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Abstract

Social bots wield significant impact within social
networks. Despite the widely recognized variations
in individual responses to humans and bots, existing
research has not thoroughly investigated the impact
differences between human and social bots on
individuals’ opinions. However, such differences
are challenging to be estimated due to the presence
of confounders introduced by homophily and the
absence of counterfactual outcomes in observational
network data. This study designs a counterfactual
graph learning approach to accurately estimate
causal effects, which exhibits superior performance
in our simulations. The subsequent empirical results
demonstrate that social bots yield a weaker influence
than humans, and we further uncover diverse influential
patterns of different types of opinions expressed by
influence sources. Nevertheless, the impact difference
is overestimated without applying our approach to
control the confounders. Our research provides a
practical approach and offers insights for stakeholders
to scrutinize bots’ impact from network perspectives.

Keywords: Social bots, homophily, causal
identification, counterfactual graph learning.

1. Introduction

Social bots play an important role in shaping
opinions within networks. These automated entities not
only possess the ability to propagate ideas (Benjamin
and Raghu, 2022) but can also wield the power to
manipulate attitudes and emotions on social media
platforms (W. Chen et al., 2021). While existing studies
have explored the mechanisms by which human users
influence opinion formation and change, these findings

cannot be broadly extended to social bots due to their
specific behavioral and social characteristics. With
the expansion in network scales and the increasing
complexity of online interactions, assessing the impact
of these automated agents has emerged as an urgent
concern for governments, platforms, and society.

Both humans and bots express opinions and exert
their influence on peers through social contagion (Bapna
and Umyarov, 2015; Boichak et al., 2018). However,
due to inherent disparities in emotional capacities
between humans and social bots (Han et al., 2022),
the identical opinions expressed by these two entities
may yield different impacts on adjacent human users.
Specifically, when acting as influence receivers, humans
can exhibit resistance to opinion voiced by AI-driven
bots (Stein and Ohler, 2017) and be less susceptible
to such influence in comparison to interactions with
humans. This counteractive phenomena can mitigate the
opinion contagion effect, resulting in a weaker influence
from bots’ opinions. Moreover, the variability in impact
may also depend on the types of expressed opinions.
In specific scenarios (such as about disasters), there
may be no significant difference between humans and
social bots when disseminating specific opinions (Rossi,
2022). Hence, the primary objective of this study is
to assess the impact differences between social bots
and humans in their capacity to shape opinions within
networks.

Studies that have already looked into these impact
difference have come up with inconsistent results.
The variance can be attributed to the presence of
homophily within social networks, wherein humans
tend to establish connections with similar individuals
(Bakshy et al., 2015; Kitchens et al., 2020). Homophily
indicates that human users who disclose their opinions
are surrounded by influence receivers who are likely
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to have similar attitudes. Furthermore, these influence
receivers can also be impacted by other homophilous
friends. In contrast, social bots establish connections
randomly or based on different rules across the whole
social network (W. Chen et al., 2021; Khaund et al.,
2021; Shao et al., 2018). Consequently, the observed
differences in effects may indeed stem from the fact that
human as the influence source are surrounded by friends
with similar opinions.

To exclude the confounding effect of homophily,
an effective approach is asking what individuals’
opinions would be if there exist (or not exist) bots
in their neighbors (des Mesnards et al., 2022). This
counterfactual-based idea is inspired by the potential
outcome framework (Rubin, 2005). In this sense,
the task of accurately quantifying the impact of social
bots boils down to (1) replicating the network and
predicting opinions in the counterfactual scenarios, and
(2) evaluating the opinion differences among users in
two groups: one with bots and the other without. This
idea facilitates the isolation of the distinct influence
attributable to the identity of social bots.

However, solving this issue poses methodological
challenges as counterfactual samples remain
inaccessible in observational data. Some researchers
resort to quasi-experimental strategies like matching
(Bapna and Umyarov, 2015; X. Chen et al., 2022).
Nevertheless, precise matching in networks is difficult
due to imbalanced neighbor distributions, including
neighbors’ latent traits and their surrounding network
structures (leading to different influences from other
homophilous friends). As shown in the Factual Graph
in Figure 1, the presence of these multiple causes
contributes to the confounding bias and unidentifiable
causal mechanisms.

To address these challenges, we design a novel
approach called Counterfactual Graph Learning
(CfGL) for identifying and estimating causal
effects in networks. CfGL comprises two core
mechanisms: (1) Counterfactual Graph Generation,
which generates counterfactual samples to simulate
networks without homophily; (2) Adversarial Multi-task
De-confounded Learning (AMDL) based on the factual
and counterfactual graph, which address the imbalanced
neighbor distributions between the treatment and
control groups.

The evaluation of CfGL through simulation
experiments demonstrates its superiority over existing
deep graph learning methods for estimating causal
effects. Then, we conduct an empirical study on
Twitter network and we find that supportive opinions
disclosed by humans have a greater impact on their
neighbors compared to social bots, while no significant

difference is observed in opposing opinions. These
findings encourage researchers to further explore
diverse influential patterns associated with different
types of opinions. Furthermore, the application of
CfGL reduces the impact difference in supportive
opinion disclosure between social bots and humans,
indicating that ignoring confounding factors leads to
an overestimation of the differences. In summary, this
study offers valuable insights to facilitate more precise
estimation of bots’ impact directly from observational
network data. It further expands research into social
bots’ influence regarding outlooks within network
settings.

Figure 1. An illustrative toy example. The positive

opinions of A and C (compared to B and D) can be

attributed to the impact differences between bots and

humans, or (1) A,C have inherent positive traits

(e.g., attitude); (2) A,C are affected by other

homophilous friends.

2. Background and Related Work

2.1. The Impact of Social Bots

Social media platforms serve as influential channels
for shaping public opinion (Ross et al., 2019). However,
the precise extend of bots’ influence on individuals’
opinions remains debated and poorly understand. On
one hand, several studies accentuate bots’ significant
capacity to manipulate consensus (W. Chen et al., 2021;
Pescetelli et al., 2022).As public awareness of bots has
grown, a majority of users believe that bots actively
shape their opinions (Benjamin and Raghu, 2022). On
the other hand, some research suggests that bots may
not be as powerful or malevolent as initially assumed
(Rossi, 2022). Regarding campaign activities on social
platforms, bots often occupy less central roles versus
humans, with seemingly weaker aptitude to disseminate
particular stances and emotions (Cai et al., 2023).
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These findings have raised concerns about bots’
relative persuasiveness versus humans. Grounded
in social identity theory, humans regard bots as
out-groups, thus spurring the out-group bias to exhibit
hostility (Castelo et al., 2019). Moreover, when
social bots express subjective opinions on social media,
the lay belief that bots possess diminished capacities
in handling emotional and subjective issues (Castelo
et al., 2019; Han et al., 2022; Longoni and Cian,
2022) reinforces this out-group bias. As a result,
individuals demonstrate reluctance to embrace bots’
views, instead prioritizing human opinions to preserve
in-group solidarity ( Castelo et al., 2019 ). Our study
aims to precisely evaluate the distinct impacts on user
opinion based on the type of influence source (i.e.,
human or bots).

2.2. Human and Social Bots in the Networks

Social media engagement allows both humans and
social bots to select their friends. According to social
network theory (SNT), human networks often exhibit
ideological homophily, as humans tend to connect
individuals with similar experiences and perspectives
(Bakshy et al., 2015; Kitchens et al., 2020). In contrast,
social bots employ various connection mechanisms
based on their objectives and the specific context,
such as selectively connecting with influential human
users to exert their influence (Shao et al., 2018;
Stella et al., 2018), or establishing random or neutral
connections with humans (W. Chen et al., 2021).
Bots may also interact with diverse users via assorted
hashtags (Khaund et al., 2021), or just focus on certain
types of individuals and contents (W. Chen et al.,
2021; Salge et al., 2022). These varied mechanisms
pose difficulties in establishing appropriate parametric
models in advance (des Mesnards et al., 2022) to
characterize bots’ behavioral patterns and estimate their
impacts.

The differences in forming connections between
humans and bots generate distinct opinion climates
(Ross et al., 2019) within their networks, posing
challenges in identifying the true mechanism behind
the distinctive effect mentioned earlier. Firstly,
heterogeneous networks may exhibit opinion
polarization due to confirmation bias (Kitchens
et al., 2020), as individuals tend to accept information
that aligns with their beliefs. Secondly, humans
typically maintain numerous interpersonal ties beyond
the association with the focal user, with viewpoints
potentially bolstered via contagion among other
homophilous ties (Shalizi and Thomas, 2011). In a
word, this study aims to explore the impact differences

between bots and humans on their neighbors’ opinions
in social networks by excluding the aforementioned
confounders obscuring the true mechanism.

2.3. Methods for Estimating Causal Effect in
Networks

Traditional approaches for causal identification and
effect estimation face challenges when dealing with
large-scale networks due to their limited ability
to capture complex interactions and nonlinear
influences (Wang et al., 2022). The advancement
of neural-network-based graph learning techniques
offers a promising opportunity for handling large-scale
data and capturing intricate patterns in social networks
(Zhou et al., 2022).

Several studies have explored the use of graph
learning for estimating causal effect in networks. For
instance, Veitch et al., 2019 uses network embeddings
to reweights the outcome. However, the output from
neural networks on the denominator will cause unstable
inference. Another approach utilizes node embeddings
to match the treatment and control groups (X. Chen
et al., 2022). Nonetheless, achieving a precise match in
both the latent traits and network structures significantly
reduces the available samples. Additionally, studies
suggest to balance the confounders by minimizing
the representation discrepancies between two groups
(Guo et al., 2020; Ma et al., 2022), which reduces
the representations’ ability for capturing information
leading to treatment assignment bias.

Considering the needs for node representations to
both align across the two groups and effectively capture
information related to the treatment assignment bias, the
adversarial learning emerges as a promising choice (Chu
et al., 2021; Guo et al., 2021). However, these methods
encounter challenges in training, as they expect the
embedding vectors of each node pairs to simultaneously
fulfill two opposing tasks. We solve this problem with a
multi-task optimization based on counterfactual graphs
and adversarial learning to de-confound the homophily
bias in the networks.

3. The Proposed Framework

3.1. Problem Setting

Recall that our objective is to estimate the
impact differences between social bots and humans in
influencing opinions within networks. We use T to
represent the treatment indicator, where T = 1 and T =
0 correspond to the disclosure of opinions by a social
bot or a human, respectively. Y (t) is their neighbors’
opinions (i.e., the potential outcome). X = {xi}ni=1
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denotes observable covariates, such as demographic
information. U = {ui}ni=1 represents latent traits, such
as inherent attitudes. A social network in the real world
with n individuals can be denoted as G(f) = (V, E),
where V = {v1, ..., vn} is the node set (e.g., all the
users) in the network and eij = (vi, vj) ∈ E is the
edge (e.g., user i is followed by user j). The topology
structure of the graph G(f) can be mathematically
represented using an adjacency matrix: A = {aij}n×n,
where aij ∈ {0, 1} and aij = 1 indicates the presence
of an edge in the edge set eij = (vi, vj) ∈ E .

In the context of social networks, the individual
treatment effect (ITE) can be defined using the potential
outcome framework (Rubin, 2005):

τi = E[y
(1)
i |xi,ui,A]− E[y

(0)
i |xi,ui,A] (1)

where A ∈ {0, 1}n×n is the graph adjacency matrix.
τi reflects the impact difference between social bots and
humans. To estimate ITE, it is necessary to assume that
the treatment is independent of the potential outcome

conditioning on X and U: {Y (0)
i , Y

(1)
i } ⊥ Ti|X,U.

Since the latent homophilous factors U can introduce
confounding bias in estimating ITE, our objective is
to develop an approach that can remove the influence
of U and obtain an accurate ITE esitmate using the
observational network data ({xi, ti, yi}ni=1,A).

3.2. Framework Overview

The review of the literatures motivates us to
design a graph learning approach to identify the
causal mechanism of social bots (i.e., the impact
differences between humans and bots when influencing
the opinions). Specifically, the Counterfactual Graph
Learning (CfGL) framework aims at (1) generating
counterfactual graphs and capturing homophilous
factors in the network that cause the confounding bias
to assist ITE estimation, and (2) balancing the neighbor
distributions (nodes’ latent traits and network structure)
between treatment and control groups by adversarial
de-confounded learning.

Figure 2 outlines the framework of CfGL. Given
the input graph (i.e., Factual Graph G(f)), CfGL first
shuffles the edges and generate a Counterfactual Graph
G(cf). Next, the Graph Feature Extractor processes
the original Factual Graph G(f) and the synthetic
Counterfactual Graph G(cf) using a graph neural
network (GNN) with shared parameters and generates
node embeddings zf and zcf in the same latent space.
The embeddings from G(f) are used to predict the
opinions by the Outcome Predictor. Additionally,
the Treatment Predictor discriminates nodes from

treatment and control groups, and the Counterfactual
Discriminator determines whether the node comes
from G(f) or G(cf). A gradient reversal layer (GRL) is
placed before the Counterfactual Discriminator, which
reverses the backpropagated gradient to help generate
node embeddings that are indistinguishable by the
discriminator. The Outcome Predictor, Treatment
Predictor and Counterfactual Discriminator are trained
jointly using a multi-task learning approach that
can de-confound the confounding bias invoked by
homophily.

3.3. Counterfactual Graph Generation

In the construction of counterfactual samples for ITE
estimation, we generate counterfactual graphs G(cf) by
shuffling nH edges in G(f), with the number of shuffled
edges being fewer than total edges in the original graph.
This process ensures that human users are no longer
selectively connected with similar individuals in the
counterfactual scenario.

To extract features from both factual and
counterfactual samples, we employ a representation
function h that maps both G(f) and G(cf) the into the
same latent space: h : X ×A → Rd. The function h is
parameterized using a Graph Attention Networks (GAT)
(Veličković et al., 2017) with the following layer-wise
propagation rule:

z
(l+1)
i = σ(

∑
j∈Ni

α
(l)
ij θ

(l)
gwz

(l)
j ) (2)

where θgw is the learnable weights and σ is the activation

function. α(l)
ij is the attention score calculated by:

α
(l)
ij =

exp (LReLU(θgv
(l)T [θ

(l)
guz

(l)
i ; θ

(l)
guzl]))∑

j′∈Ni
exp (LReLU((θgv

(l)T [θ
(l)
guz

(l)
i ; θ

(l)
guh

(l)
j′ ]))

(3)
where ’;’ denotes concatenation. We use θg to represent
all the learnable parameters (θgu , θgv , θgw ) in the GAT.
The node embeddings obtained from G(f) and G(cf)

serve as the outputs of the L-th layer in the GAT:
Zf ,Zcf ∈ RN×d. The adaptive learning of neighbor
importance by the GAT model is useful in handling
complex network structures. By ensuring that the
learned embeddings of G(f) and G(cf) are in the
same latent space, the model can unveil the underlying
distinctions between the counterfactual and real-world
network structures, which contributes to capturing the
key factor that causes bias (i.e., homophily).
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Figure 2. Framework overview.

3.4. Adversarial Multi-task De-confounded
Learning

The Adversarial Multi-task De-confounded
Learning (AMDL) is designed to learn the node
embeddings that satisfy the following two properties:
(1) The embeddings should capture enough information
about the imbalanced treatment assignment; (2) The
embeddings between the treatment and control groups
should not exhibit large distribution discrepancy.
Additionally, our joint training process is easier to
reach the convergence since we set the adversarial
task between different node pairs compared to other
adversarial learning based methods that the task is set
within the same node pairs (Chu et al., 2021; Guo et al.,
2021).

3.4.1. Outcome Predictor. The first component of
AMDL is the Outcome Predictor, namely, the mapping
function f : Rd×{0, 1} → R that predicts the outcome
based on node embeddings of the factual graph G(f):

ŷf = f1(Z
f ), ŷf = f0(Z

f ) (4)

We parameterized f1 and f0 with two-layer
fully-connected networks (denoted as fθy1 and fθy0 )
with ReLU activation function. The loss function of the

outcome predictor is:

Ly =
1

n

n∑
i=1

(ŷfi − yfi )
2 (5)

which means that the error between the predicted
outcome and the true outcome is minimized during
model training.

3.4.2. Treatment Predictor. To capture information
that causes imbalanced treatment assignment in G(f),
the second designed component of AMDL is the
Treatment Predictor: function f : Rd×{0, 1} → P that
maps the node embeddings to the probability of receving
the treatment for each unit. The treatment predictor is
trained using the following cross entropy loss:

Lt =
1

n

n∑
i=1

1∑
t=0

(pti log(p̂ti) + (1− pti) log(1− p̂ti))

(6)
where p̂ti = fθt(Z

f ). pti ∈ {0, 1} is the treatment
indicator. We use a two-layer fully-connected network
with parameter θt and LeakyReLU as the activation
function.

3.4.3. Counterfactual Discriminator with a
gradient reversal layer. The third component of
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AMDL is the Counterfactual Discriminator with
gradient reversal layers that aims at balancing the
confounders between the treatment and control groups.
The Counterfactual discriminator operates as a mapping
function denoted as f : Rd × {0, 1} → P , which
tries to distinguish whether a node is from the factual
graph G(f) or the counterfactual graph G(cf). f
is parameterized by a single-layer fully-connected
network with parameter θf , and it outputs the
probability of a unit belonging to the factual graph:
p̂fi = fθf (concat[Z

f ;Zcf ]). The Counterfactual
Discriminator is trained using the cross-entropy loss:

Lf =
1

n

n∑
i=1

1∑
f=0

(pfi log(p̂fi) + (1− pfi) log(1− p̂fi))

(7)
The GRL layer reverses the gradient from
the Counterfactual Discriminator during the
backpropagation. This design can helps the Graph
Feature Extractor generate node embeddings that are
hard to be distinguished from factual and counterfactual
graph, so as to balance the confounders.

3.4.4. Joint Training. All the parameterized
components (yellow-shaded module shown in Figure 2)
in CfGL is jointed optimized. The final loss function of
our approach can be express as:

L = Ly + λtLt + λfLf (8)

where λt and λf are the regularized parameters. The
joint training approach enables CfGL to estimate the
causal effects of social bots using observational network
data in an end-to-end manner.

Figure 3. An illustration of the joint training

approach.

We provide an illustration of the advantages of
setting the adversarial task between different node pairs
in CfGL in Figure 3, using nodes A and B in Figure
1 as examples. As mentioned above, the purpose of
the adversarial training is to learn the node embeddings
that are both discriminative (to capture information
related to imbalanced treatment assignment) and
indistinguishable (retaining similar between treatment
and control groups). Applying adversarial training
to the same node pairs, such as between nodes A
and B (Guo et al., 2021), or between A and A

′

(Chu et al., 2021), will lead to difficulties in training
and convergence due to the somewhat contradictory
nature of the two tasks. In CfGL, the Treatment
Predictor discriminates the embeddings of node A and
B in factual graph (the brown arrow), whereas the
GRL-attached Counterfactual Discriminator balance the
embeddings of node A and A

′
as well as B and B

′
(the

purple arrows). The effectiveness of the setting of CfGL
will be further demonstrated through experiments.

4. Experiments

4.1. Data and Simulation

Without access to the counterfactual outcomes,
obtaining ground-truth ITE is difficult since we can only
see one of the possible outcomes for each sample in
reality. Therefore, to harness accurate ground-truth ITE
values and validate the effectiveness of our approach,
we refer to the research using simulated data (X. Chen
et al., 2022, Wang et al., 2022). Specifically, we set the
latent trait of a human user as Ui ∈ {−1, 0, 1} (e.g.,
the negative, neutral, and positive attitude). Our focus
lies on scenarios involving positive opinion propagation,
with similar considerations extended to other situations.
Suppose that humans tend to form connections friends
with similar traits, that is:

P (Aij = 1) =
exp (α0 − α1|Ui − Uj |)

1 + exp (α0 − α1|Ui − Uj |)
(9)

where α1, α0 ∈ R. A human with a positive attitude has
a probability of disclosing his opinion. The social bots
also disclose their positive opinion. Consequently, the
outcome (The positive degree of the opinion) of node i
can be generated through the following equation:

yi,t+1 = βuUi,t + βhDi,t + βbBi,t + ϵi,t (10)

where ϵi,t ∼ N(0, σ2). Di,t = 1 indicates that node i
has at least one influence source represented by a human
user, while Bi,t = 1 signifies that node i is influenced
by at least one social bot. Therefore, the ground-truth
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impact differences between social bots and humans is
calculated by τ = βb − βh. For our experiments, we set
βu = βb = 1, βh = 2 and σ = 0.5, ensuring that the
average impact difference is equal to 1.

Bots in different domains may select the connected
users by variant mechanism since the operation and
algorithm of these bots are different. To verify the
performance of CfGL in different domains, we generate
synthetic data of the following settings: (1) Random.
Bots randomly connect nodes in the network (W. Chen
et al., 2021); (2) RandomU. Bots tend to randomly
connect human users (Benjamin and Raghu, 2022);
(3) HighDE. Bots tend to connect high-degree users
(Stella et al., 2018); (4) LowDE. Bots tend to connect
low-degree users (Boichak et al., 2018); (5) Bots tend
to connect with influential human users to exert their
impact (Shao et al., 2018; Stella et al., 2018), such
as users with high betweenness centrality (HighBC) or
high closeness centrality (HighCC).

4.2. Evaluation

We use two widely adopted metrics to evaluate the
performance of CfGL in estimating causal effect in
networks (Guo et al., 2021; Ma et al., 2022), including
Mean Absolute Error (ϵATE) and Rooted Precision in
Estimation of Heterogeneous Effect (

√
ϵPEHE). These

two metrics are defined as follows:

ϵATE = | 1
n

n∑
i=1

τi −
1

n

n∑
i=1

τ̂i| (11)

√
ϵPEHE =

√√√√ 1

n

n∑
i=1

(τi − τ̂i)2 (12)

where τi = y1i − y0i is the ground-truth ITE and τ̂i =
ŷ1i − ŷ0i is the estimated ITE output by the model.

4.3. Experiment Settings

We verify the superior performance of CfGL by
comparing the most commonly used graph learning
methods and the most advanced approaches that conduct
causal inference in the networks, including: (1) Two
classical graph neural networks, GCN (Kipf and
Welling, 2016) and GAT (Veličković et al., 2017),
implemented with the two-hidden-layer versions; (2)
Confounder balancing approaches: CNE- (Veitch et al.,
2019), by predicting the treatments for each unit, and
ND (Guo et al., 2020), by minimizing the distribution
discrepancy between the treatment and control groups;
(3) Adversarial-learning-based approach, Ignite (Guo
et al., 2021) and GIAL (Chu et al., 2021).

Moreover, to verify the effectiveness of each
component in CfGL, we conducted a series of ablation
experiments, including: (1) No TP: Model that removes
the Treatment Predictor (i.e., without Lt during the
model training); (2) No CD: Model that removes
the Counterfactual Discriminator with gradient reversal
layer (i.e., without Lf during the model training), this is
equal to removing the counterfacutal graph and adopts
original input graph only.

4.4. Estimation Results

The model comparisons are presented in Table 1. We
report the 5-time-average of the experiments and our
CfGL outperforms existing models on the two metrics
in all domains. The ablation study further demonstrates
the effectiveness of each component in our proposed
approach.

The experiments reveal that despite bots may
establish connections with other nodes via variant
mechanisms, CfGL can effectively handle the causal
effect estimation in different domains. This observation
underscores that our approach can identify key factors
from observational network data that foster the
homophily bias, and balance these factors through
the generation of counterfactual samples for causal
inference. It’s worth noting that both GCN and
GAT show the results without controlling for any
confounding factors. In this context, our approach can
reduce the average bias of ATE by more than 85%
compared to direct modeling of observational data.

5. Empirical study

5.1. Data description

We apply our approach to real-world multi-relational
Twitter network data containing social bots (Shi
et al., 2023). The dataset comprises 10199
expert-annotated nodes (7451 humans and 2748 bots)
and the comprehensive overview of the dataset can be
found in Shi et al., 2023.

Twitter’s extensive user base and real-time nature
enable rapid information dissemination and facilitate
public discourse. However, the platform is susceptible
to the influence of social bots, accounting for
approximately 20% of accounts (Rossi, 2022), which
actively shape discussions and sway public opinions.
This influence is especially notable within domains such
as politics, health, environment, and climate, where
social bots often engage with human users to propagate
specific viewpoints. More specifically, the data we used
is related to the stances of humans and bots on sewage
discharge (Shi et al., 2023).
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Table 1. Results of Benchmark Models.
Data Random RandomU HighDE LowDE HighBC HighCC
Metric eATE ePEHE eATE ePEHE eATE ePEHE eATE ePEHE eATE ePEHE eATE ePEHE
GCN 0.9162 0.9355 1.0271 1.0545 0.9748 1.0294 1.0332 1.1203 1.1427 1.3813 1.0232 1.0511
GAT 0.9973 1.0145 0.9511 0.9359 0.9441 0.9836 0.9342 0.9984 0.9732 0.9923 0.9827 0.9938
CNE- 0.4933 0.5051 0.3018 0.3164 0.3246 0.3391 0.4352 0.4478 0.4601 0.4725 0.3377 0.3514
ND 0.2433 0.2590 0.2276 0.2444 0.2603 0.2763 0.2940 0.3085 0.3640 0.3774 0.2730 0.2881
Ignite 0.2358 0.4003 0.2162 0.3192 0.1775 0.2269 0.2680 0.4305 0.1620 0.2645 0.1366 0.1811
GIAL 0.1249 0.2108 0.1787 0.2245 0.1414 0.1823 0.1647 0.1943 0.2837 0.3641 0.1183 0.2188
CfGL 0.0987 0.1589 0.1193 0.1683 0.1002 0.1640 0.0797 0.1674 0.1315 0.2484 0.0860 0.1451
No TP 0.1138 0.1849 0.1374 0.2091 0.1233 0.2165 0.0946 0.1899 0.1457 0.2635 0.0984 0.1979
No CD 0.2058 0.2686 0.2910 0.3452 0.2423 0.3174 0.2890 0.3043 0.2932 0.3757 0.2692 0.3477

5.2. Model specification

Our primary objective is to compare the influential
differences of social bots and humans exert over the
opinions of their neighbors. A naive way to evaluate
the effect of social bots involves assigning nodes to
a treatment group if they have a bot neighbor with
a specific opinion, and to the corresponding control
group if they have a human neighbor with the same
opinion. The overlapping nodes shared between these
two groups are subsequently removed. Finally, the
impact of social bots is quantified by measuring the
opinion disparity between the two groups. However,
this approach inherently introduces bias as it overlooks
the latent traits of nodes and disregards the potential
influence exerted by other homophilous friends.

In our CFGL approach, the treatment is defined
based on whether the influence source is a bot, and the
outcome is the opinions of their respective neighbors.
We incorporate observable individual covariates into
our input graph as node features. It is important to
note that achieving precise causal identification can be
challenging due to the unavailability of individual latent
traits that can potentially impact both the treatment and
outcome variables.

Given the absence of access to ground-truth causal
effects in the empirical data, we adopt a comparative
strategy (Yin and Chen, 2020) to analyze results
obtained with and without our approach. The latter
signifies the ’naive’ approach, which does not control
for confounding factors. This comparative analysis
proves effective as we have demonstrated our model’s
performance through simulation experiments.

5.3. Results and discussion

We report the opinion differences between the
treatment group (i.e., direct neighbors of a social bot that
discloses its opinion) and the control group (i.e., direct
neighbors of a human user that discloses his opinion).
The estimated results using the Naive approach and

Table 2. Results on Empirical data.
Against Support

Diff Naive CfGL Naive CfGL
Friends 0.173 0.018 -0.757 -0.262

(0.637) (0.481) (0.000) (0.020)
Friends + 0.184 0.023 -0.926 -0.518
Followers (0.448) (0.357) (0.000) (0.015)

CfGL are shown in Table 2. To ensure the robustness
of the findings, we examine the friend relationship
(neighbors followed by the human or bot) and the
additional follower relationship (neighbors who follow
the human or bot ) respectively.

There are several critical findings. First of all, the
influence of bots on individuals’ opinions is weaker
than that of humans (difference = −0.262, p =
0.020; difference = −0.518, p = 0.015). This
observation aligns with the notion that individuals
tend to place more reliance on opinions expressed
by in-group humans rather than out-group bots.
Moreover, our proposed method reveals that the impact
differences between bots and humans are overestimated
when confounding factors such as homophily and
influence from homophilous friends are not adequately
considered.

Secondly, influential patterns vary based on opinion
types. Specifically, bots exert a significantly weaker
impact when expressing supportive opinions, while
no discernible difference is observed for oppositional
opinions. Given the potential influence of social norms
on shaping opinions (Bicchieri and Mercier, 2014), we
undertake a comprehensive exploration of the contextual
implications behind each opinion within our dataset.
Notably, only 29.5% of humans holding a supportive
opinion towards wastewater discharge, it becomes
apparent that the prevailing social norm is to oppose
the discharge proposal. This finding demonstrates that
when bots’ opinions diverge from social norms, the
out-group bias is enhanced and humans are highly
reluctant to accept the bots’ opinions. Our finding
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highlights the moderating role of alignment between
bots’ opinions and social norms in shaping individual
opinions, which means that researchers are advised to
distinguish between opinion types when examining the
influential differences between humans and social bots.

6. Conclusions

Evaluating the impact differences between social
bots and humans on the opinions in social network
is important in many scenarios. In this study, we
propose CfGL based on counterfactual graph learning to
solve this challenging problem. CfGL shows excellent
performance on the synthetic data representing various
domains. We also find that humans are more influential
than bots on their neighbors’ opinion. However,
the difference is overestimated without controlling the
confounders or making distinction between the types of
opinions.

Despite these advantages and insights, there are
some limitations to this study. Since there is no
ground-truth causal effect, we can only leverage
simulated data to prove the effectiveness of our
approach. The simulation contains some common cases,
and future studies can exam other cases to extend
our results. Moreover, our approach is based on
the homophily assumption in social networks, whereas
individuals may also exhibit variety seeking behaviors
that lead them to connect with dissimilar friends. Future
research can explore how to assess the social bots’
impact in heterophily networks. Furthermore, this
work can be expanded by analyzing the confounding
influence of platform content recommendation systems
(Pescetelli et al., 2022) on the evaluation of social bot
impact. Finally, researchers can further explore the
diverse influential patterns of different opinions in social
networks.
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