

Imitation Learning Based on Deep Reinforcement Learning for Solving

Scheduling Problems

Abdulrahman Nahhas

Faculty of Computer Science

Otto von Guericke University

Magdeburg, Germany

abdulrahman.nahhas@ovgu.de

Andrey Kharitonov

Faculty of Computer Science

Otto von Guericke University

Magdeburg, Germany

andrey.kharitonov@ovgu.de

Christian Haertel

Faculty of Computer Science

Otto von Guericke University

Magdeburg, Germany

 christian.haertel@ovgu.de

Klaus Turowski

Faculty of Computer Science

Otto von Guericke University

Magdeburg, Germany

 klaus.turowski@ovgu.de

Abstract
Scheduling problems are present in various

industrial and service sectors and have a great deal of

impact on the performance of these systems. The

overwhelming majority of industrial problems exhibit a

data-analytic or optimization nature, which can be

reduced to known machine learning or optimization

problems, respectively. This paper demonstrates the

integration of optimization and Deep Reinforcement

Learning (DRL) techniques to address scheduling

problems. The study explores the potential advantages

of Imitation Learning (IL) principles in achieving an

optimization and machine learning pipeline for online

scheduling. We employ an evolutionary optimization

algorithm as an expert policy to generate high-quality

solutions for solving scheduling problems. The obtained

solutions are passed in the form of experiences to train

a DRL-based IL technique. The presented approach is

based on adopting the Nondominated Sorting Genetic

Algorithm three (NSGA III) and the Monotonic

Advantage Re-Weighted Imitation Learning (MARWIL).

The presented approach is evaluated using real

instances of a Hybrid Flow Shop (HFS) scheduling

problem. The experimental analysis demonstrates that

the presented DRL-based IL approach learns an

appropriate scheduling policy, which is superior to

training an agent without previous experiences.

Additionally, the derived policy sustains a steady

increase in performance when exposing the agent to

different unknown problems in contrast to an

established baseline from the literature for solving the

same problems.

Keywords: Imitation Learning, Deep Reinforcement

Learning (DRL), HFS Scheduling problems,

Simulation, Optimization techniques, Parallelization

1. Introduction

Most problems in small and medium companies

exhibit optimization or data-analytic nature, which can

be reduced to known forms of optimization,

classification, clustering, or prediction problems.

Firstly, descriptive analytics is pursued to understand

and characterize historical data to achieve a particular

interpretation of the past. However, understanding the

past is the first step for conducting predictive analytics,

in which it is attempted to predict and obtain a rough

estimation of the likely future. Finally, the final goal is

to conclude this process by conducting prescriptive

analytics, in which decision-making processes are

supported based on adopting evolutionary optimization

or machine learning techniques to improve the future (El

Morr & Ali-Hassan, 2019). In this paper, we aim to

investigate the utilization of machine learning and

evolutionary optimization techniques to cover the

mentioned stages for supporting real-time decision-

making processes. We intend to investigate the design

of a machine learning and optimization pipeline for

addressing scheduling problems.

The majority of manufacturing problems are related

to well-studied fields of research, such as resource

allocation, scheduling, or controlling (Bakator et al.,

2018). Scheduling problems are among the most

challenging problems since their majority can be

addressed only by adopting heuristic or metaheuristic

techniques. Scheduling tasks involves assigning

resources to complete a set of operations in a specific

order. The common consensus in the related scheduling

literature classifies scheduling solution techniques into

two main categories: constructive and improvement

techniques. These techniques are usually adopted when

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 1649
URI: https://hdl.handle.net/10125/106585
978-0-9981331-7-1
(CC BY-NC-ND 4.0)

the complexity of the investigated problem is known

and/or proven to be not solvable in polynomial time

using mathematical techniques, given the current

computational limitations. Constructive heuristics are

simple scheduling procedures that are overwhelmingly

based on some ranking mechanisms. A production

schedule is constructed based on the characteristics of

jobs and a simple ranking property. Many Priority

Dispatching Rules (PDRs), such as Shortest Processing

Time (SPT) or Earliest Due Date (EDD), are simple

constructive heuristics (Hunsucker & Shah, 1994).

Evolutionary and other metaheuristic algorithms

are well-established improvement methods. They are

adopted to solve combinatorial optimization problems

(Glover & Kochenberger, 2003). Their popularity is

explained by their high performance and robustness in

solving complex industrial scheduling problems. As the

name implies, this class of algorithms is inspired by

evolution theory, in which evolution processes (natural

selection, crossover, mate, and mutation) are applied

systematically to an initial set of solution individuals to

seek improvements (Kacem et al., 2002). Often, the

optimization process starts with a set of randomly

generated solutions that construct a set of production

schedules. After that, improvements are pursued on the

initial set through systematic modifications to minimize

or maximize single or multi-objective optimization

measures (Voudouris & Tsang, 2003). Other

metaheuristic techniques are similarly designed to

mimic some natural processes, such as Simulated

Annealing (SA) (Kirkpatrick et al., 1983), which is

based on imitating the metal annealing process or

Swarm Intelligence (SI) (Liao et al., 2007), in which the

behavior of a swarm in nature are reconstructed.

Despite the outstanding performance of the

metaheuristics for solving various scheduling problems,

they can be computationally expensive. To mitigate

previous challenges, many research efforts on hybrid

techniques are presented (Dey et al., 2018; Nahhas,

Kharitonov, Alwadi, & Turowski, 2022; Ribas et al.,

2010). Similarly, descriptive and predictive analytical

approaches are well-investigated in the related literature

on machine learning (Sharp et al., 2018). However, the

adoption of machine learning techniques and their

potential for solving complex scheduling problems is

marginally investigated in the literature. Therefore, the

presented approach aims to answer the following

research questions (RQ):

• RQ 1: How can we learn from previous high-quality

solutions to accelerate the training process of Deep

Reinforcement Learning (DRL) techniques?

• RQ 2: How can the principles of imitation learning

be applied to train DRL techniques?

The remainder of this paper is structured in six

sections. After the introduction, we provide some

necessary preliminaries for DRL and IL techniques. In

the third section, an overview of related works is

presented. The fourth section presents the DRL-based

IL approach. In the fifth section, we discuss adopted

algorithms and the implementation of the presented

approach. The sixth section summarizes the collected

results and discusses the performance of the approach.

Finally, the last section concludes the research findings

and suggests further research directions.

2. Deep reinforcement learning and

imitation learning: background

Many successful research and application efforts

are presented in image analytics, video analytics, and

language models (Liu et al., 2017). The adoption of

Deep Neural Networks, including Deep Convolutional

Neural Networks (CNNs) architectures, is dominant in

literature since they deliver satisfactory performance.

Recently, DRL techniques are considered cutting-edge

machine learning techniques, initially based on the

Markov Decision Process (Papadimitriou & Tsitsiklis,

1987). As a stand-alone ML paradigm, DRL combines

the advantages of supervised and unsupervised learning

strategies. Analogous to unsupervised learning, DRL

methods do not require pre-learned training data, where

each input's expected output is known in advance.

However, DRL methods do not entirely dispense with

training labels but instead generate them based on a

well-defined reward function. The fundamental building

blocks of a DRL technique are four folds:

• A DRL algorithm called agent is designed based on

Deep Neural Networks (DNN).

• An environment that is exposed to the agent for

interaction. Ideally, from a practical point of view,

the environment is an abstract representation of a

real system.

• Action and observation spaces, whereby the former

allows the agent to manipulate the state of the

environment and the latter informs that agent of the

current state of the environment.

• A reward function is used to either positively

reward or negatively punish the agent after taking a

certain action.

The training process of a DRL algorithm starts with

the agent's action, which is passed to the environment to

transition to the next state and collect evaluation

matrices. Throughout the training process, the agents are

exposed to different environmental observations and

assigned rewards for the actions taken. The agent's

ultimate goal is to maximize the reward in dealing with

Page 1650

a particular task, which implies successfully learning an

appropriate policy that forms a strategy to deal with this

task (Henderson et al., 2018). Most DRL methods are

investigated and primarily applied using game-like

environments with little industrial context (Kanervisto

et al., 2020). Improvement of the DRL agent's behavior,

commonly denoted as policy, depends largely on the

experiences used for training this policy. In the standard

DRL settings, these experiences are acquired via direct

agent interaction with the environment. Hence, an agent

receives rewards given a specific environment state

based on an environment-altering action. Typically, the

agent starts without prior experience or knowledge of

the environment. At this point, the agent explores the

environment to generate initial experiences while

attempting to establish a relationship between an

environment state and an action. In essence, a new agent

starts its existence by exploring the environment by

taking random actions until it can discover a trajectory/

sequence of actions that improve the reward.

The DRL research community proposes multiple

techniques to mitigate this challenge. One such

technique is Imitation Learning (IL). In the scope of this

work, the agent has access to a set of demonstrations

generated by an expert (human or a system). These

demonstrations are supplemented to the agent as initial

experience used to batch-train the policies without the

agent performing any interaction with the actual

environment. Therefore, the agent uses these

experiences to imitate the actions provided by the

expert. Training of the agent's policies based on the

experiences supplemented by an outside expert policy is

technically possible in many DRL algorithms. However,

additional information is often required for the agent to

train on the experiences generated by an outside policy

(e.g., action probability distribution), thus limiting the

applicability of such algorithms where an unknown

expert policy is used to generate the experiences.

Q. Wang et al., (2018) proposed a Monotonic

Advantage Re-Weighted Imitation Learning

(MARWIL) algorithm to mitigate issues typically

associated with IL. This algorithm can be used in data-

driven training of the agent's policies based on the

batched historical data by applying monotonic

advantage re-weighting. Therefore, it enables the agent

to determine the impact of taking a certain action within

a specific environment state, essentially estimating the

advantage of taking this specific action. We selected

MARWIL for the evaluation part of this work due to the

relative simplicity of the algorithm, which enables rapid

training of the agents. MARWIL allows deploying the

agents whose policy was trained using expert-generated

experiences. This capability is not always implicit

within DRL algorithms trained or aimed at IL, but it is

crucial for the concept discussed within this work.

3. Related works and state of the art

Our literature analysis reveals a few publications on

applying imitation learning to handle scheduling

problems. Therefore, we will discuss the identified

related works in which RL, DRL, or IL techniques are

adopted to investigate Hybrid Flow Shop (HFS)

scheduling problems. The interpretation of the related

works starts with the least complicated problem and

progresses to the most complicated one. In an HFS

scheduling problem, jobs undergo several processing

stages. At every stage, parallel machines are available to

process all types of jobs. Jobs are always processed in

the same technological order. We rely on HFS

scheduling problems for evaluation since some

industrial problem instances are available. In addition,

such operational specifications are widespread in many

industrial environments.

3.1. Reinforcement Learning (RL)

 Some attempt to deal with flow shop scheduling

problems is presented by (Ren et al., 2021). The authors

relied on RL for approximating the allocation of jobs to

machines using Neural Networks (NN). It is worth

noting that pure flow shop scheduling problems are way

easier to solve than HFS problems. Another application

of RL for solving HFS with three stages is proposed by

(J. Wang et al., 2017). Each production stage contains

two identical machines that can be used to process jobs.

The authors evaluated the performance of the presented

RL against known Priority Dispatching Rules (PDRs)

such as the EDD, SPT, and First-In-First-Out (FIFO),

taking into account the mean flow time, percentage of

tardy jobs, and mean lateness.

Similarly, an application of RL combined with

Boltzmann exploration policy for solving HFS

scheduling problems is presented by (Han et al., 2019).

The authors solved small HFS problem instances

considering the minimization of the makespan

compared to the previously discussed work. The

makespan indicates the maximum completion time over

the set of jobs that must be scheduled.

For a more complex two-stage HFS scheduling

problem with identical machines, (Lang et al., 2021)

presented a hybrid approach using a combination of

Reinforcement Learning (RL) and Genetic Algorithms

(GA). The authors relied on GA to optimize the

structure of the underlying neural networks. The

optimized NN is employed to approximate a sequence

based on which a set of jobs must be scheduled. The

presented NeuroEvolution of augmenting topologies is

applied to solve the problem considering the

minimization of the total tardiness.

Page 1651

3.2. Deep Reinforcement Learning (DRL)

The adoption of DRL techniques for scheduling is

even more limited than RL. For instance, an application

of DQN (Mnih et al., 2015) is presented by (Lang et al.,

2020) to address job shop scheduling problems. The

authors presented computational results superior to

related works for solving four problem instances. The

problems contained five to twenty jobs that must be

mapped to mostly five available machines. For solving

a complex HFS scheduling problem, (Zhu et al., 2020)

presented one of the earliest adoptions of Proximal

Policy Optimization (PPO) (Schulman et al., 2017) to

minimize the makespan. The evaluation is conducted on

randomly generated problem instances in which the

agent acts as a dispatcher to set the sequence of the jobs.

The results are compared to priority dispatching rules.

An application of the rival to the PPO DRL

technique, namely, Advantage-Actor-Critic (A2C), is

presented in (Gerpott et al., 2022). The authors

evaluated the performance of A2C in solving a two-

stage HFS scheduling problem to minimize total

tardiness. The results suggest that the presented

approach can support real-time scheduling. However,

scheduling problems are overwhelmingly characterized

by many objective measures in manufacturing

environments. Obviously, many objective measures are

conflicting, such as the makespan, total tardiness, or

average flow time.

Consequently, modern solution techniques must

satisfy tradeoffs and support multi-objective

optimization. Recently, (Nahhas, Kharitonov, &

Turowski, 2022) adopted two DRL techniques to

address complex HFS scheduling problems considering

the minimization of multiple optimization measures.

PPO and Asynchronous Advantage Actor-Critic (A3C)

are adopted to solve the problem based on an industrial

use case. The presented approach comprises two main

components: a DRL component that includes PPO and

A3C implementations and a discrete event simulation

model, which serves as an environment for the agents.

The presented approaches are evaluated for solving four

instances of multi-stage scheduling problems. The

computational results show that both applied algorithms

with various levels of success derive appropriate

policies for solving the problems based on the encoding.

The empirical results show that the agents can

achieve high-quality solutions that minimize the

makespan, total tardiness, and major setup times over

multiple production stages. However, experiments

suggest that the agents' performance suffers when

exposed to entirely different problems, requiring

additional training to recover performance loss. Google

Brain and DeepMind similarly highlight such

generalization issues in (Chiyuan Zhang et al., 2018).

3.3 Imitation learning (IL)

After searching and scanning in Google Scholar

and ScienceDirect and to the best of our knowledge, we

found no application of IL techniques for solving HFS

scheduling problems. After broadening our search, we

identified very few publications that applied IL to

solving Job shop scheduling problems (Cong Zhang et

al., 2020). The authors proposed an approach based on

PPO, in which the critic network is pre-trained with

previous experiences obtained using different priority

dispatching rules for solving the problems. The

presented concept is based on graph embedding using a

graph isomorphism network. The presented results

prove the superiority of the presented concept against

known Priority Dispatching Rules (PDRs). In addition,

the authors argue that the approach sustains a certain

level of generalization for solving large problem

instances (Cong Zhang et al., 2020).

4. DRL-based Imitation Learning

To address the drawbacks that are pointed out in the

previous works and to answer the research questions, we

present a DRL-based Imitation Learning (IL) approach.

We combine the use of state-of-the-art optimization and

deep reinforcement learning techniques. The conceptual

representation of the discussed concept is presented in

Figure 1. The concept consists of four main components

in addition to the parallelization component, which we

discuss in the implementation section :

• An optimization component based on the

Nondominated Sorting Genetic Algorithms three

(NSGA III) (Jain & Deb, 2014).

• A machine learning component based on the novel

Monotonic Advantage Re-Weighted Imitation

Leaning (MARWIL) algorithm (Q. Wang et al.,

2018).

• A simulation component based on the open-source

Salabim simulation package (van der Ham, 2018).

• A repository of a set of constructive heuristics for

allocation and sequencing. This component

comprises the source code of known PDRs and

other advanced heuristic algorithms from previous

works (Nahhas et al., 2021).

Optimization component - This component acts

as a stand-alone expert policy from the DRL point of

view in conjunction with a simulation model. From a

practical perspective, adopting a multi-objective

evolutionary optimization technique is sufficient for

solving the majority of scheduling problems. Certainly,

the encoding of the problem and the formulation of the

objective functions must be carefully conducted.

Page 1652

 Figure 1. A DRL-based imitation learning approach.

However, as mentioned earlier, computational

effort becomes a major drawback. Therefore, we

suggest training a machine learning algorithm that

imitates the behavior of an expert for solving the

problems. The superiority of evolutionary optimization

techniques for solving scheduling problems is beyond

denial. Therefore, we employ the NSGA III as the expert

in the presented concept. The optimization component

can be used in the first stage of the solution deployment

to suggest scheduling policies while collecting high-

quality solutions (previous experiences). These

experiences can be fed to a machine-learning technique

directly or in batches.

 Machine learning component - Previous studies

proved the applicability of the Deep Reinforcement

Learning (DRL) technique for solving HFS scheduling

problems (Lang et al., 2020; Nahhas, Kharitonov, &

Turowski, 2022; Zhu et al., 2020). However, these

papers partially answer the first research question, while

the use of high-quality experiences is yet to be explored.

Although some of the known reference implementations

of DRL techniques are described to support imitation

learning, no investigation of their use for solving HFS

scheduling problems is found in the literature.

Therefore, after empirical analysis of the viability of

implementation and performance of PPO, A3C, and

MARWIL, we decided to rely on MARWIL as the core

of the machine learning component. The machine

learning component is designed to learn from previous

experiences that an expert generates. These experiences

can be historical data or on-the-fly generated solutions

through optimization. The experiences of the

optimization component can be either passed directly to

the machine learning component or collected in batches

before updating the learning policy of a DRL-based IM

agent. In the online case, after an optimization run is

triggered, high-quality solutions individuals are passed

to the machine learning component with appropriate

observations from a simulation model.

Simulation component – This component builds

up on a discrete-event simulation core engine to

automatically compose simulation models using

structural data of a considered system. As demonstrated

in Figure 1, the optimization and machine learning

components heavily rely on the simulation component

to evaluate. A simulation model acts as an evaluation

method to investigate the fitness of generated solutions

by the optimization component. As for the machine

learning component, an abstraction of a real system is

required to couple a DRL / IL agent with an appropriate

environment. This process is automated by the

simulation component, which requires structural data of

the considered system to build a corresponding

simulation model.

Heuristic library component - In this paper, the

suggested encoding of scheduling problems allows an

optimization strategy (NSGA III / MARWIL) to control

a set of allocation and sequencing algorithms used

during the simulation to construct a production

schedule. The heuristic library is enriched with general

and field-specific heuristic algorithms such as Priority-

Dispatching-Rules (PDRs). It is designed and plugged

into the optimization and machine learning components

in a modular fashion within the implemented

framework, which easily allows the extension of the

library by including further algorithms.

Page 1653

5. Prototypical implementation of the

concept for scheduling problems

5.1. Problem formulation and objective values

To evaluate the presented Imitation Learning (IL)

approach, we relied on problem instances addressed in

previous works to establish a baseline for comparison

(Nahhas, Kharitonov, & Turowski, 2022). We solve

four-stage Hybrid Flow Shop (HFS) problem instances

with major and minor family setup times. The first,

second, and third processing stages contain five parallel

machines of different speeds. Two parallel machines are

available to process all jobs in the fourth processing

stage. The following attributes characterize a job j∈ J:

• The processing time in the first stage 𝑝𝑗, 𝑆1

• The processing time in the second stage 𝑝𝑗, 𝑆2

• The processing time in the third stage 𝑝𝑗, 𝑆3

• The processing time in the fourth stage 𝑝𝑗, 𝑆4

• The due date of a job 𝑑𝑗

• The completion time 𝐶𝑗

• The tardiness of job j is 𝑇𝑗 if the completion 𝐶𝑗 is

bigger than its due date 𝑑𝑗 .

The problem is to be solved by finding a production

schedule in which all operations (𝑂𝑗, 𝑆1 → 𝑂𝑗, 𝑆4) are

completed. The optimization is conducted to minimize

many objective measures: makespan 𝐶𝑚𝑎𝑥, the total

number of the required major setup times on the first and

fourth processing stages 𝑀𝑆 𝑓𝑖𝑟𝑠𝑡, 𝑓𝑜𝑢𝑟𝑡ℎ , the total

tardiness T and the total number of unit penalties U. The

objective values are formalized in (1), (2), (3), and (4),

respectively. The major setup times 𝑀𝑆 𝑓𝑖𝑟𝑠𝑡, 𝑓𝑜𝑢𝑟𝑡ℎ are

lost configuration time of the machines when switched

to process jobs from a different family.

 Cmax, max Cj :∀ Jj (j ∈ {1,…, n} (1)

 𝑀𝑆𝑓𝑖𝑟𝑠𝑡, 𝑓𝑜𝑢𝑟𝑡ℎ ∈ {0,…,n - 1} (2)

 T = ∑ Tj

n

j=1

 : ∀ Jj (j ∈ {1,…, n}) (3)

 U = ∑ Uj

n

j=1

 : ∀ Jj (j ∈ {1,…, n}) (4)

5.2. Encoding the scheduling problem in the

presented concept

This section presents the rationale for our suggested

IL technique. We must rely on a unified encoding to

collect high-quality experiences from the optimization

component and pass them further to the machine

learning component. In the presented IL approach, the

optimization technique seeks to select the best

combination of allocation and sequencing heuristics

from the heuristic library component during the

scheduling period. An example of adopting a

metaheuristic to select different heuristics for solving

HFS scheduling problems can be found in (Rolf et al.,

2020). Based on the selection, jobs are allocated to the

available machine in the first processing stage. Then,

jobs are dispatched using the selected sequencing

algorithms on every machine. In essence, a solution

individual represents an arbitrary selection of allocation

and sequencing heuristics maintained in two vectors of

integer values. These values point to the indexes of

heuristics.

5.3. Optimization component

Such encoding is crucial for successfully applying

the DRL-based IL approach since the problem must be

exposed to the agent as a game. The optimization starts

with an initial set of randomly generated solution

individuals. Then, the suggested solutions are evaluated

using a discrete event simulation model, representing

the investigated system's operational procedures and

constraints. Based on the obtained fitness, we follow the

natural selection strategy of the NSGA III using

uniformly distributed reference points to select the

individuals for generating the offspring population. We

rely on two-point crossover mechanisms to construct

offspring genomes based on the selection. As for the

mutation, we adopt a simple shuffle mutation function

in which two genes are swapped. After generating the

offspring of the next generation, individuals are again

evaluated using the simulation component. This process

is repeated until some breaking criterion is met. In our

setup, we use the number of maximum generations to

break the optimization process. All generated solutions

are stored in a database. A stored solution includes

characteristics, objective values, and detailed

production schedules. These solutions are then fed to

machine learning in the form of previous experiences.

5.4. Machine learning component

Actions space – As mentioned earlier, we relied on

a unified encoding identical to the optimization and used

multi-discrete action space to formulate the problem for

the DRL-based IL (Delalleau et al., 2019). Such

formulation of the action space allows presenting the

problem to the agent in a game-like manner. The agent

maintains, in essence, two controllers (sequencing and

allocation). Through these controllers, it interacts with

the respective environment using the simulation

component. Multi-discrete action is typically adopted

Page 1654

when the agent must produce a set of independent

discrete actions to interact with an environment

(Delalleau et al., 2019). Further elaboration of the

definition of multi-discrete action space can be found in

(Delalleau et al., 2019; Kanervisto et al., 2020). The

agent decides which algorithms are used for allocation

and sequencing at predefined points during a scheduling

period. Based on the selection, jobs are allocated, and a

selected sequencing algorithm is used for dispatching

jobs.

Observation space and reward function – The

design of the observation space of the DRL-based IL

approach is threefold: The entire production schedule,

system-level Key Performance Indicators (KPIs), and

job-level KPIs. This encoding is based on previous work

presented by (Nahhas, Kharitonov, & Turowski, 2022).

The detailed production schedule provides the agent

with a profound view of the system states resulting from

the set of taken actions. It exposes the agent to the life

cycle of every job, which includes details of the starting

time and finishing times of all operations in the system

on all machines. The second and third parts of the

observation space dispense the agent with KPIs well-

studied in the related literature. For instance, we supply

the agent with the average waiting time, average flow

time, the makespan, the total number of major setup

times on processing stages, the total tardiness, and the

total number of penalties (Ribas et al., 2010; Ruiz &

Vázquez-Rodríguez, 2010). Other relevant objective

measures are supplemented in the last part of the

observation space on a job level, such as the total pure

processing time, the overall waiting time, the tardiness,

and the lateness of a job. Finally, the formulation of the

reward function is based on the aforementioned

objective optimization measures, which are minimized

in our optimization and presented in (1), (2), (3), and (4).

We further formulate these objective values in (5) in a

simple maximization function for the agent and weight

the unit penalties with ten to increase their importance

for the agent.

𝑅 = − (Cmax + 𝑀𝑆𝑓𝑖𝑟𝑠𝑡, 𝑓𝑜𝑢𝑟𝑡ℎ + T + U*10) (5)

5.5. Implementation overview

The implementation of the presented approach is

purely developed in Python and supported by the

parallelization component, which relies on the

parallelization capabilities of Python multiprocessing,

RabbitMQ (Roy, 2017) messaging system, and Ray

RLlib distribution framework (Eric Liang et al., 2018).

The objective of the parallelization component is to

support an efficient distribution of optimization and

machine learning experiments. This, in turn, ensures an

efficient application of imitation learning. As discussed

in the previous section, we rely on an evolutionary

optimization technique to collect expert experiences for

solving scheduling problems. The obtained results are

then used to train the DRL-based IL agent. The

development of the optimization component is

relatively less complicated than the machine learning

component. The implementation of the Nondominated

Genetic Algorithms (NSGA III) is straightforward

based on the original paper (Jain & Deb, 2014). The

evaluation component is based on a Salabim simulation

package, which is an open-source Python simulator. As

for the parallelization, we relied on the Python

multiprocessing package and RabbitMQ to accelerate

the optimization process. Solution individuals are

evaluated in parallel on all available CPU cores.

On the contrary, developing the machine learning

component necessitates empirical and technical

analysis. Many DRL techniques are not designed to

leverage previous experiences or imitate other solution

techniques. We empirically and technically investigated

the adoption of Proximal Policy Optimization (PPO),

Advantage-Actor-Critic (A3C), and Monotonic

Advantage Re-Weighted Imitation Learning

(MARWIL). We can adopt A3C and PPO as stand-alone

algorithms while feeding them with previous

experiences requires further technical investigations.

The major challenge we faced was merging experiences

generated by unknown policies (i.e., the experiences of

NSGA III) with experiences generated by A3C or PPO.

Both algorithms are eventually not intended DRL

algorithms for imitation learning. We are aware of an

implementation of PPO, which can be fed with previous

experiences as presented by (Cong Zhang et al., 2020).

Our computational results show that A3C and PPO learn

appropriate policies for solving HFS scheduling

problems without exploiting the potential of imitation

learning, which aligns with the reported results in

(Nahhas et al., 2022). We successfully adopted

MARWIL for solving the scheduling problem based on

expert experiences from the optimization component.

To achieve an optimization and machine learning

pipeline, we recommend relying on MARWIL, which

also yields learning an appropriate policy for solving

scheduling problems.

6. Evaluation and computational results

To solve the HFS scheduling problem, we

configured the NSGA III to run an optimization for 200

generations. The optimization is conducted to solve

three problem instances used for evaluation (Nahhas,

Kharitonov, & Turowski, 2022). The population size is

set at 75 individuals. The optimization is conducted to

minimize the makespan, the total number of major setup

times on the first and fourth processing stages, the total

Page 1655

tardiness, and the total number of penalties as previously

discussed in (1), (2), (3), and (4) respectively. We

applied a 0.8 crossover rate and 0.6 mutation rate to

maintain population diversity. The parameterization is

obtained empirically after conducting preliminary

hyperparameter tuning. The optimization component

generated fifteen thousand solution individuals for

solving each problem instance. These solutions are then

fed to the machine learning component to investigate

imitation learning principles and evaluate the

performance of the presented approach.

As for the machine learning component, we

designed the experimental setup to highlight the

functionality of imitating expert experience and to

answer the first research question. The computational

results are presented in Figure 2. We conducted multiple

optimization and machine learning experiments to

statistically observe their behavior, which is

demonstrated as a dispersion in the figure. The agent is

trained to solve three problem instances to achieve

comparability to a published baseline. The DRL-based

IL agent is trained with 450,000 previous experiences

before exposing it to online mode for further training.

The agent samples new solutions based on experiences

and a built-in sampler with a predefined advantage

factor-beta during the online mode. This factor controls

the weighting of the quality of previous experiences,

favoring high-quality ones (Q. Wang et al., 2018). We

performed hyperparameter tuning through rapid

experimentations. The parameters are set based on our

analysis and to the best of our knowledge from related

literature (Q. Wang et al., 2018). The DRL-based IL

agent learning rate is set to be 1e-4. The beta parameter

is set to 1.0 to motivate the agent to use weights of

previous experiences for generating new solutions. The

size of the reply buffer is set at 15,000. The reply buffer

size controls the number of previous experiences that

are available for the agent during the sampling. The

computational results suggest that the DRL-based IL

agent successfully derives an appropriate scheduling

policy to deal with the HFS scheduling problems. As

shown in Figure 2, the achieved mean reward based on

the formulated reward function steadily increases during

the training processes. This implies that the agent is

successfully learning to solve the problems based on the

encoding that we discussed in the previous section.

The orange line (MARWIL Online) in the presented

figure represents the results of training MARWIL to

solve the problems based on our encoding without

exposing it to previous experiences. The blue line

(MARWIL IL) depicts the result of the IL agent, which

is fed with previous expert experiences. Over multiple

optimization and machine learning runs, we observe

consistent outperformance of the DRL-based IL

technique for solving the HFS scheduling problems in

terms of the achieved mean reward presented in

equation (6). It is, on average, between nine and ten

percent. The presented results strongly suggest that we

can apply imitation learning principles based on the

MARWIL algorithm for solving scheduling problems.

The computational results provide initial evidence

articulating that relying on high-quality experiences

accelerates the training process of the DRL technique

since MARWIL IL achieves a 10 percent higher reward

on average, which answers the first research question -

RQ 1: How can we learn from previous high-quality

solutions to accelerate the training process of Deep

Reinforcement Learning (DRL) techniques?. By

integrating optimization and machine learning services

along with a unified encoding of the problem, efficient

application of imitation learning can be achieved. This

would conclude our findings to answer the second

research question - RQ 2: How can the principles of

imitation learning be applied to train DRL techniques?

Figure 2. A comparison between MAWIL-IL and pure MAWIL without previous experiences

Page 1656

7. Conclusions and future research

directions

In this research, we presented a DRL-based IL

approach to investigate adopting the principles of

imitation learning for addressing scheduling problems.

The DRL-based IL approach is evaluated for solving

HFS scheduling problems from related literature to

establish a baseline comparison. To answer the second

research question, RQ 2, we demonstrate that efficient

integration of optimization machine learning services

facilitates leveraging the principles of imitation

learning. Our conceptual presentation of the

integration does not roll out the use of historical high-

quality schedules that might be collected in a

company. However, we stress a unified encoding of

the DRL problem and supplemented experiences to

train an agent successfully. This recommendation is

based on dealing with tedious technical problems due

to slight deviations in the shape of the fed solutions.

The DRL-based IL outperforms an agent without

expert experiences, demonstrating a notable

application of IL principles for addressing industrial

problems, which answers the first research question,

RQ 1.

The obtained results may slightly mitigate the

reported generalization issues (Nahhas, Kharitonov, &

Turowski, 2022). As demonstrated in Figure 2,

exposing the agent to different problems does not lead

to significant degradation in their performance in

contrast to previous work. However, these findings are

subject to certain limitations due to the

computationally expensive nature of DRL

experiments. The generalization and stability of DRL

and DRL-based IL remain challenging and require

further investigation for industrial use. Nonetheless,

we performed further preliminary analysis to confirm

this behavior in a dedicated experiment. We train the

agent with previous experiences from the optimization

component for solving three problems and then expose

it to completely unknown other three problems. The

results show that the DRL-based IL approach avoids

significant performance degradation and sustains a

steady increase in the mean reward. From a practical

point of view, we present a two-phase approach that

can be employed for addressing HFS scheduling

concerns in real environments. In the first phase, an

evolutionary optimization technique is used for

scheduling, while DRL-based IL is trained with

previous experiences. The second deployment phase is

finally conducted once the agent proves stability and

robustness for real-time scheduling.

References

Bakator, M., Ćoćkalo, D., & Nikolić, M. (2018). A model

for manufacturing optimization and achieving higher

productivity in small and medium-sized enterprises. In

Proceedings of VIII International Conference

Industrial Engineering and Environmental Protection,

Zrenjanin, Serbia.

Delalleau, O., Peter, M., Alonso, E., & Logut, A. (2019,

December 23). Discrete and Continuous Action

Representation for Practical RL in Video Games.

Dey, S., De, S., & Bhattacharyya, S. (2018). Introduction to

Hybrid Metaheuristics. In S. Bhattacharyya (Ed.),

Series in machine perception and artificial intelligence,

1793-0839: Vol. 84. Hybrid metaheuristics: Research

and applications / Siddhartha Bhattacharyya (Vol. 84,

pp. 1–38). World Scientific Publishing.

El Morr, C., & Ali-Hassan, H. (2019). Descriptive,

Predictive, and Prescriptive Analytics. In C. El Morr &

H. a. Ali-Hassan (Eds.), SpringerBriefs in Health Care

Management and Economics, 2193-1704. Analytics in

healthcare: A practical introduction / Christo El Morr,

Hossam Ali-Hassan (pp. 31–55). Springer.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz,

Roy Fox, Ken Goldberg, Joseph Gonzalez, Michael

Jordan, & Ion Stoica (2018). Rllib: Abstractions for

Distributed Reinforcement Learning. International

Conference on Machine Learning, 3053–3062.

Gerpott, F. T., Lang, S., Reggelin, T., Zadek, H.,

Chaopaisarn, P., & Ramingwong, S. (2022).

Integration of the A2C Algorithm for Production

Scheduling in a Two-Stage Hybrid Flow Shop

Environment. Procedia Computer Science, 200, 585–

594.

Glover, F., & Kochenberger, G. A. (Eds.). (2003).

Handbook of Metaheuristics. Springer Science &

Business Media.

Han, Guo, & Su (2019). A Reinforcement Learning Method

for a Hybrid Flow-Shop Scheduling Problem.

Algorithms, 12(11), 222.

Henderson, P., Islam, R., Bachman, P., Pineau, J.,

Precup, D., & Meger, D. (2018). Deep Reinforcement

Learning That Matters. In Thirty-Second AAAI

Conference on Artificial Intelligence.

Hunsucker, J. L., & Shah, J. R. (1994). Comparative

performance analysis of priority rules in a constrained

flow shop with multiple processors environment.

European Journal of Operational Research, 72(1),

102–114.

Jain, H., & Deb, K. (2014). An Evolutionary Many-

Objective Optimization Algorithm Using Reference-

Point Based Nondominated Sorting Approach, Part II:

Handling Constraints and Extending to an Adaptive

Approach. IEEE Transactions on Evolutionary

Computation, 18(4), 602–622.

Kacem, I., Hammadi, S., & Borne, P. (2002). Approach by

localization and multi-objective evolutionary

optimization for flexible job-shop scheduling problems.

IEEE Transactions on Systems, Man and Cybernetics,

Part C (Applications and Reviews), 32(1), 1–13.

Page 1657

Kanervisto, A., Scheller, C., & Hautamäki, V. (2020, April

2). Action Space Shaping in Deep Reinforcement

Learning.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983).

Optimization by simulated annealing. Science (New

York, N.Y.), 220(4598), 671–680.

Lang, S., Lanzerath, N., Reggelin, T., Müller, M., &

Behrendt, F. (2020). Integration of Deep

Reinforcement Learning and Discrete-Event

Simulation for Real-Time Scheduling of a Flexible Job-

Shop Production. In K.-H. G. Bae, B. Feng, S. Kim, S.

Lazarova-Molnar, Z. Zheng, T. Roeder, & R. Thiesing

(Eds.), Proceedings of the 2020 Winter Simulation

Conference (WSC'20). IEEE.

Lang, S., Reggelin, T., Schmidt, J., Müller, M., &

Nahhas, A. (2021). NeuroEvolution of augmenting

topologies for solving a two-stage hybrid flow shop

scheduling problem: A comparison of different solution

strategies. Expert Systems with Applications, 172,

114666.

Liao, C.‑J., Tseng, C.‑T., & Luarn, P. (2007). A discrete

version of particle swarm optimization for flowshop

scheduling problems. Computers & Operations

Research, 34(10), 3099–3111.

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., &

Alsaadi, F. E. (2017). A survey of deep neural network

architectures and their applications. Neurocomputing,

234, 11–26.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,

Veness, J., Bellemare, M. G., Graves, A.,

Riedmiller, M., Fidjeland, A. K., Ostrovski, G.,

Petersen, S., Beattie, C., Sadik, A., Antonoglou, I.,

King, H., Kumaran, D., Wierstra, D., Legg, S., &

Hassabis, D. (2015). Human-level control through deep

reinforcement learning. Nature, 518(7540), 529–533.

Nahhas, A., Kharitonov, A., Alwadi, A., & Turowski, K.

(2022). Hybrid Approach for Solving Multi-Objective

Hybrid Flow Shop Scheduling Problems with Family

Setup Times. Procedia Computer Science, 200, 1685–

1694.

Nahhas, A., Kharitonov, A., & Turowski, K. (2022). Deep

Reinforcement Learning Techniques For Solving

Hybrid Flow Shop Scheduling Problems: Proximal

Policy Optimization (PPO) and Asynchronous

Advantage Actor-Critic (A3C). In T. Bui (Ed.),

Proceedings of the 55th Hawaii International

Conference on System Sciences. Hawaii International

Conference on System Sciences.

Nahhas, A., Krist, M., & Turowski, K. (2021). An adaptive

scheduling framework for solving multi-objective

hybrid flow shop scheduling problems. In T. Bui

(Chair), HICSS.

Papadimitriou, C. H., & Tsitsiklis, J. N. (1987). The

Complexity of Markov Decision Processes.

Mathematics of Operations Research, 12(3), 441–450.

Ren, J., Ye, C., & Yang, F. (2021). Solving flow-shop

scheduling problem with a reinforcement learning

algorithm that generalizes the value function with

neural network. Alexandria Engineering Journal,

60(3), 2787–2800.

Ribas, I., Leisten, R., & Framiñan, J. M. (2010). Review and

classification of hybrid flow shop scheduling problems

from a production system and a solutions procedure

perspective. Computers & Operations Research, 37(8),

1439–1454.

Rolf, B., Reggelin, T., Nahhas, A., Lang, S., & Müller, M.

(2020). Assigning dispatching rules using a genetic

algorithm to solve a hybrid flow shop scheduling

problem. Procedia Manufacturing, 42, 442–449.

Roy, G. M. (2017). Rabbitmq in Depth. Manning

Publications.

Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid

flow shop scheduling problem. European Journal of

Operational Research, 205(1), 1–18.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., &

Klimov, O. (2017, July 20). Proximal Policy

Optimization Algorithms.

Sharp, M., Ak, R., & Hedberg, T. (2018). A survey of the

advancing use and development of machine learning in

smart manufacturing. Journal of Manufacturing

Systems. Advance online publication.

van der Ham, R. (2018). Salabim: open source discrete event

simulation and animation in Python. In Proceedings of

the 2018 Winter Simulation Conference.

Voudouris, C., & Tsang, E. (2003). Guided Local Search. In

F. Glover & G. A. Kochenberger (Eds.), Handbook of

Metaheuristics (Vol. 57, pp. 185–218). Springer

Science & Business Media.

Wang, J [Jinzhi], Qu, S., Wang, J [Jie], Leckie, J. O., &

Xu, R. (2017). Real-Time Decision Support with

Reinforcement Learning for Dynamic Flowshop

Scheduling. In Smart SysTech 2017; European

Conference on Smart Objects, Systems and

Technologies.

Wang, Q., Xiong, J., Han, L., sun, p., Liu, H., & Zhang, T

[Tong] (2018). Exponentially Weighted Imitation

Learning for Batched Historical Data. Advances in

Neural Information Processing Systems, 31.

Zhang, C [Chiyuan], Vinyals, O., Munos, R., & Bengio, S.

(2018). A Study on Overfitting in Deep Reinforcement

Learning.

Zhang, C [Cong], Song, W., Cao, Z., Zhang, J., Tan, P. S.,

& Chi, X. (2020). Learning to Dispatch for Job Shop

Scheduling via Deep Reinforcement Learning.

Advances in Neural Information Processing Systems,

33, 1621–1632.

Zhu, J., Wang, H., & Zhang, T [Tao] (2020). A Deep

Reinforcement Learning Approach to the Flexible

Flowshop Scheduling Problem with Makespan

Minimization. In 2020 IEEE 9th Data Driven Control

and Learning Systems Conference (DDCLS)

(pp. 1220–1225). IEEE.

Page 1658

