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Abstract 
This action research article presents a case study 

of a global manufacturing company deploying 

artificial intelligence (AI) to develop capabilities and 

enhance decision-making. This study explores 

considerations and trade-offs involved in introducing 

AI into daily operations, leading up to the decision to 

develop AI capabilities in-house or outsource them.  

The case study offers in-depth technical 

descriptions of model selection, dataset creation, 

model adoption, model training and evaluation while 

addressing organizational obstacles and decision-

making processes. The study’s findings highlight the 

importance of collaboration between technical 

experts, business leaders, and end-users, as well as 

the interaction and collaboration between AI systems 

and human employees in the workplace.  

The article contributes a practical perspective on 

AI implementation in manufacturing, emphasizing the 

need to balance in-house capability development with 

external acquisition. Although the case study company 

managed to create an in-house model, factors such as 

implementation, debugging, data requirements, 

training time, and performance led to outsourcing the 

capabilities. However, making this informed decision 

required capabilities and insights that were acquired 

through practical work. Consequently, although in-

house development can be challenging, it can also 

enhance organizational capabilities and provide the 

necessary knowledge to make informed decisions 

about future development or outsourcing. 

 

Keywords: AI capability development, AI 

implementation, AI in manufacturing  

 

1. Introduction 
 

The adoption of AI in manufacturing has received 

significant attention in both academia and industry in 

recent years (Zeba, Dabic, Čičak, & Daim, 2021). 

Most of the research on the implementation of AI in 

manufacturing has been conducted independently 

from daily operations (Arinez, Chang, Gao, Xu, & 

Zhang, 2020). Further investigations are needed to 

better understand the implications of integrating AI 

into daily operations and manage AI project and 

deployment risk.  It also raises questions on how 

organizations should manage, staff and coordinate AI 

development. While contemporary AI research 

typically describes a computational solution to a 

specific problem, this article investigates the practical 

process of developing such a solution, the obstacles 

encountered, and the considerations made during the 

process. This approach is supported by (Amabile, 

1996) and (Govindarajan & Trimble, 2012), who 

argue that the solution-finding process is important in 

enhancing creativity and innovation and overcoming 

complex problems. 

When considering integrating AI into their 

operations, companies must decide whether to 

develop capabilities in-house or outsource them to 

external service providers (Ransbotham, Gerbert, 

Kiron, & Reeves, 2017). Outsourcing AI capabilities 

allows companies to quickly acquire necessary 

expertise but may result in a loss of competitive 

advantage provided by AI solutions, only gaining 

access to technology and competence available in the 

open market (Govindarajan & Immelt, 2019; Teesce, 

2014). In-house development provides organizations 

with greater control over the development process, but 

this comes with a cost. Companies must therefore 

weigh the resources and time needed against the 

benefits of acquiring the same capability externally. 

There is no clear guidance on the decision-making 

process or criteria for making such decisions 

(Ransbotham, Gerbert, Kiron, & Reeves, 2017; 

Govindarajan & Immelt, 2019; Teesce, 2014). 

This paper aims to investigate the implications, 

considerations, and trade-offs of introducing AI into 

daily operations of a manufacturing company, leading 

up to the decision of whether to develop AI 

capabilities in-house or outsource them and the factors 

that influence this decision. The case study focuses on 

the in-house development of an AI model for defect 

detection in X-rays of welds of aerospace components 

(the In-House Model). It provides IS professionals’ 
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accounts of managing challenges faced by 

contemporary corporations and organizations. 

Although the current study investigates capability 

development in one company only, it aims to 

generalize within the specific setting, focusing on 

theoretical abstraction and insights that are well-

grounded in the selected case. 

 

2.  Identifying the problem domain 
 
2.1. The case 

  
In the current case, an aerospace component 

manufacturing company (the Company) was 

increasing production of a critical component, the 

turbine exhaust case (TEC), the final stage of a 

commercial jet engine. The TEC is vital for heat 

dissipation and performance. It is a complex load-

bearing structure designed to withstand high 

temperatures and loads while also maintaining 

aerodynamic performance, low weight, and cost-

effectiveness. The TEC has a diameter of 

approximately 1 meter and weighs roughly 75 kgs. It 

is built by welding several segments together, and 

each TEC comprises more than 100 welds that 

undergo inspection using X-rays, a method commonly 

used to detect defects such as gas pores and cracks in 

welds (Tyystjärvi et al., 2022).  

 

Figure 1: Image of the turbine exhaust case - the 
component subject to weld inspection. 

As the production rate was ramping up, an 

increasing amount of welds required inspection. The 

X-ray images of the TEC were digitally scanned, and 

each scan contained between two and four X-ray 

images of welds. Three operators spent thousands of 

hours inspecting hundreds of thousands of images per 

year. As pointed out by Bertović, such a manual 

inspection process is time-consuming, fail-prone, and 

operator-dependent (Bertović, 2016). In the current 

case, the process of training and certifying these 

inspectors was expensive and cumbersome, taking up 

to two years of training and practical experience for 

operators to become certified for inspection. Although 

minor defects were present, critical defects were rare 

and did not often render components defective. As a 

result, the monotony of inspecting welds and the rarity 

of critical defects increased the risk of human-related 

errors.  

The Company had previously assessed automated 

inspection methods utilizing machine learning, but 

faced obstacles such as low or inconsistent contrast 

and brightness, and defect-like anomalies or 

geometries producing excessive false positives. These 

issues have been identified as recurring problems with 

automated inspection (Nacereddine, Zelmat, Belaïfa, 

& Tridi, 2005; Ronneberger, Fischer, & Brox, 2015). 

Despite having a database of hundreds of thousands of 

X-ray images, the Company lacked labeled data 

suitable for training AI models.  

 

2.2. Related research 

 
The study builds on previous research suggesting 

that machine learning techniques, including deep 

learning, can be used to detect defects in X-ray images 

(Bertovic & Virkkunen, 2021). To explore this further, 

a literature search was conducted on Google Scholar 

using the inclusion criteria "defect detection," "X-ray," 

and "welds," in conjunction with the keywords 

"machine learning" and "deep learning" respectively. 

The search identified 18 articles investigating various 

AI techniques for detecting defects in X-ray images. 

These techniques include traditional machine learning 

methods such as support vector machines (Wang Y. 

e., 2008) as well as deep learning techniques such as 

segmentation networks (Tyystjärvi et al., 2022), 

generative adversarial networks (GANs) (Akcay, 

Atapour-Abarghouei, & Breckon, 2019; Guo et al., 

2021), autoencoders (AEs) (Presenti et al., 2022), 

variational autoencoders (VAEs) (Banko et al., 2021; 

Lindgren & Zach, 2021), and, to the greatest extent, 

convolutional neural networks (CNNs) (Jiang et al. L. 

, 2021; Yaping & Weixin, 2019; Wang, Shi, & Tong, 

2019; Yang et al. D. , 2021; Deng et al., 2021; Naddaf-

Sh et al., 2021; Ajmi et al., 2020; Wen-ming, 2019; 

Jiang et al. H. , 2021; He et al., 2017) (Yang et al. L. , 

2021). However, to fully leverage the benefits that 

deep learning techniques provide, it is typically 

necessary to have a large data base of labeled 

examples (Presenti et al., 2022). Creating labeled 

training data for image analysis in non-destructive 

evaluation can be challenging due to the complex and 

often subtle nature of the features that need to be 

identified. Because manual labeling is labor-intensive 

and susceptible to errors or inconsistency between 

labels, it becomes increasingly problematic when 

labeling large data volumes. As a result, there are 

limited public data resources available for training 

machine learning models to perform this task 

(Tyystjärvi et al., 2022; Mery et al., 2015). 

More recently, semi-supervised VAEs (SS-VAEs) 

have emerged as a tool for image classification in 

instances where, as in the current case, there are low 

amounts of labeled data available, but a fair amount of Page 5797



unlabeled data (Kong & Ni, 2020). However, our 

literature search revealed no studies investigating use 

of SS-VAEs for defect detection in X-ray images.  

 

2.3. About the SS-VAE 

 
The SS-VAE builds on the VAE, which, in turn, 

builds on the AE architecture. The AE contains an 

encoding function that maps an input to a compressed 

latent space representation and a decoding function 

that maps from the latent space back into the original 

space (Maheshwari, Mitra, & Sharma, 2022). 

The VAE maps an input to a probability 

distribution over the latent space, allowing it to model 

complex and multimodal data distributions and 

generate new data by sampling the distribution 

(Kingma & Welling, 2014). 

VAEs have been used in various domains, 

including image recognition and anomaly detection 

(Maheshwari, Mitra, & Sharma, 2022). In instances 

where labeled data is limited, it is possible to estimate 

the label using a SS-VAE. The SS-VAE decoder (i.e. 

the probabilistic model) represents missing labels as 

latent variables sampled from a prior distribution 

while the encoder (i.e. the approximating distribution 

or guide) infers missing labels from the image data. 

This approach has been used to improve classification 

in various domains with a limited amount of labeled 

data (Kingma & Welling, 2014; Wu et al., 2021). 

 

3. Methodological framework 
 
3.1. Action research  

 
The study uses Mathiassen et al.'s action research 

model, which involves collaboration between 

practitioners and researchers to address real-world 

issues (Mathiassen, Chiasson, & Germonprez, 2012). 

Put simply, action research is a "learning by doing" 

process where a group of individuals identifies a 

problem, plans how to tackle the problem, takes action 

to resolve it, evaluates the success of their efforts, and 

iterates as necessary (Susman, 1983; O’Brien, 1998). 

The distinguishing feature of action research 

compared to professional practices is its scientific 

approach, wherein the problem is systematically 

studied, and the intervention is grounded in theoretical 

considerations (O’Brien, 1998). Through 

collaboration between practitioners and researchers, 

this study seeks to contribute to solving the Company's 

problem of establishing necessary capabilities while 

addressing the needs identified in current research, 

how to identify necessary capabilities and optimal 

ways to develop them.  

Furthermore, this study adopts a practice-based 

research approach that leverages the main author's 

expertise in leading digital transformation, enabling 

the development of necessary capabilities and 

constant reflection on and refinement of the practice 

(Candy, 2006). By adopting this approach, the study 

aims to not only address the Company's problem but 

also to contribute to the academic literature on 

capability development in practice-based contexts. 

 

3.2. Agile approach with experiment-first-

mindset 

 
Rather than adhering to a strict plan, setting out 

each step and the requirements of the end product, the 

study utilized an agile approach, emphasizing 

experimentation and creativity in the project. The 

project was executed as a series of iterative 

experiments, refining the project design based on 

continuous feedback, collaboration, and flexibility, 

which are important components both in action 

research and in addressing the challenges of AI 

projects (Sousa, 2019; Mukherjee, 2020; Steiber, 

Alänge, Ghosh, & Goncalves, 2020; Curcio et al., 

2018). 

 

3.3. Action Planning 

 
In this case, the Company's senior leadership 

requested their in-house digital innovation team (the 

Team), led by the main author, to develop a model in-

house (In-house Model) that could be used as a 

benchmark against a proprietary model (Proprietary 

Model) from an external service provider specializing 

in detecting defects in images with limited labeled 

data. The Team had no insight into the Proprietary 

Model other than that it was partly trained in an 

unsupervised manner. The Company's goal was to 

make a decision within a few months, so the Team was 

reminded of the importance of time and tasked with 

creating a model that allowed them to benchmark the 

Proprietary Model. The Team had limited experience 

of developing advanced AI models in general and 

models for defect detection in particular and therefore 

needed to develop these capabilities.  

The Team had a proved ability to implement digital 

solutions into various areas of the Company. 

However, given the Team's limited experience 

working with AI solutions, the study adopted an action 

research approach that involved forming a 

collaborative group of both external and internal 

stakeholders to provide a broader range of expertise 

and perspectives (Reason & Bradbury, 2001). The 

Team collaborated with external experts in deep 

probabilistic programming (the Experts) and internal 

X-ray inspection operators (the Operators) who 

provided insights and recommendations based on their 

expertise. The Experts and Operators also served as a 

benchmark for evaluating the effectiveness of the 

interventions implemented during the research 

process. 

As the Team leader, the study's main author was 

responsible for AI capability development within the 
Page 5798



Company. In this study, he worked alongside an 

industry programmer to perform the practical work, 

enabling practice-based research. Simultaneously, the 

main author researched leadership aspects of AI 

implementation in the manufacturing industry 

allowing for the immediate application of research 

findings in the field.  

To further conceptualize the results, ensuring they 

were research-grounded and contributed to the 

academic discourse, the main author collaborated with 

the second author and engaged with the research 

community. This approach resulted in insights that 

enhanced the practical experiences gained in the 

manufacturing industry, making the results both 

practically and scientifically grounded. 

 

4. Taking action 
 

This section describes the chronological order of 

the different stages of the practical work being 

undertaken, namely model selection, dataset creation, 

model development, model training, and model 

evaluation.  

 

4.1. Selecting the In-house Model 

 
The Company's senior leadership had requested the 

Team to develop an In-house Model that could serve 

as a benchmark against the Proprietary Model. 

However, the leadership did not provide explicit 

criteria for the In-House Model, apart from its role as 

a benchmark. Faced with a lack of clear guidelines, the 

Team collaborated with the Experts to determine the 

properties the model should possess to function as a 

benchmark. Considering the Proprietary Model's 

ability to operate with limited labeled data, and the 

fact that there was a fair amount of unlabeled data 

available, the Experts advised the Team to develop a 

model that could efficiently utilize unlabeled data 

without relying on extensive labeled data. With this in 

mind, they recommended the Team to construct a SS-

VAE. For a comprehensive description of the SS-

VAE, please see Kingma and Welling, 2014). 

While creating a model from scratch may have 

resulted in better performance, the Team faced time 

constraints. To expedite the development process and 

meet the leadership's goal of making a decision soon, 

the Experts recommended that the team adopt a 

publicly accessible model (the Baseline model) 

implemented in the deep probabilistic programming 

language Pyro (https://pyro.ai/examples/ss-vae.html). 

This approach, they suggested, would provide an 

adequate benchmark for comparison purposes.  

 

4.2. Creating the dataset 

 
The inspection criteria for the TEC state that 

several minor defects, such as gas pores located within 

a specific area, could render the component defective. 

In consultation with the Operators, the Team 

identified that the In-House Model needed to be able 

to process 256x256 pixel images to capture all known 

types of defects, based on the inspection criteria.  

According to the external service provider, around 

20 images per class were required to effectively 

showcase the capabilities of the Proprietary Model. 

The Experts advised that for an SS-VAE, 20 labeled 

images per class was low. The Baseline model was 

trained using a varied range of labeled MNIST images 

(28x28 pixel black and white representations of the 

handwritten digits 0-9), spanning from 100 to 3000 

instances (Pyro, 2017). This means that there were 

approximately 10 to 300 training images available per 

individual handwritten digit. It is worth noting that the 

MNIST images were considerably smaller compared 

to the 256x256 pixel images intended for use in the In-

house Model.  

Although the lower number of labeled training 

images in the Baseline model potentially could have 

an adverse effect on the accuracy of the In-house 

Model, the Team deemed that an important aspect of 

benchmarking the Proprietary Model would be to use 

the same amount of labeled training data. The Team 

therefore decided to use 20 around labeled images per 

class for training. 

Together with the Operators, the Team generated a 

labeled dataset from 10 full-size scans (Scans), 

containing between four to five X-ray images of welds 

(Weld-images) of the TEC. For each Weld-image, the 

regions that could contain defects and the defects in 

each region were marked. From these regions, the 

Weld-images were divided into 256x256 pixel images 

(Sub-images).  

 

 
Figure 2: An example of a 256x256 pixel Sub-

image with marked defects. 
 

From these Sub-images the Team created a labeled 

training dataset containing 21 defect and 21 non-

defect Sub-images. This was the dataset that was 

provided to the external consultant under a 

confidentiality agreement to train the Proprietary 

Model. Due to the low amount of labeled training data, 

the Team augmented the Sub-images to increase the 

number of data points in the training dataset. By 

flipping the Sub-images, a commonly known method 

to increase the number of data points (Shorten & 

Khoshgoftaar., 2019), the Team generated an 

additional three images per labeled image. This 

resulted in a total of 168 Sub-images for the training 
Page 5799
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dataset - 84 Sub-images per class. The Team decided 
together with the Experts to leverage the SS-VAE's 
ability to use unlabeled data for training.  

The Baseline model used a ratio of 1:500 to 1:16 

between labeled and unlabeled images. The Experts 

initially recommended similar ratios for the project. 

However, due to the differences in size between 28x28 

pixel MNIST images used in the Baseline model and 

the 256x256 pixel Sub-images in the current project, 

the Team recognized that using the same ratios as the 

Baseline model would significantly increase the 

training time of the model, to the point of being 

infeasible (for example, a ratio of 1:500 would have 

resulted in a training time of over eight years). 

The Team thus faced a trade-off between model 

optimization and speed of execution. Using more 

labeled images would likely increase the accuracy of 

the In-House Model but also increase the training 

time. In consultation with the Experts, the Team 

ultimately opted for a ratio of 1:10 between labeled 

and unlabeled Sub-images. This decision was 

motivated by the fact that the labeled dataset already 

contained a sufficient number of training examples per 

class, and that a ratio of 1:10 was deemed to provide 

enough information to be able to evaluate the In-

House Model.  

The Team thus generated an unlabeled dataset of 

1680 Sub-images using the same process as the 

labeled training data, excluding augmentation. 

 

4.3. Reducing dimensionality 

 
The Sub-images initially had a 16-bit grayscale 

depth. The Experts advised mapping the pixel values 

to a categorical distribution. Instead of representing 

each pixel's intensity as a numerical value, it would be 

transformed into a probability distribution across 

categories, where each category represented a specific 

intensity level. Unfortunately, this approach caused a 

memory leak on the GPU due to a bug in Pyro - the 

software framework used to build the In-house Model 

(Pyro, 2022). The Team spent weeks trying to solve 

this issue. Eventually, the Team sought help from the 

Pyro development team who suggested using a 

previous version of Pyro, which inexplicably solved 

the memory leak. 

However, after this issue was solved, the Team 

realized that, despite using powerful GPUs, training 

the In-House Model on the 16-bit grayscale Sub-

images would take over six months, which was 

unfeasible given the timeline provided by the 

Company leadership. Consequently, the Team 

explored various methods of reducing the 

dimensionality of the images. 

Hou et al. have emphasized the importance of pre-

processing high-dimensional data to reduce the 

complexity of classification tasks and computational 

costs (Hou et al., 2020). To determine the necessary 

information level for Operators to detect potential 

defects in the Sub-images, the Team consulted with 

them and concluded that black and white images 

would suffice for capturing all defects. To achieve 

this, the Team used OpenCV, a Python framework, 

and the CV2 module, along with an adaptive binary 

Gaussian model, to reduce the dimensionality of the 

images and convert them to black and white (OpenCV, 

2022). 

The adaptive binary Gaussian algorithm sets pixel 

thresholds using surrounding regions, accommodating 

images with varying illumination. However, given the 

variability in optimal thresholds for different images, 

the Team adjusted them according to the weld 

inspection criteria. 

Noise and artifacts in images complicated the 

conversion process, potentially impacting the model's 

accuracy. Thus, the Tam and Operators jointly 

reviewed all training images to ensure no defects were 

missed during conversion. 

 

 
Figure 3: A comparison of a Sub-image with 16-
bit grayscale depth and its conversion to black 
and white using an adaptive binary Gaussian 

model.  
 

4.4. Adopting and training the In-house 

Model 

 
The Team adopted the Baseline model, a semi-

supervised variational autoencoder using the Python 

programming framework Pyro. Python code for the 

Baseline model can be found at 

https://github.com/pyro-

ppl/pyro/blob/dev/examples/vae/ss_vae_M2.py. The 

In-house Model consisted of an encoder, a latent 

space, a classifier and a decoder. 

The encoder utilized four tiers of convolutional and 

max pooling layers, each with 4, 8, 16, and 16 

channels, respectively. These layers were defined by a 

kernel size of 3, a stride of 1, and a pooling size of 2. 

Following these layers, three fully connected layers 

were employed, having 3136 and 1000 nodes, and a 

pair of parallel layers each with 75 nodes. Softplus 

was used as the activation function for both the 

convolutional and fully connected layers. The encoder 

configured a 75-dimensional latent space, where each 

dimension was represented by a Gaussian distribution. 
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The classifier, sharing the same architecture as the 

encoder, differed by using 500 hidden units in the 

second fully connected layer. The output, rather than 

being mapped to a 75-dimensional space, was linked 

to two separate classes. The final layer of the classifier 

implemented a Softmax activation. 

As for the decoder, it maintained a structure inverse 

to that of the encoder. It was composed of three sets of 

fully connected layers, followed by four tiers of 

upscale and transpose convolutional layers. The 

Sigmoid function was used for the final activation of 

each value, with the probability distribution of a single 

pixel denoted by a Bernoulli distribution. 

In the adoption process, the latent space was a key 

consideration. Contrary to the approach suggested by 

e.g. Li et al., which advocates for meticulous 

optimization when configuring AI models (Li, 

Swersky, & Zemel., 2015), the Team, in collaboration 

with the Experts, opted for a less laborious approach. 

Instead of conducting an exhaustive search, they made 

an informed decision to expand the latent space from 

50 as used in the Baseline model to 75 dimensions. 

This decision was influenced by considerations such 

as the size and complexity of the images. 

To enhance the model's training time and ensure 

high defect detection accuracy in the Sub-images, 

convolutional neural networks (CNNs) were 

incorporated. Recognized for their proficiency in 

image analysis and pattern recognition tasks, CNNs 

can assign significance to spatial relationships within 

the data, capturing image-specific features while 

minimizing the parameter count (O'Shea and Nash 

2015). The Team experimented with various CNN 

configurations, eventually integrating four sets of 

convolutional and max pooling layers, followed by 

three fully connected layers into the encoder. This 

decision was informed by the need to balance model 

complexity, computational efficiency, and image 

resolution. 

 

4.5. Model training 

 
Further delays were incurred by the global 

semiconductor shortage, which resulted in a lack of 

powerful hardware for model training, as well as 

specific IT department hardware and software 

requirements, before the Team was able to start 

training the In-house Model. The encoder was trained 

using mini-batches of 300 Sub-images. The encoder 

transformed the Sub-image's 65,536 pixels into the 75 

dimension latent space. The classifier then categorized 

the Sub-image as defective or not, leveraging both 

labeled and unlabeled Sub-images for training and 

label estimation, respectively. The decoder, using the 

latent representation of a Sub-image and its estimated 

label, reconstructed the Sub-image, outputting 65,536 

pixel values of 0 or 1 due to the Sub-images' 

conversion to black and white. 

Prior to the In-house Model training, the Team 

conducted initial experiments using a fully supervised 

VAE with the labeled training dataset of Sub-images. 

Given that the VAE converged after approximately 

85,000 epochs, the Team decided to train the In-house 

Model for the same number of epochs. 

 

4.6. Evaluating performance and training 

time 

The common evaluation measurements for these 

kinds of models are accuracy 
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑐𝑡𝑖𝑜𝑛𝑠
, precision 

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 and, recall 

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (Tyystjärvi et al., 2022). 

Hence, these were used as evaluation measurements 

of the In-house Model after 85 000 epochs. A 

summary of the results can be found in Table 1. The 

results on accuracy, precision and recall of the 

Proprietary Model were received from the external 

consultant within a week after providing the training 

data. 
 
Table 1: A comparison of training time, accuracy, 
precision, and recall between the In-house Model 

and the Proprietary Model 

 

Model Accuracy  Precision Recall 

In-house 
Model 

75% 96% 46% 

Proprietary 
Model 

87% 100% 100% 

 
 As can be seen in Table 1, the In-house Model 

achieved an accuracy of 75% and a precision of over 

90%, but had a recall of only 46%, indicating that it 

often misclassified images as not containing defects. 

The acceptance criteria for the TEC requires the 

detection of all defects. A recall as low as 46% would 

render it unsuitable for use in production. Even with 

additional data and training, it was deemed unlikely 

that the recall of the In-house Model would reach the 

required 100%. The Proprietary Model achieved an 

accuracy of 87% with 100% precision and recall.  

The Baseline model used the MNIST dataset 

consisting of 60 000 28x28 pixel images. However, 

when the Team applied the In-house Model to its Sub-

image dataset of 256x256 pixel images, even though 

it consisted of only 1848 images, the training time 

increased significantly. Despite training the In-house 

Model for nine weeks and 85,000 epochs, the 

reconstruction loss had not yet converged. The 

external consultant provided the results of the 

Proprietary Model within a week after receiving the 

training data. Even though the Proprietary Model was 

not perfect and misclassified some images as Page 5801



containing defects, the Team concluded that both the 

performance and training time of the Proprietary 

Model was superior to the In-house Model and that 

further work on the In-House Model therefore should 

be discontinued. 

 

5. Lessons learned 
 

In the work of identifying and developing 

necessary capabilities of AI implementation, the 

hands-on work of developing a solution and dealing 

with the obstacles and considerations encountered 

along the way eventually proved to be more important 

than the solution itself. As Govindarajan and Trimble 

and have emphasized, the process of finding solutions 

is crucial for enhancing creativity, innovation, and 

solving complex problems (Govindarajan & Trimble, 

2012).  

The development of the In-house Model revealed 

that a range of capabilities were required that were not 

anticipated when starting the project. This illustrates 

the difficulty of predicting the necessary capabilities 

beforehand, the importance of hands-on work for 

capability development and the need of investing in 

diverse skill development to cultivate a workforce 

capable of addressing the challenges and complexities 

of AI development. In the current case, these 

unforeseen capabilities were developed through a 

continuous learning process in close collaboration 

with the internal and external stakeholders as well as 

through formal and informal course work. 

Below, we discuss key lessons learned in terms of 

capability development. 

 
5.1. Lessons learned for the Team 

 

To begin with, the Team needed to create an 

underlying data structure that could efficiently store 

and label the Sub-images. Once the defects in the Sub-

images were marked, the Team had to develop a script 

that converted the marked regions of the Sub-images 

that contained defects into a dataset that could be 

merged with the remaining metadata from the Sub-

images.  
The Sub-images had a wide range of brightness 

levels, and their pixel values were represented in 16-

bit grayscale. To convert them into black and white 

images, the Team employed thresholding, which 

involves setting a threshold value. However, 

determining the optimal threshold value for each 

image was challenging as it can vary depending on the 

image's characteristics and using a global thresholding 

approach could lead to information loss. 

To tackle these challenges, the Team had to acquire 

new image processing skills to be able to handle the 

images' high dynamic range and the presence of noise 

and artifacts while identifying defects accurately. This 

required collaboration with Operators to gain a deep 

understanding of the inspection domain and from this 

understanding develop appropriate thresholding 

strategies to capture the necessary information 

accurately.  
Further, to be able build the In-house Model, the 

Team had to acquire a basic understanding of the 

theoretical foundations of deep probabilistic models, 

including Bayesian statistics, variational inference, 

and deep generative models. Additionally, they 

needed to develop practical capabilities in 

hyperparameter tuning and distribution selection, 

crucial components of configuring the SS-VAE 

architecture. 

The In-house Model relied on unlabeled data to 

learn the underlying distribution of the input data. The 

Team had to make informed decisions and trade-offs 

regarding the size and ratios of the training dataset to 

ensure that the SS-VAE architecture was robust and 

generalizable to new data.  

 

5.2. IT infrastructure and capabilities  
 

The project not only enhanced the capabilities of 

the Team but also provided valuable insights for the 

IT department within the Company. IT infrastructure 

and capabilities proved essential for the effective 

development of the In-house Model. The development 

required a robust IT infrastructure, comprising 

appropriate hardware and software tools.  

As the Team developed the In-house Model, the IT 

department gained knowledge on the current hardware 

and software requirements. They had to gain expertise 

in selecting appropriate hardware for the project, 

requiring an understanding of the latest advancements 

in hardware technologies, such as GPU architectures. 

In addition to high-performance hardware, the 

Team required specific programming frameworks - 

PyTorch, Pyro and OpenCV. The IT department thus 

had to acquire knowledge about these programming 

frameworks, ensuring compatibility with hardware 

and assessing support and documentation availability. 

The project provided an opportunity for the IT 

department to develop the necessary capabilities to 

support future AI projects. 

 

6. Implications and generalizability 
 

One of the limitations of practice-based research is 

its generalizability to wider populations. However, 

generalization across cases is not always necessary 

(Geertz, 1973). Instead, generalization can be 

achieved by generalizing within individual cases, 

identifying theoretical abstractions, and using these 

insights to generalize to theory (Lee & Baskerville, 

2003). The current study investigates capability 

development in one company only. The intent of this 

in-depth engagement with a particular case, and with 

a particular technology, extends beyond the mere 

application of statistical generalizability across cases. 
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This research intends to provide theoretical insights 

that are applicable to the particular case under study 

and that contribute to a more generalized 

understanding of AI capability development. Below 

we discuss the implications and contributions based 

on the findings of the study and in light of current 

research.  

 

6.1. Balancing cost and benefit of in-house 

solutions 
 

The Company found that an in-house solution was 

not viable due to challenges with Sub-images, long 

training times, and the superior performance of the 

Proprietary Model. As highlighted by Ransbotham 

and others, this emphasizes the need to weigh the pros 

and cons of in-house AI development, considering 

expertise, resources, and time for model creation and 

validation (Ransbotham, Gerbert, Kiron, & Reeves, 

2017; Govindarajan & Immelt, 2019; Teesce, 2014). 

In some cases, it may be more effective and efficient 

to leverage existing AI solutions or to outsource AI 

development to external service providers who can 

offer specialized expertise and resources. Although 

developing the In-House Model was challenging, such 

efforts can strengthen the capabilities of 

organizations, enabling them to better weigh the pros 

and cons of future in-house development or 

outsourcing opportunities. 

 

6.2. Collaboration with internal and external 

stakeholders 

 
The Team overcame many of its challenges 

through collaboration with the Experts and Operators. 

Firstly, this points to the importance of having a 

proactive mindset and the ability to recognize one's 

limitations to identify the need for further knowledge. 

Secondly, it shows the significance of seeking internal 

or external expertise to gain additional knowledge, 

overcome challenges, and advance the organization's 

capabilities. Collaboration is an essential component 

of building in-house AI capabilities (Govindarajan & 

Immelt, 2019; Mukherjee, 2020; Ancona, 2019). 

Encouraging open communication and knowledge 

sharing across departments, as well as with external 

partners, strengthens collaborative capabilities of 

employees, management, and external experts, which 

in turn can help enhance creativity and innovation, as 

well as allowing organizations to overcome complex 

problems (Govindarajan & Trimble, 2012). 

 

6.3. Agile and experimental approach  

 
By adopting an agile and experimental approach 

that prioritized flexibility and collaboration, the Team 

made progress and quickly adapted to changing 

requirements and unforeseen obstacles. This approach 

aligns with the works of several authors who have 

emphasized the importance of agility and 

experimentation in AI development (Sousa, 2019; 

Mukherjee, 2020; Steiber, Alänge, Ghosh, & 

Goncalves, 2020). Continuous feedback from all 

stakeholders enabled the Team to refine the project 

design and improve model performance iteratively, 

ensuring that the final product met the needs of the 

Company leadership. Moreover, by emphasizing 

creativity and experimentation, the Team was able to 

use innovative solutions to overcome complex 

problems, such as using OpenCV for dimensionality 

reduction.  

 

6.4. Recognizing the value of human expertise 

in AI development 

 
Subject matter expertise proved integral to the AI 

development process. The Operators' domain-specific 

knowledge about X-ray inspection was crucial in 

developing both the dataset and the model in a way 

that accurately detected defects. As suggested by 

Fountaine and Govindarajan, by leveraging subject 

matter experts’ knowledge and expertise, 

organizations can develop AI models that are more 

accurate, effective, and useful, ultimately benefiting 

both workers and the organization as a whole 

(Fountaine, McCarthy, & Saleh, 2019; Govindarajan 

& Immelt, 2019). 

 

6.5. AI Models as tools to augment human 

labor 
 

Further, by involving such internal subject matter 

experts, organizations can alleviate concerns about 

obsolescence and demonstrate the value of workers in 

the AI development process (Babic, Chen, Evgeniou, 

& Fayard, 2020; Fountaine, McCarthy, & Saleh, 2019; 

Schepman & Rodway, 2020). In the present case, it 

soon became clear that neither modelthe In-house 

Model or the Proprietary Model fully could replace 

human capabilities in detecting defects in X-ray 

images. This experience illustrates the importance of 

recognizing the limitations of AI models and 

leveraging them as tools to augment human labor 

rather than replace it entirely. Incorporating AI into 

the workforce can improve job satisfaction by 

enabling workers to focus on higher-level tasks that 

require human expertise, rather than performing 

tedious and repetitive tasks (Babic, Chen, Evgeniou, 

& Fayard, 2020; Fountaine, McCarthy, & Saleh, 2019; 

Schepman & Rodway, 2020). By emphasizing the 

collaborative relationship between AI models and 

humans, organizations can foster a culture that values 

the contributions of both and maximize the benefits of 

AI in the workforce. 
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7. Conclusions and future research 
 

This action research article explores the process of 

implementing AI in the manufacturing industry and 

developing AI capabilities. It offers practical insights 

into the technical aspects and trade-offs between 

training time and optimal performance. Given the 

time-sensitive nature of many projects, efforts to 

reduce training time of AI models can lead to 

suboptimal solutions. However, in a business context, 

such trade-offs are sometimes necessary to meet 

operational targets. Further, while external acquisition 

can offer quick access to expertise, in-house 

development can provide control and potential 

competitive advantages, Even though in-house 

development can prove challenging, we argue that 

such efforts can strengthen organizational capabilities 

and enable informed decisions about future in-house 

development or outsourcing.  

The study also contributes to theory on AI 

implementation, confirming the need for a balanced 

evaluation of in-house versus outsourced solutions, 

considering costs, expertise, and performance. It 

emphasizes the importance of collaboration with 

internal and external stakeholders as well as 

researchers, agile and experimental methodologies, 

and the integration of human expertise in AI 

development. Furthermore, the study highlights the 

role of AI as a tool to augment human labor, adding to 

the discourse on human-machine collaboration, 

organizational strategy, and AI capability 

development.  

Future research considering these theoretical 

implications in other organizations would allow for 

generalizations both within and across cases. In 

particular, we suggest further research investigating 

the relationships between in-house and outsourced AI 

development, exploring how different industries, 

organizational sizes, or technological complexities 

influence the decision-making process. Additionally, 

studies examining human-AI collaboration across 

various sectors could provide insights into optimizing 

the blend of human expertise and AI, potentially 

leading to new models for organizational efficiency, 

innovation, workforce satisfaction, and capability 

development. 
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