
Overcoming Test Debt and Advancing Software Sustainability with
Automated Testing: A B2B Trading Platform Case Study

Xiaoge Zhang
Technical University of Darmstadt

liriaxiaoge@gmail.com

Bhavika Sharma
Technical University of Darmstadt

bhavika.sharma@stud.tu-darmstadt.de

Timo Koppe
Technical University of Darmstadt

timo.koppe@tu-darmstadt.de

Abstract

This paper explores the current state of software
quality assurance (SQA) practices with a focus on
test automation. It applies these practices to a
B2B online trading platform and builds a conceptual
framework to implement automated end-to-end (E2E)
tests for a critical business process and develop a test
debt payback approach to increase unit test coverage.
Our research follows the Design Science Research
(DSR) methodology and offers deep insights through
collaboration with the business and development team.
The paper concludes by providing strategical and
operational recommendations for organizations looking
to improve their SQA processes. Overall, the study
highlights the importance of SQA and test automation
for long-lasting software and demonstrates concrete
approaches for solving common challenges in the field.

Keywords: E2E Testing, Test Automation,
Sustainable Software, Test Debt Payback, Case
Study

1. Introduction

Software is ubiquitous. With the rapid development
of information technology and software engineering
in the last decades, software has become a central
part of our society. The consequences of insufficient
software quality stretch from minor inconveniences in
daily life to cyberattacks against government agencies
(e.g. Walkinshaw, 2017). From a business perspective,
software quality assurance is not only vital for the
success of software development projects but also a
major cost driver due to the high complexity and
dynamics of today’s software systems. However,
numerous research has also shown the return (Slaughter

et al., 1998) and cost savings (Tassey, 2002) that early
investment in software quality could provide. Despite
the universal acknowledgement of its importance,
software quality has no canonical definition as it
depends greatly on the rapidly shifting IT landscape and
business requirements. Several software quality models
have been proposed by researchers in the software
engineering field in attempt to formalize software
quality. As an example, the latest PAS-754 specifies
safety, reliability, availability, resilience, and security
as five trustworthiness aspects that concern software
operation (Walkinshaw, 2017).
Software inspection, measurement and testing are the
major instruments of software quality assurance. While
inspection activities such as code review examine the
software statically and measurement controls software
quality through quantitative metrics and indices,
software testing executes the system under test (SUT)
with a primary intent of discovering software failures
and system validation. Through proper but simple
unit testing, a great majority of production failure
could already be caught (Yuan et al., 2014). Using
automation tools that reduce the manual generation,
execution and analysis of tests, test automation could
further improve the efficiency and ROI of software
quality assurance. However, testing of complex
software systems under agile development processes
faces numerous challenges. Rapid development cycles
make verification and validation the first to be sacrificed
in case of resource shortages (Torkar and Mankefors,
2003), and testing budgets are frequently exceeded in
practice (Ng et al., 2004). Furthermore, environmental
factors such as shorter product lifecycles and rapid
development of new IT-based business models in recent
years impose additional cost and performance pressure
on IT departments (Jamil et al., 2016).

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 7750
URI: https://hdl.handle.net/10125/107318
978-0-9981331-7-1
(CC BY-NC-ND 4.0)



In response to these challenges, a variety of practices,
tools and approaches have been developed in the field
of software testing (e.g., Ateşoğulları and Mishra,
2020). Organizations must conduct significant research,
evaluation, and decision-making effort to answer the
questions of when and what to automate (Garousi
and Mäntylä, 2016). Establishing an efficient testing
process is hence a non-trivial and context-dependent
exercise. By illustrating the common challenges of
quality assurance through the example of a real-world
B2B online trading platform, this paper aims to illustrate
an approach for designing quality assurance for modern
web applications with a focus on testing and test
automation. Conducting a complete design cycle, we
worked closely with the development and management
team of the B2B online trading platform, observed and
analyzed the challenges faced by the organization while
establishing test automation, and derived transferable
knowledge for future research and implementations.
The rest of the paper is organized as the recommended
publication schema for design science research (Gregor
and Hevner, 2013). Section 2 presents the theories
and practices of software quality assurance and software
testing. Section 3 describes the applied research
methodology and section 4 presents the designed
artefacts as well as their evaluations. Subsequently,
section 5 interprets the evaluation results and discusses
learnings of the design process. In the end, section 6
concludes the paper.

2. Theoretical Background

In this section, we delve into the theoretical
foundations of Software Quality Assurance (SQA),
Software Testing, and Test Automation, exploring
their essential roles in achieving high-quality software
products and efficient development processes.

2.1. Software Quality Assurance

SQA can be understood as part of software quality
management, separate from software quality control
and testing. It focuses on organizing and controlling
the software development process rather than testing
against requirements. SQA aims to ensure a certain
level of confidence in software quality, covering
various stages from requirement engineering to defect
monitoring and resolution. The Capability Maturity
Model for Software (CMM) (Humphrey, 1988) justifies
the need for SQA in organizations. CMM assesses
the maturity of an organization’s software development
processes and highlights the importance of quality
software delivery, customer satisfaction, and process
improvement. The model describes five maturity

levels: Initial, Repeatable, Defined, Managed, and
Optimizing. In order to increase its process maturity
level, an organization must implement the necessary key
practices of the higher maturity level. SQA is a key
practice at the Repeatable level, which involves planning
SQA activities, adherence to standards and procedures,
informing stakeholders, and resolving noncompliance
issues (Paulk et al., 1993). In order to help organizations
establish SQA, the International Organization for
Standardization (ISO) has developed the ISO 90003
guideline (ISO/IEC/IEEE, 2018) for applying the ISO
9001 standard to software quality assurance. ISO
90003 provides recommendations for test planning,
addressing test types, objectives, cases, and data, as
well as documenting validation results (ISO/IEC/IEEE,
2018). ISO 90003 registration is pursued by software
companies for international recognition and competitive
advantage (Helio Yang, 2001). Total Quality
Management (TQM) is another approach to software
quality, promoting continuous improvement through
humanistic principles and scientific methodologies
(Parzinger and Nath, 2000). TQM implementation
requires significant cultural changes and encompasses
factors such as executive commitment, quantitative
quality control, process evaluation, and training in
various areas, including statistical methods and ISO
9000 principles. TQM adoption has shown positive
impacts on customer satisfaction, CMM levels, and ISO
90003 compliance (Parzinger and Nath, 2000).

2.2. Software Testing

Software testing is the process of executing a
program under specific conditions and evaluating its
behavior (IEEE, 2014). It aims to determine if the
program functions as expected. The testing process can
be categorized as unit testing, integration testing, or
system testing, depending on the scope of the system
under test (SUT).

Test-Oriented Development. With the emergence
of agile software development, various test-oriented
DevOps methodologies have been proposed to ensure
efficient and effective testing processes. These
methodologies provide rules and guidelines for
writing new features and their corresponding tests.
Traditionally, developers would write tests after
completing the production code for a unit or system.
However, these methodologies introduce a different
workflow. Following are three agile approaches that
describe the structuring of the test suite:

1. Test-driven development (TDD): TDD involves
short coding cycles that begin with writing a unit

Page 7751



test, followed by writing the production code,
and concluding with code refactoring. Each
cycle should be completed within 10 minutes and
at a steady rhythm. TDD improves functional
quality and productivity due to its granular and
uniform coding cycles compared to the traditional
waterfall testing approach (Fucci et al., 2017).

2. Acceptance test-driven development (ATDD):
ATDD is a variation of TDD where the
development process is driven by acceptance
tests instead of unit tests. Developers generate
test cases from the requirements to verify the
functionality of the SUT. TDD and ATDD share
the challenge of high dependency between test
code and system implementation, as code writing
and test case generation occur in the same coding
cycles (Solis and Wang, 2011).

3. Behavior-driven development (BDD): BDD
addresses the challenges of ATDD by focusing
on test automation. Main characteristics of BDD
are the use of ubiquitous language in writing
specification, iterative processes that decompose
business outcomes into system features, and
automated acceptance testing (Solis and Wang,
2011).

2.3. Test Automation

Test automation involves the use of automation
tools and frameworks to automate the activities of test
generation, execution, and evaluation and is expected
to improve accuracy of fault detection, increase test
coverage, and improve overall efficiency of software
testing (Umar and Chen, 2019). Through a multi-vocal
literature review, (Garousi and Mäntylä, 2016) proposed
a checklist to support the decision-making on when
to automate software testing. Frequent regression
testing, importance of tests, economic benefits, and
stability of test interface were a few key factors
favouring automation. Factors against automation
were major modifications of SUT, complexity and
dependence on other products, indeterministic test
execution, and maintenance effort. Upon deciding
for test automation, developers and testers face the
next challenge of automating existing manual test
cases and maintaining the automated test suite over
the time, which requires immense effort. Test
automation frameworks are systems that provide core
functionalities for creating, executing, and maintaining
test cases, and allow extension with new kinds of
tests. These fulfill high-level requirements of large-scale
test automation: automatic test execution, ease of

use, and maintainability. Moreover, test automation
frameworks should also be capable of error and failure
handling, test results verification, detailed logging,
and automatic reporting (Laukkanen, 2006). Beside
using an appropriate framework, test automation also
faces organizational challenges. Through a systematic
literature review, (Wiklund et al., 2017) constructed a
socio-technical system of test automation. Behavioral
factors, namely process adherence and organizational
change affect the deployment and success of test
automation projects. Problems in business and planning
such as lack of time and resources often lead to
accumulation of test debts, i.e., inadequate test coverage
and improper test design. It is hence important to
take both technical and organizational factors into
consideration when planning and implementing test
automation.

3. Research Method and Case Description

The purpose of this study was to develop and design
quality assurance for a real-world web application with
a focus on test automation and derive transferable
knowledge from the process. Design is both a
process and a product, and design science is one of
the two paradigms that characterize the Information
Systems research (Hevner et al., 2004). Design
science seeks to solve real-world problems and generate
design knowledge to help practitioners create solutions
to problems in specific fields (Engström et al.,
2020). In this study, we follow the Design Science
Research Process (DSRP) described by Pfeffers et
al. (2020), a process sequence beginning with
identification of a problem followed by the iterative
activities of objective-setting, design and development,
demonstration, evaluation, and communication (Peffers
et al., 2020). The output of DSRP in IS context are IT
artefacts that can be implementations or practices such
as an automated test suite and a set of quality assurance
processes, as is the case in this study. The real-world
problem of this study occurs at a B2B online trading
platform of a German technology group. The platform
is responsible for real-time displaying and trading of
commodities, processing of the transactions, as well
as management of client accounts. Billions of euros
of revenue are generated through the trading platform.
Due to the high complexity and associated financial
risks, the functional correctness of the application
is of particular importance. The trading component
of the application is the most critical amongst all,
having the biggest financial impact in case of serious
defects and is hence selected as the object of this
study. The current test suite for the application is

Page 7752



mainly made of unit tests while integration tests are
missing. Test scope focuses on the aforementioned
trading component, and unit test coverage is very low.
Due to the lack of a complete automated test suite,
regression testing is conducted completely manually
by the domain experts. The team is provided with
the continuous test automation tool Tricentis Tosca1,
which has demonstrated success in the company’s SAP
testing. For the SUT only a few UI tests have been
implemented in Tosca without fully exploiting the tool’s
full capability. Test cases are designed by the domain
experts and documented in Excel spreadsheets. The
team works on the development of the SUT in 4-week
Scrum-Sprints and has a release frequency of 1-2
months. Despite the long release cycle, test debt repay
has been slow and the current testing is considered far
from ideal by both the managers and the developers. In
response to these challenges, the management wished to
reduce long-term risks by improving the overall testing
of the SUT and introducing best practices to the team.
Specifically, they aimed to apply and evaluate Tricentis
Tosca for End-to-End test automation; revise and
improve current quality assurance processes; and derive
transferable knowledge for further development of the
SUT and other applications of the organization. From
a research perspective, this study aimed to investigate
the gap between the practical implementations and
the state-of-the-art theories of quality assurance with
a focus on automated software testing. This
included developing artefacts to satisfy stakeholders’
requirements and identifying causes for the current
organizational problems. The developed artefacts were
evaluated quantitatively as well as qualitatively through
interviews and surveys. Adhering to the Design Science
Research guidelines (Hevner et al., 2004), the artefacts
were communicated to stakeholders in the forms of
presentations, document reports, meetings, and final
demonstrations of results.

4. Results

In this section we present our three main results.
First, we discuss the framework we provide to
understand the problems of test automation embedded
in organizational and cultural factors and provide
countermeasures to address these. Second, we show
the additional value of deploying test automation
leading to easier software maintenance by increasing
test coverage and ROI. Thirdly, we design a test debt
payback approach which aims to structure and organize
testing related tasks alongside feature development and
operational tasks.

1https://www.tricentis.com/products/automate-continuous-testing-tosca

Problem Analysis Framework A design cycle
in design science research starts with problem
investigation to identify the areas for improvements
(Wieringa, 2014). As described in the last section, the
main problem of the organization was the lack of test
management and improper implementation of testing.
This was reflected by the large amount of accumulated
test debt in the SUT. In order to find out the reasons
behind the problem, semi-structured interviews were
conducted with domain experts and developers of the
organization. The interviews focused on covering four
topics: individual backgrounds, role and experience in
the team, opinion on the current testing, and suggestions
for areas of improvement. Based on the data gathered
from the interviews, we present a conceptual framework
of causes and solutions as a starting point of the
design. The interviews were conducted with relevant
stakeholders of the SUT, including internal employees
as well as subcontracted developers. The statements
of interviewees were coded and clustered into the
following four classes of factors:

1. Technology-level factors: factors regarding the
technology involved, including the tools used for
testing and the SUT’s architecture and codebase.

2. Actor-level factors: factors regarding the
individual participants. The two main groups
of actors in this case are the developers and the
domain experts. Main independent variables
identified are the individual’s technical and
domain-specific know-how, the responsibilities
carried, and the time and resources that are
available to the individual.

3. Organization-level factors: factors regarding the
organization of the team. Planning of testing
and quality assurance, coordination of testing
and development processes, prioritization
of testing and implementation tasks and
controlling mechanisms used for ensuring
process conformation and transparency are the
main identified categories.

4. Environment-level factors: factors regarding the
environment of the specific case. This includes
enterprise culture, that is the enterprise-wide
background of software quality assurance and
testing, and business domain, which is the
specific field of industry where the SUT and its
stakeholders situate.

Among 66 collected statements from 13 interviewees,
organization- and actor-level factors emerged as the
most prominent classes. Technology and environment

Page 7753



were significantly smaller classes that each contributed
about 10% of all the statements. From all types of
interviewees, the developers and the product owners
offered the majority of statements, while managers
and testers offered less due to their smaller head
counts. Low quality codebase was the most frequently
mentioned and universally agreed upon factor amongst
all, especially the developers. The current developers
faced a lot of difficulties caused by the legacy code
that was produced by the initial outsourcing agency.
The unit tests were poorly written and are barely
useful nowadays, according to three developers. The
large amount of broken unit tests and incomprehensible
code in the codebase led to difficulty in testing and
development. Reasons for the low-quality initial
development were, according to business stakeholders,
cost minimization and underestimation of expenses at
the beginning of the project. Lack of tool support
and utilization of available tools also forced testing to
be predominantly manual. Architectural complexity
of the SUT was a smaller but also important factor
contributing to difficult test debt payback and lacking
documentation. Due to the monolithic architecture and
complex add-in landscape of the SUT, constant upgrades
and adaptations to external changes were required,
producing extra overhead for the developers, and further
reducing the available testing time. Lack of resources
and time was the most prominent actor-level factor.
Pressure of feature development and issue resolution,
and hence, a general lack of time for testing was a
common complaint of developers. There was also
an uneven distribution of know-how and test-related
responsibilities in the team. The organization lacked
the know-how for implementation of test automation
in the corresponding tool. Since testing was manually
performed by the domain experts with the necessary
domain knowledge, it became a bottleneck for an
on-schedule release when the responsible person was
not available. In general, ownership of quality was
absent in the organization, meaning that not everyone
held themselves responsible for the quality of the
product and processes. A test specialist who planned,
organized, and established testing was a vacant role
in the team. Test plan, requirement specification,
technical documentation, quality metrics were all absent
despite being important assets of quality assurance.
Testing had been systematically relegated by product
owners and developers. Not only domain experts but
also developers were not sure about the test and risk
coverage when asked. Testing was not coordinated
and carefully considered during architectural design.
Hence, the product also lacked a stable and isolated
environment for testing as well as a basic set of test

configurations. Extending to the overall development
and operations, the project faced numerous challenges
that were not properly managed. Despite using Scrum
terminologies such as “sprint planning” and “sprint
review”, conformance to the Scrum methodology was
low. User stories and tasks were often incompletely
documented and discussed during sprint planning,
and the team frequently underestimated development
effort. The project lacked transparent leadership
and management, although its complexity demanded
high interdivisional coordination and cooperation across
multiple locations. At an environment-level, the
business domain of the application and the enterprise
culture were not particularly favorable either. High
complexity of the online-trading domain made it more
difficult to have transparent and efficient communication
between domain experts and developers. Although
the technology group is widely diversified and
relatively well-digitalized, its industrial background and
the enterprise-wide absence of software development
culture led to the lack of strategical awareness for
software quality and testing. Upper management that
controlled the project budget was not well-informed
about the challenges faced by the development team
due to the hierarchical organizational structure, making
it difficult for the requirements and feedback of the
employees to be addressed.

Figure 1. Conceptual framework: Impediments for

test automation across organization layers and

countermeasures

Value of Test Automation For the trading component
of the SUT, test cases for an end-to-end (E2E) test
scenario were implemented in Tosca. The test scenario
encompasses the customer journey of a user on the
trading platform that begins with log-in and ends with
submission of a trading order. The validation of the
test scenario concerns a dynamic price calculation based
on specific price settings in the backend, which could

Page 7754



lead to critical financial damage if not done correctly.
Manual testing of the test scenario was slow due to
the complicated backend settings, large number of steps
spanning three application interfaces, and requirements
for multiple access rights. Different combinations
of the test attributes of the SUT and their different
values amounted to 54 possible test variants. Manual
testing could not feasibly cover all these variants and
during the time of the study only 2-3 variants were
being tested. Manual testing of the test scenario
had been performed regularly as a part of regression
testing. The test steps were extensively documented
with detailed explanations for the calculation. Three
testers collaborated on the manual testing: one designed
the Excel sheet based on business insights and intuition,
one executed the test steps in the SUT and recorded
the attributes in the Excel sheet, and one carried out
the verification in the database. According to the
testers, regression testing about 30 test cases of the
test scenario typically spanned across multiple working
days depending on the availability of the participants.
With the help of documentations and explanations from
the testers, an automated test suite of the test scenario
was implemented in Tricentis Tosca. This automated
test suite covered the entire testing process of test
case design, test scripting, test execution, and output
evaluation. Test attributes and execution results were
also automatically registered on an Excel sheet for
transparency. On average, the duration of each test
case execution in Tosca was 46.5 seconds. Complete
testing and reporting of the whole test scenario with 54
test cases hence required only 42 minutes. To evaluate
our artefact, we referred to the evaluation framework by
(Venable et al., 2016) and chose to adopt the “Human
Risk Effectiveness” evaluation strategy. This evaluation
strategy starts with artificial evaluations in the early
design stages and quickly moves on to more naturalistic
evaluations. It is suitable for user-oriented design
risks and for cases where the artefact utility should be
sustainable in the long run and in real situations, which
were exactly the requirements of this study. In terms
of the artificial evaluations, we carried out a return
on investment calculation for Tosca test automation
to validate its financial value for the organization in
addition to the operational and strategical impacts.
On one hand, we estimated the cost of ownership
of automated testing based on cost factors including
software licence, training, maintenance, and operations.
On the other hand, we estimated the financial benefits
of testing as the sum of cost savings through reduced
manual testing and occurrence of production failures.
While costs of manual testing can be calculated based
on time requirements and hourly wages of the respective

activities and staff, costs of failure recovery are more
SUT-specific and have to be estimated based on the
financial impact of production failure (x), the probability
of prodution failure, and the degree of test automation
(y). Depending on the SUT, degree of test automation y
can be defined as number of automated test scenarios or
utilization rate of the test automation tool. Overall, the
return on investment is defined as

ROI =
financial benefit− cost of ownership

cost of ownership

which is positively correlated with both x and y. In the
case of this study, a positive ROI for the SUT could
be already achieved with three automated test scenarios
(y=3) even without recovery cost savings (x=0) due
to a significant reduction in labour costs. After the
artificial evaluation and validation of the artefact’s ROI,
we proposed the following questions (Q) for naturalistic
evaluations to assess the artefact’s effectiveness against
the organization’s problems and the following metrics
(M) per question were used:

• Q: To what extent would the artefact contribute to
the completion of the current test suite? M: Test
coverage, confidence, and execution frequency

• Q: To what extent would the artefact improve the
test process and effort? M: Test scope, effort, and
effectiveness

• Q: How well would the artefact fit to the
organization and support future development of
the SUT? M: Perceived usability, realizability,
effectiveness, and applicability to other areas of
the SUT

An anonymous survey was designed with questions
targeting these metrics and the responses showed an
overall positive evaluation. All respondents believed
that Tosca test automation could improve the efficiency
of testing.

Test Debt Payback Regarding the test debt of the
SUT the following test debt pay back approach was
designed with the aim of structuring and organizing
testing related tasks alongside feature development and
operational tasks. The approach was approved by the
development and management staff of the SUT. In line
with the quality assurance models, the approach consists
of the following components:

1. Risk-oriented prioritization of test requirements:
Instead of finding test targets on the fly, test
scenarios are provided by domain experts and

Page 7755



sorted by business risks. These high-level test
scenarios are identified through the business
insights of the domain experts and represent
key customer-oriented functionalities of the
SUT. To translate such test scenarios into
concrete unit testing tasks, developers follow
a process of investigation and implementation.
In the investigation phase, technical components
involved in the test scenario are identified, and
the testability of the legacy code is assessed. If
the existing components are directly testable, unit
testing tasks are created in the project backlog. If
refactoring of legacy code is required, testing will
be carried out as a part of the refactoring tasks.
Then, in the implementation phase, the created
tasks are taken into sprint backlogs and assigned
to developers.

2. Divide-and-conquer large testing effort: To
balance the large testing related workload with
the high pressure for feature development,
a divide-and-conquer strategy is adopted.
Since it is not feasible to tackle all the test
scenarios at once, these are separated, depending
on their complexity, into groups of two or
three. Considering the different nature of the
investigational and implementational tasks, each
development cycle will only focus on one kind of
task, i.e., either investigation or implementation.
After one group of test scenarios is investigated
in the investigation phase, the tasks are boiled
down in one or multiple development cycles in
the implementation phase. This approach aims
to provide a standard structure for the test debt
payback process, create a sense of direction for
the team, and improve the efficiency by reducing
coordination efforts.

3. Monitoring, evaluation, and process control:
Monitoring tools are adopted for increasing
transparency of the progress. Code quality and
test coverage related metrics are continuously
measured and integrated into the standard reports.
Tests created by subcontracted developers are
reviewed and accepted by an internal technical
lead, and conformance to coding standards and
the established testing process is controlled
by the project manager. Testing activities
are integrated into all existing organizational
activities, especially the sprint planning, review,
and retrospective.

The test debt payback approach was presented to
and accepted by both the development team and the

business stakeholders in the SUT’s organization. An
anonymous survey was conducted with the same group
of stakeholders to evaluate the approach. While all
respondents agreed on the importance and necessity of
unit testing for the SUT and were generally confident
about the applicability of the approach, they had
different expectations regarding the amount of workload
during the described process.

Lead Developer/
Test Manager Product OwnerDeveloper I Tester

Identified
uncovered test

scenarios

Prioritise lest
scenarios according

lo business risks

Start of 
investigation sprint

Plan sprint capacity 
and take up 

investigation tasks

End of 
investigation sprint

Start of 
implementation sprint

Specify requirements and 
create investigation tasks

in backlog

Align test requirements 
and approve 

implementation tasks

Plan sprint capacity 
and take up 

implementation tasks

End of 
implementation sprint

Investigation tasks 
assigned

Investigate code base and 
identify relevant 

components

Evaluate coverage and 
review coverage goal

End of test
debt pay back

Coverage goal 
reached?

Not-done 
implementation 

tasks in 
backlog?

Not-done 
implementation 

tasks in 
backlog?

Create 
implementation tasks 

in epic

Create corresponding 
tasks in backlog

Investigation tasks 
finished

Implementation tasks 
assigned

Create tests

Test review and rework 
until acceptance

Implementation tasks 
finished

Yes No

No

Yes

No

Yes

Figure 2. Test debt payback process

5. Discussion

Through ten weeks of close collaboration with the
SUT’s development and management team, this study
evaluated and designed a customized quality assurance
strategy for the SUT’s organization. Relieving human
testers and removing development bottlenecks, test
automation not only increased product confidence but
also contributed to process improvements. However,
implementing test automation was not a simple task.
The SUT’s organization faced serious challenges
coming from various organizational levels. In response
to these challenges, we designed and delivered concrete
technical implementations as well as strategic plans
and approaches, including some outside the scope
of this paper. On one hand, automated E2E

Page 7756



tests were implemented for the SUT with Tricentis
Tosca. Hereby we aimed to validate the financial
and operational benefits of test automation which are
prevalent in the literature. First, from a financial
standpoint, our internal ROI calculation illustrated the
financial impact of test automation tool adoption in
relation to its degree of utilization and the business
risks of the SUT. While there exist test automation
ROI calculation tools2, our calculation also took the
potential savings through prevented product failures into
account. Hence it quantified the rationale that more
business-critical applications would benefit more from
test automation. This is in correspondence with the
checklist developed by (Garousi and Mäntylä, 2016),
where “SUT is mission critical” is a factor favouring
test automation. While test automation may require
ongoing maintenance and substantial initial effort for
implementation and integration, there is no doubt
that it yields a positive return on investment (ROI)
considering its criticality in our case. However, it
is recommendable that organizations regularly review
the ROI calculation to improve its accuracy and pay
attention to the actual empirical performance of the
tool. Second, the test automation tool Tricentis Tosca
provides powerful features in accordance with the
state-of-the-art test automation practices. For instance,
the script-less modular framework and data-driven
testing functionalities enable quick and simple test
creation as well as easier maintenance of existing tests,
which significantly decrease the estimated effort for
E2E testing. In addition, when developers have limited
capacity for testing, codeless E2E tests could be a
great help since they do not consume development time.
Finally, we could also confirm the positive operational
impact of test automation through the qualitative
evaluations collected from the stakeholders. However,
one discrepancy existed regarding the estimated effort
after adoption of the test automation tool. This
discrepancy was also observed from the qualitative
evaluation of the test debt payback approach. While
the operational staff as well as upper management
of the organization were convinced of the benefits of
test automation and organized approaches, the short
duration of this study did not suffice to observe actual
implementations nor showcase the long-term impact
of the designed artefacts. Establishment of quality
assurance inevitably disrupts accustomed workflows
and brings additional effort; hence, teams must plan
operational tasks and clarify their ownership at the
very start. The major concern of employees about
time and resource allocation, prioritization, and upper
management approval again stresses the importance of

2http://www.elbrus.com/services/test automation roi calc/

leadership commitment as well as its transparent vertical
communication. While upper management requires
information and motivation from the operational staff
to grant resources, operational staff requires affirmation
from the upper management to prioritize specific
tasks. We hence promote the necessity of transparency
regarding decisions such as budget, roadmaps, and
upper management opinions. Our experience so far
validates and complements existing research (Garousi
and Mäntylä, 2016; Wiklund et al., 2017).

Despite the overall positive results of the evaluations,
the design process faced various unexpected difficulties
that reflected the general challenges of implementing
software quality assurance in real-life scenarios. First,
the design process was confronted with constant
conflicts between the abstractness of the quality
assurance models and the specificity of organizational
characteristics and constraints. Despite the large
amount of available literature, tools and guidelines
provided by the research and SQA communities, the
actual implementation of such theoretical knowledge
in organizations usually consists of strategic and
operational decision-makings that require very specific
tailoring to the team’s technical, organizational, and
environmental conditions. General models and dictates
of best practices are not particularly helpful when
certain limitations are hard to conform to. Especially in
the short term, compromises are almost impossible to
avoid. Either dedicated resources are allocated for SQA
or the team must acquire a high level of consciousness
and discipline to remove such constraints. It is
possible that for many teams, like the one in this study,
the allocation of resources has its limits. In such
cases, motivated employees who consistently initiate
discussions and push forward positive changes as well
as upper-management support are crucial for long
term success. Second, the organization had to make
trade-offs between different goals and best practices.
For feature development, practices from the agile
development model Scrum were adopted by the SUT
team. However, limited budget precluded the Scrum
master role. The small number of developers in face
of the highly complicated SUT and large number of
operational tasks further dragged the team towards
a less agile direction. A propensity of cost savings
had already caused the project to choose the most
economical subcontractor for the initial development
of the SUT, which then backfired with high amounts
of technical debt and large correction efforts. This
validated the existing research that investment in
software quality should not occur towards the end
of the project (Slaughter et al., 1998). With many
hierarchy layers between the project manager and the

Page 7757



resource allocator, communication effort was high
and upper-management engagement was difficult to
achieve. With a matrix project organization structure,
internal employees including the project lead came
from different departments and participated part-time
on the project with full-time subcontracted developers.
Subcontracting development and cross-continental
separation of stakeholders were also factors that led to
obscurities regarding dependencies and requirements
and increased coordination efforts. As remote
collaboration and subcontracting become more and
more prevalent in the software industry, we argue that
such factors could also play a role in the establishment
of SQA.

6. Limitations and Future Research

This study contributes to the field of software
quality assurance by validating and strengthening
existing research through empirical evidence obtained
from a non-trivial real-world scenario. It provides
insights from the evaluation and design of test
automation in a corporate environment, especially
regarding the organizational mechanisms illustrated by
the conceptual framework of causes and solutions.
The framework and its discussions, despite stemming
from the SUT’s organization, offer enough abstraction
for generalization. In addition, our approach to
test debt pay back is also of referential value for
industry practitioners, in particular for resource-scarce
development teams. Nonetheless, this study has several
limitations that future research should tend to. First,
the short time frame limits the scope of evaluation and
the conduct of further design cycles with the SUT.
To properly examine the effect of the artefacts on
the quality of the SUT, more artificial evaluations are
necessary after actual implementations. For example,
test coverage metrics, number of reported incidents,
static code quality metrics are all performance indicators
that should be observed for the test strategy to be
continuously improved. Second, our own technical
and business insights were limited. By obtaining
deeper knowledge of the SUT’s technical construct
and through direct participation in unit or integration
testing, the scope of design and evaluation could
be further improved. Better knowledge of trading
mechanisms and customer relations could also help us
gain deeper insights about the organizational impact of
SQA. Further research should hence conduct long-term
studies and work in closer collaboration with the
development teams. Finally, the sample size of one
SUT in one organization could limit the transferability
of our conclusions. Other software products could

have lower levels of risks than the SUT, and other
organizations could possess very different cultures. The
B2B online trading platform may not be representative
of other complex software systems. All these properties
would affect an organization’s attitude and approach
towards SQA and test automation. In this regard,
studies that compare software products within the
same organization, or similar products from different
organizations could be more insightful. Furthermore,
research that validates our artefacts, such as the
conceptual framework or test debt payback approach,
by applying them on other projects and analysing
the cost-benefit trade-offs of the proposed framework,
would be greatly appreciated.

References

Ateşoğulları, D., & Mishra, A. (2020). Automation
testing tools: A comparative view.
International Journal on Information
Technologies & Security, 12(4), 63–76.

Engström, E., Storey, M.-A., Runeson, P., Höst,
M., & Baldassarre, M. T. (2020). How
software engineering research aligns with
design science: A review. Empirical Software
Engineering, 25(4), 2630–2660.

Fucci, D., Erdogmus, H., Turhan, B., Oivo, M.,
& Juristo, N. (2017). A dissection of the
test-driven development process: Does it really
matter to test-first or to test-last? IEEE
Transactions on Software Engineering, 43(7),
597–614.

Garousi, V., & Mäntylä, M. V. (2016). When and what
to automate in software testing? a multi-vocal
literature review. Information and Software
Technology, 76, 92–117.

Gregor, S., & Hevner, A. R. (2013). Positioning
and presenting design science research for
maximum impact. MIS quarterly, 337–355.

Helio Yang, Y. (2001). Software quality management
and ISO 9000 implementation. Industrial
Management & Data Systems, 101(7),
329–338.

Hevner, A., R, A., March, S., T, S., Park, Park, J.,
Ram, & Sudha. (2004). Design science in
information systems research. Management
Information Systems Quarterly, 28, 75–.

Humphrey, W. (1988). Characterizing the software
process: A maturity framework. IEEE
Software, 5(2), 73–79.

IEEE. (2014). IEEE standard for software quality
assurance processes. IEEE Std 730-2014
(Revision of IEEE Std 730-2002), 1–138.

Page 7758



ISO/IEC/IEEE. (2018). Software engineering —
guidelines for the application of ISO
9001:2015 to computer software (ISO
90003:2018(E)). International Organization
for Standardization.

Jamil, M. A., Arif, M., Abubakar, N. S. A., & Ahmad,
A. (2016). Software testing techniques: A
literature review. 6th international conference
on information and communication technology
for the Muslim world (ICT4M), 177–182.

Laukkanen, P. (2006). Data-driven and keyword-driven
test automation frameworks. Master’s thesis.
Helsinki University of Technology.

Ng, S. P., Murnane, T., Reed, K., Grant, D., &
Chen, T. Y. (2004). A preliminary survey
on software testing practices in australia.
Australian Software Engineering Conference.
Proceedings., 116–125.

Parzinger, M. J., & Nath, R. (2000). A study of
the relationships between total quality
management implementation factors and
software quality. Total Quality Management,
11(3), 353–371.

Paulk, M., Curtis, B., Chrissis, M., & Weber, C.
(1993). Capability maturity model, version 1.1.
Software, IEEE, 10, 18–27.

Peffers, K., Tuunanen, T., Gengler, C. E., Rossi, M.,
Hui, W., Virtanen, V., & Bragge, J. (2020).
Design science research process: A model for
producing and presenting information systems
research. arXiv preprint arXiv:2006.02763.

Slaughter, S. A., Harter, D. E., & Krishnan, M. S.
(1998). Evaluating the cost of software quality.
Communications of the ACM, 41(8), 67–73.

Solis, C., & Wang, X. (2011). A study of
the characteristics of behaviour driven
development. 37th EUROMICRO conference
on software engineering and advanced
applications, 383–387.

Tassey, G. (2002). The economic impacts of inadequate
infrastructure for software testing. National
Institute of Standards and Technology, 1.

Torkar, R., & Mankefors, S. (2003). A survey on testing
and reuse. Proceedings 2003 Symposium on
Security and Privacy, 164–173.

Umar, M. A., & Chen, Z. (2019). A study of
automated software testing: Automation tools
and frameworks. International Journal of
Computer Science Engineering (IJCSE), 6,
217–225.

Venable, J., Pries-Heje, J., & Baskerville, R. (2016).
Feds: A framework for evaluation in design
science research. 25(1), 77–89.

Walkinshaw, N. (2017). Software quality assurance:
Consistency in the face of complexity and
change. Springer.

Wieringa, R. J. (2014). Design science methodology for
information systems and software engineering.
Springer Berlin Heidelberg; Imprint; Springer.

Wiklund, K., Eldh, S., Sundmark, D., & Lundqvist,
K. (2017). Impediments for software test
automation: A systematic literature review.
Software Testing, Verification and Reliability,
27(8), e1639.

Yuan, D., Luo, Y., Zhuang, X., Rodrigues, G. R.,
Zhao, X., Zhang, Y., Jain, P., & Stumm, M.
(2014). Simple testing can prevent most critical
failures: An analysis of production failures in
distributed data-intensive systems. OSDI, 10,
2685048–2685068.

Page 7759


