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Abstract

The concept of agrivoltaics, or co-locating
photovoltaic panels and crops, is viewed as a potential
solution to competing land demands for food and
energy production. In this paper, we propose an optimal
dual-axis photovoltaic panel formulation that adjusts
the panel position to maximize power generation subject
to crop requirements. Through convex relaxations and
shading factor approximations, we reformulate the
problem as a convex second-order cone program
and solve for the panel position adjustments away
from the sun-tracking trajectory. We demonstrate our
approach in a case study by comparing our approach
with an approach that maximizes solar power capture
and a scenario in which there are only crops. We
found that we are able to successfully adjust the panel
position while accounting for the trade-offs between
the photovoltaic panels’ energy production and the
crop health. Additionally, optimizing the operation of
an agrivoltaic system allows us to better understand
agrivoltaic systems as a resource connected to the
power grid.

Keywords: agrivoltaic systems, optimization, solar
photovoltaics, food-energy nexus

1. Introduction

In a push to decarbonize energy systems, more
renewable energy sources are being added to the
electrical power grid. A challenge associated with
installing renewable energy sources, such as solar
photovoltaic (PV) panels, is limited land resources
which are also needed for food production [1].
Agrivoltaics is considered as a potential approach to
reduce the competing land use demands of energy
and food production. Agrivoltaics is the concept of
placing elevated PV panels over cropland. Initial studies
have found that agrivoltaic systems can have a higher
overall land use efficiency compared with just cropland
or traditional ground-mounted PV installations (e.g.,

see [1] for details). Furthermore, co-locating crops
and PV panels may have additional synergistic benefits,
such as PV panel efficiency improving from evaporative
cooling and a reduction in water irrigation needs due to
crop shading. The performance of an agrivoltaic system
is highly dependent on agricultural choices, PV system
design and operation choices, and climate. As interest
in agrivoltaic systems grows, it is important to better
understand the potential impact of agrivoltaic systems
on the power grid. Additionally, by characterizing an
agrivoltaic system’s performance, we can also evaluate
the ability of agrivoltaic systems to actively participate
in power systems operations, for example, by managing
network constraints or providing ancillary services.

In this paper, we optimize the operation of dynamic
PV panels within an agrivoltaic system to maximize
value from both the PV system and the crops. Similar
to traditional PV installations, PV panels within
an agrivoltaic system experience variability in solar
irradiance leading to intermittent and variable power
generation. A large body of research has explored
the impact of PV systems on the power grid as well
as approaches to mitigate its negative effects, e.g.,
[2, 3]. Solar forecasting techniques help characterize
the uncertainty present in PV systems. With this,
we are better equipped to coordinate generation- and
demand-side resources subject to distributed generation
uncertainty [4, 5]. Unlike traditional PV installations,
agrivoltaic systems are also dependent on the needs of
the crops. Adjusting the PV system to ensure crop
health impacts the agrivoltaic system’s power generation
variability. When accounting for trade-offs between
the PV system and crops, agrivoltaic systems need to
be treated as a different resource from traditional PV
installations. Modeling and characterizing the optimal
operation of agrivoltaic systems would allow us to better
understand agrivoltaic systems as a resource that we can
forecast and coordinate.

There is a growing body of research that examines
the performance and implications of agrivoltaic systems.
Existing literature evaluates and compares the benefits
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and costs of agrivoltaic systems on a case-by-case
basis. The performance of several different panel
configurations and management choices are evaluated
with models and simulations in [6] and [7]. In [8],
the authors propose and simulate tracking schemes
for single-axis bifacial panels while considering the
desired effective photosynthetically active radiation for
crops. An experimental testbed is developed in [9]
that measures an agrivoltaic system’s food production,
environmental impacts, and power production for
different agricultural species. While these works
provide valuable insight into the benefits and trade-offs
in agrivoltaic systems, formal optimization approaches
are important tools for determining the best design
and operation choices. Very few papers develop
optimization formulations for agrivoltaic system design
or operation, with exception of [10], which employs a
genetic algorithm to solve for the PV design parameters
(i.e., azimuth angle and row distance) of static bifacial
vertically mounted panels subject to crop and PV system
modeling. To the best of our knowledge, there are no
papers that explicitly optimize the real-time operation
of dynamic PV panels.

To address this, we formulate the operation of
dual-axis solar PV panels as an optimization problem
subject to the PV system and crop constraints. A
challenge associated with this problem is incorporating
the different timescales of the crop and PV outcomes.
To capture the power generation and crop growth time
scales, we separate the optimal agrivoltaic operation
problem into two subproblems – a months-long problem
that considers the growing season crop yield goals and a
daily PV operational problem that adjusts the PV panels
based on PV power output and crop health goals. In
this work, we formulate the daily dual-axis PV operation
problem that solves for the PV panel adjustments that
maximize power output while meeting crop needs. The
problem can be updated over the optimization horizon
given improved forecasting and measurements. The
contributions of this paper are i) presenting a framework
to co-optimize the crop yield and PV power output as
two subproblems, ii) formulating an optimal dual-axis
PV operation problem that captures the PV power
generation, panel shading on the crops, and crop health
constraints, iii) evaluating the relationship between PV
panel position and crop shading, iv) reformulating the
problem into a convex program given trigonometric
properties and shading factor approximations, and v)
demonstrating the performance of our approach in a case
study.

The rest of the paper is organized as follows.
In Section 2, we discuss the full problem and the
separation of time scales. Section 3 formulates the

Figure 1. Block diagram of the approach to manage

an agrivoltaic system’s long- and short- term goals.

daily operational problem and Section 4 reformulates
the problem as a convex second order cone program
(SOCP). We demonstrate our approach in Section 5 and
concluding remarks are provided in Section 6.

2. Problem overview

We consider an agrivoltaic system with dual-axis PV
panels over crops. Agrivoltaic systems that use dual- or
single-axis PV panels have several potential advantages
compared to static, or fixed, PV panels: the PV panels
can be adjusted throughout the day to i) significantly
increase power generation or ii) allow more sunlight to
reach the crops below. While we consider dual-axis
panels in this paper, the formulation can also simplify to
single-axis PV systems. Within an agrivoltaic system,
we need to consider the states and outcomes of both the
crops and the PV system. The timescales for PV power
production and crop growth are drastically different. For
instance, PV power output is dependent on the solar
irradiance which varies on the seconds timescale. Crops,
on the other hand, are robust at short time scales. The
health and yield of crops are typically considered over
entire growing seasons subject to the daily intercepted
photosynthetically active radiation (PAR), which is the
range of solar radiation wavelengths that is useful for
plant photosynthesis.

We separate this problem into two subproblems to
capture the timescales of the crop needs and PV power
output. Fig. 1 illustrates this separation with a block
diagram, where the slower outer loop is the growing
season problem and the faster inner loop is the daily
PV operational problem. The growing season problem
captures the longer-scale outcomes, i.e., the crop growth
and yield over the entire growing season. This problem
incorporates the crop models to estimate biomass, yield,
and economic value given climatic forecasts as well
as water and fertilizer applications. This problem
determines the minimum daily intercepted PAR, PAR,
for the crops in the daily PV operational problem as a
proxy for crop health. The PAR received by the crops
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can be used to determine crop yield [10]. The seasonal
problem can be updated throughout the growing season
given climatic uncertainty realizations (e.g., irradiance,
precipitation, and temperature), observed PV panel
energy generation, and crop/soil health measurements.
In the daily operational problem, we adjust the dual-axis
PV panels away from the sun-tracking algorithm (i.e.,
panel positions to maximize power output from direct
beam irradiance) in order to ensure that the crops receive
the required amount of daily PAR to meet season-long
crop health/yield goals. The daily PV operational
problem can be updated through the day given the
PAR realizations. In this work, we focus on the daily
PV operational problem. In future work, we plan to
implement the growing season problem.

3. Daily operational formulation

In this section, we present the daily operational
problem. We solve for the PV panel adjustments away
from the sun-tracking position to meet the requirement
for the daily PAR intercepted by the crops, PAR,
which is determined within the growing season problem.
We solve the problem for a 24-hour horizon with T
time steps of duration ∆T , i.e., t = 1, ..., T where
T · ∆T = 24 h. The daily operational problem
can be updated throughout the day given uncertainty
realizations and improved forecasting. The inner loop
in Fig. 1 illustrates the daily operational problem. In the
following subsections, the model inputs, variables, and
constraints are defined.

3.1. Inputs

The daily operational problem is dependent upon the
solar position and irradiance. Solar position–which is
location and time specific–is used for solar tracking and
crop shading calculations. The solar position at time
period t within the daily optimization horizon can be
described by the solar azimuth angle ϕt

s (i.e., the angle
between the sun and true south) and the solar altitude
angle βt

s (i.e., the angle between the sun and the local
horizon). These solar position inputs are illustrated in
the left diagram of Fig. 2. Electricity production and
crop growth are dependent on solar irradiance. Solar
irradiance can be decomposed into direct beam, diffuse,
and reflective components. The diffuse component
is particularly important to account for with partially
shaded crops (i.e., agrivoltaic systems) [11]. As a result,
we consider the direct beam and diffuse components
of the solar irradiance, Itdb and Itdiff, respectively. In
our case study, we use measurements of the Global
Horizontal Irradiance (GHI), Direct Normal Irradiance
(DNI), and Diffuse Horizontal Irradiance (DHI) to

determine the irradiance on the PV collectors and the
PAR received by the crops at a specific location and time
step. The total PAR available, PARt

total, can be estimated
from the GHI at time t

PARt
total = αGHIt, (1)

where α is the PAR-GHI ratio.
We calculate the power generated by the PV panels

given the irradiance and panel position in Section 3.2
and the PAR that reaches the crops in Section 3.4, taking
into account the crop shading in Section 3.3.

Figure 2. (Left) Solar position can be described by

the solar azimuth angle ϕt
s and the solar altitude

angle βt
s . (Right) PV panel position can be described

by the panel’s azimuth angle ϕt
pv and the panel’s tilt

angle Σt
pv.

3.2. PV power output

For dual-axis solar PV panels, we can describe a
PV panel’s position at each time step t in terms of two
degrees of freedom: the PV panel’s azimuth angle ϕt

pv
(i.e., the angle between the normal of the PV panel’s
surface and true south, where east of south is positive)
and tilt Σt

pv (i.e., the angle between the PV collector
surface and horizontal). These PV panel position
variables are illustrated in the right diagram of Fig. 2.
We assume that all panels within an agrivoltaic system
follow the same position controls since it is common
for PV panels within an installation to be controlled the
same way; however, notation can easily be added to the
formulation to allow for independent position choices
for each panel. The range of PV panel positions is
bounded by the PV system design

ϕ
pv

≤ ϕt
pv ≤ ϕpv, (2)

Σpv ≤ Σt
pv ≤ Σpv, (3)

where ϕ
pv

and ϕpv are the minimum and maximum
azimuth angle and Σpv and Σpv are the minimum and
maximum tilt angle.

When considering the PV power output, it is
important to define the incidence angle θts-pv, or the angle
between the sun’s rays and the normal vector of the
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PV panel’s surface. The relation between θts-pv and the
position of the sun and PV panel at time t is

cos θts-pv = cosβt
s cos (ϕ

t
s − ϕt

pv) sinΣ
t
pv

+ sinβt
s cosΣ

t
pv. (4)

Given the DNI and DHI, we can calculate the direct
beam irradiance Itdb and diffuse irradiance Itdiff on the
PV collector at time t [12]

Itdb = DNIt · cos θts-pv, (5)

Itdiff = DHIt ·

(
1 + cosΣt

pv

2

)
. (6)

The power production P t of the PV system at time t is

P t = Aarray · ηarray ·
(
Itdb + Itdiff

)
, (7)

where Aarray is the net surface area of the PV array
and the efficiency ηarray of the PV array is dependent
on the ambient air temperature, wind speed, dust
accumulation, and PV material. The PV efficiency
is generally around 15-23%. Note that this equation
does not consider shading between panels given that
the PV panels within agrivoltaic systems are typically
set up in a less dense configuration than traditional PV
installations. In this formulation, we neglect the impact
of reflected irradiance on the PV panels and crops since
the contribution of reflected irradiance on monofacial
panels can be very modest [13].

In our formulation, we assume that the dual-axis PV
system tracks the sun’s position and that adjustments are
made from this trajectory to meet the crop PAR needs. A
simple sun-tracking (ST) strategy maximizes the direct
beam irradiance (i.e., θtpv-s = 0)

Σt
pv, st = 90◦ − βt

s , (8)

ϕt
pv, st = ϕt

s, (9)

where Σt
pv, st and ϕt

pv, st are the PV tilt and azimuth
position at time t when following the sun-tracking
trajectory. To make adjustments from the sun-tracking
trajectory, we define the PV panel positions as

Σt
pv = δΣt

pv +Σt
pv, st, (10)

ϕt
pv = δϕt

pv + ϕt
pv, st, (11)

where δΣt
pv and δϕt

pv are the PV tilt and azimuth angle
adjustments away from the sun-tracking position. Given
the irradiance and power definitions (5)-(7) and the
PV panel position definitions (10)-(11), we can write

the PV irradiance deviations δItdb and δItdiff and the
power output deviation δP t away from the sun-tracking
algorithm (8)-(9) at time t as

δItdb = DNIt ·
(
cos (θts-pv)− 1

)
, (12)

δItdiff = DHIt ·

(
cos (Σt

pv)− cos (Σt
pv,st)

2

)
, (13)

δP t = Aarray · ηarray · (δItdb + δItdiff). (14)

3.3. Shading analysis

A shading factor function is used to determine the
amount of PAR that reaches the crops at time t, similar
to [10]

PARt
crop = (1− SF (δϕ

t
pv, δΣ

t
pv)) · PARt

total, (15)

where shading factor function SF (·) is dependent on the
PV panel and solar positions. The shading factor is the
percent of the field that is shaded given the solar and PV
position and is calculated using the geometric shading
calculation procedure in [14]. Note that we can extend
this process to define the shading factor at a smaller
spatial resolution, e.g., if we want to examine the impact
of edge and interrow shading.

3.4. Crop model

The crops’ photosynthesis rate can be modeled with
light response curves [11,15], where there is a minimum
required PAR level for photosynthesis (i.e., the light
compensation point). The photosynthesis rate increases
almost linearly with increases in PAR until reaching a
PAR level associated with the maximum photosynthesis
rate (i.e., the light saturation point). After the light
saturation point, the rate of photosynthesis levels out and
then actually decreases (i.e., photoinhibition). Plants
that are considered shade tolerant have lower light
saturation points. In this work, we consider PAR in
terms of photosynthetic radiant flux density, with units
of W/m2.

In our problem, we enforce a lower bound on the
daily intercepted PAR for the crops

T∑
t=1

PARt
crop ·∆T ≥ PAR, (16)

where PAR is the minimum daily intercepted PAR
threshold, PARt

crop is the PAR received by the crops
at time t, and ∆T is the duration of the time step.
The PAR target threshold is determined within the
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seasonal operational planning problem, incorporating
crop information and forecasts for the entire growing
season. The daily intercepted PAR is used in crop
models to determine the biomass production, crop yield,
and economic yield. For instance, the daily intercepted
PAR is an input in the EPIC crop model [16].

4. Optimal PV operation framework

We can then write the daily PV operational problem
for the dual-axis PV panels over the crops as

max
x

T∑
t=1

πt · δP t ·∆T (P1)

s.t. (2) − (4), (8) − (16) ∀ t = 1...T,

where πt is the price of electricity produced. In (P1),
we solve for the PV panel adjustments away from the
sun-tracking position subject to the PAR requirements,
shading analysis, and PV power generation constraints
over the optimization horizon. We want to maximize
the total value of energy produced relative to the
sun-tracking position. The decision variables in x are
δItdb, δItdiff, δP

t, δϕt
pv, δΣt

pv, ϕt
pv, Σt

pv, θts-pv, and PARt
crop.

We solve for the PV panel operation over the entire
optimization horizon and can re-solve the problem for
the remaining horizon (i.e., t = tk...T ) given updated
irradiance forecasts and measurements.

The optimization formulation (P1) is nonconvex
due to the incidence angle (4), irradiance deviations
(12)-(13), and shading factor function in (15). Since
nonconvex problem can be hard to solve, we use variable
redefinitions, convex relaxations, and a shading factor
function approximation to reformulate the problem as
a convex problem. We describe our approach in the
following subsections and analyze its performance in the
original, nonconvex constraints in Section 5.3.

4.1. Shading factor function approximation

We first evaluate the relationship between the
shading factor and the PV panel position. We simulate
the shading pattern and the impact of adjusting the
tilt and azimuth away from the sun-tracking position.
Specifically, one degree of freedom (i.e., PV azimuth or
tilt) of the PV panel is fixed while the other is adjusted.
The shading factor difference from the sun-tracking
algorithm is calculated for the full range of angle
adjustments (while still within the angle limits) with
a resolution of 1◦. With our case study presented in
Section 5, we simulate the shading factor over the full
range of feasible angle adjustments at each 10-minute
time step over the 24-hour horizon.

We observe that varying the azimuth has no clear
impact on the shading factor. This is because we are
rotating the panel around the z-axis. For instance,
consider the case where the panels have a tilt of zero.
When the azimuth is adjusted, the only changes to the
shading factor are due to the shadows being projected
outside the field perimeter. Consequently, in our
formulation, we do not adjust the PV panel azimuth
away from the sun-tracking algorithm.

Figure 3. Shading factor deviations given the cosine

of the tilt angle adjustments away from the

sun-tracking algorithm. Resolution of 1◦ steps where

each line is a 10-minute time step within the

optimization horizon. At each time step, the full

range of feasible tilt angle adjustments were

considered, i.e., Σt
pv ∈ [Σt

pv,st ± 90◦ s.t. (3)].

Alternatively, we observed that the tilt adjustments
away from the sun-tracking algorithm always reduce the
shading factor. In Fig. 3, we observed that the difference
in the shading factor from the sun-tracking algorithm at
every time step t has a strong linear relationship with
the cosine of the tilt angle adjustment, cos(δϕt

pv). As a
result, we fit a linear function at time t to determine the
shading factor given the tilt angle adjustments, i.e.,

St
F = gt1 · cos (δΣt

pv) + gt2, (17)

where gt1 and gt2 are parameters of the linearization. We
found that the residuals between the estimated linear
function and the actual shading factor deviations were
small, generally less than 10−4. Fig. 4 shows the R2

values of the best fit linear approximation. It should be
noted that the R2 value is one for all time periods except
for those within the first and last 40 minutes of daylight
hours. The R2 values less than one are most likely due
to the low solar altitude (less than 9◦) when the sun
rises and sets. The shadows cast are usually outside
of the crop field borders for a range of angles, leading
to flattened parts of the curve. However, the accuracy
of the linear approximation may be less significant at
these time periods since the sunlight intensity is less than
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during peak daylight hours and it only affects a small
range of time steps. In future work, we will investigate
how we can approximate the shading factor deviations
as a multivariable function that also includes the time of
day (i.e., based on solar position and site location).

Figure 4. R2 values of the linear approximations

over the daylight hours in the case study.

4.2. Variable redefinitions

We define variables

xt := cos(δΣt
pv), yt := sin(δΣt

pv),

and use sine and cosine properties, i.e.,

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y),

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y),

to rewrite the nonconvex constraints as linear functions
of xt and yt. Specifically, we can write the irradiance
deviations (12)-(13), the PAR received by the crops (15),
and the PV tilt angle limits (3) as

δItdb = at1x
t + at2, (18)

δItdiff = bt1x
t + bt2y

t + bt3, (19)

PARt
crop = ct1x

t + ct2, (20)

0 ≤ dt1x
t + dt2y

t ≤ 1, (21)

where parameters at1, at2, bt1, bt2, bt3, ct1, ct2, dt1, and dt2
are dependent on the solar irradiance and position

at1 := DNIt,

at2 := -DNIt,

bt1 :=
1

2
DHIt cos(90◦ − βt

s ),

bt2 := -
1

2
DHIt sin(90◦ − βt

s ),

bt3 := -
1

2
DHIt cos(90◦ − βt

s ),

ct1 := -gt1 · GHItα,

ct2 := αGHIt − gt2 · αGHIt,

dt1 := sin(90◦ − βt
s ),

dt2 := cos(90◦ − βt
s ).

In the appendix, we outline our derivation.
When we replace cos δΣt

pv and sin δΣt
pv with xt and

yt, we need to ensure that

(xt)2 + (yt)2 = 1, (22)

in order to recover a single δΣt
PV value. We replace (22)

with the second order cone relaxation

(xt)2 + (yt)2 ≤ 1, (23)

and evaluate the exactness of the convex relaxation in
Section 5.3.

4.3. Convex reformulation

Using the approximations and relaxations in
Sections 4.1-4.2, we reformulate the optimization
problem (P1) as a convex second order cone program

max
x

T∑
t=1

πt · δP t ·∆T (P2)

s.t. (14), (16), (18) − (21), (23) ∀ t = 1...T.

The decision variables in x are xt, yt, δItdb, δItdiff, δP
t,

and PARt
crop. If (22) is true given the optimal xt and yt,

(23) is exact and we can recover δΣt
pv by solving δΣpv =

sin−1(yt). Otherwise, we recover a more conservative
tilt deviation by determining maximum magnitude tilt
deviation from xt and yt separately. This causes δΣt

pv
to be higher than necessary, leading to potentially more
PAR received by the crops and less PV power output.
This is discussed further in Section 5.3.

5. Case study

In our case study, we evaluate our approach on a
synthetic agrivoltaic system.

5.1. Set up

We consider the performance of a synthetic
agrivoltaic system located at the University of
Michigan’s Campus Farm in Ann Arbor, Michigan
(42.3◦N, 83.7◦W). The PV system has 7 rows, with
20 pairs of PV panels per row. We draw PV panel
specifications from Heliene’s 132HC M10 TPC SL
Monofacial Module with an estimated efficiency of
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ηarray = 22% [17]. The rows are separated by 6 meters,
the intrarow PV pair spacing is 2.5 meters, and the
center of each PV panel pair is elevated 4.5 meters
above the ground (see Fig. 5 for reference). The overall
ratio of PV panel surface area to crop field surface area
is approximately 13%, similar to existing agrivoltaic
installations [18].

Figure 5. Example overhead (left) and side (right)

views of the agrivoltaic system configuration. The

blue shapes represent the individual PV panels. The

graphics show a portion of the agrivoltaic system for

illustrative purposes.

We evaluate our formulation with historical solar
irradiance data. We pull GHIt, DHIt, and DNIt

values from the National Solar Radiation Database
(NSRDB) [19]. We consider a 24-hour time horizon,
pulling the NSRDB data from July 14, 2021 with a
time resolution of 30 minutes. The solar azimuth angle
ϕt

s and altitude angle βt
s are calculated with the solar

position algorithm in the Python package pvlib [20],
with a time resolution of 10 minutes. We set ∆T =
1/6 h and update the PV panel position every 10
minutes. As a result, T = 144.

We consider several different PAR thresholds that
are dependent upon the light saturation point (LSP)

PAR = c · LSP ·∆Tdaylight, (24)

where c is a fraction that we vary and ∆Tdaylight are
the number of daylight hours within the optimization
horizon. We use the LSP of lettuce for the purpose of
this case study.

The electricity prices πt are shown in Fig. 6.
Additional parameters are shown in Table 1. We
solve (P2) with the Gurobi solver [21] using the JuMP
package in Julia. The code and test case are publicly
available on GitHub [22].

5.2. Illustrative results

We first solve the reformulated optimization problem
(P2) presented in Section 4.3. We consider different
PAR values by varying c in (24). Table 2 compares the

Figure 6. Time-varying electricity price over the

optimization horizon.

Table 1. Case Study Parameters

Parameters Values
α 0.44

Aarray 667.4 m2

Σpv,Σpv 0◦, 90◦

ϕ
pv
, ϕpv −180◦, 180◦

∆Tdaylight 14.3 h
LSP of Lettuce [8] 213 W/m2

Field Dimensions 72.7 m × 71.4 m
PV Pair Dimensions 1.135 m × 4.2 m

daily PAR intercepted by the crops and the PV energy
output for three cases: (P2) for four c values, a case
where the PV panels follow the sun-tracking algorithm
(i.e., (8)-(9)), and a conventional crop-only case (i.e.,
there is no overhead PV system). It should be noted that
the daily crop PAR values in the (P2) solutions are equal
to their respective required minimum PAR threshold.
To meet PAR, the PV panels in the (P2) solutions
generate less energy than in the sun-tracking case. This
indicates that the daily optimization problem adjusts the
PV panels away from the sun-tracking position to meet
crop PAR needs. For example, there is a 0.7% to 46.1%
reduction in PV energy output given the choice in c. As
c increases, the PAR increases, requiring the PV panels
to move further away from the sun-tracking position in
order to let more sunlight through to the crops. As a
result, we see a reduction in the energy output from the
panels and an increase in the cumulative crop PAR. This
illustrates the trade-offs between the PAR received by
the crops and the energy produced by the PV system and
provides motivation for formulating the growing season
problem that can capture and maximize the overall value
of these systems in terms of the energy produced and
seasonal crop yield.

Furthermore, Table 2 demonstrates that we can
characterize the energy output from the agrivoltaic
system given different crop needs. By being able to
reliably forecast the time-varying power output within
an agrivoltaic system, we are better positioned to
coordinate agrivoltaic systems to support power systems
operations. It should be noted that the agrivoltaic

Page 2913



system design and configuration will have a significant
impact on the PV power output and crop performance,
underscoring the importance of this consideration within
any cost-benefit analysis.

Table 2. Intercepted daily crop PAR and PV energy
output for the crop only case, the sun tracking
algorithm, and the proposed optimization at
varying c values within the PAR threshold.

Approach PAR Energy
(Wh/m2/d) (kWh)

Crop Only 2847.5 0
Sun Tracking (ST) 2413.4 1137.3

(P2), c = 80% 2443.5 1129.6
(P2), c = 82% 2504.6 1020.5
(P2), c = 85% 2596.3 816.7
(P2), c = 88% 2687.9 613.1

5.3. Analysis of computational performance

We next evaluate the exactness of the convex
relaxation (23) on our solution. We found that the
relaxation is not always exact for all time periods and
c values. The one exception is c = 80%, where the
relaxation is always exact. For the higher values of
c, we found that xt and yt were zero when (22) did
not hold. Given our strategy of choosing the largest
magnitude δΣt

pv from xt and yt, this yields δΣt
pv = 90◦,

which adjusts the panel’s surface to be perpendicular to
the sun’s rays and lets the maximum amount of light
through to the crops. In this case, the actual crop
PAR would be higher than what is estimated in the
optimization problem (e.g., at c = 85%, the actual daily
intercepted crop PAR was 2597.3 Wh/m2/d compared
to (P2)’s estimated 2596.3 Wh/m2/d). However, these
large tilt angle deviations lead to Σt

pv values outside
of the physical range we chose in our case study, i.e.,
0 ≤ Σt

pv ≤ 90◦. When we force the tilt angle to be
within its limits, the PAR is then underestimated (e.g.,
the actual daily intercepted PAR for c = 85% with its tilt
limits enforced is 2502 Wh/m2/d). It should be noted
that if the PV panels had a tilt range of (−90◦, 90◦) then
we would be capable of making this 90◦ adjustment.
This indicates that PV panel configuration and tilt limits
impact the constraint relaxation performance.

Last, we investigate the shading factor
approximation performance within the original
problem (P1). In order to only consider the impact of
the shading factor approximation, we examine the case
where the relaxation is exact, i.e., c = 80%. Given
the optimal PV positions from (P2), we simulate the
shading factor and PAR received by the crops given the
original geometric shading factor calculations discussed

Figure 7. Actual (blue square) and approximated

(red triangle) shading factor SF over the optimization

horizon for c = 80% given the Σt
pv calculated from the

(P2) solution.

in Section 3.3. Fig. 7 plots the actual and approximated
shading factors given the PV panel position choices
from (P2). We can observe that the shading factor
approximation is very close to the actual shading factor,
where the performance is slightly worse in the first
and last daylight hours. This is to be expected given
the higher R2 values during the first and last hour in
Fig. 4. We found that the average percent difference
between the actual and approximated shading factor
was 0.49%. Furthermore, as we noted in Section 4.1,
since there is less sunlight in the morning and evening
hours compared with midday, when we factor in the
irradiance magnitudes, the errors in the shading factor
approximation is less significant in the first and last
hours. For instance, when c = 80%, the actual and
approximated daily crop PARs are nearly identical, with
a percent difference of 0.002%.

6. Conclusion

In this paper, we investigated the optimal operation
of an agrivoltaic system. The motivation for this
work is being better able to understand agrivoltaic
systems as a distributed generation resource and its
implications for the power grid. We proposed an
approach to optimize the value of the crops and PV
system within an agrivoltaic system. To capture the
different timescales of this problem, we separate the
problem into two subproblems and we focus on the
fast daily PV operational problem. We formulated
the daily operational PV problem that determines the
dual-axis PV panel position to meet crop PAR thresholds
(as a proxy for crop health) subject to crop shading
while maximizing the power generated by the PV
panels. Using shading factor approximations and
convex relaxations, we are able to reformulate the
problem as a SOCP. We solve for the PV tilt angle
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deviation away from the sun-tracking algorithm.
Through a case study, we are able to demonstrate that

the daily optimization problem can successfully adjust
the PV panels away from the sun-tracking position to
meet crop PAR needs. Additionally, we found that the
shading factor approximation performs well. However,
the convex relaxation was not always exact, leading to
overestimates of the daily intercepted crop PAR. Future
work will explore incorporating the growing season
problem and updating the solution as a model predictive
control formulation with a rolling horizon to manage
irradiance uncertainty and quantifying the impact on
power systems operation.

A. Appendix

We summarize the derivation of the linear
constraints (18)-(21).

Irradiance Deviations: For the direct beam irradiance
deviation, we plug (4) and (8)-(11) into (12). Given
δϕt

pv = 0, we use the sine property to simplify the
incidence angle terms to xt, resulting in

δItdb = DNItxt − DNIt.

For the diffuse irradiance deviation, we plug (8) and (10)
into (13). We expand out the cos(90◦−βt

s + δΣt
pv) term

using the cosine property to get

δItdiff =
1

2
DHIt·

(
cos(90◦ − βt

s ) · xt

− sin(90◦ − βt
s ) · yt − cos(90◦ − βt

s )
)
.

PAR crop: For the PAR received by the crops, we plug
(1) and (17) into (15) to get

PARt
crop = αGHIt ·

(
−gt1x

t − gt2 + 1
)
.

Tilt Limits: For the PV tilt angle limits, we plug (8) and
(10) into (3). Since the sine function is increasing over
the feasible values of Σt

pv and the sine function is odd,
we take the sine function of all sides of the inequality
and use the sine property to expand the sin(90◦ − βt

s +
δΣt

pv) term, yielding

0 ≤ sin(90◦ − βt
s ) · xt + cos(90◦ − βt

s ) · yt ≤ 1.
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