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Abstract

Sharing sensitive information, such as location data,
or health data, is a complex problem. While users
may desire the benefits of application that use sensitive
information, adoption may be limited by user reluctance
to share sensitive data with untrusted third parties. We
propose the False Position Protocol, a decentralized
algorithm that allows users to reveal information such
as location to trusted partners through a homomorphic
encryption identification process. The algorithm offers
reduced computational complexity while maintaining
resilience despite potential malicious actors. Potential
applications of the proposed two-party sharing protocol
include connecting in social networks, exchanging
health information, geotagging content, as well as
proximity testing for media content delivery.

Keywords: Decentralized, mHealth, Dummy
Location, Homomorphic Encryption, Privacy

1. Introduction

Information sharing is tricky in practice (Jiang, Li,
Zhao, Zeng, Xiao, and Iyengar 2021). Job applicants
must provide information to potential employers but
cannot be sure who accesses (e.g., fake job postings,
Vidros, Kolias, and Kambourakis 2016) or how potential
employers use (e.g., hiring discrimination, Acquisti and
Fong 2020) their data. Taxpayers must file returns to
government agencies, but both parties struggle to ensure
that they are sharing their confidential information with
the correct party (e.g., return fraud, Brody, Haynes, and
Mejia 2014). Information security requires details to
reinforce protection but grapples with the consequences
of widespread disclosure (e.g., software vulnerabilities,
Mitra and Ransbotham 2015). In health, if users

sacrifice some privacy (perhaps temporarily), society
could better contain the spread of deadly pathogens
(Sharma and Bashir 2020).

It is fundamentally difficult to share information
with a trusted party — and only that trusted party.
While individuals benefit from sharing information with
specific trusted parties, attackers may masquerade as
trusted parties to access that information. Several
solutions exist, but none are ideal (Papageorgiou,
Strigkos, Politou, Alepis, Solanas, and Patsakis 2018).

In the context of health, applications commonly
require users to share sensitive information (e.g.,
location and health) with a centralized authority (such
as a public health department or app developer).
Location security and privacy are essential in Mobile
health (mHealth) for mobile medical applications,
such as telemedicine and remote patient monitoring.
Unfortunately, tracking gives a central authority the
ability to use data beyond the intended scope — for
instance, to track a dissident, to scoop up potential
business opportunities, “to identify people’s travel paths
and their entire social networks” (Sharma and Bashir
2020), etc. The majority of contract tracing apps use
blanket permissions to collect or access inappropriate
amounts of data that have no bearing on infection
control, such as photos, contacts, call information,
age, and other personal attributes; some do not even
guarantee encryption or anonymity of data reporting
(a review of 50 contact tracing apps, Sharma and
Bashir 2020). Additionally, once given away, it is
hard to “regain lost liberties,” and that can lead to a
“chilling” future (Sharma and Bashir 2020). Therefore,
users can be understandably reticent to divulge sensitive
information to a third party. As a result, the need for a
verified, trusted third party is a barrier to health benefits.
Furthermore, reliance on a central authority can add
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a bottleneck, slowing time-critical processes (Shubina,
Holcer, Gould, and Lohan 2020).

Instead, peer-to-peer approaches avoid centralized
intermediaries. Homomorphic encryption algorithms
such as Paillier (Paillier 1999) transmit information in
decentralized protocols. For example, the information
could be an encrypted message containing infection
status and location. However, current homomorphic
encryption schemes tax the computational capabilities
of mobile devices and may not perform well with
malicious actors. In our context of the proposed False
Position Protocol, the localization is more efficient
through the use of homomorphic encryption. An
efficient protocol is especially relevant in mobile
applications where battery consumption may be a factor
in choosing encryption approaches.

The location privacy is also essential in networks of
communication devices where the devices themselves
are sensitive and under attack of location privacy, whose
location is sensitive information, or whose location
privacy is threatened (Li, Huang, Chang, Weng, Chen,
and Li 2023). Such networks of devices may be
Sensor Networks (Zhang and Chow 2014), vehicles
(Guo, Ma, and Gao 2018), generally networks of mobile
users (Cheng, Ma, Liu, Wu, Wei, and Dong 2022),
and networks of “participatory sensing” applications
(Christin 2016), where the nodes of the networks
collect and exchange information including location
information (Vu, Zheng, and Gao 2012). No algorithms
consider the spatial density probability of finding the
location privacy-protected devices or persons, except a
qualitative discussion in (Sun, Chang, Ramachandran,
Sun, Li, Yu, and Liao 2017) of a variant of the
Dummy-Location selection (DLS) algorithm. We
quantitatively integrate the probabilistic knowledge on
the location in a specified area, considering the map
of the area that is processed using general knowledge
for deriving the probabilities of location. We extend
the k-anonymity method for including the location,
providing multiple dummy locations in the process of
conveying information about location. We automatically
generate dummy locations, based on the probabilities on
the map.

We propose a False Position Protocol (FPP) that
mixes grid localization and a new distance measure
that simplifies computation while also performing well
even with misbehaving peers. FPP falls broadly within
the category of nearby-friend tracking. In infection
contact tracing, for example, peer-level coordination
through the decentralized protocol only requires trust
at the user-pair level rather than communication with
a centralized authority. FPP demonstrates that ‘carte
blanche’ ongoing geographical location tracking by a

trusted central authority is unnecessary.

2. Background

Information sharing based on location is beneficial
in a variety of contexts – (e.g., supply chain, Li
2002), (e.g., online communities, Ma and Agarwal
2007), (e.g., retail, Lee, So, and Tang 2000), delivery
of advertising content (Yang, Vijayakumar, Shen, and
Gupta 2022), contact tracing (An, Lee, Jung, Park,
Song, and Ko 2021), and more. The “ubiquity of
cellphones” has made many application areas possible
(Zhong, Goldberg, and Hengartner 2007).

But in practice, information sharing is fraught with
difficulty. For example, in healthcare, individuals
want close control of their private information yet
simultaneously both need and want to share that same
information (Adjerid, Acquisti, Telang, Padman, and
Adler-Milstein 2016). Legislation such as HIPAA in the
US has been enacted to protect patient data. Yet, at the
same time, patients likely want healthcare professionals
to have complete information about their treatment even
if they cannot actively consent in an emergency. Privacy
is much less important when people are bleeding in the
emergency room than when they are not. Furthermore,
health conditions such as contagious infection can have
externalities to other individuals — sharing of such
sensitive information requires users to trust the platform.

Transparency and control are essential for trust.
Individual adoption of healthcare technologies increases
when applications have “Privacy by Design,” giving
users transparency into what they share and tools to
control sharing (Sharma, Dyer, and Bashir 2021). Users
often do not wish to share geolocation data (Sharma
et al. 2021) in particular. Thus a protocol that identifies
pairs of users in close proximity without sharing actual
geolocation data with a central authority would reduce
friction to adoption — a “nearby-friend problem”
(Chatterjee, Karabina, and Menezes 2009). A nearby
friend problem is “an instance of secure multiparty
computation problem, where multiple parties jointly
compute the output of a function without learning each
other’s inputs” (Zhong et al. 2007). The “nearby-friend
problem” is that locations should only be shared if one
can reasonably ensure that the inquirer of the location is
indeed a friend and not some other party. This problem
has been an active research area for over fifteen years,
yet many problems still remain.

2.1. Difficulties with Finding Nearby Friends

Nearby-friend identification is difficult for multiple
reasons.

Location-based services often inherently
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compromise location privacy. As part of their protocol,
some location protocols must release information
about their entities’ locations regardless of whether
the entities authorize the disclosure. For example, a
protocol may reveal the location of an entity to another
entity even if not physically near, a known failing of
many nearby-friend protocols. In the most simplistic
approach, if an entity publicly broadcasts its location,
everyone knows the entity’s private information (the
location). An early potential solution to this problem
was location cloaking (Cheng, Zhang, Bertino, and
Prabhakar 2006), but an issue of early solutions was
that they require an intermediary: either a trusted third
party in the communication or the transmission channel
(service provider) would need to know the locations.
A two-party solution to the “nearby-friend problem” is
possible but requires additive homomorphic encryption,
such as the Pierre protocol (Zhong et al. 2007). Additive
homomorphic encryption algorithms enable the addition
of the encrypted messages to be equal to the encryption
of the added original messages (e.g., if the messages
are m1 and m2 and the encryption algorithm is ϵ, then
the property is ϵ(m1) + ϵ(m2) = epsilon(m1 + m2)
(Zhong et al. 2007). Examples of homomorphic additive
encryption algorithms include the Paillier algorithm
(Paillier 1999) and the CGS97 algorithm (Cramer,
Gennaro, and Schoenmakers 1997).

Some protocols reveal locations to a known group of
entities. By restricting disclosure, private information
is no longer publicly disclosed. However, the problem
then becomes an authentication problem. Fingerprinting
attacks falsify a user’s identity and masquerade as a
friend or falsify position to induce the other entity
to reveal its location even if that location is not
near the second entity (Dong, Dave, Qiu, and Zhang
2011). Many protocols can release information to
an attacker masquerading as a friend (Narayanan,
Thiagarajan, Lakhani, Hamburg, Boneh et al. 2011),
enabling an adversary to compromise an identity. These
compromises can occur when using shared geotagged
data (Vicente, Freni, Bettini, and Jensen 2011) such
as photos, videos, or other mobile posts, an attack in
a phenomenon known as cybercasing (Friedland and
Sommer 2010). To be effective, protocols must handle
malicious behavior such as masquerading.

Alternatively, other protocols require a trusted
third-party (Šikšnys, Thomsen, Šaltenis, Yiu, and
Andersen 2009) such as a verification server. Protocols
that involve third parties must also authenticate that third
party. Attackers may compromise those third parties,
a known weakness of three-party protocols (Narayanan
et al. 2011).

Additionally, protocols face computational

constraints. Verification solutions are expensive
for mobile applications, in both computation time
and power consumption (particularly if they involve
third-parties, Dong et al. 2011). Apart from security,
desired characteristics for a two-party nearby friend
protocol include efficiency, specifically making the
identification in the fewest number of connections,
and with the lowest computation and bandwidth costs
(Narayanan et al. 2011).

2.2. Existing Protocols

Several protocols exist to address the nearby-friend
problem. The protocols vary in their definitions
of neighborhood (distance), their use of third-parties,
their computational demands, and their resilience to
malicious behavior.

2.2.1. Louis Protocol The Louis protocol is a
three-party protocol with three participants, Alice, Bob,
and Trent (Zhong et al. 2007) . In this protocol, Alice
and Bob are the two “nearby friends” attempting to
exchange location information (and validate who they
are), whereas Trent is a trustworthy third party who
is used for validation. The “nearby-friend protocol”
(Zhong et al. 2007) has the following features:

Neighborhood definition: The entities announce
their own neighborhood defined by a radius r centered
around the entity.

Third party: A third additional entity, Trent,
makes this algorithm additionally vulnerable to attacks
compromising the trusted third-party. Trent acts as
a trusted third party but does not know either of the
locations ex ante.

Algorithm (defined by (Zhong et al. 2007): “εA(·) is
the Paillier additive homomorphic encryption function
using Alice’s public key, εT (·) is a (non-homomorphic)
public-key encryption function using Trent’s public
key.” (from p. 66 of (Zhong et al. 2007)). The Paillier
encryption algorithm is from (Paillier 1999).

Alice first communicates her location coordinates, x
and y, in εA along with a random salt, SA, encrypted
using the cryptographic hash function.

Bob then computes the value of the following using
his own location coordinates, u and v (from (Zhong et al.
2007) page 66):

εA(x
2 + y2).εA(u

2 + v2).εA(k)

(εA(2x))u.(εA(2y))v.(εA(r2))

The multiplication involved in the exponential term
in the denominator is especially computationally heavy.

(Additional computational steps involve the
communication channel between Alice and Trent, but
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these steps are not as computationally heavy as the
expression above.) The challenge of this algorithm is
that Trent is a trusted third party, so if either one of
the “friends” Alice or Bob cooperates with Trent, they
can reveal the other’s location. If there are multiple
options for the third party “Trent”, and either Alice or
Bob can choose for each iteration potentially a different
“Trent” trusted third-party, educing the potential for
cheating behaviors (Zhong et al. 2007). The downside
of having a third party at all is that there is another
set of communication steps between the two potential
nearby friends and the third party, so the Louis protocol
takes two to four extra communication steps compared
to the other two protocols proposed in Zhong et al.
(2007) which do not require a third party. Furthermore,
in the Louis protocol, both Alice and Bob learn each
other’s exact locations (“Louis (both phases)” in Table
3, Zhong et al. 2007), which can be disadvantageous
from a privacy perspective.

2.3. Lester Protocol

A second “nearby-friend” protocol (Zhong et al.
2007) can remove the need for a trusted third party and
thus is a two-party protocol. This protocol allows one
party to obfuscate their actual location and provide only
a distance between the parties. This presumably can
reduce the risk of any one of the two parties cheating,
since they do not get actual locations but merely
distances between them. If we assume a 2-dimensional
grid coordinate system and a distance r between Alice
and Bob (the two communicating parties remaining),
Alice and Bob can find if they are within a circle of
radius r of their position and nothing more. The issue
with this approach is that if one party uses incorrect
starting coordinates as their position in the protocol, they
could guess the other’s location “by simply entering that
guess as [their] own location and seeing if the protocol
finds [the other party] nearby” (Zhong et al. 2007).
Another risk is that the cheating party knows the other
party’s frequent locations (e.g., their home and work
routine) and thus can provide a location near those spots,
thus fooling the other party into thinking their “friend”
is nearby. This protocol does not handle this particular
scenario well.

The Lester protocol makes a trade-off to avoid the
use of a third party like Trent to validate that the
communicating parties Alice and Bob are indeed nearby
— neither learns precise location (rather just that they’re
within a certain distance of each other or not) — and the
communication party that initiates the protocol learns
more information about the other party. The latter point
implies that in order for both parties to learn whether the

other is nearby, the parties need to repeat the protocol
with the roles reversed.

The encryption method used for Lester is CGS97
(Cramer et al. 1997) cryptosystem, which falls under
homomorphic encryption. The Lester protocol allows
for the inquired party (let’s say Bob) to vary the
amount of computational work the party receiving the
information (let’s say Alice, like in the example in the
paper introducing the protocol (Zhong et al. 2007)) must
do in order to learn the distance between the parties
based on a workfactor baked into the decryption effort
the receiver must do. The work factor can be set by Bob
to be very high which can deter guessing attempts and
is exponential in time, while the computation effort of
Bob is constant regardless of the workfactor sent. Of
course, the workfactor used should be reasonable based
on the device doing the computation; for example, it
would be meaningless to send a workfactor to a mobile
phone that would take it years to decrypt the location.
Realistic ranges of workfactors appear to be narrow for
the algorithm to be feasible on mobile phones (Zhong
et al. 2007). Readers may simulate this protocol on new
hardware and come up with different recommendations
based on the hardware and type of device used. The
Lester protocol derives its workfactor property from the
CGS97 method. Variants of the protocol use different
cryptosystems and other modifications (Zhong et al.
2007).

The major concern of the Lester protocol is that the
communicating parties could cheat and provide false
locations in terms of the grid positions, which the
other party has no way of detecting. If, for example,
the inquiring party sends a guess of the other party’s
location as their own (false) location, the inquired party
would have no way of knowing that and would respond
that indeed, they are within the radius r regardless of the
value of r as long as it is nonzero. Thus the inquiring
party always has an advantage in this type of cheating
behavior. The False Position Protocol we propose
addresses this concern, but for illustration purposes let
us discuss a scenario on location privacy that showcases
how a weakness in a nearby friend protocol like the one
described here can translate into consequences beyond
user privacy.

Let’s assume a scenario that is unfortunately all
too common in today’s interconnected world through
social media: burglars mining social media for locations
of homes (Rose et al. 2011). Mobile phones encode
a substantial amount of metadata with every photo,
including (unless disabled, exact location), which
opens serious privacy concerns (Li and Chen 2010).
It’s conceivable that not all users know how to
disable location sharing in photos, and furthermore
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it is common for social media users to volunteer
location information through social media platforms
that automatically add geolocation tags. Social media
applications are at risk of hacking (Soomro and Hussain
2019) and are valuable sources of information, such
as friend lists. Therefore, a plausible scenario for a
protocol like Lester to fail would be for an attacker
to find a user’s location patterns from social media,
comb through friends’ lists and stolen password lists
(Missaoui, Bachouch, Abdelkader, and Trabelsi 2018)
to locate profiles of friends of their target they could
masquerade as, and then use a nearby-friend application
to inquire if their target is at home, at work, on vacation,
etc. An attacker could then act in the physical space and
burglarize the target’s home, an unfortunately common
scenario (Soomro and Hussain 2019).

2.3.1. Pierre Protocol The Pierre Protocol is a
two-party protocol which improves on Lester and has
the following features:

Neighborhood definition: The entities each decide
on a resolution distance, r, and then use this distance to
share their coordinates in integer multiples of r without
revealing r itself. This allows adjusting the raster size of
the coordinate grid (based on r).

Algorithm: The protocol uses the same εA as the
Louis Protocol. An exponential calculation in the
encrypt domain is computationally heavy. Bob must
calculate the following (formula from Zhong et al. 2007,
p. 72):

Dr = (xr − ur)
2 + (yr − vr)

2

.
The benefit of Pierre over Lester is that the inquiring

party can only learn if the other party is near the shared
location. If the grid locations used by say Alice are
not the real location positions and the choice of r is
not reasonable, the protocol will not provide any useful
information about Bob’s location, and vice-versa. The
protocol assumes that the communication parties do not
know each other’s frequent locations (or, even worse for
privacy: frequent locations by time of day) and cannot
pretend to be near those locations. If that information is
available to an attacker, like in the social media-location
mining example, then this protocol can fail as well. This
protocol requires the homomorphic encryption and thus
significant computational resources.

3. The False Position Protocol

Each of the three protocols (Louis, Lester, Pierre)
solves many aspects of the nearby-friend problem.
However, each requires significant computational
resources. Given the nearby-friend protocols are

predominantly beneficial in mobile applications with
reduced communication and computation capabilities
(Zhong et al. 2007), a protocol with reduced
computational demands would be desirable.

Therefore, our FPP algorithm defines a
neighborhood to minimize computational demand
while preserving the privacy of the communicating
entities in a way that is more robust to malicious actors.
By proposing an alternative definition for the distance
function, the exponentiation with linear expressions
reduces computation load. Our proposed approach also
enables the user to control the information that the app
shares yet still share such information securely because
of the homomorphic encryption.

3.1. Algorithm

3.1.1. The max-Manhattan Distance Function.
We use a distance function similar to a taxicab
(Manhattan) distance yet less precise in determining
the location and thus better at preserving privacy.
A max-Manhattan-like distance, which is rounded
Chebyshev (L∞) norm (Mohibullah, Hossain, and
Hasan 2015), reduces the computational cost. We
naturally combine this distance measure with the idea
of walking on a graph (rectangular grid), as in the
Pierre protocol. The use of the specific distance with
a Pierre-like protocol improves privacy protection
compared to Pierre alone. Taxicab distance in a plane
(2D space) is dtaxicab(A,B) = |xA −xB |+ |yA − yB |.

The alternative distance measure, dmaxM
(named

max-Manhattan, equivalent rounded L∞ norm, with the
rounding done according to the grid unit, as usually done
for Manhattan distance) is:

dmax−M (A,B) = ⌊max(|xA − xB |, |yA − yB |)⌋.

Consequently, knowing that Alice and Bob are
at a distance (in the max-Manhattan definition) less
than r is less informative than knowing that their
distance in the maxi-taxicab sense is less than r, which
improves privacy. The measure dmax−M satisfies the
axioms of a distance. The proposed protocol uses this
distance to determine the closeness. Yet, the parties
do not get complete knowledge on the closeness in the
sense of the taxicab distance, but only in the dmax−M

(max-Manhattan) sense, which is weaker.
Next, we define a grid over the plane, with a

resolution distance r. By assumption, the grid has
the axes in the North-South (NS) and East-West (EW)
directions. (Grid orientation is arbitrary; we select
NS and EW to illustrate.) Communicating partners
must agree on the value of r, or the protocol must
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predetermine it. As in the Pierre protocol, the true
coordinates of a point (x, y) in the plane transform to
grid coordinates xr = ⌊x/r⌋, yr = ⌊y/r⌋.

Let’s denote the participants as Alice and Bob as
follows: use the subscript A for Alice and B for Bob.
In the first phase, the partners choose a random point,
P = (λ, µ) in grid coordinates; Alice only knows λ
and Bob picks the second random integer number, µ.
The partners give their position with respect to this point
— giving rise to the name, the False Position Protocol
(FPP), as neither communication partner at this point has
revealed any actual location information and this shared
location is not actual for either of them.

The “nearby-friend” protocols are, in fact,
mathematical games. Indeed, each protocol follows the
steps of a mathematical game, which can have cheating
strategies that result in a non-zero-sum outcome. As
such, a condition of a successful protocol could be that
in most cheating situations, a cheater cannot win by
getting information while not revealing any information
about themselves. In this sense, losing means disclosing
one’s own position while the communication partner
does not reveal its position. Ideally, the chance of
deception is equal for both partners or even possibly
null. (Total security is not achievable by any current
nearby-friend algorithm as far as we know, including
the FPP we propose). However, mitigation strategies
discourage cheating, and therefore, we evaluate several
possible scenarios (playing strategies) for players Alice
and Bob to check for the game’s fairness.

3.2. Strategy ‘Fair players’

We assume that both players are fair and act
rationally. Therefore, while they do not want the other
player to gain much knowledge on their position, the
goal remains that when they are close enough, they meet
(Figure 1). Consequently, knowing that providing a
point P that is too far from their actual position will
result in a response that is too far off from themselves
and possibly from the partner (Figure 2), they must
choose a point not too far from their position if they wish
the protocol to succeed. Non-cheating players will want
the protocol to complete expediently.

We assume encrypted communication according
to general encryption protocols, for example Paillier
protocol (Paillier 1999, Zhong et al. 2007). We also
assume that the partners know to use the max-M
distance. Then, the communication game works as
follows:

Alice: I am E-W direction. You will be the N-S (i.e.,
y direction). My closeness limit is nA.

Bob: Agree or abort, depending on nA. If agree,

Figure 1. Favorable (reasonable, fair) choice of P ,

when partners are close.

communicate: my closeness limit is nB (possibly equal
to nA.)

Bob chooses µ such that dy(B,P ) < nB .

Alice: My distance is dx(A,P ).

Bob: My distance is dy(B,P ) .

Based on the answers, both compute
d1(A,B) = max(dx(A,P ); dy(P,B)). If
d1(A,B) < min(nA, nB), then they are satisfied
with the first test and proceed:

Alice: Are you at West or East of λ + k · nA (not
revealing λ and k; k might be reasonable, e.g. 2). If
the answer guarantees that Bob may be not too far, she
continues.

Bob: Are you South or North of µ + h · nB ? If
the answer guarantees that Alice may be not too far, he
continues.

Alice: Are you at West or East of λ − k+ · nA (not
revealing lambda and k+; k+ might be reasonable, e.g.
k+ = 3). If the answer guarantees that Bob may be not
too far, she continues.

Bob: Are you South or North of µ − h+ · nB ?
If the answer guarantees that A may be not too far, he
continues.

At this point, they know either that they are too far,
or that they might be close.

They may continue choosing smaller k, k+, h, h+

until they are satisfied, or go to the next step, revealing
their grid coordinates. If the grid coordinates satisfy
them, they can give the exact locations. Notice that the
required encryption is minimal.

In the above case (of fair players), the game is fair
because both players keep secret their position until they
are satisfied with the approximate closeness value. They
preserve the privacy degree they wish, based on the
parameters h, k which allow customizing the number of
steps in the exchanges.
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Figure 2. Unfavorable case of choice of P , because

while the partners are fair, they are far apart.

4. Strategy ‘Cheating players’

One or both players wish to cheat. The simplest
cheating strategy is to choose a distant point from the
real position and to lie about the closeness to it. For
example, if Bob suspects Alice might be at some place,
he can lie he is close to a point P close to where he
believes Alice is (Figure 3). However, this strategy
assumes extra knowledge of Bob about Alice. Alice
may also know about Bob that she might suspect he
is in some other place and distrust him and end the
communication there.

The same cheating strategy applies to guessing some
position of the other partner. However, the partners still
have equal chances to cheat and may deploy various
defenses. Moreover, they can refuse to provide the
precise (non-grid) coordinates, or may give a new point
of meeting.

The protocol is a non-zero-sum game, meaning that
strategies exist when both players gain information they
desire, losing no privacy when they do not want to lose
it. This result is typical of the class of nearby-friend
algorithms.

5. Analysis: Protocol Variants and
Computational Cost

Given the possibility of cheating, we could alter the
protocol to have two versions:

Version 1: Trusting partners. Alice and Bob agree
to tell the other what close means for them. Denote
these numbers by nA and nB . Then, they determine
max(nA, nB) and if that number satisfies both of them,
they can declare the values they picked for (λ, µ). At
this stage, they still do not know their precise position.
One of them may chose to declare the exact position
then.

Version 2: Suspicious partners. Alice and Bob still
do not trust each other and remain suspicious. While
they do not tell what they mean by close, they agree to

provide hints, at least up to some limit. So, they ask
questions to limit the uncertainty. They may ask:

Alice: Is close less than mA? Alice may stop the
communication if the answer is no and mA > nA. If the
answer is yes, she may ask if close < mA/2 etc., until
Alice is satisfied that close is close enough for her.

Bob may choose to ask the same questions, before
providing further answers.

The advantages of the above protocol relative to
existing protocols (Louis, Lester, Pierre), are:

• Communication load is lower, as the first phase
only requires the values for r, λ or µ, and binary
answers, and the second phase only requires
values of mA. (Of course, data encryption
requires communicating signatures).

• It is easier to compute, as only subtractions and
comparisons are made.

• It preserves privacy better because only partial
information circulates.

• The protocol works even for non-rectangular
grids.

5.1. Computational Cost

In order to compare the computational time
efficiency of the FPP protocol to the other three
protocols (Louis, Lester, and Pierre), we compare the
time complexity of the most computationally heavy
protocol (Pierre) from the three with the FPP protocol.
If we assume it takes time t to perform an u-bit by v-bit
encrypted key multiplication, then the time complexity
of Pierre is max(O(tu), O(tv)). Due to the difference
in the distance computation, with max-M being much
lower cost, the time complexity for the equivalent step
within FPP is just O(t). Of course, both protocols are
prone to certain cheating behaviors, discussed below. In
particular, knowing information outside of the protocol
(like, for example, frequently visited locations as from
geotagged data) enables an attacker to defeat both
protocols with ease. This vulnerability is indicative of
the need for users to safeguard geotagged information
and not distribute content with geotagged embedded
information in public where an attacker could build a
profile of the user.

6. Scenarios of Misbehavior

The protocol is not secure when partners cheat.
Consider the case Bob is cheating. He can cheat in
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several manners. In the first place, he can choose a very
distant P by forcing the value of µ such that |µ − yB |
is very large, while deceiving Alice about his distance,
saying he is close to P . A strategy for the partners to
find out if the other partner is close to a specified point,
Q, while not revealing her/his position, is:

1. Choose a point P close to the specified point Q
(with one coordinate close to P );

2. Say you are close to Q, while it may be false;

3. Determine the position of the other partner.

As an example, assume Bob uses to frequently visit
a specific pub Q. At some moment of time, Alice wants
to know if Bob is at that pub. Then, Alice can falsely
send a location close to Q and induce Bob to reveal
his position. Even if the position is only approximately
known, if Alice has some extra knowledge ex ante
of running the near-friend protocol, namely that Bob
has no other business close to Q but could only be at
Q, Alice obtains the piece of information she desires.
Other examples include home locations, office locations,
frequent vacation rental locations, etc. With information
from vacation photos, for example, an attacker can
assemble a map of likely locations, and then defeat
a nearby-friend protocol. Notice that virtually all
protocols are prone to this type of attack.

However, Bob could do the following: never to
provide information on his position when he is close to
a frequently used location such as Q.

An extra check could alleviate the risk of such
attacks. If Alice and Bob say that they are close to
some Q, the partners can agree to a very large radius
around Q and they can agree to ask the communication
provider to certify the truth of the statement ‘the other
is at a distance less than R from Q’. This additional
check, however, adds a third-party, like Trent in the
Louis protocol, with all the risks involved adding an
additional communication partner.

The max-Manhattan distance used in this protocol
may provide an indication of gross deceit by one of the
partners, while effectively concealing the true location,
thus providing some added protection compared to the
Louis, Lester, Pierre family of algorithms.

Attackers can use prior knowledge to defeat any
protocol: the knowledge a partner may have on the most
probable locations for the other partner is an advantage
in the game of finding the location of the other partner
while concealing one’s own location.

No real-world space has the same probability that a
communication party is there at some moment of time
at all locations. The non-uniform spatial distribution of

Figure 3. Example where cheating may take place:

partners far apart but A guesses B’s location.

probability is due to regions of the space where someone
cannot be — for examples spaces occupied by walls —
and to regions where the party is known to have visited
before. Knowing the map of where the communication
partners may be allows search optimization and may
reduce privacy. Denote by pA(t, u, v, r) the probability
that A is located within a radius r from (u, v), (that
is, that the distance from A to (u, v) is lower than r),
d((u, v), (xA, yA)) < r. An attacker may be able to find
the location of a target – before the target is probable
to move – and with minimal energy (computational
load, energy consumption) based on knowledge of
pA(t, u, v, r) and by optimizing the search. For instance,
a building with high population density like a skyscraper
in the search radius would have a different probability
than a patch of sea even if both are within the search
radius r. Of course, knowledge of the target’s prior
locations within the search space (for instance, from
prior cybersecurity breaches) would reduce the search
cost even further. To mitigate this, one may apply
k-anonymity (for a review of k-anonimity and its limits,
see (Aslan, Matschak, Greve, Trang, and Kolbe 2023)).

In all protocols, the players can declare false
locations (coordinates), regardless of a trusted third
party. Prior knowledge allows a user, whatever the
protocol, to lure the other user to declare if close to a
specific previously known location. No protocol offers
a perfect defense against this attack. On the other hand,
the attacked partner may also have prior knowledge,
about the fact that the attacker is aware about these
preferred locations.

7. Future Work

The False Position Protocol and variants outlined
here have a number of adversarial user scenarios which
were briefly touched upon in this short conference
paper. We are exploring the potential of expanding
the False Position Protocol from enhancing location
privacy to additional types of information such as,
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for example, vaccination status or infection status, or
basic demographics, which could be transmitted as
encrypted text at the same time as the position data.
Such a protocol may be called, for instance, the False
Information Protocol, and could be particularly useful
for mobile health applications.

The COVID pandemic recently made this
information-sharing tension particularly salient in
the healthcare context. Containing the spread of
infection requires knowing who infected people have
closely contacted – individual location and health
information. Fortunately, health professionals and
governments now have information technology tools
not available during previous pandemics. The world
is now full of smart devices capable of recording
identity, geolocation, proximity (e.g., Bluetooth,
De Carli, Franco, Gassmann, Killer, Rodrigues, Scheid,
Schoenbaechler, and Stiller 2020), and health data.
As a result, organizations and governments developed
a wide variety of smartphone-based contact tracing
applications (Shubina et al. 2020). For example,
Singapore’s government released a Bluetooth-based
application that required users to share data with the
Ministry of Health (Cho, Ippolito, and Yu 2020).
The core premise of such applications is that if users
sacrifice some privacy (perhaps temporarily), society
could better contain the spread of a deadly pathogen
(Sharma and Bashir 2020).

For future mobile health applications in pandemics,
using a decentralized contact tracing solution based on
the protocol shared here could be useful to increase
user trust. In such an application, for instance, only
the information of when two application IDs (different
from device IDs) were in proximity to one another
and their infection status at the time, together with
a duration of contact. This information would not
require actual position data — simply knowing the
self-reported infection status and that contact existed
should be sufficient, as each pair of users who
satisfy the conditions of the FPP would have been in
contact. Of course, determining whether user trust
could be enhanced with this protocol in contact tracing
applications is not currently an answered question and
would be worth exploring for instance through surveys
before implementing it.

8. Conclusion

The proposed False Position Protocol uses a mixture
of grid localization and a new distance that simplifies
computations. The reduced computational load will
substantially benefit the algorithm’s applicability to
mobile devices used in social applications. FPP also

avoids requiring users to trust and coordinate with a
central third party. Yet, FPP remains robust against
several types of malicious actors.

While we illustrate the benefit of the FPP in the
context of pandemic contact tracing for mobile health
applications, the protocol has broader applications.
FPP is equally helpful for any nearby friend problem
where individuals wish to share information (such
as location) only with specific trusted parties. The
canonical example is two friends trying to meet if
nearby. But we need not restrict these protocols to
strict definitions of “friends” and “nearby” in a physical
sense. The entities could also be autonomous vehicles
trying transfer packages in a mesh network. Or workers
coordinating locations to organize a “bucket brigade”
(Bartholdi III, Bunimovich, and Eisenstein 1999). And
location need not be physical. Entities may want to
connect opportunistically if nearby in other dimensions
besides geolocation. We are interested in applying the
FPP in other such contexts.
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