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Abstract

In this methodological paper, we introduce a novel
approach to evaluate the risk of re-identification of
individuals associated with data release strategies,
including data redaction, data anonymization and data
synthesis. More precisely, our approach simulates an
attacker performing singling-out attacks as outlined in
data protection regulations, and scores attacks based
on the linkability of records and the information gain
obtained by the attacker. Additionally, we further
enhance our approach by simulating attacks as a
cooperative game. In this game, the value of the
attackers’ information resources is determined using
Shapley value borrowed from game theory. We also
demonstrate the effectiveness of our approach using the
Adult Income Census (AIC) dataset before discussing
the economic implications associated with a privacy
breach. Our work contributes to research and practice
on the pressing need to better understand and evaluate
the inherent trade-offs that exist between data privacy
and utility in organizations.

Keywords: Privacy, Anonymization, Data Synthesis,
Adversarial Agents, Risk of Re-identification.

1. Introduction

According to the General Data Protection Regulation
(GDPR) and other modern data protection laws,
personal information has a broad definition that includes
any data that can identify an individual, either directly
or indirectly, through the linking of multiple pieces of
information. Entities serving as data custodians carry
the obligation to protect their customers’ privacy in
the eventuality that data is released (e.g., when it is
shared with partners or with the public via an open

data initiative, or through unlawful access to personal
data - internal or external). One strategy that is often
used to minimize privacy risks owing to its relative
simplicity is data redaction, which consists in removing
specific fields or rows. An alternative approach
is data anonymization, which involves transforming
personal data with the goal of altering sensitive
information while preserving its utility. For example,
generalization-based transformations can be employed
to reduce the uniqueness of individual records, thus
reducing the possibility of re-identification. Among
the most well-known models for achieving this is
k-anonymity (Sweeney, 2002). Finally, another strategy
is to synthesize data using generative models trained on
real data. This approach has been gaining popularity in
recent years (Gootjes-Dreesbach et al., 2020; Park et al.,
2018; Wan et al., 2017; Xu et al., 2019).

Organizations are generally interested in anonymous
data because most regulations no longer consider
them as personal or sensitive information. However,
in practice, it is widely acknowledged that all three
strategies inevitably carry a risk of re-identification
embodying the idea that there is an inherent
trade-off between data privacy and data utility for
organizations. Consistent with this idea, current
regulations acknowledge the ability of organizations to
use approaches that significantly reduce, rather than
eliminate altogether, the risk of re-identification. In
addition to such legal requirements, an organization
may have other motives for mitigating this risk. For
instance, this could be driven by ethical standards, a
commitment to customer trust or a desire to uphold
strong data governance practices while still being able
to gain significant business value from personal data.
These considerations are in line with the proactive
principle of “privacy by design” (Cavoukian, 2009).
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Figure 1. Re-identification risk evaluation of an attack scenario

Seeking to contribute to this important area of
interest both in academia and in practice, we propose
a risk assessment approach aimed at evaluating the
potential threat of an attacker attempting to single
out an individual’s records within a released dataset.
For example, an attacker could be an external entity
gaining unauthorized access to a compromised dataset,
or an internal employee who might unknowingly or
intentionally search someone, perhaps unaware of the
associated privacy implications. Singling-out is a notion
that has been discussed in the GDPR and translated
into mathematical terms (Cohen and Nissim, 2020;
Francis et al., 2019). It refers to the potential to
isolate certain records or all records that correspond to a
single individual within a given dataset. This concept is
presumed to form the foundation of the risk associated
with re-identification. In our approach, the attacker
leverages information resources at their disposal along
with the released dataset to isolate a specific group
of records. Subsequently, an evaluator scores the
attack based on two factors: (1) the degree to which
singled-out records can be linked and (2) the amount
of information an attacker could gain through the attack
(Figure 1). Unlike existing methodologies, we contend
that these factors can be perceived as components within
an attacker’s valuation function, which concurrently
serves as a singular re-identification risk score for an
individual.

We estimate each score by simulating multiple attack
scenarios, which can be modelled as independent attacks
or as a collaborative game. The latter configuration
enables us to employ the Shapley value to assess the
value of an information resource to an attacker. The
Shapley value is a concept from cooperative game
theory developed by Shapley (1953) that has found
applications in various fields, including economics,
political science, and computer science (Roth, 1988),
among others. In a cooperative game setup, players
form a coalition or group and work together to achieve a
common goal. Here, the goal of the adversarial player(s)
is to re-identify and retrieve as much information as
possible on individuals. When each player is assigned a
type of resource to attack a released dataset, we propose

that Shapley values can provide explanations for the risk
of re-identification.

In our case study, we primarily explore tabular data
given its widespread use as a format of confidential
information that underpins many of an organization’s
key decisions. We conduct our experiments on the
Adult Income Census (AIC) dataset, chosen for its
representativeness. We assess two principal strategies
for data release: the first is anonymizing the data using
a k-anonymity method and the second is synthesizing
data using deep learning models. The findings illustrate
that both data anonymization and data synthesis yield
comparable tradeoffs using our risk evaluation. In
addition, the study also provides insights into which
features of the AIC are particularly valuable for
attackers.

Our primary contribution is made to the literature
on data privacy. Specifically, our proposed measure for
re-identification risk scores defines a privacy strength
metric associated with data releases. This metric can be
used alongside an existing data utility metric to better
understand the privacy-utility trade-off. Our risk-based
approach also has implications for practice as it does not
focus solely on worst-case scenarios, providing insights
on all individuals associated with a data release strategy.
Finally, our approach is compatible with economic
analyses that can guide organizations in selecting the
right data release strategy.

The remainder of this paper is structured as follows.
We begin with a succinct overview of the literature
on privacy threats and associated risks. In Section 3,
we outline the elements of our risk-based approach for
handling tabular data, discussing its key assumptions
and measures. Section 4 explains how game theory
and the concept of Shapley value can be harnessed to
investigate re-identification. In Section 5, we showcase
the practical application of our approach through a case
study using the AIC dataset. Finally, we summarize our
key contributions and provide concluding remarks.
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2. Background and Related Work

In 2006, when a major streaming company
published a so-called “anonymized dataset” for a
public online contest with the goal of improving
their recommendation engine, they believed they had
sufficiently reduced the risk of re-identification, given
the nature of the data being made public. Narayanan
and Shmatikov (2008) managed to re-identify a small
subset of the individuals who were also included in
the IMDB open database. The following class action
lawsuit caused the company to settle for 9 million
dollars in 2011. Other cases of re-identification
attacks on published datasets have been documented
(Henriksen-Bulmer and Jeary, 2016), although details
on their economic implications for organizations often
remain scarce. Nevertheless, there is a general
consensus within the privacy community that the
residual risk of re-identification associated with the use
of data anonymization techniques, regardless of the type
of technique being used, depends on the probability
of success of re-identification attacks. To minimize
this risk, several approaches have been proposed,
including generalization-based transformations such as
k-anonymity, as well as synthetic data.

K-anonymity (Sweeney, 2002) can reduce the risk
of re-identification if measured by the probability of
an attacker guessing the record belonging to the right
individual. Indeed, when a dataset is k-anonymized,
the attacker can only find groups of k indistinguishable
records, reducing the expectation of successful guesses
to at best 1/k. Despite its advantages, it has been
demonstrated that this method fails to encompass the
entirety of privacy risks, as is the case when the
risk associated with attribute disclosure is significant.
Indeed, attribute disclosure can be viewed as a form of
reconstruction attack in which the attacker’s objective
is to reconstruct sensitive information about individuals
without necessarily re-identifying them. In addition, it
is important to distinguish between the information one
wishes to protect and any inferences that can be drawn
from the dataset (Li and Li, 2009). While our objective
is to establish a definition of privacy safeguarding
individuals, it is equally important to ensure that this
definition allows for insightful analysis (Dwork and
Roth, 2014). This shows that the risk of re-identification
encompasses more than identifying a specific record and
extends beyond mere attribute inference.

As a technique that is gaining attention in the
industry, the use of synthetic data involves the
generation of new data by a model that is trained on
existing data. While it might seem counter-intuitive to
attempt re-identification attacks on synthetic data, given

the perception that its “fake” nature implies reduced
re-identification risk, the reality is more complex.
It is unclear whether anonymization is worse than
synthetization in this context. However, like any
other semantic privacy-preserving technique, it is crucial
to acknowledge that there remains a possibility for
leakage of personal information, for instance through
reconstruction and membership attacks (Dwork et al.,
2017). A membership attack can be understood as
an attack in which the adversarial agent guesses that
an individual was a member of a training dataset
based on an observed output. There exist membership
attacks specifically designed for data synthesis, such
as distance-based attacks presented by Hilprecht et al.
(2019). While synthetic data, therefore, holds promises
in theory to preserve data privacy, recent findings
suggest that it may not be a panacea.

Data protection laws that have been adopted over the
past few years seek to regulate the use of personal data
by organizations. Among those, the GDPR is considered
the most comprehensive regulatory framework, and
it has effectively influenced many aspects related to
the governance, management and use of personal
data by organizations, as well as data protection
laws in other jurisdictions (e.g., Canada). Within
this context, the GDPR mentions anonymization as
a valid technique for irreversibly transforming data,
albeit without explicitly incorporating data synthesis
as one of the possible ways to achieve this objective.
One potential reason for this shortcoming is that data
synthesis remained largely within the realm of research
when the GDPR was adopted in 2016. Nevertheless,
the GDPR highlights three main types of risk factors
associated with data releases that should be mitigated,
regardless of the nature of the data release strategy
itself: “singling-out”, as formally defined by Cohen
and Nissim (2020), involves isolating an individual or
a specific record within a dataset; “linkability” refers
to the ability to link records from the same individual
across different datasets; and “inference” refers to
the attribute disclosure risk discussed above. Giomi
et al. (2022) have developed a unified framework for
measuring these three factors separately to quantify the
degree of risk associated with synthetic data. They
argue that in synthetic data, linkability arises from the
statistical similarities between the synthetic data and
the original data. Stadler and colleagues also have
portrayed membership attacks as a linkability risk factor
to compare data synthesis against data anonymization
(Stadler et al., 2022).

Measuring uniqueness has been used as an
alternative method to assess the risk of re-identification
(Skinner and Holmes, 1998). For instance, de Montjoye
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et al. (2015) demonstrate that four spatiotemporal points
are sufficient to uniquely re-identify 90% of individuals
in a dataset containing three months of credit card
records for 1.1 million people. Dankar et al. (2012) build
on the work of Skinner and Elliot (2002) to evaluate the
risk of re-identification in 6 datasets by estimating the
uniqueness of individuals. Their method for estimating
uniqueness is based on the assumption that the
population originates from a larger, super-population,
thus turning it into a question of parameter estimation.
This could be seen as a way to measure the concept of
singling-out. However, this approach often showcases
bias, as the risk evaluator is limited in terms of
the amount of information available on the data
distribution. Additionally, attackers generally have
only partial access to background knowledge, indicating
that uniqueness is not the sole determining factor in
singling-out individuals in datasets.

Overall, research on data privacy has greatly
contributed to our understanding of the nature and
the negative impacts of the risks associated with
the re-identification of individuals as well as various
techniques available to try and mitigate these risks.
Notwithstanding, we observe that there is still a need
to further develop approaches that can reconcile the
demands of data protection regulations, the need for
organizations to generate business value using data, and
the rapid technological advances that allow attackers
to perform re-identification attacks at low cost. In
particular, we argue that decision-makers would benefit
from an increased ability to assess the trade-offs
between data privacy and data utility in the context of
data releases. To help fill this important gap, the next
sections detail the constituting elements of our approach
in the context of tabular data. Our approach is built
on the idea that as managers, decision-makers need to
make decisions regarding data releases on a frequent
basis. To help them make these decisions in an informed
manner without remaining stuck in a state of “paralysis
by analysis” that can hinder value creation, we draw
from the scientific literature on data privacy and game
theory to formally quantify the degree of risk associated
with a data release strategy.

3. Re-Identification Risk Evaluation for
Tabular Data

Our approach starts with attackers seeking to single
out individuals in a released dataset T to obtain the
best possible score per individual. We assume there
is an original dataset D and that the type of attack
is the same whether T was produced through data
anonymization or data synthesis. What changes is the

background information an attacker has access to. In
the literature, ”background information” typically refers
to the auxiliary data or knowledge that an attacker
may have. In this paper, we extend this concept and
call it ”information resources,” or ”resources” in short,
because when combined these can provide attackers
with more re-identification power. For instance, an
attacker who possesses both the “age’ and the “zip code”
of an individual has more resources compared to an
attacker with only the ”age” information.

We now describe the type of singling-out attack
implemented in our approach. The singling-out process
involves isolating one record or a small group of records.
The symbol α will be used interchangeably with the
singling-out function that takes T and r as inputs and
returns a subset C of records in T , such as C = α(r, T ).
Obtaining a subset C instead of just a single record is
consistent with scenarios in which T is a k-anonymized
dataset in which each anonymized record has at least
one duplicate. Because the attacker looks at records
in T that are similar to his resources r to re-identify
one individual, we select the records that minimize the
distance between r and any t contained within T .

α(r, T ) = min
t∈T

d(r, t) (1)

We use the unnormalized Gower distance as our
base method as this distance measure can handle a
combination of continuous and categorical features that
are characteristic of tabular data. We vectorize all
resources to compute distances. A key advantage
of the vectorization of the resources is that we can
use neighborhood search algorithms to speed up the
simulation of attack scenarios. In particular, instead
of computing a complete similarity matrix between
vectors r and t, we can use a subset of the matrix.
We used a BallTree (Omohundro, 1989), mainly for its
computational efficiency, to estimate the neighborhood
of r in T .

Having discussed the singling-out function
employed by the attacker, we now turn to the role
of the evaluator. To simplify notations, we refer to
an attack scenario s as an attacker α utilizing their
resources r to single out a specific individual within T .
The evaluator has the responsibility to score attacks,
which serves also as a risk evaluation of any plausible
attack scenario s. We assume that the evaluator is aware
of the data transformation strategy employed. Records
that have been singled out by the attacker constitute
a risk only if they can be linked to a real individual.
In our framework, the evaluator estimates a linkability
score, denoted Ls, of an attack scenario. Similar to
other membership risk studies (Giomi et al., 2022;
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Hilprecht et al., 2019; Houssiau et al., 2022; Lu et al.,
2019), our linkability score is based on the distance
between a matched record and the original record
of the individual. We start by estimating a relative
average distance radius µ of the closest neighbors of
o. Only the singled out records within the µ radius are
considered possible members of D, see Figure 2 as an
illustration. We denote the set of possible members as
Ω, in which Ω = {t ∈ C : d(o, t) ≤ µ}. We go further
by estimating the uniqueness of o. The rationale is that
the uniqueness of an individual should come into play
in the measure of linkability. If the attacker knows that
an individual is unique and lacks close neighbors, they
can more easily link the individual with their resources
and deduce accurate information, thus posing a greater
risk.

Figure 2. Attacker singles out 3 data points,

represented by the squares t1, t2 and t3. Only the

data points inside Ω are considered possible members.

Here, only t1 meets that criterion. Original data

points in M are used to estimate the uniqueness of

the targeted individual o.

As we have seen in the background and related work
section, there are many ways to estimate the uniqueness
of a record. We chose to estimate the relative density of
o using the average neighbourhood radius µ̄. The way µ̄
is selected as a direct impact on the linkability score,
as it embeds assumptions of the evaluator regarding
the membership risk. We denote the set of possible
members as M , in which M = {t ∈ C : d(o, t) ≤ µ̄}.
The uniqueness of a record o, denoted ρ, is proportional
to the size of the set M . To ensure its value falls within
the range of 0 and 1, we perform normalization. Thus,
the linkability score Ls of an attack scenario s is the
percentage of singled out records that are close enough
to the original record o, the records in set Ω, multiplied

by the complement of the uniqueness ρ.

Ls =
|Ω|
|C|

· (1− ρ) (2)

The evaluator also has to determine if an attack
scenario leads to an information gain, denoted Is. We
claim that Is depends on the reconstruction loss of each
possible match t in C. Let o be the original record of an
individual in Dm A′ ⊆ A be the set of attributes to be
reconstructed and A the set of all attributes. We express
the reconstruction loss, denoted E(t), of a matched
record t, as an unormalized Gower distance between
o[A′] and t[A′].

E(t) =
∑
i∈A′

ζi · |oi − ti| (3)

We denote ζi as the information gain per distance unit
on the i-th feature. By default, we consider all ζi to be
equal. We can now express the average information gain
Is of scenario s as the following formula:

Is =
1

|C|
∑
t∈C

γs · (1−
E(t)∑
i∈A ζi

),

in which γs =
∑

i∈A′ ζi∑
i∈A ζi

.

(4)

When the reconstruction loss is 0, the information
gain is directly proportional to the sum of the normalized
weights of the attributes to reconstruct. The default
assumption is that the more attributes the attacker
can reconstruct, the more information they can gain.
Following that logic, when there are no attributes to
reconstruct, the information gain is 0.

Finally, we can define the re-identification risk score
RRS of an individual.
Definition 1 (Re-identification risk score). Let S be the
set of plausible attack scenarios on an individual. Each
scenario s ∈ S has a linkability score, denoted by Ls,
and an information gain, denoted by Is, such that 0 ≤
Ls ≤ 1 and 0 ≤ Is ≤ 1. The constant ϵ allows the
evaluator to give a minimum weight to linkability even
when Is is 0.

RRS =
1

|S|
∑
s∈S

Ls ·max{Is, ϵ} (5)

The RRS of an individual measures how much we
estimate the singled out records in T to be linked to
the individual, moderated by how much information
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can be gained by the attacker. Formula 5 suggests that
the information gain is taken into account only when a
record is linkable. Furthermore, if the information gain
for a particular scenario s is equal to 0 but the records
are linkable, the associated risk is equal to δ. To score
a release strategy, we can simply compute the expected
re-identification risk score of all individuals present in
dataset D.

4. Re-identification Shapley Value

Attack scenarios can be performed individually and
independently to evaluate the RRS of each person.
Nevertheless, we purport that modelling our problem
as a re-identification game can provide additional
insights. The entire simulation can be perceived as
consisting of multiple attackers, each of them possessing
their own resources and focusing on a specific group
of individuals. Consider for instance a scenario
in which multiple adversarial agents conduct attacks
simultaneously, with the evaluator providing risk scores
for each individual. The re-identification risk scores
can be combined to calculate the score of a sample of
individuals. We can repeat this process until this score
converges. We create resources by using D to sample
possible subsets of resources. As attackers’ resources
often overlap, this process is akin to a simulation that
employs sampling with replacement.

Let us now consider the simulation as a cooperative
game involving attackers with varying resources
who collaborate to re-identify and obtain as much
information as possible on individuals. Let α1 and
α2 represent two attackers with resources ri and
rj respectively, targeting the same individual. The
combined attacker set α1,2, acts as a “super” attacker
with combined resources (ri, rj). There are now three
possible attack scenarios: s1, s2, and s1,2. The scenarios
s1 and s2 correspond to attacks using resources ri
and rj , respectively, while s1,2 involves attacking
with the combined resources (ri, rj). We assume
that the combined attacker set α1,2 is always stronger
than any individual attacker, such that RRSs1,2 ≥
RRSs1 and RRSs1,2 ≥ RRSs2 . This assumption is
consistent with the additive property of the value of
information, suggesting that increased resources lead
to higher re-identifying capabilities. This also implies
that increasing resources never negatively impact
re-identification, which we acknowledge may not hold
true in some instances. However, in practice, this
simplistic assumption appears to work well, primarily
because released datasets tend to possess non-redundant
features and preserve good utility.

To better understand the motives underpinning

potential cooperation in the context of re-identification
attacks, we now turn to the evaluation of the rewards
associated with the success of an attack, as well as
the question of how attackers should split the gains in
such an instance. To answer this question, we borrow
from the concept of Shapley value, which provides a
way to allocate total gains or costs among players in
cooperative games. In our context, we adapt this concept
and refer to it as Re-identification Shapley Value (RSV):
Definition 2 (Re-identification Shapley Value). Let’s
consider a re-identification game with a player set
αN of size n, let ϕ the valuation function of the
re-identification of an individual and S ⊆ αN\{i}
a subset of players that does not include player i.
The re-identification Shapley value ψi(v) of player i is
defined as follows:

ψi(ϕ) =
1

n

∑
S

(
n− 1
|S|

)−1

ϕ(S ∪ {i})− ϕ(S) (6)

If the valuation function is theRRS and if we assign
specific resources to an attacker, the RSVs serve as
an equitable measurement of how these resources are
valuable for re-identification, from the point of view
of the evaluator. One of the interesting properties of
Shapley values is linearity. More precisely, the linearity
axiom states that for any payoff function v that is a linear
combination of two other payoff functions u and w,
the Shapley values of v equal the corresponding linear
combination of the Shapley values of u and w. If we
apply this axiom to RSVs, we can combine the Shapley
values of attackers when they collaborate to re-identify
more than one individual. If each attacker is responsible
for one type of resource corresponding to a feature in
the dataset T , the RSVs for all individuals in D can be
interpreted as the most valuable resources or features to
re-identify individuals in T .

In machine learning, Shapley value has been used
for measuring the value of features at inference.
In particular, the popular SHAP (SHapley Additive
exPlanations) framework (Lundberg and Lee, 2017), is
particularly notable for its use of Shapley value. It is
used to fairly distribute the contribution of each feature
to the prediction of a model. Our definition of RSVs is
consistent with these prior ideas as we seek to explain
the RRS by measuring the contribution of resources in
the re-identification process.

5. Case Study

To evaluate our approach, we use the Adult Income
Census (AIC) public dataset. The AIC dataset contains
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sensitive attributes such as age, race, sex, marital status
and native country, which can potentially be used to
re-identify individuals. In addition, every feature of the
AIC dataset can be considered as a potential identifying
information resource, or an attribute to infer, making
it readily usable by privacy researchers. Initially,
we produced several anonymized variations of the
dataset by implementing the Mondrian anonymization
algorithm (LeFevre et al., 2006) with k-anonymity
parameters k = 5, k = 25 and k = 100. We also
used the Synthetic Data Vault library (Patki et al., 2016)
to generate two synthetic datasets using respectively the
CTGAN and TVAE implementations. The parameters
were chosen based on common practices found in
existing literature, rather than attempting to optimize
them specifically for the AIC dataset. All strategies are
compared to the original dataset.

Figure 3. Average linkability scores and information

gains of attacks on the original AIC dataset grouped

by attack scenario types.

For each dataset, multiple simulations were
performed, each involving batches of 100 individuals
and ran for 200 iterations. One way to differentiate
between simulations on a single dataset is by attack
scenario type. For example, we ran a simulation to
estimate the risk of re-identification in a scenario in
which an attacker has access to all features as resources
(Figure 3). Although this may not be entirely realistic,
it can provide us with a boundary on how easy it is
to link a record in the dataset. Unsurprisingly, when
an attacker has access to all resources, and attacks the
original AIC dataset, the average linkability score is
91.2% (Figure 3). However, it is important to note
that the attacker has no attributes to infer in that case.
It becomes more interesting when the attacker has
fewer resources. For instance, we find that the average
linkability is 19.4% when they have access to 3 features.

While it would ultimately be up to decision-makers

Figure 4. Trade-off between Data Utility and Privacy

Strength (1 - Average RRS) of AIC Data Release

Strategies. The threshold to determine what is High

Protection/Utility is arbitrarily chosen to be 0.8.

within an organization to determine the plausibility
of the different scenarios to consider, our approach
remains versatile and adaptable to different conditions
and contexts. We illustrate how one may compute the
score of a given strategy by averaging all scenarios.
In a real-world setting, it would also be important to
assign a minimum weight to the linkability scores. In
our experiments, we arbitrarily chose ϵ = 0.5. The
results for all data strategies are presented in Figure 4
and Table 1. To compute the utility score of a dataset,
we used a Kolmogorov-Smirnov test (Massey Jr, 1951)
to compare the distribution of each dataset. We opted
for this test because it is a non-parametric method
that makes no assumptions about the forms of the
underlying distributions being compared. Based on our
simulations, the results showed that data anonymization
and data synthesis offered similar trade-offs when k =
5, bringing further support to the argument that data
synthesis does not completely eliminate the risk of
re-identification.

We simulated enough attack scenarios to use the
re-identification data to estimate the Re-identification
Shapley Values for synthetic data using TVAE
(Figure 5). It is interesting to note that the capital-gain,
capital-loss and native-country features have little value
in attacks. We decided to investigate the relationship
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Table 1. AIC Re-Identification Simulations Results

Dataset Linkability (Avg ± Std) Information Gain (Avg ± Std) Re-identification Score (Avg ± Std) Utility Score
Original 0.562± 1.11e−3 0.422± 2.19e−5 0.297± 8.77e−4 1.000
k5 0.172± 7.49e−4 0.420± 1.46e−5 0.086± 3.78e−4 0.911
k25 0.028± 3.19e−4 0.419± 1.47e−5 0.014± 1.63e−4 0.812
k100 0.006± 1.46e−4 0.418± 1.49e−5 0.003± 7.54e−5 0.749
ctgan 0.213± 8.71e−4 0.419± 1.49e−5 0.107± 4.37e−4 0.898
tvae 0.245± 9.99e−4 0.419± 1.48e−5 0.123± 5.02e−4 0.936

Figure 5. Re-identification Shapley Values of the

simulation on synthetic AIC dataset (TVAE)

between the Re-identification Shapley Values (RSVs)
and the entropy of the ACI features, suspecting
that entropy could serve as a singling-out factor.
Upon conducting a correlation analysis using Pearson’s
correlation coefficient, we found a substantial positive
correlation between the two. This indicates that features
with higher entropy are often associated with higher
RSVs, suggesting a strong linear association between
these variables.

6. Discussion

Our experiments on the Adult Income Census (AIC)
public dataset demonstrated the practicality of our
approach in evaluating the risk of re-identification with
respect to different data release strategies. However,
our framework has at least four limitations stemming
from the assumptions made. These limitations could
lead to an underestimation or an overestimation of the
risk we want to evaluate. First, in our setup, we framed
the risk evaluation as a kind of game where attackers
submit records and get a score. Other setups could be
explored to evaluate this risk. Second, our approach
uses a specific implementation of singling-out attacks.
Our use of the unnormalized Gower distance relies on
fixed weights associated with resources. A potential
improvement to overcome this limitation would be to
use a different type of predictor that is not subject to the

same constraints, while remaining suitable for use with
tabular data. Third, our linkability evaluation method
depends heavily on parametrization, which may vary
across datasets. As an alternative, an attack such as
Shokri’s membership attack (Shokri et al., 2017) on
synthetic data is pertinent. Similarly, in the evaluation of
the information gain, a machine learning model could be
employed instead of using distance metrics. Our current
implementation of information gain does not consider
the potential inferences that could be drawn from the
reconstructed information. Finally, we assume attackers
have access to resources in the same format as the
original dataset, which may lead to an overestimation
of the risk. In real-life scenarios, attackers often have
aggregated or noisy information. While this means
that our approach errs on the side of caution by being
more conservative than it may be necessary, future work
could simulate different conditions for a more realistic
assessment of the risk of re-identification.

An important avenue for future research would
be to extend our approach to specifically account for
and handle sparse data (e.g., text, transactions, etc.).
The presence or absence of local patterns is often
abundant due to high dimensionality. It is crucial
to understand what makes an individual unique and
how to automatically capture these patterns. An
attacker could either learn these patterns (e.g., via
social engineering) or discover them in the anonymized
dataset to re-identify an individual. To illustrate this
challenge, consider transaction data. If we simply
sum up transaction similarities to target individuals, we
will underestimate the risk, as we would not account
for the order of transactions and possible behavioural
patterns. This limitation of our current approach offers
an interesting direction for future research.

Despite these limitations, we believe our approach
would be particularly useful for data custodians such as
data governance and cybersecurity teams. For example,
they could use our approach every time they are about
to release data, either internally or to share outside of
the organization. Our approach also remains versatile
in that we do not explicitly define criteria to decide
the right protection and utility thresholds, as these
depend on the nature of the data, its classification (e.g.,
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PII), and the difficulty for an attacker to gain access
to information resources. To gain further monetary
insights into the costs an organization may incur from a
partially anonymized or even synthetic dataset breach, a
sensitivity analysis can be added to extend our privacy
scores. As an example, consider that we estimate
that each original record leaked would cost $1 to an
organization. If an anonymized dataset contains 10,000
records and its average score is 0.1, we can estimate the
breached costs in dollars to be $1,000. Similarly, each
point in data utility lost because of privacy-preserving
techniques should be taken into account. This is not the
focus of this paper, but it is an interesting direction to
explore in the future. For example, we could substitute
our use of a Kolmogorov-Smirnov test for a utility
metric specific to a team in the organization. A drop
of 1% in utility for a team could be more costly than
for another team. If both the privacy strength and data
utility are converted into dollars, they can provide more
pragmatic insights for decision-makers. Even if the
complete estimation of the monetary costs associated
with data breaches may be challenging, recent events
attest to the importance of this issue. According to a
recent IBM report, the average cost of a data breach in
the U.S. is approximately $5 million (IBM, 2022).

Finally, we used Shapley Value for its
well-established axiomatic properties, such as linearity,
which provide both robustness and interpretability to
our analysis. Alternative methods (Condevaux et al.,
2022), could offer similar explanatory benefits while
being more computationally efficient in certain contexts,
particularly with larger datasets.

7. Conclusion

In this work, we have proposed an approach for
evaluating the risk of re-identification in tabular data, by
considering the risk from the perspective of what would
be valuable to an attacker in singling out individuals.
Our approach allows us to account for the information
resources at the disposal of attackers and their use to
single out individuals. Furthermore, we introduced an
evaluator to score attacks, which serves as an assessment
of the risk of re-identification of individuals based on
two factors: the linkability of singled out records and the
information gain of an attacker. This evaluation yields a
re-identification risk score for each individual, enabling
comparisons across different data release strategies. We
also introduced the concept of Re-identification Shapley
values (RSVs) to estimate the value of information in a
privacy attack as a form of cooperative game involving
multiple attackers based on our approach. We tested
our approach on several anonymized and synthetic

versions of the Adult Income Dataset, demonstrating
its usefulness in a realistic, albeit fictitious, scenario.
While data requirements and their associated impacts
remain contextual to the organization in which they
are considered, our approach provides valuable insights
for data custodians, helping them balance the trade-off
between data privacy and data utility.
Acknowledgments: We thank Sébastien Gambs, Genevieve
Chafouleas, and Ishika Dhall for insightful comments on an
earlier version of this paper.
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