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Abstract

Traditional machine classification problems assume
that complete knowledge of all classes is available
during training. However, this assumption does
often not hold for fast-changing environments and
safety-critical applications like self-driving cars or
tumour detection. In our work, we assume an arguably
more realistic scenario called open set recognition,
where incomplete knowledge of all classes during
training is assumed, and also unknown classes can
occur during testing. More importantly, we simulate an
open set scenario on four established datasets and show
how Open Set Nearest Neighbor classification results
can be improved with metric learning. Our results
indicate that the prior application of the Large Margin
Nearest Neighbor algorithm can consistently enhance
the classification results and increase the ability to
reject unknown instances, which is vital in scenarios
of many unknown classes. These findings highlight the
importance of metric learning and serve as a benchmark
for further studies on the intersection between metric
learning and open set recognition.

Keywords: Metric Learning, Open Set Recognition,
Open Set Nearest Neighbor

1. Introduction

Computer-aided classification is a major application
field of machine learning, with invaluable relevance
for solving problems from brain tumor detection to
cyber-security or self-driving cars. While it is often
assumed that these classification problems are about
differentiating instances from a set of finite and known
objects, in many cases, the underlying multi-class
classification problems rather resemble recognition

problems. In recognition problems, we instead assume
that we can identify classes from a larger space
of unknown objects. While this has a variety of
applications (e.g. digitizing hand-written documents),
the problem is particularly noteworthy in detecting
hazardous objects. For instance, in the case of
brain tumour classification, it is unlikely that we have
sufficient knowledge of all the different types of tumours
at training time since there are more than 150 of
them (American Association of Neurological Surgeons,
2022). Similarly, in many safety-critical environments,
such as self-driving cars (Ramanagopal et al., 2018),
it is essential to identify data points that fall outside
the norm to ensure a secure operation. Another
area where detecting previously unknown patterns is
important is cyber-security. The evolution of malware
poses a constant challenge as it can circumvent existing
detection solutions. Therefore, it is imperative to focus
on the development of autonomous countermeasures
and the identification of new types of malware to
effectively combat this threat (Cruz et al., 2017;
Henrydoss et al., 2017).

Scheirer et al. (2013) have grouped such multi-class
problems under the term ”open set recognition” (OSR).
These kinds of problems are arguably a more realistic
scenario than traditional multi-class classification,
where a classifier assumes that only the already seen
classes exist during inference time. In contrast
to traditional machine learning, OSR classifiers also
indicate which data points are out of distribution and,
therefore, differ from the training data. In practice, these
out-of-distribution data points often require manual
supervision to be classified correctly.

Dealing with data points of unknown classes is
a complex problem because their representation is
unknown in the feature space. In particular, these
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unknown data points might be relatively close to
already seen ones, which makes their classification
difficult. One technique that pushes data points of
similar classes together while increasing the distance
to data points of other classes is called metric learning
(Bellet et al., 2015). Learning such a new metric in a
traditional machine learning setting is known to enhance
the performance of nearest neighbor classification
(Domeniconi et al., 2005; Goldberger et al., 2004;
Hastie and Tibshirani, 1996; Simard et al., 1992;
Weinberger et al., 2005).

However, it has not yet been studied what the effect
of the learned feature transformation is on unknown
classes and whether the results are dependent on
the type of the employed metric learning algorithm.
Furthermore, it is so far also unknown how nearest
neighbor classification in combination with metric
learning would perform with different degrees of
unknown classes. Given the key relevance of detecting
unknown classes in hazard-critical applications, we
argue that it is highly important to study the potential
benefits of combining metric learning with open set
recognition approaches. To this end, we studied the
following key research questions in this work:

• RQ1: Does metric learning increase the
performance of nearest neighbor classification in
OSR?

• RQ2: Is the marginal contribution of metric
learning positively correlated with an increasing
degree of openness?

• RQ3: How are different metric learning
algorithms contributing to nearest neighbor
classification in OSR?

To answer our research questions, we evaluated
the performance of the Open Set Nearest Neighbor
(OSNN) classifier developed by Mendes Júnior et al.
(2017) across four data sets and four degrees
of openness, without and with metric learning to
calculate the marginal contribution of metric learning.
Specifically, we thoroughly examined two metric
learning algorithms, namely Large Margin Nearest
Neighbor (LMNN) and Neighborhood Components
Analysis (NCA), which were developed by Weinberger
et al. (2005) and Goldberger et al. (2004), respectively.

Our results indicate that the prior application of
metric learning can enhance the classification results of
the OSNN classifier. While the increasing openness
worsens the overall classification results, the prior
application of the LMNN consistently improves the
classification accuracy across all datasets for each

degree of openness. Moreover, the transformed feature
space by the LMNN increases the relative contribution
to the classification results over an increasing number
of unknown classes and enhances the ability to reject
unknown data points. In the case of the NCA algorithm,
we only see increases in classification accuracy on
some datasets and cannot report a statistically significant
relative marginal contribution across all datasets.

Our results thereby highlight the importance of
learning a task-specific metric for open spaces and
contribute to IS research and practice in two major
ways. First, our results highlight the general
benefit of combining OSNN and metric learning
while simultaneously identifying limitations in some
algorithmic combinations. This provides important
evidence for future research to extend the understanding
and development of more domain-specific feature
spaces to enhance the OSNN classification performance.
It also directly translates into our recommendation
for practitioners to use metric learning for OSNN
classification. Second, we show that learning a
task-specific metric is increasingly vital for higher
degrees of openness in OSNN classification, which
serves as a baseline for further research on the
intersection between metric learning and OSR. From a
more theoretical perspective, we attribute this effect to
the class-separating capability of metric learning. It can
significantly enhance the ability of the OSNN to reject
unfamiliar data points by creating more confined spaces.

The remainder of our paper introduces the
fundamentals of OSR and metric learning in Section 2.
We then present related work in Section 3. In Section 4,
we elaborate on our experiments and discuss the results
in Section 6. Lastly, we summarize our findings and
outline directions for future research in Section 7.

2. Foundations

2.1. Open Set Recognition

Open set recognition (Scheirer et al., 2013) refers to
a scenario, where we do not have full knowledge of all
classes at training time and the classifier needs to reject
new classes as unknown. To better describe this scenario
in our work, we use the concept of known known classes
(KKC) and unknown unknown classes (UUC) from
Geng et al. (2021). While KKCs represent positive class
samples known during training time, UUCs are entirely
unknown at training time. The cases of unknown known
and known unknown classes are irrelevant for our work.

The degree of openness O measures the relation
between KKCs and UUCs (Geng et al., 2021). It is
defined based on the number of classes seen during
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training (CTR) and the number of classes in the test set
(CTE). Since CTE is greater or equal than CTR, the
openness score ranges between zero and one. The higher
the openness score, the more classes are considered
unknown.

O = 1−

√
2× |CTR|

|CTR|+ |CTE |
(1)

OSR classifiers deal with this openness by rejecting
instances that are out of distribution and subsequently
classifying the not rejected data points into one of the
known classes. The overall risk associated with the OSR
classification task is also known as the open set risk and
consists of an empirical risk (Rϵ) and an open space risk
RO component (Scheirer et al., 2013). The overall goal
of OSR is to find a measurable function f ∈ H , which
minimizes the open set risk. Equation 2 formalizes
the open set risk, where λ represents a regularization
constant and V the training data.

argmin
f∈H

{RO(f) + λRϵ(f(V )} (2)

2.2. Metric Learning

Metric learning creates task-specific metrics from
supervised data (Bellet et al., 2015). The term metric
hereby refers to any pairwise function that measures a
distance or similarity between two objects. Most metric
learning algorithms use pairwise or relative constraints
to learn such a metric (Bellet et al., 2015). Pairwise
constraints enforce learning the similarity on must-link
/ cannot-link constraints, such as S = {(xi, xj) :
xi and xj should be similar} and D = {(xi, xj) :
xi and xj should be dissimilar}. On the other hand,
relative constraints require that T = {(xi, xj , xk) : xi

should be more similar to xj than to xk} is fulfilled as
best as possible.

Learning a metric M can be typically expressed as
a minimization problem of two components, namely a
loss function l(M,S,D,R) penalizing the violation of
the constraints and a regularization R(M) with λ >=
0 as a regularization parameter (Bellet et al., 2013).
Equation 3 summarizes this relationship.

min
M

l(M,S,D, T ) + λR(M) (3)

To use metric learning for classification, a metric is
learned on the training data, which is subsequentially
applied to the training, validation and test data (Bellet
et al., 2013). The classifier then learns on the
transformed training data, validates its hyperparameters

on the validation data and creates predictions on the test
data.

3. Related Work

Among the first OSR algorithms are adapted
versions of Support Vector Machines (Jain et al.,
2014; Scheirer et al., 2013; Scheirer et al., 2014).
However, also other machine learning approaches, such
as distance (Bendale and Boult, 2016; Mendes Júnior
et al., 2017), margin distribution (Rudd et al., 2018)
and sparse representation based (Zhang and Patel,
2017) approaches exist. Similar to the nearest
class mean classification, Bendale and Boult (2015)
propose an extension to the SoftMax layer of neural
networks that compares each input to the mean class
activation vector and classifies instances that are too
far away from these vectors as unknown. Shu et al.
(2017) use a one-versus-rest layer that transforms a
multiclass problem into multiple binary problems. The
reconstruction loss of autoencoders has also been used
to detect unknown classes (Lübbering et al., 2022; Oza
and Patel, 2019).

Learning a metric to enhance nearest neighbour
classification results has also been studied extensively
outside OSR. While many machine learning based
metric learning algorithms, such as the LMNN and the
Neighborhood Components Analysis (NCA) proposed
by Goldberger et al. (2004) learn a linear transformation
with the Mahalanobis distance, also non-linear machine
learning based transformations (Kedem et al., 2012;
Shi and Liu, 2018) are known to increase the
nearest neighbour classification. Deep metric learning
algorithms mostly learn a non-linear metric and have
increased the ability to recognize similar objects (Kaya
and Bilge, 2019). State-of-the-art deep metric learning
algorithms are SphereFace (Liu et al., 2017) or one of its
derivatives (Deng et al., 2020; Deng et al., 2019; Wang
et al., 2018), employing angular loss functions.

The main difference to contrastive approaches, such
as the triplet (Schroff et al., 2015) or quadruplet loss
(Chen et al., 2017), is that, instead of learning the
Euclidean distance directly on pairs or triplets, the
angular distances between the data point and the learned
class representation is optimized.

The main difference to our work is that we evaluate
our classifier after learning a metric under the open set
assumption. Also, to the best of the authors’ knowledge,
the inherent link between the learned metric and its
OSNN classification performance has not been studied
for varying degrees of openness.
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4. Methodology

4.1. Procedure

To analyse the effect of metric learning on the OSNN
across varying degrees of openness, we simulate an
open set scenario with four datasets and two metric
learning algorithms. Figure 1 summarizes the overall
experiment setup. After retrieving the data, the KKCs
and UUCs are randomly selected. Subsequently, the
data is split into training, validation and test datasets.
Next, the metric learning algorithm is applied to the
training dataset. This step is skipped if we calculate
the classifier’s performance without metric learning. To
ensure comparability, the datasets are identical in both
scenarios. The transformed data is then passed to the
OSNN, and its rejection threshold is evaluated with the
validation data. Finally, the macro f1 score is used
to evaluate the classifier on the test set. The overall
process is repeated ten times for each openness score
to counteract the random class selection process.

Training
Data

Validation
Data

Test
Data

Random Selection
of KKCs and

UUCs

Application of
Metric Learning

Training of
OSNN

Determination of
Rejection
Threshold

Evaluation

Figure 1. Data pipeline of experiments.

4.2. Datasets

We use four, frequently used datasets to evaluate
OSR problems (Geng et al., 2021).

• LETTER (Frey and Slate, 1991): the dataset
resembles images of distorted capital letters of the
English alphabet. It consists of 200.000 samples
from 26 classes and has 16 primitive numerical
attributes, such as statistical moments and edge
counts. The instances are evenly distributed
among all classes and contain, on average, 769
samples.

• PENDIGITS (Bilenko et al., 2004): this dataset
consists of handwritten digits and contains 10.992
samples from 10 classes. The average number of
instances per class is 1099. Just like the LETTER
data set, it also has 16 numerical features.

• COIL20 (Nene et al., 1996): the coil dataset
contains 72 images for each of the 20 classes.
Each class thereby represents a distinct object,

such as a rubber duck or a piggy bank. To
ensure comparability, we follow the approach
of Geng et al. (2021) and also downsample
each image to 16 × 16, flatten the image, and
further reduce its dimension with the Principal
Component Analysis (PCA) to 55.

• YALEB (Georghiades et al., 2001): the dataset
contains 38 classes, each of them representing
the face of an individual. From each individual,
on average, approximately 65 images, which
represent different lighting and poses, exist.
Similar to the COIL20 dataset, we use the same
preprocessing as Geng et al. (2021) to ensure
comparability. First, we crop and normalize the
images to 32 × 32. Afterwards, we apply a PCA
with 69 components to reduce the dimensions.

To evaluate our OSR classifier, we split our datasets
into a fitting, validation and test set. We use the
same splitting method as Geng et al. (2021). First, we
randomly select from all available classes our known
known classes Ω. The exact number of drawn KKCs
depends on the degree of openness. From all data
points that belong to Ω, we select a random sample
of 60 % as our training set. The remaining 40 % of
the KKCs and the other classes that are not contained
in Ω are chosen as a test set. As a result, the test
set contains not only classes the classifier has seen in
training but also new classes. Both types of classes
serve as a simulation of the open set scenario. A similar
split is also needed for the validation set because when
determining the rejection threshold of the OSNN, we
need unseen classes for a proper evaluation. Depending
on Ω, we choose 2

3Ω+ 0.5 classes as our ”KKCs” from
the training set. The remaining classes are our ”UUCs”.
We sample again 60 % of these ”KKCs” and select them
as our fitting set. The validation set then consists of the
remaining 40 % of the ”KKCs” and the ”UUCs”.

4.3. Metric Learning Algorithms

To demonstrate the effect of metric learning, we
apply two different metric learning techniques, namely
NCA and LMNN. Both of them aim at improving
the k nearest neighbors classification by learning
a Mahalanobis distance measure, which is a linear
transformation of the feature space.

NCA maximizes a stochastic variant of the
leave-one-out k nearest neighbor score via gradient
descent (Weinberger et al., 2005). Equation 4 shows the
softmax function used for calculating the probability pij
of point i being a neighbor to j, where M is the learned
transformation.
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pij =

{
exp(−∥Mxi−Mxj∥2)∑
k ̸=i exp−∥Mxi−Mxk∥2 if i ̸= j

0 if i = j
(4)

With pij , we can compute the probability of correct
classification pi by summing up all the probabilities
pij that share the same class as i. Maximizing the
expected number of points correctly classified results in
a differentiable objective function, which only depends
on the learned metric M . Equation 5 demonstrates this
relationship.

f(M) =
∑
i

∑
j∈Ci

pij =
∑
i

pi (5)

The optimization function of the LMNN is a convex,
semidefinite optimization problem (Goldberger et al.,
2004) that consists of two subgoals. The first goal is
to minimize the average distance between instances and
their target neighbors N (Equation 6), while the second
goal is to penalize imposters xl that are less than one
unit further away than the target neighbors (Equation 7).
The hinge loss function prevents penalizing an imposter
when it is outside of the margin.∑

i,j∈Ni

d(xi, xj) (6)

∑
i,j∈Ni,l,yl ̸=yi

[d(xi, xj)− 1 + d(xi, xl)]+ (7)

Equation 8 shows the overall optimization problem,
where λ > 0 is a hyperparameter, ξijl are slack variables
and M ⪰ 0 ensures that the matrix is semi-definite.

min
M

∑
i,j∈Ni

d(xi, xj) + λ
∑
i,j,l

ξijl

subject to d(xi, xj)− 1 + d(xi, xl) ≤ ξijl

ξijl ≥ 0

M ⪰ 0

(8)

4.4. Open Set Nearest Neighbor

OSNN is the open set variant of the nearest
neighbours classifier (Mendes Júnior et al., 2017).
Unlike its traditional counterpart, it takes the similarity
of the closest two classes into account. The nearest
neighbor distance ratio R is given in Equation 9. While
d is a distance function and serves as a similarity

measurement, s, t, and u denote data instances. s is
the data point we want to classify and from which we
measure the distance to its nearest neighbours t and u.
u, however, must be of a different class than t.

R = d(s, t)/d(s, u) (9)

Since d(s, u) is greater or equal to d(s, t), the ratio
R is smaller or equal to one. Intuitively, if a data point
is equidistant from its two closest classes, R equals 1
and hence, it is uncertain to which class it belongs.
Conversely, if a data point is much closer to t than to
u, R is close to 0. This intuition directly translates into
a classification rule: if R is smaller than a specified
threshold T ∈ [0, 1], we classify s with the same label
as t. Otherwise, we reject it as unknown.

4.5. Evaluation Criteria

In information retrieval and machine learning, the
f1 measure is widely used to evaluate classification
problems. It is defined as the harmonic mean of
precision and recall. To use this measure in OSR
problems, the unknown classes are not treated as an
additional one (Mendes Júnior et al., 2017). Otherwise,
we would count correctly classified data points as true
positives (TP) despite not knowing what a representative
sample of such a TP would look like. However, we still
account for unknown classes because the false positive
and false negative also consider the misclassification of
the unknown and known classes (Mendes Júnior et al.,
2017).

To evaluate how metric learning affects the
performance on OSR with increasing openness, we
calculate the relative contribution of metric learning.
We define the relative contribution RC in Equation
10, where we divide the difference between the
classification result with metric learning CM and the
results without metric learning CNM through CNM .
The relative contribution is negative if metric learning
harms the performance and positive if it enhances the
classification result.

RC =
CM − CNM

CNM
(10)

5. Evaluation

Table 1 contains the main results of our study, which
consist of an overall evaluation of the classification
performance and an analysis on the rejection of
unknown classes. As mentioned in Section 4.5, the
adjusted f1 score for OSR does not consider the
unknown classes as a separate class (Mendes Júnior
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Table 1. OSNN classification results with and without the prior application of metric learning.

Dataset Openness Overall F1 Score F1 Score On Unknown Classes

Baseline LMNN NCA Baseline LMNN NCA

COIL 0.00 0.98±0.01 0.99±0.01 0.99±0.01 - - -
0.16 0.92±0.02 0.95±0.02 0.93±0.03 0.92±0.06 0.96±0.02 0.93±0.06
0.24 0.86±0.05 0.93±0.04 0.92±0.04 0.92±0.05 0.97±0.02 0.97±0.02
0.32 0.80±0.10 0.85±0.08 0.81±0.07 0.89±0.07 0.95±0.04 0.92±0.04

LETTER 0.00 0.93±0.00 0.95±0.00 0.96±0.00 - - -
0.16 0.80±0.01 0.82±0.01 0.83±0.01 0.85±0.02 0.86±0.02 0.86±0.02
0.23 0.76±0.03 0.78±0.03 0.78±0.02 0.89±0.02 0.89±0.02 0.89±0.02
0.31 0.65±0.04 0.69±0.04 0.69±0.04 0.88±0.03 0.90±0.03 0.90±0.02

PENDIGITS 0.00 0.99±0.00 0.99±0.00 0.99±0.00 - - -
0.13 0.90±0.02 0.92±0.02 0.90±0.03 0.90±0.06 0.92±0.02 0.90±0.06
0.24 0.85±0.04 0.86±0.02 0.85±0.04 0.93±0.02 0.94±0.01 0.93±0.03
0.32 0.75±0.14 0.77±0.09 0.82±0.08 0.89±0.10 0.92±0.05 0.95±0.03

YALEB 0.00 0.53±0.02 0.88±0.01 0.84±0.01 - - -
0.16 0.49±0.02 0.82±0.02 0.76±0.04 0.71±0.02 0.88±0.03 0.86±0.02
0.23 0.45±0.03 0.75±0.03 0.74±0.06 0.76±0.05 0.90±0.02 0.90±0.03
0.33 0.39±0.03 0.68±0.02 0.66±0.11 0.79±0.09 0.93±0.01 0.91±0.05

et al., 2017) and hence, the second analysis enhances
our understanding of the classifier’s ability to reject
unknown classes. For each dataset, we exclude
0 %, 20 %, 40 % and 60 % of our classes as
unknown classes, resulting in increasing degrees of
openness. Depending on the number of classes in each
dataset, the degree of openness can vary across the
datasets for a given percentage of unknown classes.
The bold numbers represent the best result for each
scenario. In each scenario, we use the OSNN
classification results without the prior application of
metric learning as our baseline. We compare them to
the OSNN performance with the previous application
of either the LMNN or NCA algorithm. Regarding the
overall classification performance, the LMNN algorithm
consistently improves the classification results on
all four datasets. The utilization of the NCA
algorithm has also improved overall performance.
However, upon application to the PENDIGITS, the
outcomes are comparable to those obtained without
prior implementation of metric learning on at least
two different degrees of openness. All results show
an increased variance of the f1 score for problems
with a higher openness. The analysis on the binary
classification of unknown classes shows that the LMNN
algorithm effectively increases the ability to correctly
reject unknown instances compared to the OSNN
classification without metric learning. NCA, on the
other hand, does not consistently enhance the rejection
accuracy. On the PENDIGITS datasets, the f1 score

is in two out three cases on par with no prior
application of metric learning, while the f1 score shows
mostly increased rejection accuracy on the remaining
datasets. Moreover, the LMNN algorithm yields a much
lower variance of the f1 scores compared to no prior
application of metric learning.

Figure 2 shows the classification results over varying
degrees of openness for each dataset and metric learning
algorithm separately. The general trend is depicted
with a linear regression line and its corresponding 95
% confidence interval. The degree of openness is the
only independent variable for this regression model.
In general, the relative contribution of metric learning
increases for higher degrees of openness.

Table 2. Pearson correlation coefficients.

Dataset Metric Learning Algorithm

LMNN NCA

COIL 0.36 (p=.012) 0.17 (p=.146)
LETTER 0.30 (p=.029) 0.12 (p=.232)

PENDIGITS 0.24 (p=.044) 0.27 (p=.047)
YALEB 0.34 (p=.015) 0.27 (p=.047)

To further deepen our insights, we measure the
strength of the correlation with the Pearson correlation
coefficient and conduct a one-sided t-test to check
for statistical significance. Our alternative hypothesis
is that the correlation is greater than zero. Table 2
summarizes the results. For a significance level of 0.05,
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Figure 2. Correlation analysis for increasing openness.

the positive correlation of the relative contribution of
the LMNN algorithm is statistically significant across
all datasets. The Pearson correlation of the contribution
of the NCA algorithm is positive across all datasets
but only statistically significant on the PENDIGITS and
YALEB datasets.

To better understand where the learned metric places
unseen data points, we have conducted an in-depth
analysis of the nearest neighbor distance ratio R, which
is used by the OSNN to reject data points as unknown.
As mentioned in 4.4, a value close to 1 indicates that
the two nearest neighbors of different classes are almost
equidistant. Hence, we expect the ratios of data points
from known classes to be significantly smaller than
those of unknown classes. Our analysis in Table 3
confirms this expectation. For enhanced readability,
we have highlighted the best ratios, which correspond
to the minimum values among the known classes and
the maximum values among the unknown classes. The
analysis also shows that metric learning significantly
lowers the ratios among the known classes. The ratios
also decrease among the unknown classes. However,
their relative change compared to no prior application
of metric learning is less substantial than the relative
change among the known classes. This finding implies
that the learned metric effectively helps to separate the
unknown from the known classes in a nearest-neighbor
setting.

6. Discussion

The general boost in classification accuracy due to
the application of LMNN and NCA is in line with
the findings in their original publications, which are
based on a closed set scenario (Goldberger et al., 2004;
Weinberger et al., 2005). We extended the analysis
for the open set scenario, which shows mixed results.
While the LMNN algorithm consistently enhances
the classification results, NCA does not improve the

classification results on the PENDIGITS dataset. The
main reason for this could be the inner working of
the NCA algorithm. As outlined in 4.3, NCA uses
a stochastic variant of the leave-one-out k nearest
neighbor classifier. However, the optimization process
with gradient descent might stop at a local optimum
and, thus, never reach its global optimum. In the
case of the PENDIGITS datasets, a locally optimal
solution might have been encountered, and no further
optimization process regarding the unknown classes is
carried out. The rejection analysis of unknown classes
also shows that, exactly on this dataset, no enhancement
of the f1 score can be seen. On the other hand, the
LMNN directly optimizes the distances of the data
points to each other, which is a continuous optimization
process, and separates the data points of different
classes by a certain margin. It seems plausible that
such a margin reduces the risk of the unknown classes
occurring relatively closer to the known classes, which
increases the likelihood of correct classifications. The
analysis of the rejection of unknown classes confirms
this claim by consistently showing enhanced results for
the prior application of the LMNN algorithm. The
learned margin and, as a result, the improved ability to
reject unknown instances might explain why the LMNN
improves the performance on all four datasets. The
marginal contribution of metric learning shows positive
trends for both metric learning algorithms. However,
only the LMNN algorithm shows significant results on
all datasets, which aligns with the overall classification
results. Overall, both metric learning algorithms exhibit
the potential to enhance the OSNN classification results.
Yet we do not find evidence that the relative contribution
of metric learning, in general, has a positive correlation
with openness. Our nearest neighbor distance ratio
analysis reveals that the metric learning places unknown
classes closer to already known classes. However,
metric learning also puts known classes closer together,
compensating for the decreased ratios among unknown
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Table 3. Nearest neighbor distance ratio.

Dataset Openness Known Classes Unknown Classes

Baseline LMNN NCA Baseline LMNN NCA

COIL 0.16 0.28±0.04 0.16±0.03 0.21±0.03 0.86±0.03 0.75±0.03 0.81±0.04
0.24 0.23±0.05 0.11±0.03 0.17±0.03 0.83±0.04 0.71±0.05 0.77±0.03
0.32 0.27±0.08 0.13±0.05 0.20±0.05 0.82±0.04 0.66±0.04 0.75±0.05

LETTER 0.16 0.52±0.02 0.49±0.02 0.46±0.02 0.87±0.01 0.86±0.01 0.85±0.01
0.23 0.51±0.02 0.47±0.02 0.45±0.02 0.86±0.01 0.85±0.02 0.84±0.01
0.31 0.47±0.04 0.42±0.05 0.42±0.04 0.86±0.01 0.84±0.01 0.82±0.02

PENDIGITS 0.13 0.35±0.02 0.30±0.02 0.35±0.02 0.81±0.03 0.80±0.04 0.81±0.04
0.24 0.31±0.03 0.24±0.04 0.31±0.03 0.79±0.03 0.74±0.03 0.78±0.03
0.32 0.28±0.05 0.18±0.06 0.28±0.05 0.74±0.05 0.60±0.09 0.75±0.05

YALEB 0.16 0.78±0.01 0.51±0.01 0.59±0.03 0.90±0.00 0.89±0.01 0.89±0.01
0.23 0.77±0.01 0.48±0.01 0.54±0.05 0.90±0.00 0.85±0.01 0.88±0.01
0.33 0.76±0.01 0.43±0.02 0.49±0.09 0.89±0.01 0.81±0.03 0.83±0.01

classes.
A limitation of this work is its narrow focus on

OSNN classification. However, as shown by Shi
and Liu (2018), the use of metric learning can also
benefit SVMs in a closed setting. It remains an
open question whether the results are transferable to
other OSR algorithms, such as the OSR adapted SVM
algorithms (Jain et al., 2014; Scheirer et al., 2013;
Scheirer et al., 2014), the Extreme Value Machine (Rudd
et al., 2018) or also OpenMax (Bendale and Boult,
2015). Further research is also needed to investigate the
behaviour of more advanced metric learning algorithms,
such as SphereFace (Liu et al., 2017) or ArcFace
(Deng et al., 2019), for varying degrees of openness.
These metric learning algorithms are typically utilized
in conjunction with deep neural networks, and their
application promises performance increases on more
complex datasets. However, similar to the application
of the NCA algorithm, their suitability for an increasing
number of unknown classes could be limited.

7. Conclusion

While metric learning is known to improve nearest
neighbor classification results in traditional machine
learning problems, the effects of these feature space
transformations are unknown for OSR problems. These
open set problems assume that, at training time, there
is insufficient knowledge of all classes, and hence,
unknown classes could occur during inference. OSR
classifiers seek to reject data points of unknown
classes as unknown, instead of classifying them as
one of its learned classes. The ability to reject data
points is especially important in safety-critical and

cyber-security-related environmental problems, where
unforeseen changes can happen frequently and have
hazardous effects. With our open set simulation on
four established datasets for OSR, we show that two
metric learning algorithms, namely the LMNN and the
NCA algorithm, can improve the OSNN classification
results. While the utilization of the NCA algorithm does
not consistently increase classification performance, we
have found statistically significant evidence that the
prior application of the LMNN algorithm increases
OSNN classification results consistently and with an
increasing relative contribution for higher degrees of
openness. We attribute this finding to learning a margin
that separates the different classes from each other
and have found further evidence that this increases the
rejection performance on unknown classes. We thereby
contribute to existing research in two major ways. First,
we highlight the general benefit of combining OSNN
with metric learning and identify limitations regarding
the choice of the metric learning algorithm. Second, we
show that learning a task-specific metric is increasingly
vital for higher degrees of openness. The overall
findings encourage the further application of metric
learning in an open set context and establish a baseline
for further research on the intersection between OSR
and metric learning.
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