
DRAMA at the PettingZoo:
Dynamically Restricted Action Spaces

for Multi-Agent Reinforcement Learning Frameworks

Michael Oesterle, Tim Grams, Christian Bartelt
Institute for Enterprise Systems (InES), University of Mannheim

michael.oesterle@uni-mannheim.de, tim.nico.grams@uni-mannheim.de, christian.bartelt@uni-mannheim.de

Abstract

The Agent Environment Cycle (AEC) of PettingZoo
has been a major paradigm shift in the implementation
of Multi-Agent Reinforcement Learning (MARL)
frameworks, providing a unified and concise interface
for any kind of multi-agent environment. Based on this
model, we propose DRAMA, a principled approach
for dynamic action space restrictions. DRAMA can be
used to add statically computed physical constraints
as well as a self-learning multi-agent governance: It
generalizes the idea of action masking to continuous
action spaces and self-learning restrictions, while
being fully compatible with the AEC implementation of
PettingZoo—and, by transitivity, with most major MARL
frameworks. In this paper, we provide the theoretical
background of restricted multi-agent systems, present
an extension of PettingZoo via wrapper classes, and
show the potential of our approach for various use
cases. By treating dynamic restrictions as an additional
player of a multi-agent system, our approach offers
novel capabilities and flexibility in handling multi-agent
environments and thus serves as a valuable tool for
researchers and practitioners in the field.

Keywords: Multi-Agent Reinforcement Learning,
OpenAI Gym, PettingZoo, Multi-Agent Systems,
Action Space Restriction

1. Introduction

Since its first release in 2017, OpenAI’s Gym
environment specification (Brockman et al., 2016)
has become the standard for Reinforcement Learning
(RL) (Sutton & Barto, 2018) environments represented
as Markov Decision Processes (MDPs) (Bellman,
1957) or, more generally, as Partially Observable
Markov Decision Processes (POMDPs) (Åström, 1965).
Gym’s minimalistic design offers enough freedom and
flexibility to allow users to create and train RL agents
in their own environments. Consequently, popular RL

step()

Environment Agent
act()

reset()

if done:

Figure 1. Agent-Environment Loop for a single-agent
setting (as implemented in Gym).

frameworks like Keras RL (Plappert, 2016), Tensorforce
(Kuhnle et al., 2017), Coach (Caspi et al., 2017), Acme
(Hoffman et al., 2020), Stable Baselines (Raffin et al.,
2021), and CleanRL (Huang et al., 2022) adopt Gym
environments as their default environment class.

However, Gym is designed solely for single-agent
learning, employing a loop between the agent act()
and environment step() until the episode is done
(see Figure 1). To enable multi-agent settings,
approaches based on (Partially Observable) Stochastic
Games (Shapley, 1953) have been proposed, but, as
Terry et al., 2021 have pointed out, implementing
them in code faces several unsolved challenges. To
overcome these limitations, they introduce the Agent
Environment Cycle (AEC) model and the corresponding
PettingZoo library (Terry et al., 2021), which has gained
widespread adoption and works seamlessly with RL
frameworks such as The Autonomous Learning Library
(Nota, 2020), AI-Traineree (Laszuk, 2020), PyMARL
(Samvelyan et al., 2019), RLlib (Liang et al., 2018),
Stable Baselines (Hill et al., 2018; Raffin et al., 2021),
CleanRL (through SuperSuit) (Huang et al., 2022; Terry
et al., 2020), and Tianshou (Weng et al., 2022).

In Gym and PettingZoo, agents typically have access
to the same set of actions throughout an episode,
either as a discrete set or a box-shaped continuous
space. Recent versions of PettingZoo seem to allow

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 7810
URI: https://hdl.handle.net/10125/107324
978-0-9981331-7-1
(CC BY-NC-ND 4.0)

changing observation and action spaces at run-time,
but instructions are inconsistent1, and compatibility
issues arise with RL algorithms that expect invariant
input-output shapes (which is the case for most common
deep learning algorithms).

A commonly used solution for dynamic action
spaces is invalid action masking (Huang & Ontañón,
2022; Vinyals et al., 2017). However, this method,
which involves providing a Boolean vector of valid
and invalid actions as part of the observation, is
limited to discrete spaces and can be inefficient. For
instance, in Dota 2, where the action space comprises
1, 837, 080 actions (Berner et al., 2019), the masking
approach becomes burdensome with respect to storage
of observation batches.

Dynamic restrictions of the action spaces, as
imposed in many real-world scenarios by physical,
legal, or other constraints (Boutilier et al., 2018;
Chandak et al., 2020; Mandel et al., 2017), can therefore
not be represented by existing RL frameworks in a
principled way. To address this limitation, we propose
an extension with the following components:

1. The action space, referred to as the base space,
remains static.

2. Agents receive a restriction as part of their
observation, representing an arbitrary subset of
the base space.

3. Restrictions, represented by gym.spaces,
efficiently capture arbitrary sets of valid actions.

4. The internal representation of valid actions in a
restriction is opaque, while compatibility with RL
models is ensured through fixed-length flattening.

5. Restrictions can be defined by the environment
or provided by a restrictor agent which produces
restrictions as actions.

6. A restrictor agent can be treated like any other
agent and may be an RL agent or a static function.

7. The interplay between the environment, restrictor,
and agents is managed by a restriction wrapper.

The theoretical background, formal model and
reference implementation of DRAMA are discussed in
Sections 3 and 4, preceded by a recap of related work
in Section 2. Additionally, we present three use cases in
Section 5 before concluding the paper.

1The documentation contains an example with the comment “If
your spaces change over time, remove this line (disable caching)”, but
also says “This space should never change for a particular agent ID”.
The docstring of AECEnv.action space() even states that the
function “MUST return the same value for the same agent name”.

The reference implementation of DRAMA, along
with documentation and examples, has been published
at https://github.com/michoest/drama-wrapper.

2. Related Work

Existing RL libraries typically have limitations in
supporting dynamic observation and action spaces due
to the aggregation of trajectories into batches, which
require homogeneous tensors (as mentioned in the
documentations of Tianshou and RLlib). Padding is
often the only method used to handle heterogeneous
data. Furthermore, most state-of-the-art RL algorithms
rely on fixed neural architectures that can only process
flat input and output arrays of constant size (notably,
algorithms without function approximators, like tabular
Q-learning, do not have this restriction). Although
pre-processing techniques can be employed to flatten
complex spaces, they also require data of fixed shape.

However, RL environments often possess complex
space structures, ranging from simple discrete and
continuous spaces (Brockman et al., 2016) to mixed
discrete-continuous variants (Neunert et al., 2020) and
parametric spaces (Fan et al., 2019; Hausknecht &
Stone, 2016). To reconcile fixed input and output for RL
agents and changing action spaces for RL environments,
several solutions have been proposed. These solutions
can be categorized as masking, where the agent is
informed of valid actions and selects from this set, or
replacement, where an invalid action chosen by the
agent is replaced with a valid one (following some
replacement strategy), as discussed by Krasowski et al.,
2023 and illustrated in Figure 2. Note that we only
consider the environment perspective here; of course, an
agent can also mask or replace actions internally before
outputting an action to the environment.

Currently, the most commonly used masking
approach for discrete action spaces is invalid action
masking, which employs a Boolean masking vector
to provide the mask from the environment (Huang
& Ontañón, 2022; Vinyals et al., 2017). There
is, to the best of our knowledge, no analogous
method for infinite or continuous spaces, such that
continuous environments need to be discretized for
masking (Sinclair et al., 2020; Uther & Veloso, 1998).
As for replacement approaches, various alternatives
have been proposed, including random replacement and
projection (see Krasowski et al., 2023), and penalization
(Dietterich, 2000). However, penalty-based RL methods
have been shown not to scale well for a large number of
invalid actions (Huang & Ontañón, 2022).

Numerous methods exist for handling irregular
action spaces within an agent’s action policy.

Page 7811

https://github.com/michoest/drama-wrapper

Environment Agent

Masking

2

2

3

1

(a) Masking: The subset of valid actions is given to an agent before
it chooses its action.

Environment Agent

Action replacement

1

2

3

2

(b) Replacement: Invalid actions are replaced by valid ones after
an agent has chosen its action.

Figure 2. Intervention points for action space restrictions (cf. Krasowski et al., 2023).

Actor-critic methods (Konda & Tsitsiklis, 1999)
can internally penalize the choice of invalid actions
while ensuring that the final selected actions are
valid. Dulac-Arnold et al., 2016 propose embedding
discrete action spaces into continuous spaces using
nearest-neighbor methods. Conversely, Y. Tang and
Agrawal, 2020 suggest discretizing continuous spaces
for masking purposes. Zahavy et al., 2018 train
an Action Elimination Network (AEN) to reduce
the set of feasible actions, and Kanervisto et al.,
2020 enhance learning through action space shaping.
Discarding invalid actions and re-sampling is another
straightforward method that can be implemented either
within an agent’s action policy or as a feature of the
environment (by setting δ(s, a∗) = s for any invalid
action a∗). However, this method scales poorly when
the ratio of invalid actions is high.

The concept of restricting action spaces as a
means of governance in multi-agent systems has been
explored by Pernpeintner et al., 2021 using search-based
optimization; other techniques are RL over a small
discrete action space (Oesterle et al., 2022), and tree
search over continuous spaces (Oesterle & Sharon,
2023). This dynamic action space shaping complements
the commonly used approach of reward shaping, as
defined by Normative Systems (Andrighetto et al., 2013;
Chopra et al., 2018) or the game-theoretically grounded
Vickrey-Clarke-Groves (VCG) mechanisms (Nisan &
Ronen, 2004).

In our proposed DRAMA approach, we offer the
option to train the restrictor as part of the RL training
process. A similar technique, albeit not embedded
in a standard framework, is used by Reinforcement
Mechanism Design (Cai et al., 2018; P. Tang, 2017).

3. Theoretical Framework

3.1. Background

Reinforcement Learning. The basic underlying
mathematical model of any Reinforcement Learning

framework is an MDP, formally defined as a tuple

(S, A, r, δ) ,

where S is the set of environmental states, A is the
agent’s action space, r : S × A× S → R is the agent’s
reward function, and δ : S×A → ∆S is the (stochastic)
transition function2.

The (stochastic) action policy of the agent is given
as a function π : S → ∆A. Using this notation,
the interaction between agent and environment can be
succinctly described by the evolution formula

st+1 = δ(st, π
(t)(st)) , (1)

where the output of the stochastic functions is sampled
according to the respective distribution3.

The learning behaviour of the agent, i.e., the fact that
π can change over time in order to maximize the agent’s
cumulative reward, is not described by the MDP.

In case of partial observability (when the agent
cannot see the entire state of the environment), a set
O of possible observations and an observation function
σ : S → O are added to Equation (1):

st+1 = δ(st, π(σ(st))) .

Multi-Agent Reinforcement Learning. The model
for a multi-agent RL framework is a straightforward
extension of an MDP, called a Stochastic Game (SG).
It is a tuple

(I,S,A, r, δ) ,

where I is the set of agents, S is the set of environmental
states, A = (Ai)i∈I are the agents’ action spaces4, ri :
S × A × S → R is agent i’s reward function, and δ :
S ×A → ∆S is the transition function.

2∆X denotes the set of probability distributions over a (finite or
infinite) set X .

3The use of the time step as a superscript indicates that a variable
or function evolves with t.

4By convention, vectors and sets of variables are written in bold
face.

Page 7812

Environment Agent

Restrictor

2

2

3

1

Figure 3. Agent-Restrictor-Environment loop of DRAMA.

As above, each agent has an action policy πi : S →
∆A defining its behaviour; the evolution of the system
is therefore described by

st+1 = δ(st,π
(t)(st)) .

Accounting for partial observations (Partially
Observable Stochastic Game, or POSG), the extension

st+1 = δ(st,π
(t)(σ(st))) (2)

is straight-forward.

3.2. DRAMA model

As outlined in Section 1, we keep the action
spaces A static and introduce action space restrictions

R
(t)
i ⊆ Ai, allowing for the Ai to be dynamically

constrained. In the POSG context, we represent this
with an additional functional entity (the restrictor)
which is now part of the agent-environment loop (see
Figure 3).

The formal model of DRAMA is a tuple

(I,S,O,σ,A,ρ, r, δ) ,

where O = (Oi)i∈I are the observation sets, σi :
S → Oi are the agents’ observation functions, and
ρ = (ρi)i∈I with ρi : S → 2Ai are the restriction
functions that are applied to each agent, respectively.
Accordingly, the agent policies now take a restriction
as an additional argument, i.e., πi : S × 2Ai → ∆A

5

with the requirement that supp(πi(s,R)) ⊆ R6. This
requirement ensures that actions that are forbidden by
the restriction R are taken with probability zero.

The evolution function in this model is derived from
Equation (2) as

st+1 = δ(st,π
(t)(σ(st),ρ

(t)(st))) .

5We denote with 2S := {S′ : S′ ⊆ S} the power set of an
arbitrary set S, both finite and infinite.

6For a function f : X → R, supp(f) := {x ∈ X : f(x) ̸= 0}
denotes the support of f .

4. Implementation

In the standard AEC, three entities are of
importance: gym.Spaces are passed back and forth
between an AECEnv and one or more Agents, as
shown in the minimal execution loop:

env.reset()
for agent in env.agent_iter():

observation, _* = env.last()
action = agents[agent].act(observation)
env.step(action)

DRAMA directly builds upon this setup, using the
exact same loop. We define three more classes with their
respective base classes, each corresponding to one of the
above entities:

Restriction(Space) represents any subset of an
action space.

Restrictor(Agent) is an agent whose actions are
Restrictions.

RestrictionWrapper(AECEnv) manages the
succession of agent and restrictor actions, as well
as the enhancement of agent observations with
the respective restrictions.

This reflects one of the fundamental design decisions
of DRAMA: The agent policies π and the restriction
policies ρ are defined in the same way, such that both
kinds of policies can be learned within the training
process as implemented by PettingZoo-compatible
MARL frameworks. Hence, any restriction needs to be
a valid gym.Space which can be batched for training
and evaluation workflows, and restriction policies are
queried (and potentially trained) like an agent policy
in the AEC. Moreover, DRAMA is designed to be
extensible by sub-classing any of its components (e.g.,
to define more complex restrictions), even though the
reference implementation contains the necessary classes
for a range of applications.

4.1. Restriction

Discrete Restriction. For discrete spaces
gym.Discrete(n, start=s) with the action
set {s, s + 1, ..., s + n − 1}, restrictions have
traditionally been implemented as action masks.
These masks are Boolean vectors of length n, where
each entry indicates whether an action is allowed
(True) or forbidden (False). While this approach
is suitable for small n, it becomes inefficient when
n is large and only a small fraction of actions is
allowed at each step. To address this, we introduce
two implementations of DiscreteRestriction:

Page 7813

DiscreteSetRestriction stores a set of allowed
actions, while DiscreteVectorRestriction
follows the conventional vector representation, but as a
subclass of gym.Space.

Continuous Restriction. We provide two restriction
classes for one-dimensional continuous spaces:
The IntervalUnionRestriction class
represents a union of closed allowed intervals, and
BucketSpaceRestriction represents a Boolean
vector of equally sized allowed and forbidden buckets.
For multi-dimensional spaces, these classes can be
combined as long as the dimensions are independent,
such as in gym.Box spaces. For more complex
dependencies between dimensions (e.g., the “circle
restriction” A = [0, 1]2, R = {a ∈ A : ||a||2 ≤ 1}), we
offer the generic PredicateRestriction class,
which, however, is not flattenable.

4.2. Restrictor

The Restrictor class is designed as a
regular agent but with Restrictions as actions.
Consequently, the AEC can handle DRAMA natively
without any special considerations for restrictors.

Observation Space. The observation structure of
a restrictor is not predefined but can include any
information available in the environment, such as
the identifier of the next agent or the agents’ latest
rewards. In particular, it is not necessarily linked to
the observation functions σ of the agents. Optionally,
a custom preprocessing function can be applied before
calling Restrictor.act() (see Section 4.3).

Action Space. Usually, the action space of a restrictor
comprises all possible restrictions of a given agent
action space A (for a more flexible mapping, see “Action
Post-Processing”). To represent this space, which is
mathematically equivalent to the power set of A, we
provide the base class RestrictorActionSpace.
Initialized with the base space A, it enables the restrictor
to generate any Restriction compatible with A.

Reward Function. The restrictor’s reward function
can be constructed using any information available in
the environment. By default, we use the social welfare
r =

∑
i∈I ri, which sums over all agent rewards,

but user-defined functions are supported as an optional
parameter when defining the restrictor.

4.3. Restriction Wrapper

The RestrictionWrapper is responsible for
managing the interaction between the environment,

agents, and restrictor(s). Prior to querying an agent, the
wrapper requests a restriction from the corresponding
restrictor and then passes this restriction to the agent.

Agent-Restrictor Mapping. In the simplest case
of DRAMA, a single restrictor is utilized for all
agents. However, multiple restrictors can be defined to
accommodate, for instance, agents with different action
spaces. By establishing a mapping between the set
of agents and the set of restrictors, the wrapper can
obtain the appropriate restrictions for each agent from
the corresponding restrictor.

Observation Pre-Processing. The default
observation for a restrictor is set as env.state().
Optionally, a pre-processing function can be specified
for each restrictor, which the wrapper applies in analogy
to the agent observation functions σ.

Action Post-Processing. In situations where a
restrictor functions as a learning agent, its restriction
space might not align with the action space of the
other agents. For instance, if the restrictor selects from
a predetermined set of restrictions, it is advisable to
define its action space as Discrete, and subsequently
map the chosen action to a corresponding restriction.
To accommodate these scenarios, a restrictor-generated
restriction can undergo post-processing before being
provided to the respective agent. This allows for
seamless integration and compatibility between the
restrictor’s actions and the agent’s expected inputs.

Agent Observations. The observation received
from the environment is passed to the agents as
part of a two-key dictionary: {"observation":
..., "restriction": ...}. The keys of this
dictionary can be customized. For example, using
DiscreteVectorRestriction in conjunction
with the restriction key action mask ensures
seamless compatibility with Tianshou’s built-in agents.

By default, the wrapper flattens all observation and
action spaces, including restrictions, into fixed-shape
gym.Box spaces (with possible padding or overflow)
to ensure compatibility with existing libraries. To
anticipate the emergence of algorithms in the future
that can natively handle a wider range of spaces (i.e.,
any class adhering to the gym.Space specification),
we offer three more options: (a) flattening into
variable-shape gym.Sequence spaces, (b) applying
a custom flattening function, and (c) using the original
spaces without flattening.

Restriction Violations. The consequences of
violating a restriction can be arbitrary and may
be individual per agent. By default, an invalid

Page 7814

action causes the wrapper to throw a custom
RestrictionViolationException. An invalid
action can also be replaced by sampling uniformly from
the allowed set or projected to the nearest action, and
custom methods can be added by specifying a function
for each restrictor.

5. Use Cases

In this section, we provide several illustrations of
how DRAMA can be applied to a variety of multi-agent
scenarios. It is important to note that these use cases
are intentionally designed to be simple. The primary
emphasis is placed on exploring the interaction and
learning dynamics between the agents and restrictor(s)
facilitated by the restriction wrapper.

5.1. Learning optimal restrictions in a
continuous-action game

To demonstrate learned restrictions in a continuous
action space, let’s consider the Parameterized Cournot
Game as defined in Oesterle and Sharon, 2023. In this
game, two players choose their production quantities
q = (q1, q2) ∈ R2 for a good, with the price of the
good defined as p(q) = max(pmax − q1 − q2, 0), where
pmax > 0. Both players have a constant production cost
of c ≥ 0 per unit. The players’ utilities, representing
their profits, are given by ui(q) = qi · (p(q)− c).
Importantly, the equilibrium strategy in this game is
not socially optimal, meaning that restricting the action
space can potentially increase social welfare.

We aim to learn an optimal restriction by observing
the actions of the agents. The restrictor waits until
the agents’ strategies converge and then formulates an
optimal restriction based on its estimation of the game’s
parameters, namely pmax and c. In response to the
restriction, the agents adjust their actions, resulting
in a stable outcome that differs from the original
equilibrium. The social welfare, as depicted in Figure 4,
exhibits a noticeable increase at the point where the
restrictor comes into action. While this learning
behavior may be simplistic, it effectively demonstrates
the dynamic interaction between the restrictor and the
agents.

5.2. Training RL agents with dynamic
restrictions in an obstacle avoidance
scenario

Using DRAMA, we train an RL agent to navigate a
dynamic environment with complex action spaces. In
this scenario, restrictions are not necessarily tied to the
agent’s observation but serve as an additional source

0 20 40 60 80 100
Iteration

0

200

400

600

800

1,000

1,200

1,400

Re
wa

rd

Reward of Player 1
Reward of Player 2
Social Welfare

0

20

40

60

80

100

120

Ac
tio

n

(Forbbiden actions)

Action of Player 1
Action of Player 2

Figure 4. Reward and action curves for the Parameterized
Cournot Game with a learning restrictor. At iteration 40,
when the restriction is defined, the reward of both agents
undergoes an abrupt improvement, showing that the
restriction is boosting social welfare. This plot explicitly
shows the alternation between restrictor and agent actions.

(a) Projection (b) Unrestricted

Figure 5. Examplary agent trajectories for the navigation
task. While projection allows surrounding obstacles by
bringing actions into the feasible set, an unrestricted agent
is stuck with repeated forbidden movements.

of information. Consider a navigation task where an
agent aims to reach a goal on a two-dimensional map.
The environment can contain temporary obstacles, such
as other agents or objects, that may not be directly
sensed by the agent. An external entity can therefore
suggest restrictions on the agent’s action space to avoid
collisions, such that the agent must select actions that
maximize the expected return over varying subsets of
the action space.

The environment, as shown in Figure 5, is a 15x15
field where the agent A (blue circle) has a location lAt ∈
R2, perspective pAt ∈ [0, 360], and starting position
pA0 = (2, 2). At each time step t, the agent observes lAt
and pAt , as well as the distance and angle to the goal g =
(12, 12). It then chooses an angle aAt ∈ [−110, 110] to
determine the subsequent step’s direction (with a step
length of 1). The goal is reached when the distance
is ≤ 1. Seven obstacles of various shapes, defined by
their location and radius, are randomly generated at each
episode’s start and are not observed by the agent.

To handle the dynamic restrictions, we employ the
IntervalUnionRestriction class to represent
the union of open intervals that correspond to actions

Page 7815

0 10,000 20,000 30,000 40,000 50,000

Time Steps

0%

20%

40%

60%

80%

100%

S
ol

ve
d

E
pi

so
de

s

Projection

Without Restrictions

Figure 6. Mean and standard deviation for the fraction of
solved evaluation episodes, measured every 500 steps.

leading to collisions. The valid action space is also
computed based on these intervals. Since the number
of intervals can vary, the boundaries cannot be treated
as static model inputs. We train a Twin Delayed
DDPG (TD3) algorithm (Fujimoto et al., 2018) to
find the shortest path to the goal. We compare two
cases: First, the agent learns without knowledge of
restrictions and may collide with obstacles. Second,
we provide dynamic restrictions to the agent using
DRAMA, allowing the agent to choose feasible actions
that are closest to its preferred actions.

The experiment demonstrates that DRAMA
improves learning in scenarios with dynamic action
spaces. The average fraction of evaluation environments
where the agent succeeds significantly increases when
handling restrictions, as depicted in Figure 6 for
multiple model runs. With projection, most obstacles
can be smoothly navigated, while unrestricted agents
frequently encounter obstacles, as can be seen from the
trajectories in Figures 5a and 5b. We note, however,
that the average number of steps remains relatively high
compared to the shortest path, even when restrictions
are used and the success rate is high. This highlights
the need for agents to make more informed decisions
when dealing with variable action spaces. Notably,
Grams, 2023 have recently explored RL architectures
for dynamic restrictions and conducted experiments in
this environment.

5.3. Training an RL restrictor for a discrete
action space

Consider a traffic network where agents i ∈ I
are tasked with selecting a shortest route from their
starting points si to their respective destinations di. The
travel time along each road segment is influenced by its
utilization, i.e., the relative number of agents using it.
This is described by a latency model le(u) = a + buc,
where individual parameters (a, b, c) are assigned to
each edge (see Maerivoet & Moor, 2005).

0 1 2 3

Figure 7. Traffic network with dynamic restrictions. The
restrictor learns which roads (edges) to close in order to
maximize throughput, measured as the negative mean of
all agents’ travel times.

In this context, a phenomenon known as the
Braess Paradox (Braess, 1968) has been observed,
where closing roads in the network can actually lead
to an increase in overall throughput under specific
conditions. Motivated by this paradox, we train a
restrictor to determine the optimal configuration of open
and closed roads. This restrictor operates within a
network of self-interested agents who aim to minimize
their individual travel times. The restrictor serves
as a governance mechanism with the objective of
minimizing the total travel time.

For the sake of simplicity, we utilize the graph
network depicted in Figure 7. All simple paths in this
network are enumerated and used as the discrete action
space for the agents. At each step, each agent i selects
the shortest route from si to di based on the current edge
latencies. Without any governance in place, all agents
traveling from s = 0 to t = 3 naturally choose the route
0 → 1 → 2 → 3, resulting in an average travel time of
≈ 17 (as shown by the red line in Figure 8).

To improve traffic flow, we introduce a governance
mechanism that can selectively close individual roads
(i.e., remove edges). The action space for the
governance is represented by MultiBinary(5)
(although, in our implementation, we ensure that there
is always at least one open path available for agents
to use). While the agents use a fixed strategy to
determine the shortest routes given the restrictions, the
governance, acting as an RL agent, learns the optimal
set of restrictions by observing the agents and the
environment. In our approach, we use an off-the-shelf
DQN algorithm (Mnih et al., 2013), where the current
edge latencies serve as the observation.

In our setting, the governance learns to close the
edge 1 → 2 (as illustrated in Figure 9), leading the
agents to distribute themselves across the routes 0 →
1 → 3 and 0 → 2 → 3, with each route having an
approximate utilization of 50%. As a result, the average
travel time decreases to ≈ 15 (indicated by the green
line in Figure 8), which indeed represents the optimal
configuration for the given network structure.

Page 7816

0 100,000 200,000 300,000 400,000 500,000
Time step

17.5

17.0

16.5

16.0

15.5

15.0

14.5
Re

wa
rd

Unrestricted social welfare
Restricted social welfare

Figure 8. Social welfare (sliding average over 5,000
steps, mean and standard deviation over 5 runs) of traffic
network during training (green), compared to unrestricted
traffic (red).

0 100,000 200,000 300,000 400,000 500,000
Time step

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y
of

 re
st

ric
tio

n

{0, 3}
{1, 4}
{0, 1, 3}
{0, 1, 4}
{0, 2, 3}
{0, 2, 4}
{0, 3, 4}
{1, 2, 4}
{1, 3, 4}
{0, 1, 2, 3}
{0, 1, 2, 4}
{0, 1, 3, 4}
{0, 2, 3, 4}
{1, 2, 3, 4}
{0, 1, 2, 3, 4}

Figure 9. Frequency of the restrictions chosen by the
restrictor during training (sliding average over 1,000 steps,
mean and standard deviation over 5 runs). The dominant
restriction {0, 1, 3, 4} corresponds to closing the edge (1, 2)
in the network.

6. Conclusion

In this paper, we have extended the Agent
Environment Cycle for MARL with a component which
has thus far been handled in a limited, “hacky” way:
complex dynamic action space restrictions.

Many practical scenarios involve nuanced action
constraints, such as physical, legal, or safety
considerations, which require intelligent agents to
navigate through a complex decision-making space
while adhering to restrictions. By explicitly integrating
and modeling dynamic action space restrictions,
we provide a more realistic and comprehensive
framework for the development of intelligent agents
(and self-learning restrictors!) capable of effectively
operating within the confines of real-world constraints.

With this work, we also want to encourage the
research and development of restriction-aware RL
agents (and restriction classes) to pave the way for
practical applications in domains where compliance
with explicit rules and regulations is paramount.

Finally, we would like to propose an idea
for governance based on human language: The
governance of human communities primarily relies on
the formulation and implementation of laws conveyed
through natural language. These laws encompass
explicit and implicit guidelines delineating permissible
actions and behavioral constraints (i.e., action space
restrictions), as well as information about penalties (i.e.,
reward shaping definitions) for breaking the restrictions.
It therefore appears plausible that LLMs possess the
capacity to learn and optimize text-based rules in
alignment with the behavioral tendencies exhibited by
the (human and/or artificial) agents subject to these
rules. The recently published ChatArena library (Wu
et al., 2023) offers a testbed for such environments,
while Park et al., 2023 explore language-based
Generative Agents which can exhibit emergent social
behaviors, albeit without governance. Combining
these approaches with DRAMA could bridge the gap
between RL and language models, thereby facilitating
the automated generation of intricate rule sets guided by
specific objectives. Ultimately, this holds the potential
to revolutionize the process of law creation for human
and artificial communities.

References

Andrighetto, G., Governatori, G., Noriega, P., &
van der Torre, L. (Eds.). (2013). Normative
Multi-Agent Systems. Dagstuhl Follow-Ups.

Åström, K. (1965). Optimal control of markov processes
with incomplete state information. Journal
of Mathematical Analysis and Applications,
10(1).

Bellman, R. (1957). A markovian decision process.
Indiana Univ. Math. J., 6.

Berner, C., Brockman, G., Chan, B., Cheung, V.,
Debiak, P., Dennison, C., Farhi, D., Fischer,
Q., Hashme, S., Hesse, C., Józefowicz, R.,
Gray, S., Olsson, C., Pachocki, J., Petrov, M.,
d. O. Pinto, H. P., Raiman, J., Salimans, T.,
Schlatter, J., . . . Zhang, S. (2019). Dota 2 with
large scale deep reinforcement learning. https:
//arxiv.org/abs/1912.06680

Boutilier, C., Cohen, A., Hassidim, A., Mansour, Y.,
Meshi, O., Mladenov, M., & Schuurmans, D.
(2018). Planning and learning with stochastic
action sets. Proceedings of the Twenty-Seventh
International Joint Conference on Artificial
Intelligence, IJCAI-18.

Braess, D. (1968). Über ein Paradoxon aus der
Verkehrsplanung. Unternehmensforschung,
12(1).

Page 7817

https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., & Zaremba, W. (2016).
Openai gym. arXiv preprint arXiv:1606.01540.

Cai, Q., Filos-Ratsikas, A., Tang, P., & Zhang, Y.
(2018). Reinforcement mechanism design for
E-commerce. Proceedings of the 2018 World
Wide Web Conference.

Caspi, I., Leibovich, G., Novik, G., & Endrawis, S.
(2017). Reinforcement learning coach. https :
//doi.org/10.5281/zenodo.1134899

Chandak, Y., Theocharous, G., Nota, C., & Thomas, P.
(2020). Lifelong learning with a changing
action set. Proceedings of the AAAI Conference
on Artificial Intelligence, 34.

Chopra, A., van der Torre, L., & Verhagen, H. (Eds.).
(2018). Handbook of Normative Multiagent
Systems. College Publications.

Dietterich, T. G. (2000). Hierarchical reinforcement
learning with the maxq value function
decomposition. J. Artif. Int. Res., 13(1).

Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag,
P., Lillicrap, T., Hunt, J., Mann, T., Weber,
T., Degris, T., & Coppin, B. (2016). Deep
reinforcement learning in large discrete action
spaces.

Fan, Z., Su, R., Zhang, W., & Yu, Y. (2019).
Hybrid actor-critic reinforcement learning in
parameterized action space. International Joint
Conference on Artificial Intelligence.

Fujimoto, S., Hoof, H., & Meger, D. (2018).
Addressing function approximation error in
actor-critic methods. International Conference
on Machine Learning.

Grams, T. (2023). Dynamic interval restrictions on
action spaces in deep reinforcement learning
for obstacle avoidance. Master’s Thesis. https:
//arxiv.org/abs/2306.08008

Hausknecht, M., & Stone, P. (2016). Deep reinforcement
learning in parameterized action space.
Proceedings of the International Conference
on Learning Representations (ICLR).

Hill, A., Raffin, A., Ernestus, M., Gleave, A.,
Kanervisto, A., Traore, R., Dhariwal, P., Hesse,
C., Klimov, O., Nichol, A., Plappert, M.,
Radford, A., Schulman, J., Sidor, S., & Wu, Y.
(2018). Stable baselines.

Hoffman, M. W., Shahriari, B., Aslanides, J.,
Barth-Maron, G., Momchev, N.,
Sinopalnikov, D., Stańczyk, P., Ramos, S.,
Raichuk, A., Vincent, D., Hussenot, L.,
Dadashi, R., Dulac-Arnold, G., Orsini, M.,
Jacq, A., Ferret, J., Vieillard, N.,
Ghasemipour, S. K. S., Girgin, S., . . .

de Freitas, N. (2020). Acme: A research
framework for distributed reinforcement
learning. https://arxiv.org/abs/2006.00979

Huang, S., Dossa, R. F. J., Ye, C., Braga, J.,
Chakraborty, D., Mehta, K., & Araújo, J. G.
(2022). CleanRL: High-quality single-file
implementations of deep reinforcement
learning algorithms. Journal of Machine
Learning Research, 23(274).

Huang, S., & Ontañón, S. (2022). A closer look at
invalid action masking in policy gradient
algorithms. The International FLAIRS
Conference Proceedings, 35.

Kanervisto, A., Scheller, C., & Hautamäki, V. (2020).
Action Space Shaping in Deep Reinforcement
Learning. IEEE.

Konda, V., & Tsitsiklis, J. (1999). Actor-critic
algorithms. In S. Solla, T. Leen, & K. Müller
(Eds.), Advances in neural information
processing systems. MIT Press.

Krasowski, H., Thumm, J., Müller, M., Schäfer, L.,
Wang, X., & Althoff, M. (2023). Provably
safe reinforcement learning: A theoretical and
experimental comparison.

Kuhnle, A., Schaarschmidt, M., & Fricke, K. (2017).
Tensorforce: A tensorflow library for applied
reinforcement learning. https : / / github . com /
tensorforce/tensorforce

Laszuk, D. (2020). AI traineree: Reinforcement learning
toolset.

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R.,
Goldberg, K., Gonzalez, J., Jordan, M. I.,
& Stoica, I. (2018). Rllib: Abstractions for
distributed reinforcement learning. In J. G. Dy
& A. Krause (Eds.), Proceedings of the 35th
international conference on machine learning,
ICML 2018. PMLR.

Maerivoet, S., & Moor, B. D. (2005). Transportation
planning and traffic flow models.

Mandel, T., Liu, Y.-E., Brunskill, E., & Popović, Z.
(2017). Where to add actions in
human-in-the-loop reinforcement learning.
Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., & Riedmiller, M.
(2013). Playing atari with deep reinforcement
learning.

Neunert, M., Abdolmaleki, A., Wulfmeier, M.,
Lampe, T., Springenberg, J. T., Hafner, R.,
Romano, F., Buchli, J., Heess, N., &
Riedmiller, M. A. (2020). Continuous-discrete
reinforcement learning for hybrid control

Page 7818

https://doi.org/10.5281/zenodo.1134899
https://doi.org/10.5281/zenodo.1134899
https://arxiv.org/abs/2306.08008
https://arxiv.org/abs/2306.08008
https://arxiv.org/abs/2006.00979
https://github.com/tensorforce/tensorforce
https://github.com/tensorforce/tensorforce

in robotics. CoRR, abs/2001.00449. http :
//arxiv.org/abs/2001.00449

Nisan, N., & Ronen, A. (2004). Computationally
Feasible VCG Mechanisms. Journal of
Artificial Intelligence Research, 29.

Nota, C. (2020). The autonomous learning library.
Oesterle, M., Bartelt, C., Lüdtke, S., &

Stuckenschmidt, H. (2022). Self-learning
governance of black-box multi-agent
systems. In N. Ajmeri, A. Morris-Martin,
& B. T. R. Savarimuthu (Eds.), Coordination,
organizations, institutions, norms, and ethics
for governance of multi-agent systems XV -
international workshop, COINE 2022, revised
selected papers. Springer.

Oesterle, M., & Sharon, G. (2023). Socially
optimal non-discriminatory restrictions
for continuous-action games. Proceedings
of the AAAI Conference on Artificial
Intelligence, 37(10), 11638–11646. https :
//doi.org/10.1609/aaai.v37i10.26375

Park, J. S., O’Brien, J. C., Cai, C. J., Morris,
M. R., Liang, P., & Bernstein, M. S. (2023).
Generative agents: Interactive simulacra of
human behavior.

Pernpeintner, M., Bartelt, C., & Stuckenschmidt, H.
(2021). Governing black-box agents
in competitive multi-agent systems. In
A. Rosenfeld & N. Talmon (Eds.), Multi-agent
systems - 18th european conference, EUMAS
2021, revised selected papers. Springer.

Plappert, M. (2016). keras-rl. https://github.com/keras-
rl/keras-rl

Raffin, A., Hill, A., Gleave, A., Kanervisto, A.,
Ernestus, M., & Dormann, N. (2021).
Stable-baselines3: Reliable reinforcement
learning implementations. Journal of Machine
Learning Research, 22(268).

Samvelyan, M., Rashid, T., de Witt, C. S., Farquhar, G.,
Nardelli, N., Rudner, T. G. J., Hung, C.-M.,
Torr, P. H. S., Foerster, J., & Whiteson, S.
(2019). The StarCraft Multi-Agent Challenge.
CoRR, abs/1902.04043.

Shapley, L. S. (1953). Stochastic games. Proceedings of
the National Academy of Sciences, 39.

Sinclair, S., Wang, T., Jain, G., Banerjee, S., &
Yu, C. (2020). Adaptive discretization for
model-based reinforcement learning. In H.
Larochelle, M. Ranzato, R. Hadsell, M.
Balcan, & H. Lin (Eds.), Advances in
neural information processing systems. Curran
Associates, Inc.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement
learning: An introduction. A Bradford Book.

Tang, P. (2017). Reinforcement mechanism design.
Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence,
IJCAI-17.

Tang, Y., & Agrawal, S. (2020). Discretizing continuous
action space for on-policy optimization.

Terry, J., Black, B., Grammel, N., Jayakumar, M., Hari,
A., Sullivan, R., Santos, L. S., Dieffendahl, C.,
Horsch, C., Perez-Vicente, R., et al. (2021).
Pettingzoo: Gym for multi-agent reinforcement
learning. Advances in Neural Information
Processing Systems, 34.

Terry, J., Black, B., & Hari, A. (2020). Supersuit:
Simple microwrappers for reinforcement
learning environments. arXiv preprint
arXiv:2008.08932.

Uther, W. T. B., & Veloso, M. M. (1998). Tree based
discretization for continuous state space
reinforcement learning. Proceedings of the
Fifteenth National/Tenth Conference on
Artificial Intelligence/Innovative Applications
of Artificial Intelligence.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P.,
Vezhnevets, A. S., Yeo, M., Makhzani, A.,
Küttler, H., Agapiou, J., Schrittwieser, J.,
Quan, J., Gaffney, S., Petersen, S., Simonyan,
K., Schaul, T., van Hasselt, H., Silver, D.,
Lillicrap, T., Calderone, K., . . . Tsing, R.
(2017). StarCraft II: A new challenge for
reinforcement learning. https://arxiv.org/abs/
1708.04782

Weng, J., Chen, H., Yan, D., You, K., Duburcq, A.,
Zhang, M., Su, Y., Su, H., & Zhu, J.
(2022). Tianshou: A highly modularized deep
reinforcement learning library. Journal of
Machine Learning Research, 23(267).

Wu, Y., Jiang, Z., Khan, A., Fu, Y., Ruis, L.,
Grefenstette, E., & Rocktäschel, T. (2023).
Chatarena: Multi-agent language game
environments for large language models.
GitHub.

Zahavy, T., Haroush, M., Merlis, N., Mankowitz, D. J.,
& Mannor, S. (2018). Learn what not to learn:
Action elimination with deep reinforcement
learning. In S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi,
& R. Garnett (Eds.), Advances in neural
information processing systems.

Page 7819

http://arxiv.org/abs/2001.00449
http://arxiv.org/abs/2001.00449
https://doi.org/10.1609/aaai.v37i10.26375
https://doi.org/10.1609/aaai.v37i10.26375
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://arxiv.org/abs/1708.04782
https://arxiv.org/abs/1708.04782

	Introduction
	Related Work
	Theoretical Framework
	Background
	DRAMA model

	Implementation
	Restriction
	Restrictor
	Restriction Wrapper

	Use Cases
	Learning optimal restrictions in a continuous-action game
	Training RL agents with dynamic restrictions in an obstacle avoidance scenario
	Training an RL restrictor for a discrete action space

	Conclusion

