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Abstract 
Scheduling problems are present in various 

industrial and service sectors and have a great deal of 

impact on the performance of these systems. The 

overwhelming majority of industrial problems exhibit a 

data-analytic or optimization nature, which can be 

reduced to known machine learning or optimization 

problems, respectively. This paper demonstrates the 

integration of optimization and Deep Reinforcement 

Learning (DRL) techniques to address scheduling 

problems. The study explores the potential advantages 

of Imitation Learning (IL) principles in achieving an 

optimization and machine learning pipeline for online 

scheduling. We employ an evolutionary optimization 

algorithm as an expert policy to generate high-quality 

solutions for solving scheduling problems. The obtained 

solutions are passed in the form of experiences to train 

a DRL-based IL technique. The presented approach is 

based on adopting the Nondominated Sorting Genetic 

Algorithm three (NSGA III) and the Monotonic 

Advantage Re-Weighted Imitation Learning (MARWIL). 

The presented approach is evaluated using real 

instances of a Hybrid Flow Shop (HFS) scheduling 

problem. The experimental analysis demonstrates that 

the presented DRL-based IL approach learns an 

appropriate scheduling policy, which is superior to 

training an agent without previous experiences. 

Additionally, the derived policy sustains a steady 

increase in performance when exposing the agent to 

different unknown problems in contrast to an 

established baseline from the literature for solving the 

same problems. 

 

Keywords: Imitation Learning, Deep Reinforcement 

Learning (DRL), HFS Scheduling problems, 

Simulation, Optimization techniques, Parallelization 

1. Introduction  

Most problems in small and medium companies 

exhibit optimization or data-analytic nature, which can 

be reduced to known forms of optimization, 

classification, clustering, or prediction problems. 

Firstly, descriptive analytics is pursued to understand 

and characterize historical data to achieve a particular 

interpretation of the past. However, understanding the 

past is the first step for conducting predictive analytics, 

in which it is attempted to predict and obtain a rough 

estimation of the likely future. Finally, the final goal is 

to conclude this process by conducting prescriptive 

analytics, in which decision-making processes are 

supported based on adopting evolutionary optimization 

or machine learning techniques to improve the future (El 

Morr & Ali-Hassan, 2019). In this paper, we aim to 

investigate the utilization of machine learning and 

evolutionary optimization techniques to cover the 

mentioned stages for supporting real-time decision-

making processes. We intend to investigate the design 

of a machine learning and optimization pipeline for 

addressing scheduling problems. 

The majority of manufacturing problems are related 

to well-studied fields of research, such as resource 

allocation, scheduling, or controlling (Bakator et al., 

2018). Scheduling problems are among the most 

challenging problems since their majority can be 

addressed only by adopting heuristic or metaheuristic 

techniques. Scheduling tasks involves assigning 

resources to complete a set of operations in a specific 

order. The common consensus in the related scheduling 

literature classifies scheduling solution techniques into 

two main categories: constructive and improvement 

techniques. These techniques are usually adopted when 
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the complexity of the investigated problem is known 

and/or proven to be not solvable in polynomial time 

using mathematical techniques, given the current 

computational limitations. Constructive heuristics are 

simple scheduling procedures that are overwhelmingly 

based on some ranking mechanisms. A production 

schedule is constructed based on the characteristics of 

jobs and a simple ranking property. Many Priority 

Dispatching Rules (PDRs), such as Shortest Processing 

Time (SPT) or Earliest Due Date (EDD), are simple 

constructive heuristics (Hunsucker & Shah, 1994).  

Evolutionary and other metaheuristic algorithms 

are well-established improvement methods. They are 

adopted to solve combinatorial optimization problems 

(Glover & Kochenberger, 2003). Their popularity is 

explained by their high performance and robustness in 

solving complex industrial scheduling problems. As the 

name implies, this class of algorithms is inspired by 

evolution theory, in which evolution processes (natural 

selection, crossover, mate, and mutation) are applied 

systematically to an initial set of solution individuals to 

seek improvements (Kacem et al., 2002). Often, the 

optimization process starts with a set of randomly 

generated solutions that construct a set of production 

schedules. After that, improvements are pursued on the 

initial set through systematic modifications to minimize 

or maximize single or multi-objective optimization 

measures (Voudouris & Tsang, 2003). Other 

metaheuristic techniques are similarly designed to 

mimic some natural processes, such as Simulated 

Annealing (SA) (Kirkpatrick et al., 1983), which is 

based on imitating the metal annealing process or 

Swarm Intelligence (SI) (Liao et al., 2007), in which the 

behavior of a swarm in nature are reconstructed.  

Despite the outstanding performance of the 

metaheuristics for solving various scheduling problems, 

they can be computationally expensive. To mitigate 

previous challenges, many research efforts on hybrid 

techniques are presented (Dey et al., 2018; Nahhas, 

Kharitonov, Alwadi, & Turowski, 2022; Ribas et al., 

2010). Similarly, descriptive and predictive analytical 

approaches are well-investigated in the related literature 

on machine learning (Sharp et al., 2018). However, the 

adoption of machine learning techniques and their 

potential for solving complex scheduling problems is 

marginally investigated in the literature. Therefore, the 

presented approach aims to answer the following 

research questions (RQ):  

• RQ 1: How can we learn from previous high-quality 

solutions to accelerate the training process of Deep 

Reinforcement Learning (DRL) techniques? 

• RQ 2: How can the principles of imitation learning 

be applied to train DRL techniques? 

The remainder of this paper is structured in six 

sections. After the introduction, we provide some 

necessary preliminaries for DRL and IL techniques. In 

the third section, an overview of related works is 

presented. The fourth section presents the DRL-based 

IL approach. In the fifth section, we discuss adopted 

algorithms and the implementation of the presented 

approach. The sixth section summarizes the collected 

results and discusses the performance of the approach. 

Finally, the last section concludes the research findings 

and suggests further research directions. 

2. Deep reinforcement learning and 

imitation learning: background 

Many successful research and application efforts 

are presented in image analytics, video analytics, and 

language models (Liu et al., 2017). The adoption of 

Deep Neural Networks, including Deep Convolutional 

Neural Networks (CNNs) architectures, is dominant in 

literature since they deliver satisfactory performance. 

Recently, DRL techniques are considered cutting-edge 

machine learning techniques, initially based on the 

Markov Decision Process (Papadimitriou & Tsitsiklis, 

1987). As a stand-alone ML paradigm, DRL combines 

the advantages of supervised and unsupervised learning 

strategies. Analogous to unsupervised learning, DRL 

methods do not require pre-learned training data, where 

each input's expected output is known in advance. 

However, DRL methods do not entirely dispense with 

training labels but instead generate them based on a 

well-defined reward function. The fundamental building 

blocks of a DRL technique are four folds:  

• A DRL algorithm called agent is designed based on 

Deep Neural Networks (DNN). 

• An environment that is exposed to the agent for 

interaction. Ideally, from a practical point of view, 

the environment is an abstract representation of a 

real system. 

• Action and observation spaces, whereby the former 

allows the agent to manipulate the state of the 

environment and the latter informs that agent of the 

current state of the environment. 

• A reward function is used to either positively 

reward or negatively punish the agent after taking a 

certain action. 

The training process of a DRL algorithm starts with 

the agent's action, which is passed to the environment to 

transition to the next state and collect evaluation 

matrices. Throughout the training process, the agents are 

exposed to different environmental observations and 

assigned rewards for the actions taken. The agent's 

ultimate goal is to maximize the reward in dealing with 
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a particular task, which implies successfully learning an 

appropriate policy that forms a strategy to deal with this 

task (Henderson et al., 2018). Most DRL methods are 

investigated and primarily applied using game-like 

environments with little industrial context (Kanervisto 

et al., 2020). Improvement of the DRL agent's behavior, 

commonly denoted as policy, depends largely on the 

experiences used for training this policy. In the standard 

DRL settings, these experiences are acquired via direct 

agent interaction with the environment. Hence, an agent 

receives rewards given a specific environment state 

based on an environment-altering action. Typically, the 

agent starts without prior experience or knowledge of 

the environment. At this point, the agent explores the 

environment to generate initial experiences while 

attempting to establish a relationship between an 

environment state and an action. In essence, a new agent 

starts its existence by exploring the environment by 

taking random actions until it can discover a trajectory/ 

sequence of actions that improve the reward.  

The DRL research community proposes multiple 

techniques to mitigate this challenge. One such 

technique is Imitation Learning (IL). In the scope of this 

work, the agent has access to a set of demonstrations 

generated by an expert (human or a system). These 

demonstrations are supplemented to the agent as initial 

experience used to batch-train the policies without the 

agent performing any interaction with the actual 

environment. Therefore, the agent uses these 

experiences to imitate the actions provided by the 

expert. Training of the agent's policies based on the 

experiences supplemented by an outside expert policy is 

technically possible in many DRL algorithms. However, 

additional information is often required for the agent to 

train on the experiences generated by an outside policy 

(e.g., action probability distribution), thus limiting the 

applicability of such algorithms where an unknown 

expert policy is used to generate the experiences.  

Q. Wang et al., (2018) proposed a Monotonic 

Advantage Re-Weighted Imitation Learning 

(MARWIL) algorithm to mitigate issues typically 

associated with IL. This algorithm can be used in data-

driven training of the agent's policies based on the 

batched historical data by applying monotonic 

advantage re-weighting. Therefore, it enables the agent 

to determine the impact of taking a certain action within 

a specific environment state, essentially estimating the 

advantage of taking this specific action. We selected 

MARWIL for the evaluation part of this work due to the 

relative simplicity of the algorithm, which enables rapid 

training of the agents. MARWIL allows deploying the 

agents whose policy was trained using expert-generated 

experiences. This capability is not always implicit 

within DRL algorithms trained or aimed at IL, but it is 

crucial for the concept discussed within this work. 

3. Related works and state of the art 

Our literature analysis reveals a few publications on 

applying imitation learning to handle scheduling 

problems. Therefore, we will discuss the identified 

related works in which RL, DRL, or IL techniques are 

adopted to investigate Hybrid Flow Shop (HFS) 

scheduling problems. The interpretation of the related 

works starts with the least complicated problem and 

progresses to the most complicated one. In an HFS 

scheduling problem, jobs undergo several processing 

stages. At every stage, parallel machines are available to 

process all types of jobs. Jobs are always processed in 

the same technological order. We rely on HFS 

scheduling problems for evaluation since some 

industrial problem instances are available. In addition, 

such operational specifications are widespread in many 

industrial environments.  

3.1. Reinforcement Learning (RL) 

 Some attempt to deal with flow shop scheduling 

problems is presented by (Ren et al., 2021). The authors 

relied on RL for approximating the allocation of jobs to 

machines using Neural Networks (NN). It is worth 

noting that pure flow shop scheduling problems are way 

easier to solve than HFS problems. Another application 

of RL for solving HFS with three stages is proposed by 

(J. Wang et al., 2017). Each production stage contains 

two identical machines that can be used to process jobs. 

The authors evaluated the performance of the presented 

RL against known Priority Dispatching Rules (PDRs) 

such as the EDD, SPT, and First-In-First-Out (FIFO), 

taking into account the mean flow time, percentage of 

tardy jobs, and mean lateness.  

Similarly, an application of RL combined with 

Boltzmann exploration policy for solving HFS 

scheduling problems is presented by (Han et al., 2019). 

The authors solved small HFS problem instances 

considering the minimization of the makespan 

compared to the previously discussed work. The 

makespan indicates the maximum completion time over 

the set of jobs that must be scheduled.  

For a more complex two-stage HFS scheduling 

problem with identical machines, (Lang et al., 2021) 

presented a hybrid approach using a combination of 

Reinforcement Learning (RL) and Genetic Algorithms 

(GA). The authors relied on GA to optimize the 

structure of the underlying neural networks. The 

optimized NN is employed to approximate a sequence 

based on which a set of jobs must be scheduled. The 

presented NeuroEvolution of augmenting topologies is 

applied to solve the problem considering the 

minimization of the total tardiness.  
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3.2. Deep Reinforcement Learning (DRL)  

The adoption of DRL techniques for scheduling is 

even more limited than RL. For instance, an application 

of DQN (Mnih et al., 2015) is presented by (Lang et al., 

2020) to address job shop scheduling problems. The 

authors presented computational results superior to 

related works for solving four problem instances. The 

problems contained five to twenty jobs that must be 

mapped to mostly five available machines. For solving 

a complex HFS scheduling problem, (Zhu et al., 2020) 

presented one of the earliest adoptions of Proximal 

Policy Optimization (PPO) (Schulman et al., 2017) to 

minimize the makespan. The evaluation is conducted on 

randomly generated problem instances in which the 

agent acts as a dispatcher to set the sequence of the jobs. 

The results are compared to priority dispatching rules. 

An application of the rival to the PPO DRL 

technique, namely, Advantage-Actor-Critic (A2C), is 

presented in (Gerpott et al., 2022). The authors 

evaluated the performance of A2C in solving a two-

stage HFS scheduling problem to minimize total 

tardiness. The results suggest that the presented 

approach can support real-time scheduling. However, 

scheduling problems are overwhelmingly characterized 

by many objective measures in manufacturing 

environments. Obviously, many objective measures are 

conflicting, such as the makespan, total tardiness, or 

average flow time. 

Consequently, modern solution techniques must 

satisfy tradeoffs and support multi-objective 

optimization. Recently, (Nahhas, Kharitonov, & 

Turowski, 2022) adopted two DRL techniques to 

address complex HFS scheduling problems considering 

the minimization of multiple optimization measures. 

PPO and Asynchronous Advantage Actor-Critic (A3C) 

are adopted to solve the problem based on an industrial 

use case. The presented approach comprises two main 

components: a DRL component that includes PPO and 

A3C implementations and a discrete event simulation 

model, which serves as an environment for the agents. 

The presented approaches are evaluated for solving four 

instances of multi-stage scheduling problems. The 

computational results show that both applied algorithms 

with various levels of success derive appropriate 

policies for solving the problems based on the encoding. 

The empirical results show that the agents can 

achieve high-quality solutions that minimize the 

makespan, total tardiness, and major setup times over 

multiple production stages. However, experiments 

suggest that the agents' performance suffers when 

exposed to entirely different problems, requiring 

additional training to recover performance loss. Google 

Brain and DeepMind similarly highlight such 

generalization issues in (Chiyuan Zhang et al., 2018). 

3.3 Imitation learning (IL)  

After searching and scanning in Google Scholar 

and ScienceDirect and to the best of our knowledge, we 

found no application of IL techniques for solving HFS 

scheduling problems. After broadening our search, we 

identified very few publications that applied IL to 

solving Job shop scheduling problems (Cong Zhang et 

al., 2020). The authors proposed an approach based on 

PPO, in which the critic network is pre-trained with 

previous experiences obtained using different priority 

dispatching rules for solving the problems. The 

presented concept is based on graph embedding using a 

graph isomorphism network. The presented results 

prove the superiority of the presented concept against 

known Priority Dispatching Rules (PDRs). In addition, 

the authors argue that the approach sustains a certain 

level of generalization for solving large problem 

instances (Cong Zhang et al., 2020). 

4. DRL-based Imitation Learning  

To address the drawbacks that are pointed out in the 

previous works and to answer the research questions, we 

present a DRL-based Imitation Learning (IL) approach. 

We combine the use of state-of-the-art optimization and 

deep reinforcement learning techniques. The conceptual 

representation of the discussed concept is presented in 

Figure 1. The concept consists of four main components 

in addition to the parallelization component, which we 

discuss in the implementation section :  

• An optimization component based on the 

Nondominated Sorting Genetic Algorithms three 

(NSGA III) (Jain & Deb, 2014). 

• A machine learning component based on the novel 

Monotonic Advantage Re-Weighted Imitation 

Leaning (MARWIL) algorithm (Q. Wang et al., 

2018). 

• A simulation component based on the open-source 

Salabim simulation package (van der Ham, 2018). 

• A repository of a set of constructive heuristics for 

allocation and sequencing. This component 

comprises the source code of known PDRs and 

other advanced heuristic algorithms from previous 

works (Nahhas et al., 2021). 

Optimization component - This component acts 

as a stand-alone expert policy from the DRL point of 

view in conjunction with a simulation model. From a 

practical perspective, adopting a multi-objective 

evolutionary optimization technique is sufficient for 

solving the majority of scheduling problems. Certainly, 

the encoding of the problem and the formulation of the 

objective functions must be carefully conducted.
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  Figure 1. A DRL-based imitation learning approach. 

However, as mentioned earlier, computational 

effort becomes a major drawback. Therefore, we 

suggest training a machine learning algorithm that 

imitates the behavior of an expert for solving the 

problems. The superiority of evolutionary optimization 

techniques for solving scheduling problems is beyond 

denial. Therefore, we employ the NSGA III as the expert 

in the presented concept. The optimization component 

can be used in the first stage of the solution deployment 

to suggest scheduling policies while collecting high-

quality solutions (previous experiences). These 

experiences can be fed to a machine-learning technique 

directly or in batches. 

 Machine learning component - Previous studies 

proved the applicability of the Deep Reinforcement 

Learning (DRL) technique for solving HFS scheduling 

problems (Lang et al., 2020; Nahhas, Kharitonov, & 

Turowski, 2022; Zhu et al., 2020). However, these 

papers partially answer the first research question, while 

the use of high-quality experiences is yet to be explored. 

Although some of the known reference implementations 

of DRL techniques are described to support imitation 

learning, no investigation of their use for solving HFS 

scheduling problems is found in the literature. 

Therefore, after empirical analysis of the viability of 

implementation and performance of PPO, A3C, and 

MARWIL, we decided to rely on MARWIL as the core 

of the machine learning component. The machine 

learning component is designed to learn from previous 

experiences that an expert generates. These experiences 

can be historical data or on-the-fly generated solutions 

through optimization. The experiences of the 

optimization component can be either passed directly to 

the machine learning component or collected in batches 

before updating the learning policy of a DRL-based IM 

agent. In the online case, after an optimization run is 

triggered, high-quality solutions individuals are passed 

to the machine learning component with appropriate 

observations from a simulation model. 

Simulation component – This component builds 

up on a discrete-event simulation core engine to 

automatically compose simulation models using 

structural data of a considered system. As demonstrated 

in Figure 1, the optimization and machine learning 

components heavily rely on the simulation component 

to evaluate. A simulation model acts as an evaluation 

method to investigate the fitness of generated solutions 

by the optimization component. As for the machine 

learning component, an abstraction of a real system is 

required to couple a DRL / IL agent with an appropriate 

environment. This process is automated by the 

simulation component, which requires structural data of 

the considered system to build a corresponding 

simulation model. 

Heuristic library component - In this paper, the 

suggested encoding of scheduling problems allows an 

optimization strategy (NSGA III / MARWIL) to control 

a set of allocation and sequencing algorithms used 

during the simulation to construct a production 

schedule. The heuristic library is enriched with general 

and field-specific heuristic algorithms such as Priority-

Dispatching-Rules (PDRs). It is designed and plugged 

into the optimization and machine learning components 

in a modular fashion within the implemented 

framework, which easily allows the extension of the 

library by including further algorithms. 
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5. Prototypical implementation of the 

concept for scheduling problems  

5.1. Problem formulation and objective values 

To evaluate the presented Imitation Learning (IL) 

approach, we relied on problem instances addressed in 

previous works to establish a baseline for comparison 

(Nahhas, Kharitonov, & Turowski, 2022). We solve 

four-stage Hybrid Flow Shop (HFS) problem instances 

with major and minor family setup times. The first, 

second, and third processing stages contain five parallel 

machines of different speeds. Two parallel machines are 

available to process all jobs in the fourth processing 

stage. The following attributes characterize a job j∈ J: 

• The processing time in the first stage 𝑝𝑗,   𝑆1  

• The processing time in the second stage 𝑝𝑗,   𝑆2  

• The processing time in the third stage 𝑝𝑗,   𝑆3  

• The processing time in the fourth stage 𝑝𝑗,   𝑆4  

• The due date of a job 𝑑𝑗  

• The completion time 𝐶𝑗  

• The tardiness of job j is 𝑇𝑗 if the completion 𝐶𝑗 is 

bigger than its due date 𝑑𝑗 .  

The problem is to be solved by finding a production 

schedule in which all operations (𝑂𝑗,   𝑆1 → 𝑂𝑗,   𝑆4) are 

completed. The optimization is conducted to minimize 

many objective measures: makespan 𝐶𝑚𝑎𝑥, the total 

number of the required major setup times on the first and 

fourth processing stages 𝑀𝑆 𝑓𝑖𝑟𝑠𝑡,   𝑓𝑜𝑢𝑟𝑡ℎ , the total 

tardiness T and the total number of unit penalties U. The 

objective values are formalized in (1), (2), (3), and (4), 

respectively. The major setup times 𝑀𝑆 𝑓𝑖𝑟𝑠𝑡,   𝑓𝑜𝑢𝑟𝑡ℎ are 

lost configuration time of the machines when switched 

to process jobs from a different family. 

 Cmax, max Cj :∀ Jj (j ∈ {1,…, n} (1) 

 𝑀𝑆𝑓𝑖𝑟𝑠𝑡,   𝑓𝑜𝑢𝑟𝑡ℎ ∈ {0,…,n - 1} (2) 

 T = ∑  Tj

n

j=1

 : ∀ Jj (j ∈ {1,…, n}) (3) 

 U = ∑ Uj

n

j=1

 : ∀ Jj (j ∈ {1,…, n}) (4) 

5.2. Encoding the scheduling problem in the 

presented concept 

This section presents the rationale for our suggested 

IL technique. We must rely on a unified encoding to 

collect high-quality experiences from the optimization 

component and pass them further to the machine 

learning component. In the presented IL approach, the 

optimization technique seeks to select the best 

combination of allocation and sequencing heuristics 

from the heuristic library component during the 

scheduling period. An example of adopting a 

metaheuristic to select different heuristics for solving 

HFS scheduling problems can be found in (Rolf et al., 

2020). Based on the selection, jobs are allocated to the 

available machine in the first processing stage. Then, 

jobs are dispatched using the selected sequencing 

algorithms on every machine. In essence, a solution 

individual represents an arbitrary selection of allocation 

and sequencing heuristics maintained in two vectors of 

integer values. These values point to the indexes of 

heuristics. 

5.3. Optimization component 

Such encoding is crucial for successfully applying 

the DRL-based IL approach since the problem must be 

exposed to the agent as a game. The optimization starts 

with an initial set of randomly generated solution 

individuals. Then, the suggested solutions are evaluated 

using a discrete event simulation model, representing 

the investigated system's operational procedures and 

constraints. Based on the obtained fitness, we follow the 

natural selection strategy of the NSGA III using 

uniformly distributed reference points to select the 

individuals for generating the offspring population. We 

rely on two-point crossover mechanisms to construct 

offspring genomes based on the selection. As for the 

mutation, we adopt a simple shuffle mutation function 

in which two genes are swapped. After generating the 

offspring of the next generation, individuals are again 

evaluated using the simulation component. This process 

is repeated until some breaking criterion is met. In our 

setup, we use the number of maximum generations to 

break the optimization process. All generated solutions 

are stored in a database. A stored solution includes 

characteristics, objective values, and detailed 

production schedules. These solutions are then fed to 

machine learning in the form of previous experiences.  

5.4. Machine learning component 

Actions space – As mentioned earlier, we relied on 

a unified encoding identical to the optimization and used 

multi-discrete action space to formulate the problem for 

the DRL-based IL (Delalleau et al., 2019). Such 

formulation of the action space allows presenting the 

problem to the agent in a game-like manner. The agent 

maintains, in essence, two controllers (sequencing and 

allocation). Through these controllers, it interacts with 

the respective environment using the simulation 

component. Multi-discrete action is typically adopted 
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when the agent must produce a set of independent 

discrete actions to interact with an environment 

(Delalleau et al., 2019). Further elaboration of the 

definition of multi-discrete action space can be found in 

(Delalleau et al., 2019; Kanervisto et al., 2020). The 

agent decides which algorithms are used for allocation 

and sequencing at predefined points during a scheduling 

period. Based on the selection, jobs are allocated, and a 

selected sequencing algorithm is used for dispatching 

jobs. 

Observation space and reward function – The 

design of the observation space of the DRL-based IL 

approach is threefold: The entire production schedule, 

system-level Key Performance Indicators (KPIs), and 

job-level KPIs. This encoding is based on previous work 

presented by (Nahhas, Kharitonov, & Turowski, 2022). 

The detailed production schedule provides the agent 

with a profound view of the system states resulting from 

the set of taken actions. It exposes the agent to the life 

cycle of every job, which includes details of the starting 

time and finishing times of all operations in the system 

on all machines. The second and third parts of the 

observation space dispense the agent with KPIs well-

studied in the related literature. For instance, we supply 

the agent with the average waiting time, average flow 

time, the makespan, the total number of major setup 

times on processing stages, the total tardiness, and the 

total number of penalties (Ribas et al., 2010; Ruiz & 

Vázquez-Rodríguez, 2010). Other relevant objective 

measures are supplemented in the last part of the 

observation space on a job level, such as the total pure 

processing time, the overall waiting time, the tardiness, 

and the lateness of a job. Finally, the formulation of the 

reward function is based on the aforementioned 

objective optimization measures, which are minimized 

in our optimization and presented in (1), (2), (3), and (4). 

We further formulate these objective values in (5) in a 

simple maximization function for the agent and weight 

the unit penalties with ten to increase their importance 

for the agent. 

𝑅 = − (Cmax +  𝑀𝑆𝑓𝑖𝑟𝑠𝑡,   𝑓𝑜𝑢𝑟𝑡ℎ + T + U*10) (5) 

5.5. Implementation overview 

The implementation of the presented approach is 

purely developed in Python and supported by the 

parallelization component, which relies on the 

parallelization capabilities of Python multiprocessing, 

RabbitMQ (Roy, 2017) messaging system, and Ray 

RLlib distribution framework (Eric Liang et al., 2018). 

The objective of the parallelization component is to 

support an efficient distribution of optimization and 

machine learning experiments. This, in turn, ensures an 

efficient application of imitation learning. As discussed 

in the previous section, we rely on an evolutionary 

optimization technique to collect expert experiences for 

solving scheduling problems. The obtained results are 

then used to train the DRL-based IL agent. The 

development of the optimization component is 

relatively less complicated than the machine learning 

component. The implementation of the Nondominated 

Genetic Algorithms (NSGA III) is straightforward 

based on the original paper (Jain & Deb, 2014). The 

evaluation component is based on a Salabim simulation 

package, which is an open-source Python simulator. As 

for the parallelization, we relied on the Python 

multiprocessing package and RabbitMQ to accelerate 

the optimization process. Solution individuals are 

evaluated in parallel on all available CPU cores. 

On the contrary, developing the machine learning 

component necessitates empirical and technical 

analysis. Many DRL techniques are not designed to 

leverage previous experiences or imitate other solution 

techniques. We empirically and technically investigated 

the adoption of Proximal Policy Optimization (PPO), 

Advantage-Actor-Critic (A3C), and Monotonic 

Advantage Re-Weighted Imitation Learning 

(MARWIL). We can adopt A3C and PPO as stand-alone 

algorithms while feeding them with previous 

experiences requires further technical investigations. 

The major challenge we faced was merging experiences 

generated by unknown policies (i.e., the experiences of 

NSGA III) with experiences generated by A3C or PPO. 

Both algorithms are eventually not intended DRL 

algorithms for imitation learning. We are aware of an 

implementation of PPO, which can be fed with previous 

experiences as presented by (Cong Zhang et al., 2020). 

Our computational results show that A3C and PPO learn 

appropriate policies for solving HFS scheduling 

problems without exploiting the potential of imitation 

learning, which aligns with the reported results in 

(Nahhas et al., 2022). We successfully adopted 

MARWIL for solving the scheduling problem based on 

expert experiences from the optimization component. 

To achieve an optimization and machine learning 

pipeline, we recommend relying on MARWIL, which 

also yields learning an appropriate policy for solving 

scheduling problems. 

6. Evaluation and computational results 

To solve the HFS scheduling problem, we 

configured the NSGA III to run an optimization for 200 

generations. The optimization is conducted to solve 

three problem instances used for evaluation (Nahhas, 

Kharitonov, & Turowski, 2022). The population size is 

set at 75 individuals. The optimization is conducted to 

minimize the makespan, the total number of major setup 

times on the first and fourth processing stages, the total 
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tardiness, and the total number of penalties as previously 

discussed in (1), (2), (3), and (4) respectively. We 

applied a 0.8 crossover rate and 0.6 mutation rate to 

maintain population diversity. The parameterization is 

obtained empirically after conducting preliminary 

hyperparameter tuning. The optimization component 

generated fifteen thousand solution individuals for 

solving each problem instance. These solutions are then 

fed to the machine learning component to investigate 

imitation learning principles and evaluate the 

performance of the presented approach.  

As for the machine learning component, we 

designed the experimental setup to highlight the 

functionality of imitating expert experience and to 

answer the first research question. The computational 

results are presented in Figure 2. We conducted multiple 

optimization and machine learning experiments to 

statistically observe their behavior, which is 

demonstrated as a dispersion in the figure. The agent is 

trained to solve three problem instances to achieve 

comparability to a published baseline. The DRL-based 

IL agent is trained with 450,000 previous experiences 

before exposing it to online mode for further training. 

The agent samples new solutions based on experiences 

and a built-in sampler with a predefined advantage 

factor-beta during the online mode. This factor controls 

the weighting of the quality of previous experiences, 

favoring high-quality ones (Q. Wang et al., 2018). We 

performed hyperparameter tuning through rapid 

experimentations. The parameters are set based on our 

analysis and to the best of our knowledge from related 

literature (Q. Wang et al., 2018). The DRL-based IL 

agent learning rate is set to be 1e-4. The beta parameter 

is set to 1.0 to motivate the agent to use weights of 

previous experiences for generating new solutions. The 

size of the reply buffer is set at 15,000. The reply buffer 

size controls the number of previous experiences that 

are available for the agent during the sampling. The 

computational results suggest that the DRL-based IL 

agent successfully derives an appropriate scheduling 

policy to deal with the HFS scheduling problems. As 

shown in Figure 2, the achieved mean reward based on 

the formulated reward function steadily increases during 

the training processes. This implies that the agent is 

successfully learning to solve the problems based on the 

encoding that we discussed in the previous section.  

The orange line (MARWIL Online) in the presented 

figure represents the results of training MARWIL to 

solve the problems based on our encoding without 

exposing it to previous experiences. The blue line 

(MARWIL IL) depicts the result of the IL agent, which 

is fed with previous expert experiences. Over multiple 

optimization and machine learning runs, we observe 

consistent outperformance of the DRL-based IL 

technique for solving the HFS scheduling problems in 

terms of the achieved mean reward presented in 

equation (6). It is, on average, between nine and ten 

percent. The presented results strongly suggest that we 

can apply imitation learning principles based on the 

MARWIL algorithm for solving scheduling problems. 

The computational results provide initial evidence 

articulating that relying on high-quality experiences 

accelerates the training process of the DRL technique 

since MARWIL IL achieves a 10 percent higher reward 

on average, which answers the first research question - 

RQ 1: How can we learn from previous high-quality 

solutions to accelerate the training process of Deep 

Reinforcement Learning (DRL) techniques?. By 

integrating optimization and machine learning services 

along with a unified encoding of the problem, efficient 

application of imitation learning can be achieved. This 

would conclude our findings to answer the second 

research question - RQ 2: How can the principles of 

imitation learning be applied to train DRL techniques? 

 
Figure 2. A comparison between MAWIL-IL and pure MAWIL without previous experiences 

Page 1656



 

 

7. Conclusions and future research 

directions  

In this research, we presented a DRL-based IL 

approach to investigate adopting the principles of 

imitation learning for addressing scheduling problems. 

The DRL-based IL approach is evaluated for solving 

HFS scheduling problems from related literature to 

establish a baseline comparison. To answer the second 

research question, RQ 2, we demonstrate that efficient 

integration of optimization machine learning services 

facilitates leveraging the principles of imitation 

learning. Our conceptual presentation of the 

integration does not roll out the use of historical high-

quality schedules that might be collected in a 

company. However, we stress a unified encoding of 

the DRL problem and supplemented experiences to 

train an agent successfully. This recommendation is 

based on dealing with tedious technical problems due 

to slight deviations in the shape of the fed solutions. 

The DRL-based IL outperforms an agent without 

expert experiences, demonstrating a notable 

application of IL principles for addressing industrial 

problems, which answers the first research question, 

RQ 1.  

The obtained results may slightly mitigate the 

reported generalization issues (Nahhas, Kharitonov, & 

Turowski, 2022). As demonstrated in Figure 2, 

exposing the agent to different problems does not lead 

to significant degradation in their performance in 

contrast to previous work. However, these findings are 

subject to certain limitations due to the 

computationally expensive nature of DRL 

experiments. The generalization and stability of DRL 

and DRL-based IL remain challenging and require 

further investigation for industrial use. Nonetheless, 

we performed further preliminary analysis to confirm 

this behavior in a dedicated experiment. We train the 

agent with previous experiences from the optimization 

component for solving three problems and then expose 

it to completely unknown other three problems. The 

results show that the DRL-based IL approach avoids 

significant performance degradation and sustains a 

steady increase in the mean reward. From a practical 

point of view, we present a two-phase approach that 

can be employed for addressing HFS scheduling 

concerns in real environments. In the first phase, an 

evolutionary optimization technique is used for 

scheduling, while DRL-based IL is trained with 

previous experiences. The second deployment phase is 

finally conducted once the agent proves stability and 

robustness for real-time scheduling. 
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