond conventional domain-specific 
uses of data in firms (e.g., generating periodic reports 
from an ERP system). 

Second, the rise of data as a strategic resource 
for predictive analytics has shifted IS research on 
strategy making from a traditional focus on the 
organization level towards digital platforms and 
ecosystems. Extant ecosystems theories of data as a 
strategic resource for predictive analytics emphasize 
that the key strategic bottlenecks to value creation and 
capture are the capacity to store and process large 
volumes of data [3]. In these theories, layers of the 
ecosystem that directly support the end-users of data 
(e.g., dashboards or other interfaces, development 
frameworks) are of strategic value mostly for how they 
attract users to contribute their data. These user-facing 
layers have no strategic value on their own if they are 
not coupled with massive capacities for data storage 
and processing. Hence, it is well-observed that the use 
of data as a strategic resource for analytics has been 
dominated by large technology firms such as Amazon, 
Microsoft, Google and Alibaba that have the resources 
to invest in massive data storage and processing 
capacity and mostly open-source tools to attract users. 

Our framing and findings regarding the 
contingent value of data as a strategic resource point 
to one way in which current strategic bottlenecks 
could also concern user-facing layers for interacting 
with data specific to a domain. In our metagenomics 
setting, for instance, a strategy of focusing on 
conceptual relations across multiple process and 
outcome variables in nuruk R&D would have vastly 

lower requirements for data storage and data 
processing capacity than the variables (genetic 
sequence data) that were identified with the use of 
predictive analytics. For example, whereas the data 
variable “yeast diversity” has a single measure for a 
single sample of nuruk, the same sample may have 
hundreds or thousands of genetic sequences and 
dozens of columns of metadata about each sequence. 
The value of the “yeast diversity” variable would be 
unlocked more by a domain expert analyzing its many 
possible relations to other data variables (e.g., as in the 
dozens of data variables displayed in user-friendly 
tables by Biome Makers to its clients), which depends 
on their ability to richly interact with data more than 
their ability to store and process large volumes of data. 

In conclusion, theories from IS strategy could 
be extended to explore how the current “ontological 
reversal”, in which digital data increasingly determine 
the material world [21], might be a result not just of 
properties inherent in digital data but in how data is 
viewed as a strategic resource. For example, theories 
of data objects and digital ecosystems strategies might 
draw on this paper’s arguments, as well as other 
emerging literatures that study end-users’ interactions 
with data in their work practices [15, 22, 23], to 
investigate or hypothesize how the strategic use of 
data may be evolving, and the implications for the 
locus of value creation and capture. 
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