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Abstract

As suicide is a leading cause of adolescent death,
innovative evaluation of imminent suicide risk factors is
needed. This study followed high-risk adolescents who
presented with recent suicidal thoughts and behaviors
(STB) for six months. They were digitally monitored
and periodically observed during in-clinic visits. We
aimed to classify their STB levels and identify severe
cases based on two types of digital monitoring: (1)
weekly self-reported questionnaires by patients and (2)
continuously collected cellphone usage data. We present
a novel approach for utilizing the immense amounts of
unlabeled cellular logs in a supervised classification
problem. Satisfying prediction results from both data
types showed the feasibility of using digital monitoring
for STB prediction. Such a capability may enrich
periodic clinical assessments with frequent digital
follow-ups and raise awareness whenever necessary.

Keywords: Suicide Prediction, Abnormal Behavior
Detection, Machine Learning, Digital Monitoring.

1. Introduction

1.1. Background

Suicide is the second cause of death globally
among adolescents. Adolescence is a critically
vulnerable developmental period for suicidal thoughts
and behaviors (STB). Youth Emergency Department

(ED) visits for STB increased in many countries,
particularly during the COVID-19 pandemic (Barzilay
and Apter, 2022). Suicidal crises in adolescents are
often brief and episodic, with considerable potential for
recurrence (Miller and Prinstein, 2019). Adolescents
are susceptible to interpersonal belonging, rejection, and
conflict, possibly predisposing imminent STB (Cheek
et al., 2020). They have difficulty regulating emotions
and employing cognitive control to inhibit problem
behaviors, including suicidal acts when facing acute
stress (Miller and Prinstein, 2019). Therefore, the
rapid-fluctuating suicidal states in adolescents warrant
an improved proximal prediction of imminent STB.

Identifying proximal predictors for STB is critical to
better understanding when individuals are most at risk
(Glenn and Nock, 2014). The fundamental problem
is to predict whether an individual with well-known
pre-existing risk factors is at imminent suicide risk
(i.e., within the next hours, days, or weeks) (Galynker,
2023). Two pre-suicidal mental state-specific diagnoses
have suggested to lead to imminent suicidal thoughts or
behavior. The transdiagnostic approach they present not
only enables a more accurate and objective assessment
of imminent suicide risk but could also facilitate
research in developing digital markers of suicide risk
(Joiner et al., 2018; Voros et al., 2021).

1.2. Related work

Intensive longitudinal methods (i.e., repeatedly
assessing individuals over time) provide the unique
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opportunity to study proximal predictors of STB within
individuals. Recent studies have begun using real-time
mobile and wearable devices to predict STB, and the
feasibility and acceptability of intensive monitoring in
adolescents have been established (Sedano-Capdevila
et al., 2021; Rabasco and Sheehan, 2022). Existing
efforts mainly focused on using intensive self-report
assessments such as ecological momentary and daily
diaries. These studies provided valuable information
about the temporal dynamics of suicidal ideation
(E. K. Czyz et al., 2022; E. M. Kleiman et al., 2017)
and significant proximal predictors (Glenn et al., 2022;
Al-Dajani and Czyz, 2022). However, the substantial
reliance on self-reports requires insight and compliance,
and the associated assessment burden limits study
durations and applicability to real-world settings.

Passive sensing of mobile data has been proposed
as a promising direction for future research
(Sedano-Capdevila et al., 2021; E. M. Kleiman
et al., 2021). It allows naturalistic and continuous
data collection with minimal burden, including social,
communication, activity, and sleep patterns, in which
change may indicate imminent STB (Morshed et al.,
2019). Recognizing objective online and offline social
behavior patterns preceding STB may particularly
benefit adolescents. Pioneer studies have demonstrated
that passive mobile sensing by actigraphy may predict
STB (Horwitz et al., 2022; E. Kleiman et al., 2019).
Ghandeharioun et al. (2017) showed the usefulness
of predicting symptoms in patients with a major
depressive disorder through passive data collection
from built-in sensors in phones and a wearable device.
Liu et al. (2020) demonstrated the feasibility of
predicting patients’ moods using machine learning
(ML) algorithms with privacy-preserving techniques
through multimodal data collection from patients’
mobile devices. However, to our knowledge, no studies
have investigated proximal predictors of youth STB via
real-time mobile passive sensing, including clinical and
self-report assessments over six months.

Unlike previous research that considered individual
risk factors, an ML approach processing passive
mobile sensing can examine multiple risk factors and
their combination to build superior prediction models
(E. Czyz et al., 2021; Lejeune et al., 2022). Combining
passive mobile sensing with an ML approach may
identify complex real-life patterns and relationships and
improve the near-term identification of risk and timely
interventions. Mullick et al. (2022) used passively
sensed mobile data to predict depression levels in
adolescents. Even though their goal and setting were
similar to ours, they used aggregative methods to
transform phone data into feature vectors instead of the

unsupervised clustering method we implemented.
Additional work in naturalistic settings is needed to

unlock the potential of active and passive sensing and
ML prediction models for suicide prevention (Schafer
et al., 2021). Further research is required to develop
prediction models optimized for implementation in
clinical settings (Wang et al., 2022). In this study,
we address these challenges and utilize intensive digital
monitoring of self-reports and behavioral data in a
real-time and real-world outpatient clinical setting.

1.3. Objectives and contribution

Our research addresses the knowledge gap in
real-time proximal predictors of youth STB. It utilizes
active and passive digital monitoring in a longitudinal
prospective study among high-risk adolescents in a
real-world clinical setting. It provides a proof of
concept for digital markers of imminent STB to
classify adolescents with high-risk STB vs. lower risk,
enabling a more accurate and objective assessment of
imminent suicide risk. The study integrates multiple
digitally derived data sources, including behavioral,
interpersonal, and frequent subjective self-reports using
comprehensive and non-intrusive techniques.

The paper is divided into two parts describing
the main aims of the study. The first aim was
to demonstrate the clinical utility of digital weekly
self-reports in identifying adolescents at risk for STB
in a real-world high-risk clinical setting. The second
was to develop an integrated prediction model using
passive mobile sensing data for STB prediction. We
addressed both tasks as supervised binary classification
problems and used ML techniques to determine whether
a particular adolescent is at risk. Clinician suicide risk
assessments were considered as the gold standard. We
wished to predict them from (1) self-reported weekly
questionnaires and (2) passively analyzed cellular phone
use. Each in-person visit provided a target label, and
data from the preceding week was used to obtain its
predicted risk level.

Our data were small and highly unbalanced. On
the one hand, we had limited numbers of patients and
labels from in-person visits overall. On the other
hand, we had weekly self-reported questionnaires and
immense amounts of unlabeled data describing cellular
phone use. Moreover, as typical in suicide prevention
research, low-risk STB scores were prevalent in our
dataset compared to the less frequent high-risk scores.
Extremely high STB scores indicating suicidal behavior
beyond thoughts were even more rare. Therefore, we
integrated different techniques to deal with our dataset’s
unique nature and utilize its many unlabeled data.
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In the first part of the study, we derived classification
features from the questionnaires and used standard
classification algorithms to predict the assessment of
the proximate visit. In the second part of the study,
we designed a novel two-step procedure for detecting
abnormal behavior to predict risk levels. We started
with an unsupervised learning approach to cluster all
patients’ cellular use and obtain normal behavior. Then,
high-risk events were considered rare, and we predicted
risk levels using outlier detection. The predictions were
evaluated as a supervised classification problem at this
stage, as in the first part. Satisfactory results from
both parts showed the potential of using self-reported
and passive monitoring approaches as complementary
predictors of STB.

The rest of the paper is organized as follows: in
section 2, we summarize the experiment’s protocol and
describe the data that was gathered from the weekly
questionnaires and cellular usage. In section 3, we
explain the methods used for predicting STB from the
weekly questionnaires and in section 4, we explain the
methods used for predicting STB from the cellular usage
data. Section 5 presents the results of the two tasks, each
in a different subsection. In section 6, we discuss the
implications of the results, note the limitations of the
study, and suggest future research.

2. Experiment and data collection

In this section, we explain the experiment, list the
inclusion and exclusion criteria for the study (2.1),
describe the two types of data we used - from weekly
self-reports (2.2) and passive cell phone logs (2.3), and
provide descriptive statistics on the participants (2.4).
More details are available in the complete research
protocol (Barzilay et al., in press).

2.1. Recruitment and participant breakdown

This study included high-risk adolescents who
presented to a pediatric hospital emergency department
(ED) with recent STB and were recruited at the
Depression and Self-Harm Clinic at Schneider
Children’s Medical Center of Israel. When eligible
potential recruits presented at the clinic, senior research
staff were notified and would then meet with the patients
to explain the study and obtain signed parental consent
and the child’s consent (if over 16 years).

Inclusion Criteria were adolescents between the ages
of 11-18 presenting with recent suicidal ideation or
suicidal behavior, as defined by the Columbia Suicide
Severity Rating Scale (C-SSRS). The C-SSRS is a brief,
semi-structured interview designed to screen for the
presence and intensity of STB (Posner et al., 2011).

In research and clinical settings, the C-SSRS is used
to determine the level of suicide risk and to inform
safety planning. This scale is considered globally the
gold-standard in suicide risk assessment in research and
clinical practice, and used to determine suicide risk
management and care. We measured STB severity via
a composite STB score of 0-10 derived from C-SSRS
categories by the maximum category present (Nilsson
et al., 2013). Another inclusion criterion was possessing
an Android mobile phone, as Apple mobiles are not
supported by the iFeel data collection app used in
this study. Exclusion criteria were acute medical
conditions, mental retardation, cognitive impairment,
or linguistic limitations that preclude understanding
research questions.

A total of 71 adolescents and their parents consented
to the study and were guided to download the iFeel app.
Once downloaded, the app initiated collecting relevant
passively sensed data from the mobile phone and
weekly questionnaires. Research assistants trained the
participant on feeling the questionnaires, emphasizing
the importance of adherence and providing instructions
on the use of the subjective rating scale. They also
contacted participants during the follow-up period in
case of missing active or passive data collection, and
assisted in technical or adherence issues.

Participants were invited for extended follow-up
evaluations at one, three, and six months following the
initial assessment. These sessions included in-person
or remote video clinical assessments and self-report
assessment scales administered via secured online
surveys. In practice, there was variability in the
follow-up frequency, as some participants rescheduled
or skipped visits altogether without indicating an intent
of dropping out of the study. As such, the timing of
the four visits was adhered to in most, but not all of the
cases, and in most cases the patient had even more than
four follow-up clinical visits.

The evaluations performed at the clinic during the
patient’s follow-up visits were recorded by clinicians
both as clinical notes and as a score on the STB
scale. This scale ranged from 0 to 9, with 9 being
the most severe: 0-no STB, 1-passive suicidal ideation
(SI), 2-active SI, 3-SI with methods, 4-SI with intent,
5-SI with a plan, 6-preparatory acts, 7-aborted attempt,
8-interrupted attempt, 9-actual attempt. The STB
score calculated from the clinician’s assessment at
each follow-up meeting was subsequently used as the
prediction model’s ground truth (label).

Of the 71 recruited participants, 65% (46/71)
completed the study. 35% (25/71) dropped out due
to various reasons, including switching from Android
to iPhone (incompatible with the iFeel app), undue

Page 3658



burden of participation, or any other type of parental or
participant reluctance to continue in the study.

2.2. iFeel app: weekly self-assessment data

iFeel is an innovative digital health research platform
enabling passive and active digital monitoring and
providing continuous objective measurements for any
disorder. A brief self-report questionnaire was generated
by the iFeel app using push notifications once a week.
Three items were selected to assess the main risk factors
for STB based on the pre-suicidal mental state-specific
diagnoses. These include general mood (“In general,
how was your mood this week”?), entrapment (“Did you
feel like there was no way out”?), and belongingness
(“Did you feel lonely?”), rated on a visual analog scale
between 1 to 5. The STB items were adapted from
the C-SSRS and included assessing suicidal ideation
intensity (rated on a visual analog scale between 1 to
5), intent, plan, behavior, attempt, and non-suicidal
self-injury. If a participant indicated yes to a suicidal
plan, current intent, or behavior, a safety protocol was
initiated. Crisis and community services were made
available to the adolescent, and a parent was contacted.

The questionnaire was only available for filling out
on Tuesdays. However, on that day, participants could
fill out the questionnaire multiple times, and all versions
of the weekly questionnaire were saved. The questions
presented to the user followed a predefined flow. While
all participants were asked the first three questions, their
answers determined the rest of the questionnaire based
on the C-SSRS administration manual. Patients who
provided serve answers were presented with follow-up
questions exploring the intent and possible immediate
danger they might be in. Specific control questions were
displayed if the user indicated a clear intention to pursue
suicide. These alerted the clinical staff of a possible
high-risk situation that required immediate intervention.
The diagram in Figure 1 shows the inherent flow of the
questionnaire and its questions.

2.3. iFeel app: real-time mobile data

iFeel harnesses mobile phone data to find
associations between digital markers and STB
ratings obtained via weekly self-reports and clinical
assessments during study visits. The passively sensed
data is collected continuously, 24/7.

For this study, the data consisted of communication
patterns (number of phone calls, duration of incoming
and outgoing calls, communication app usage duration),
device usage (power on/off, doze mode in/out, number
of device screen opens and locks, Wi-Fi connections,
Bluetooth connections, battery usage, network mobile

on/off, airplane mode on/off), and app usage (name of
app and seconds of active app usage). All the collected
information had non-identifiable information and fully
complied with the General Data Protection Regulation
(GDRP). No app-specific data, content, texts, or other
sensitive data was collected. Per the study’s protocol,
data were collected over six months from the intake date.

2.4. Descriptive statistics and train-test split

The adolescent sample included participants aged
11-18, with an average age of 14.5. Female participants
accounted for 60% of the participants (43/71), males
accounted for 34% (24/71), and transgender/other
accounted for 6% (4/71). Hence, females were
over-represented in our data set. Females were also
more compliant with clinical follow-up visits and digital
self-assessment questionnaire submissions. In addition,
females had a more meaningful variation in evaluations
and self-assessments (males were more likely to
self-present as low-risk). Since we lacked sufficient and
balanced samples for males and non-binary/transgender
users, we focused our analysis on females only.

The positive class of interest in our study was
suicidal behavior, which was the minority group. Its
scarcity in the data led to an imbalanced dataset. As
such, stratification was performed when splitting into
train and test groups. Each participant had multiple
visits (labels), all assigned to either the train or the test
group, to avoid data leakage. Due to the small sample
size, avoiding any bias between the train/test groups
was essential. Therefore, we aligned the distribution
of several parameters, such as age and compliance rate,
between the two groups.

Only participants who completed the entire course of
the study and follow-up visits were included in the test
group. Ten of the 43 female participants were removed
for failing to meet the inclusion criteria. The remaining
33 females were included in the sample – 23 for training
and 10 for testing. As a result, the training dataset
contained 174 labels, and the test set had 71 labels.

3. STB prediction from self-reports

We decided to predict visit labels based on
questionnaires from the preceding week. Visit dates
not preceded by a questionnaire in the previous week
were removed from the analysis. Since patients were
allowed to complete the questionnaire more than once
on the same day, we had specific dates containing
several self-reports in which patients’ responses were
not identical. As E. M. Kleiman et al. (2017) showed,
suicidal ideation varies within a day. In such cases,
we adopted the following mechanism for obtaining one
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Figure 1. Questionnaire questions and flow.

questionnaire per date: first, we removed duplicate
questionnaires. Then, we kept the questionnaires with
the highest compliance, i.e., where patients responded
to the highest number of questions. Finally, given
two questionnaires with the exact compliance rate and
different answers, we chose the more severe one to
obtain the maximal severity of STB during that week.
Eventually, we predicted each visit label based on
one questionnaire – the one closest to its visit date.
The intersection between visit dates and questionnaire
adherence resulted in a dataset of 134 labeled samples.

The digital questionnaires were intended to capture
active suicidal thoughts. To obtain clinically significant
active suicidal ideation, we used an STB threshold
of 1 to divide our data into low-risk (STB<=1) and
high-risk (STB>1). This chosen threshold distinguished
between passive, death-related thoughts and active
suicidal thoughts (Nilsson et al., 2013). As a result, our
training set contained 88 (65.7%) low-risk cases and 46
(34.3%) high-risk cases, and our test set contained 31
(62%) low-risk cases and 19 (38%) high-risk cases.

3.1. Classification features

Classification features were constructed from
patients’ responses, patients’ engagement in the
questionnaire throughout the experiment, and the
inherent flow of the questionnaire. First, a classification
feature was built for each question, with values
corresponding to patients’ responses. Null values were

replaced by -1 to indicate invalid answers. Eventually,
we decided to forfeit questions 74 (which differed in
meaning and scaling from other questions) and the
control questions 84 and 85 (which showed low feature
importance due to correlation with other features).

Patient engagement was described by three features:
a daily count of questionnaires capturing a patient’s
tendency to fill more than one questionnaire on a specific
date; an aggregated user counter indicating how many
times the patient responded to questionnaires throughout
the entire experiment; and a feature recording the
difference in days between consecutive questionnaires.

We used three binary features to capture the
questionnaire sequence, each indicating if the patient
continued to the next step: whether a high-risk response
was recorded in question 77, whether at least one
question out of 78, 79, and 82 triggered the control
questions, and whether one of the control questions
(84, 85) was positive, showing extra caution is in order.
In addition, we consolidated the sequence into one
categorical feature with three risk levels: low (if no risk
was found according to question 77), medium (if a threat
was found according to question 77 but not according to
questions 78, 79, or 82, and high (if a risk was found
according to questions 77 and 78, 79, 82).

3.2. Algorithms and model evaluation

We trained classification models using three
algorithms: random forest, AdaBoost, and logistic
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regression. We performed hyperparameter optimization
using a grid search over several parameters for each one.
All models were trained and evaluated using Python’s
scikit-learn (sklearn) library.

To compare model performance, we implemented
a leave-one-patient-out cross-validation (CV) method.
During each run, a different patient was extracted from
the training set and used as a testing set for model
validation. Eventually, we obtained an aggregated
classification matrix for the entire training set and
computed standard classification metrics: accuracy,
precision, recall, and f1-score. The recall score was
fundamental in our setting since we aimed to identify
high-risk patients. High recall scores meant seldom
missing patients that should be further monitored.

The best model to perform on our training set
was also applied to the test set for evaluation.
In addition to calculating the standard classification
metrics, we performed two statistical tests to confirm
the significance of the classification. Fisher’s exact
and Barnard’s tests were applied to the testing set
confusion matrix to assess the plausibility of obtaining
the resulting matrix by chance. These two tests have
been used for the same purpose in previous studies with
small datasets like ours (Vidyasagar, 2017; Diedrich and
Niggemann, 2022).

4. STB prediction from cellular data

We aimed to predict clinical assessments from
measurements passively collected by the iFeel app
from patients’ cell phones. These included app usage
(app type and duration) and cellphone events (e.g., the
screen on/off) and were collected continuously during
the clinical study. We term this goal ”Passive STB
Prediction” to emphasize that the patient is not required
to take any action (other than installing the iFeel app),
nor is any intervention made. Thus, the iFeel app serves
as a passive monitoring device for patients’ behavior and
routines. This setting poses a few inherent challenges:

• Data’s nature – many different apps and events
can be monitored. However, at each point, only a
handful are active. Thus, the data is highly sparse.
Also, we did not collect any specific app data or
content to preserve privacy. Only indications for
app usage were used.

• Dataset size – data was collected continuously,
24/7, for 6 months, but for a relatively small
number of subjects. Thus, we had a reasonable
amount of data per patient (intra-patient
examples), but a relatively small amount of
cross-patient data (inter-patient sequences). Also,

there was a fair amount of missing data, due to
connectivity issues, version updates, etc.

• Labels – the labels were based on in-clinic
clinical assessments according to the C-SSRS
index that ranges from 0 to 9. On average,
approximately 5 clinical assessments per patient
were conducted during the clinical study. The
duration between each patient’s visits to the clinic
varied. The relatively small number of labels
and their heterogeneous distribution led us to
define a binary classification task with a clinically
significant threshold: STB>3. It reflects active
suicidal ideation with intent to act or even
actions. This setting resulted in an unbalanced
classification problem of approximately 88%
low-risk patients vs. 12% patients at high risk.

• Data and label alignment – syncing between
labels derived from the (higher level) clinical
assessments and the (low level) cellphone features
is also challenging: clinical assessment reflects
patient condition ”around the time of the visit.”
In contrast, the high-frequency cell phone data
demonstrates the patient’s instantaneous activities
and state. Duplicating the same label over
multiple adjacent feature vectors or labeling
just one instance and utilizing semi-supervised
methods is fundamentally wrong since the
clinical assessment and the collected cellphone
measurements act at different time scales and
reflect different levels of information.

We addressed these challenges via a carefully
designed preprocessing step, followed by a novel
two-step classification method to maximize the
utilization of labeled and unlabeled data. At the
preprocessing step, we first mapped the various apps
into predefined app types. Then, we aggregated the
data on an hourly basis and constructed feature vectors
where each feature recorded hourly usage (in seconds)
of a specific app type. Applying these actions reduced
the feature space dimension and sparsity.

To sync between the labels and the feature vectors,
we grouped the feature vectors from the preceding week
for each clinical visit (label). Thus, a labeled example
was a set of 181 feature vectors with a single STB
score, i.e., the set’s label. It should be noted that for
all patients, most weeks had no label since the patient
did not visit the clinic. Only about 5 labeled sets could
be extracted for each patient. Namely, we ended with
many unlabeled feature vectors and a few labeled sets.
Furthermore, the events that we tried to predict (active
suicidal thoughts and attempts) were highly uncommon.
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To meet these characteristics, we designed a dedicated
two-step method for detecting abnormal behavior, as
described in detail in subsections 4.1 and 4.2.

4.1. First step – clustering and representation

The purpose of this stage was to utilize the immense
amounts of unlabeled data the cellphones provided. To
this end, we clustered the (unlabeled) feature vectors
using the k-means clustering algorithm. The outcome
was a set of clusters, each reflecting an hourly behavioral
pattern common in this patient population.

We mapped each feature vector to the closest cluster,
as measured by Mahalanobis distance (De Maesschalck
et al., 2000). The distances from each cluster were
binned into nine quantiles, and each vector ascribed to
the cluster belonged to one of them. Thus, each vector
was essentially mapped to a specific distance quantile
in its closest cluster. Unique vectors (representing
uncommon behavior) were mapped to higher quantiles.

Then, we represented a set of feature vectors by a
vector of counts by recording the number of vectors
belonging to each bin (quantile) in each cluster. As
a result, a labeled dense vector represented a sparse
labeled set of feature vectors. It should be noted that
even high-risk patients usually exhibit normal behavior
patterns. However, we expected they would display
a growing amount of abnormal behavior patterns,
reflected by higher counts at the high quantiles entries.

4.2. Second step – classification

Common supervised learning methods and best
practices were applied at this step. Those included
further preprocessing steps (such as feature construction
and selection) and classification methods. The outcome
was a model designed to predict a patient’s clinical state
given behavioral patterns from the preceding week, as
captured by their cellphone usage.

For model evaluation, we repeated the process
described in subsection 3.2: leave-one-patient-out
CV, classification metrics calculation, and statistical
validation using Fisher and Barnard’s test.

5. Results

This section presents results from the two parts
of our research. Subsection 5.1 describes the results
for predicting STB from the weekly self-reported
questionnaires, and subsection 5.2 presents the results
for predicting STB from passively monitored cellular
usage.

Table 1. Test set classification matrix for predicting

STB from self-reports
Predicted positive Predicted negative

True positive 15 4
True negative 7 24

Table 2. Classification metrics for predicting STB

from self-reports
Precision Recall F1

0 0.86 0.77 0.81
1 0.68 0.79 0.73

Accuracy 0.78
Macro avg 0.77 0.78 0.77
Weighted avg 0.79 0.78 0.78

5.1. STB prediction from self-reports

The random forest algorithm with the following
hyperparameter setting: class weight=’balanced’,
max features=None, max depth=3, n estimators=10,
criterion=’gini’, min samples leaf=3, ccp alpha=0,
bootstrap=None achieved the best CV results.
Applying the same model to the test set resulted
in the classification matrix presented in Table 1. Table 2
summarizes the classification metrics and their values
showing the high recall score.

Fisher and Barnard’s tests were used to determine the
likelihood of receiving the confusion matrix in Table 1
by chance. The P-value for the Fisher test was 0.000133,
and the P-value for Barnard’s test was 0.000097. Both
tests showed P-values far less than 0.05, indicating
highly statistically significant results. Therefore, it is
unlikely to achieve this confusion matrix by randomly
assigning positive and negative labels to samples.

Using the feature importance attribute of the random
forest classifier, we explored which features contributed
most to the classification. Our best classification
feature was the aggregated user count of questionnaires,
capturing patient participation and engagement with
the study. The second best classification feature was
question 77, influencing the questionnaire sequence.

5.2. STB prediction from cellular data

The raw cellphone data was mapped to 26-dimension
feature vectors representing hourly app type
usage (in seconds). After cleansing, we had an
unlabeled dataset of 48981 × 26 vectors. We then
applied unsupervised feature selection and reduced
dimensionality to 16. The top five selected features
were: ’VideoPlayers&Editors’, ’Tools’, ’Social’,
’Communication’, and ’Personalization’.
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For clustering (step 1), we used the k-means
algorithm with 50 initial starts. The number of clusters
was set to 24 using held-out data. We transformed
the labeled example sets into 216-dimension feature
vectors in the representation change phase. Using the
F-test, which measures linear dependency, we applied
supervised univariate feature selection to retrieve the
best 16 features. We ended up with 125×16 and 51×16
labeled vectors in the training and test sets, respectively.

Due to the small training set, we only used
traditional classification models (rather than deep
learning) while carefully controlling model selection
to avoid overfitting. We tested random forest, logistic
regression, linear and nonlinear support vector machine
(SVM), and a shallow neural network. We selected
random forest as the classification method of choice.

The random forest algorithm with the
following hyperparameter setting: n estimators=20,
criterion=’gini’, max depth=3, max features=’log 2’,
class weight=’balanced’, bootstrap=True,
min weight fraction leaf=0.3, ccp alpha=0 achieved
the best CV results. Applying the same model to the
test set resulted in the classification matrix presented in
Table 3. Table 4 summarizes the classification metrics
and their values showing the high recall score.

As described in subsection 5.1, Fisher and Barnard’s
tests were used to determine classification significance.
Since both tests showed highly statistically significant
results (P-value for Fisher test: 0.000447, P-value for
Barnard’s test: 0.000144), it is unlikely to receive the
confusion matrix in Table 3 purely by chance.

6. Discussion

This study uses subjective self-reported weekly
questionnaires and passively collected cellphone usage
data to predict periodic clinical assessments of STB. It
suggests a novel approach for utilizing many unlabeled
cellular data in a limited-data classification problem via
clustering. The high prediction levels provide additional
validation for incorporating digital monitoring in the
clinical field. It may equip clinicians with tools to assess
patient health status, identify risks, and intervene earlier.

Nonetheless, translating predictions into prevention
is challenging. Identifying a suicidal patient does not
seamlessly translate into diminishing the intensity of
suicidal thoughts or impeding their actualization. An
evidence-based suicide prevention approach, capable
of immediate and effective implementation, must be
integrated to complement these alerts. Moreover, the
management of false alarms at both individual and
systemic levels necessitates consideration.

In this study, high suicide risk alerts were addressed,

adhering to the clinical practice guidelines of the
medical center. A licensed clinician promptly contacted
the parents and conducted a thorough assessment of
the participant on the same business day. The specific
intervention plan was tailored to each participant’s
treatment status, encompassing communication with
treating clinicians, reinforcement of the safety plan,
and provision of subsequent referrals. The impact
of these interventions, within this study and other
cellphone monitoring studies of STB, remains a subject
for exploration. Subsequent research may shed light on
the effectiveness of mitigating suicide-related outcomes
through cellphone-based risk detection.

Table 3. Test set confusion matrix for predicting

STB from cellphone data
Predicted positive Predicted negative

True positive 5 2
True negative 3 41

Table 4. Classification metrics for predicting STB

from cellphone data
Precision Recall F1

0 0.95 0.93 0.94
1 0.62 0.71 0.67

Accuracy 0.90
Macro avg 0.79 0.82 0.80
Weighted avg 0.91 0.90 0.90

6.1. Limitations and future work

Due to insufficient samples for high-risk males
and non-binary/transgender users in general, the study
was based on a relatively small dataset of female
participants and labeled data from clinical assessments.
It posed inherent limitations in the study design while
emphasizing the need to develop algorithms and models
dedicated to a small data regime.

Labels of the same user were considered
independent, even though assessments from consecutive
visits may correlate. Feature vectors were also
dependent due to the inherent sequential nature of the
data. Both dependencies suggest room for stochastic
personalized models that learn from patients’ clinical
assessments over time.

The iFeel data collection app used in this study is
only supported by Android mobile phones. Hence, This
study focused on Android mobile users, which limits the
representativeness and generalizability of the findings.
Investigating other data collection apps to include users
of different platforms can provide more inclusive results.
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The small amount of labeled data limited the
ability to use advanced deep-learning methods. An
encouraging outcome of this study is the correlation
between the self-assessment and the clinical assessment.
It opens the door for incorporating the weekly
self-reported questionnaires as ground truth labels. Such
a synergetic setting of active (self-reporting) and passive
(cellphone) data collection may be further extended
to probe the patient with pop-up questions based
on the cellphone data analysis. The extended label
set and the probing will allow the use of advanced
deep architectures and active learning methods. From
a scientific data standpoint, synergizing labels from
different sources requires transformation to a unified
scale while possibly adding a confidence indication.
These directions are left for future study.

6.2. Conclusion

Cellphone monitoring holds the potential to enhance
the clinical evaluation of imminent suicide risk
substantially. Through this approach, the identification
of the risk for suicidal behavior can achieve greater
scalability and contribute to alleviating the present
shortage of manpower resources within the realm
of mental health. Data collection through passive
means reduces the assessment burden (both for the
patient and mental health services) and dependence on
patients revealing their suicidal intentions. Integrating
various self-reported and passive data sources into a
validated predictive model can markedly enhance the
identification of adolescents facing imminent risk of
suicidal behavior.

Unlike self/clinician reports, which are subjective
measures to detect suicide risk, cellphone monitoring
provides objective indicators crucial for more accurate
predictions. Objective measures will help the mental
health assessments be more similar to the practices in
medicine. Moreover, prediction by passive cellphone
usage data, as used in this study, is less burdensome than
self-report, which relies on compliance over time.
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