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Abstract

Communities worldwide are experiencing more
frequent and intense heat waves, where the increased
use of energy-intensive cooling systems is putting
additional pressure on the power system. While
power utility companies reduce this overload by
applying controlled outages, this disruption inequitably
impacts communities dependent on the electricity supply
to unbearable indoor temperatures during extreme
weather. To assess the relationship between power
outages and overheating risk, this paper formulates a
framework to evaluate the community overheating risk
when exposed to rotating outages during heat waves.
The framework is based on a set of metrics that initially
evaluates the overheating risk at a household level,
which is aggregated to the power distribution system
nodes and then scored to quantify the overall feeder
overheating inequity based on a thermal simulation
of the indoor temperature when a power outage
occurs during a heat wave. A sensitivity analysis
is also conducted to assess the impact of distributed
energy resources on the community vulnerability and
overheating risk inequity. The proposed framework
is tested on the IEEE 33-node test system, where
it succeeds in identifying highly vulnerable areas
where planning and operational decisions may enhance
community resilience to heat waves.

1. Introduction

1.1. Background and Literature Review

Climate change has increased the frequency and
intensity of heat waves, which represent one of
the extreme weather events that causes most deaths
worldwide, with more than 70,000 deaths during the

2003 European heat wave, and hundreds of excess
death occurring in the US during 2021 Northwest
and Canada heat wave [1]. To avoid the risk of
heat-related illness during heat waves, communities are
forced to ramp up the use of cooling systems at their
households, e.g., heating-ventilation-air conditioning
(HVAC) systems, to mitigate thermal discomfort and
risk, which cause overloading on the power distribution
systems. In addition, heat waves compromise the
ability of Independent System Operators to ensure
generation-demand balance, as high temperatures also
limit the operation of thermal generation units, and
reduce the efficiency and power transfer capability of
the transmission system, as occurred recently during the
2020 California heat wave [2].

In a scenario where the generation and demand
imbalance can trigger a large-scale blackout, the
independent system operators encourage power
distribution system operators to schedule rotating
outages, where feeders are alternately disconnected
to reduce the loading at power substations. These
controlled power outages, occurring during an ongoing
heat wave, expose customers to increased indoor
temperatures due to non-operative HVAC systems;
however, the effects of high temperature are not equally
distributed among all the community members affected
by the power outage [3]. Disadvantaged communities
and population of heat-sensitive groups are commonly
located in underserved areas, where access to distributed
energy resources (DERs) is limited compared to higher
income neighborhoods, increasing the chances of
extended power interruptions. In addition, the houses
associated with these groups are commonly identified
for having poor insulation, as well as antiquated and
low efficient appliances causing high energy cost and
intensifying their overheating risk [4].
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Power distribution system resilience to extreme
weather events can be quantified and enhanced using
different approaches, e.g., [5], [6]. The literature
includes metrics to quantify the impacts of automation
in power distribution system resilience to extreme
weather [7], and metrics to quantify the interdependence
between the resilience of power and water distribution
systems [8]. Enhancing the resilience and mitigating
inequity induced by outages during extreme heat, on the
other hand, requires indicators that measure the impact
of power outages during heat waves, which are intended
to provide sensitivity to make planning decisions by
power utility companies and for policymakers to define
guidelines tackling heat inequity.

The impacts of power outage during heat waves on
the resilience of buildings and community risk has been
discussed in literature from the household standpoint.
A framework on resilience of buildings during extreme
weather events and power outages is presented in [9].
Multiple metrics have been defined to determine the
thermal comfort and overheating risk, many of these
based on international standards (e.g., IEC, ISO) [10]. In
[11], an assessment to determine the duration of rotating
outages, and also, the impact of notifying customers
as a method to mitigate the impact of the heat wave
during the outage. In [12], an assessment of the impact
of power outages in a assisted living facility during
heat waves is considered, where the benefits of passive
measure are evaluated. An assessment on the benefits of
pre-cooling as an strategy to mitigate overheating risk
during heat waves is presented in [13]. An evaluation
of the resilience of buildings after implementing passive
solutions when exposed to heat waves in grid-on and
grid-off scenarios is presented in [4].

While multiple metrics have been developed to
determine the thermal comfort and overheating risk at a
household level, a research gap exists when linking the
overheating risk to the power distribution system. More
specifically, the existing approaches fail to capture the
locational overheating risk among the power distribution
system nodes when affected by a power outage, which
consequently fail to provide insights into the overheating
inequity experienced by customers at different locations.

1.2. Contribution and Paper Structure

This paper proposes a framework to quantify the
community overheating risk and inequity to power
outages during heat waves, which is summarized in
Fig. 1. In this three-stage framework, a house thermal
simulation is first implemented to estimate the indoor
air temperature at the house, given the outdoor air
temperature, the thermal attributes and cooling system

characteristics of the house, and the power availability
given the outage location and duration. Based on the
temperature estimation obtained in the house thermal
simulation, a set of metrics are evaluated to assess
the overheating risk and inequity that a community
is exposed during a power outage. The metrics
initially assess the overheating risk at a household level,
which is then aggregated to the power distribution
system nodes to determine the overheating risk spatial
distribution through the power network. Then, the
overheating risk inequity is quantified at the feeder
level based on the spatial distribution of the overheating
risk. The developed thermal simulation combined with
the risk and inequity metrics provide a tool for the
implementation of sensitivity analyses to evaluate the
impact including automation and DER installation.
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Figure 1. Framework to evaluate overheating risk

and inequity during power outages

The remainder of the paper is divided as follows:
Section 2 discusses the impacts of power outages
in the overheating risk and inequity during heat
waves. Section 3 details the developed framework
for the outage-induced overheating risk and inequity
assessment. Results are presented and discussed in
Section 4 and conclusions are drawn in Section 5.

2. Overheating Risk during Power
Outages: Exposure and Inequity

The increased temperatures caused by
extreme heat in cities expose disadvantaged
communities—communities suffering from a
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combination of economic, environmental, and health
burdens [14]—to overheating risk when subject to
unsafe temperatures during long periods, potentially
experiencing discomfort or even heat-related illnesses
[15]. While the HVAC system utilization mitigates
the risk of overheating, the increased electricity
consumption during the heat wave peak may force
power utilities to apply rotating outages, where groups
of feeders are alternatively disconnected for short
periods to reduce the total loading at power substations
during the emergency period. However, these power
outages expose customers to quick increments of the
indoor air temperature due to the outage of cooling
systems, increasing the overheating risk for the
individuals residing in this location.

The overheating risk resulting from a power outage
during a heat wave is illustrated in Fig. 2. Suppose
that the indoor air temperature is initially fixed in a
temperature setpoint, the household is exposed to a heat
wave, and the HVAC system is energized. The ability of
an HVAC system to maintain the indoor air temperature
in its setpoint is dependent on the HVAC maximum
cooling capacity, which is a function of the difference
between the outdoor air temperature and the temperature
setpoint. If the maximum cooling capacity is reached,
the indoor air temperature increases from its setpoint
(dashed line in Fig 2). This initial deviation does not
represent overheating risk unless the caution threshold is
reached, as shown in Fig. 2, where residents are exposed
to unsafe temperatures. However, if a rotating outage is
applied by the power utility, the HVAC de-energization
causes a rapid increase in the indoor air temperature
due to the lack of cooling capacity to compensate the
outdoor temperature effect (solid line in Fig. 2). This
fast increase in temperature exposes residents to longer
periods with temperatures within the caution hazard
level compared to the no-outage case, which at the same
time can potentially reach the extreme caution hazard
level increasing the risk of heat-related illness.

The exposure duration in the caution and extreme
caution hazard levels, shown in Fig. 2, can be
extracted to evaluate the overheating risk for the affected
household. While the number of hours in the caution and
extreme caution hazard levels provides a quantification
of the exposure risk, the shaded area among the
indoor air temperature during power outage and the
caution threshold—or the temperature with no outage if
greater—represents the overheating risk resulting from
the power outage occurrence, which considers both
the duration and temperature rise above the threshold.
Notice that this temperature response may not occur in
every household, since it depends on the HVAC capacity
and its efficiency, showing that some household could be
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Figure 2. Indoor air temperature during a power

outage and related household overheating risk

inequitably more exposed than others if their building
envelope has less effective insulation or HVAC system.
Hence, the purpose of the proposed framework is to
quantify the overheating risk and resulting inequity from
the occurrence of power outages during extreme heat
waves, which eventually provides a mechanism to guide
power distribution system planning.

3. The Proposed Framework

The proposed framework to evaluate overheating
risk and inequity during power outages is shown in Fig.
1. In the proposed framework, it is assumed that the
loads in power distribution feeders are composed of the
aggregation of customers, who reside in single-family
houses with pre-defined archetypes. The components of
the proposed framework are presented next.

3.1. House Thermal Simulation

In this stage, the indoor air temperature experienced
by each customer is determined based on the outdoor
air temperature data and the parameters related to
the customer’s house. The house parameters include
thermal resistance and capacitance, which is related
to geometry and construction of the building. For
the indoor air temperature estimation, it is assumed
that each customer’s house is equipped with an HVAC
system. Since this study is centered on the response to
heat waves, only the operation for cooling is considered.
The installed HVAC system at customer c house is
assumed to have a maximum power consumption phvac

c

and a coefficient of performance COPc. In this paper,
the house is modeled by an equivalent RC circuit
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with thermal resistance Rc and thermal capacitance Cc,
which can be obtained as given in [16].

During the HVAC cooling operation, the steady-state
power required to maintain the indoor air temperature
of house c connected to node i at time t at a desired
reference temperature, phvac

c,i,t, is calculated as:

phvac
c,i,t =

θout
t − θref

c,i,t

COPcRc
, (1)

where θout
t is the outdoor air temperature at time t,

θref
c,i,t is the indoor temperature setpoint for house c at

time t. If the required power by the HVAC does not
exceed the operation limits of the unit c, phvac

c , then
it is assumed that the indoor air temperature reaches
the temperature setpoint. When the power exceeds the
limits, the variation in the temperature is determined by
the indoor air temperature dynamics (2), as a function
of the previous indoor temperature, the housethermal
parameters, and the input power from the HVAC system
fixed to the exceeded limit:

θin
c,i,t = acθ

in
c,i,t−1 − bcCOPcp

hvac
c,i,t−1 + fcθ

out
t−1, (2)

where ac = 1 − ∆t/RcCc, bc = ∆t/Cc, and fc =
∆t/RcCc, and ∆t is the time step between samples.

3.2. Overheating Risk and Inequity
Assessment

This section introduces the metrics that are proposed
to evaluate the overheating risk of a community
supplied by a power distribution feeder and the inequity
experienced due to the heat exposure during outage. The
metric evaluation process is depicted in Fig. 3.

Initially, the impact of power outage on the
overheating risk is assessed at a household level, based
on the properties of each house and its HVAC system.
Once the overheating risk is calculated for each house,
the household overheating risk is mapped into the power
distribution system based on the load composition at
each node. This nodal overheating risk index is finally
used to determine the location of heat-vulnerable areas
in the feeder, as well as the inequity in the heat exposure
and vulnerability throughout the circuit.

3.2.1. Household Overheating Risk Assessment:
Multiple criteria are found in literature to
describe thermal comfort and risk, which consider
meteorological variables or heat-budget models [4]. In
particular, the index required for this assessment needs
to quantify the exposure to high temperatures as well as
the duration of the outage itself. The first index is based
on the heat index, which defines different hazard levels
based on the indoor temperature and relative humidity
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Figure 3. Metrics for the overheating risk and

inequity assessment

[12]. Initially, the exposure duration to a hazard level
is obtained, which corresponds to the duration in hours
where the indoor air temperature falls within the limits
of the heat index hazard levels, and it is used to estimate
the overall overheating of the household, averaged in
the number of days D:

uh
c,i,x=

1

D

∑
t∈T ′

f(min{θc,i,t−θx, θx−θc,i,t})∆t, (3)

where T ′ is the subset of time steps where the outage
occurs, θx, θx are the upper and lower thresholds of
caution (C) and extreme caution (EC) hazard level
x = {C,EC}, and f(z) = 1 if z > 0, f(z) =
0 otherwise. The heat index considers four different
thresholds for different heat risk categories [17]. In
this method, the caution (C) and extreme caution (EC)
thresholds, between 27 ◦C and 32 ◦C and between 32
◦C and 39 ◦C, respectively, are considered as indoor air
temperatures are not expected to reach the danger hazard
level. The index, named weighted unsafe heat hours per
household, combines the unsafe heat exposure duration
in the caution and extreme caution levels, assigning
weights wx according to their risk, calculated as:

HUHc,i =
∑

x∈{C,EC}

wxu
h
c,i,x. (4)

The second index for household overheating risk is
named overheating risk added by the power outage,
which refers to the degree-hours that are added when
the house is subject to a power outage per day,
which combines the duration of the disruption with the
magnitude of the temperature deviation:

vhc,i,x=
1

D

∑
t∈T ∗

(θc,i,t −max{θx, θoc,i,t})yxc,i,t∆t, (5)
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where yxc,i,t = 1 if θc,i,t ≥ θx, and yxc,i,t = 0, otherwise,
and T ∗ is an evaluation window from the outage
occurrence until the temperature lowers to its safe value.
The total overheating risk caused by the power outage
is obtained from combining the degree-hours calculated
for each risk range:

AHVc,i =
∑

x∈{C,EC}

wxv
h
c,i,x. (6)

3.2.2. Overheating Spatial Distribution
Assessment: Two indicators are used to aggregate
the household overheating risk to the nodes the houses
are connected to. This aggregation seeks to reflect the
concentration of vulnerable households at a given node,
as well as the impact of avoiding power de-energization
on the aggregated heat vulnerability experienced in the
node. The household weighted unsafe heat hours are
aggregated to each node as total number of unsafe heat
hours per node, which corresponds to the summation of
weighted unsafe hours of households c ∈ C connected
to the node i:

NUHi =
∑
c∈C

Nc,iHUHc,i, (7)

where Nc,i is the number of households with archetype
c connected to node i. This metric is linked to the
concentration of households and displays higher values
for nodes with a higher number of households. On
the other hand, the household-level added overheating
risk by the power outage is aggregated at each node
as overheating risk sensitivity to power outages, which
quantifies the benefit of sustained energization of a node
during a rotating outage, and is calculated as the ratio of
the total overheating risk caused by the outage AHVc,i

and the total energy curtailed during the power outage:

OAEi =

∑
c∈C Nc,iAHVc,i∑

t∈T ′ pli,t∆t
, (8)

where pli,t is the load of node i at time t. The value
of this index is higher when the total overheating risk
caused by the outage is large compared to the amount of
energy curtailed at the node.

3.2.3. Feeder-level Overheating Inequity
Assessment: The overall overheating risk inequity
that is perceived at the feeder is calculated as a
function of the nodal equivalent risk of overheating. A
feeder-level metric, named Overheating Risk Inequity
Score (ORIS), quantifies the range from where the nodal
equivalent risk of overheating metric varies for a given

operation scenario:

ORIS = OAE −OAE, (9)

where OAE and OAE and the maximum and minimum
nodal equivalent risk of overheating metric. Higher
values of this metric indicates a greater disparity in the
overheating risk aggregated between nodes. Smaller
values of the ORIS metric represent a more equitable
operational scenario.

3.3. Sensitivity Assessment

In this step, a model to assess the performance of
a power distribution system to mitigate the overheating
risk given a configuration of DERs and automated
switches is formulated. This assessment seeks to
dispatch the available resources—DERs and power
procured from the bulk transmission system—to avoid
de-energization that leads households connected to the
node to experience overheating. Each customer profile
corresponds to the combination of the base non-cooling
load pl,fxi,t plus the power consumption from the HVAC
system. The total load at each node of the distribution
system consists of a composition of different house
archetypes, given the location and socio-demographic
attributes of the customers supplied:

pli,t = pl,fxi,t +
∑
c∈C

Nc,ip
hvac
c,i,t, (10)

where pli,t is the total load at node i, time t, and pl,fxi,t

is the non-cooling load component. The power grid
assessment is implemented through the optimization
model (11)–(26) which minimizes the cost of the
energy procured from the bulk transmission system, by
dispatching DERs and defining the automation switch
position, subject to balance constraints and operation
limits for voltages:

min
∑
t∈T

(
λgrid
t pgrid

t +
∑
i∈B

(
λdg
i,tp

g
i,t + (1−ei,t)OAEi

))
∆t,

(11)

s.t.

pgi,t+ pdi,t− pci,t− pli,tei,t=
∑
j|i→j

pij,t −
∑
j|j→i

pji,t, (12)

qgi,t + qei,t − qli,tei,t =
∑
j|i→j

qij,t −
∑
j|j→i

qji,t, (13)

vj,t≤vi,t − 2(rijpij,t + xijqij,t)+M(1− sij,t), (14)
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vj,t≥vi,t − 2(rijpij,t + xijqij,t)−M(1− sij,t), (15)
vi ≤ vi,t ≤ vi, (16)

|sij,t − sdij | ≤ bij , t = 1, (17)

|sij,t − sij,t−1| ≤ bij , t > 1, (18)
|ei,t − ej,t| ≤ 1− sij,t, (19)
− pijsij,t ≤ pij,t ≤ pijsij,t, (20)
− qijsij,t ≤ qij,t ≤ qijsij,t, (21)

0 ≤ pgi,t ≤ pgi , (22)

− qgi,t ≤ qgi,t ≤ qgi,t, (23)

Ei,t = Ei,t−1 +
(
ηci p

c
i,t − pdi,t/η

d
i

)
∆t, (24)

0 ≤ pdi,t, p
c
i,t ≤ pei , (25)

Ei ≤ Ei,t ≤ Ei. (26)

For modeling purposes, it is considered that each line
ij contains a switch whose operation can be enabled by
the binary parameter bij . The objective function (11)
minimizes the cost of energy transactions with the bulk
transmission system and DERs, along with overheating
risk resulting from the node de-energization (given by
metric OAEi), where pgrid

t is the power procured from

the bulk transmission system at time t at unit price λgrid
t ,

pgi,t is the power procured from the distributed generator

i at time t with unit price λdg
i,t, and ei,t is the energization

status of node i at time i. The active and reactive power
balance are formulated in (12)–(13), where pdi,t, p

c
i,t are

respectively the discharging and charging power from
the energy storage (ES) system installed at node i during
time t, pli,t, q

l
i,t are the total active and reactive load

connected to node i at time t, respectively, pij,t, qij,t
is the active and reactive power flow from node i to
node j at time t, and qgi,t, q

e
i,t is the reactive power

generated by the distributed generator and ES system
connected at node i, time t. The voltage drop is
formulated in (14)–(15) for each line section to decouple
the voltages at each end if the line is open, where vi,t
is the squared voltage at node i, time t, rij , xij are the
resistance and reactance of line ij, sij,t is the status
of the switch installed at line ij at time t, and M is
a large number. The voltage limits are given by (16).
The switching operation is enabled by (17)–(18), where
sdij is the default switch position at the beginning of
the time horizon, and bij is a binary parameter equals
to 1 if a switch is installed at line ij, and 0 otherwise.
The energization of nodes connected through a line is
coupled by (19), where the energization status of two
nodes must be the same if the switch connecting both

nodes is open (if no switch is installed, the connection
through a line is considered a closed switch unable to
trip). The maximum active and reactive power flows in
lines are limited in (20)–(21), which is subject to the
switch status. The distributed generation limits are given
in (22)–(23), where pgi , q

g
i are the maximum active and

reactive power outputs from the distributed generation
at node i. The changes in the state of charge of the ES
systems is calculated according to (24), where Ei,t is
the state of charge of the ES systems connected to node
i at time t, and ηci , η

d
i are the charging and discharging

efficiencies. The charging and discharging power are
limited as given by (25) with pei is the maximum power
output from the ES system i. Finally, the state of charge
is limited to its upper and lower limits Ei, Ei in (26).

4. Case Study

The proposed framework to assess the community
overheating risk and the impact of the heat wave on
the power distribution system operation is tested on the
IEEE 33-node test system shown in Fig. 4-a. In this
test system, loads represent aggregations of customers,
where load profiles consider the customers’ HVAC and
non-cooling power consumption. Four archetypes are
considered with different combinations of insulation
features—modeled by the thermal resistance and
capacitance as an RC circuit—and different efficiencies
for the cooling process, represented by parameters
shown in Table 1 [18]. The indoor air temperature and
power consumption calculation during a heat wave is
done by considering the hourly outdoor air temperature
of San Joaquin Valley measured at Fresno State Station
from August 14th, 2020 at 00:00 h to August 16th,
2020 at 00:00 h, considering a 49 hour long window
from a heat wave scenario [19], shown in Fig. 4-b.
The locational marginal prices for the area, required
for the electricity cost calculations, are obtained
from California Independent System Operator for the
indicated periods [20]. The reference temperature is
assumed to be fixed at 25 ◦C, and the caution and
extreme threshold are respectively set as 27◦C and 32◦C
according to [17].

Table 1. House Archetype Parameters
Archetype 1 2 3 4

Thermal resist. (kWh/◦C) 1.75 2.25 2.75 3.25
Thermal capac. (◦C/kW) 1.75 2.0 2.25 3.0

Coef. of performance 1.7 1.7 2.5 2.5
Max. power input (kW) 4.0 4.0 4.0 4.0
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Figure 4. (a) IEEE 33-node test system for
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4.1. Effect of the Power Outage on
Household-level Overheating Risk

To assess the impact of the power outage on the
household overheating risk during a heat wave, the
indoor air temperature and associated overheating risk
metrics for each household are calculated when subject
to a four-hour long power outage. Initially, the indoor air
temperature during the heat wave with no power outage
is displayed in Fig. 5-a.

The temperature drops observed in Fig. 5-a
correspond to nighttime period, where the outdoor
air temperature is below the reference temperature,
disabling the HVAC system operation. In this
scenario, only the indoor temperature of households
with archetype 1 shows a deviation from the temperature
setpoint caused by the combined low coefficient of
performance and maximum capacity of the installed
HVAC system. However, the maximum temperature
value reached in this scenario remains below the caution
hazard level, representing a safe condition for the
household. In case of power outage, the temperature
response for each archetype is shown in Fig. 5-b. In
this scenario, archetypes 1 to 4 experience a deviation
from the setpoint temperature caused by the HVAC
malfunction during the power outage. However, the
temperature rise differs among archetypes due to the
differences in building envelope properties. Archetype
1, which has a lower thermal time constant, experiences
the fastest temperature rise, followed by archetypes 2, 3,
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Figure 5. Indoor air temperature during heat wave
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and 4 that successively have greater time constants. The
temperature deviation exposes residents of each house
archetype to unsafe heat exposure in the caution and
extreme caution hazard levels with different durations.
The average exposure duration of each archetype in each
of the considered heat risk categories during the two-day
horizon is summarized in Fig. 6. In Fig. 6, archetype 1
experiences risk for almost the complete duration of the
power outage and mainly in the extreme caution hazard
level. The exposure to the extreme caution hazard level
is less for archetype 2 as it is only experienced for one
day, and during no hours for archetypes 3 and 4, which
remain in the caution hazard level.
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4.2. Effect of the Power Outage Duration on
the Overheating Risk

The overheating risk experienced at each house is
dependent on the outage duration. The results of
NUH and AHV metrics for different outage durations
in steps of 15 min are displayed in Fig. 7-(a) and
7-(b), respectively. Figure 7 shows that archetypes may
not experience any overheating risk until several time
periods after the power outage starts. As expected,
archetype 1 is affected sooner and the metric values
increase faster compared to archetypes 2 to 4. As
the results obtained for each hazard level are weighted
differently, the metric evolution displays a non-linear
growth associated with the unsafe heat hours during the
extreme caution hazard, which represents the higher risk
related to the exposure to temperatures in this range.
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Figure 7. Household overheating risk metrics as a

function of outage duration: (a) Weighted unsafe

heat hours, (b) Overheating risk added by the power

outage

4.3. Nodal-level Overheating Spatial
Distribution Assessment

The household-level metrics obtained for the
four-hour long outage scenario are aggregated at a nodal
level and displayed in Fig. 8. Two different aspects are
highlighted by the nodal-level vulnerability aggregation.
Metric NUH displays higher values in presence of
a higher concentration of households and intensified
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Figure 8. Nodal metrics for spatial vulnerability

distribution assessment

under the presence of highly vulnerable households. On
the other hand, metric OAE assigns higher values to the
nodes where overheating risk is high compared to the
demand being supplied at the node. In this case, node
24 has a lower demand but a higher concentration of
vulnerable households, displaying a considerable higher
value. Following node 24, the value of the metric is
also significant for the group of nodes 9 to 14, indicating
that in addition to a higher number of households being
supplied from these nodes, there is also a high presence
of overheating risk that can be reduced if the outage
duration is reduced for these nodes. In general, metric
OAE satisfactorily displays higher values in nodes with
a larger number of highly vulnerable households, and
can potentially guide a planning process towards an
equitable planning process.

4.4. Sensitivity Assessment to Distributed
Energy Resource Inclusion

In this section, the effect of power distribution
system investments on the overheating risk and inequity
is assessed. Investments include installation of
distributed energy resources and switches for isolation
is assessed. Based on Fig. 8, nodes with a higher nodal
OAE, which correspond to nodes where the aggregation
of customers contains a majority of households with
archetype 1, are selected to be isolated with switches
and partially energized with distributed energy resources
installed in the resulting island.

From the evaluation of the metric OAE in Fig. 8,
three high risk regions are identified. Let us assume that
switches can be added to lines 23-24, 27-28, 30-31, 8-9,
and 14-15 to isolate the high vulnerable nodes, and that
DERs with sufficient capacity are installed to sustain
the operation within the section for a specific period.
Section 1 contains nodes 9 to 14, section 2 contains
nodes 24 and 25, and section 3 contains nodes 28-30.
The resulting designs to sustain the power supply in the
section for one hour (case 1), two hours (case 2), and
three hours (case 3) are shown in Table 2.

Page 2904



Table 2. Distributed energy resource designs for

overheating mitigation
Cases Sec. 1 Sec. 2 Sec. 3

Solar out. (kW) 250 10 35
Case 1 Batt. out. (kW) 1250 50 175

Batt. cap. (kWh) 1250 50 175
Solar out. (kW) 500 20 70

Case 2 Batt. out. (kW) 1250 50 175
Batt. cap. (kWh) 2500 100 350
Solar out. (kW) 750 30 105

Case 3 Batt. out. (kW) 1250 50 175
Batt. cap. (kWh) 3750 150 525
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Figure 9. Nodal overheating risk under different

DER installations

The resulting OAE for all nodes in each of the
proposed cases is depicted in Fig. 9. In all
cases, the addition of distributed energy resources to
the high-vulnerable sections reduces the aggregated
overheating risk at each node. Notice that, given
the non-linear nature of the overheating risk with the
outage duration, the benefit of de-energizing three hours
instead of four is more significant than the benefit of
de-energizing two hours instead of three. The impact of
these DER installations on the perceived heat inequity in
the distribution system is quantified by the ORIS index,
which is summarized in Table 3.

Table 3. Evaluating overheating risk inequity for

different DER installations
No DER Case 1 Case 2 Case 3

ORIS 4.075 2.643 1.132 0.715

The ORIS index quantifies the disparity in the
overheating risk distribution among the nodes in the
power distribution system. By adding energy resources,
the trend is to reduce also the existing gap among the
maximum and minimum value of metric OAE of the
feeder nodes. The non-linear nature of the metrics leads
to higher reductions in the overheating risk between the
base case and cases 1 and 2; However, notice that in
Case 3, the reduction is less and the metric indicates that

other nodes should be prioritized, for example node 31
and 33, which become the nodes with the higher OAE
metric instead of the nodes in the initial defined sections.
This result suggests that the resource distribution can be
achieved by defining an appropriate heuristic method or
through mathematical optimization.

5. Conclusion

Power grids and communities worldwide are
experiencing the increasing impact of extreme weather
events caused by climate change. This paper developed
a framework to assess the impact of power outages
on the resilience of power distribution systems during
a heat wave and the risk of overheating for the
communities affected by extreme heat. The proposed
framework quantifies the overheating risk based on the
house attributes, including insulation, HVAC efficiency,
and capacity. Starting from a household overheating
analysis, the household overheating risk is mapped
into the power distribution system to identify the most
heat-vulnerable areas during blackouts and quantify
the overall inequity in overheating risk exposure.
The results demonstrate that the framework identifies
nodes with a concentration of households with high
overheating risk and provides insights on where to take
action to reach a more equitable operational condition
for the feeder. This framework also provides a tool
for power utility companies as the metrics inform the
power outage impact on the community, which can used
as an input when defining operational strategies such
as rotating outages. In addition, the metrics provide
insights on how to support planning towards mitigating
inequity, which should focus on isolating through
automation and providing enough capacity in the feeder
section to avoid long power supply interruptions for the
most vulnerable consumers.
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