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Abstract 
Voice user interfaces (VUIs) as decision aids are 

becoming increasingly popular in both everyday 
interactions (e.g., mobile assistants on personal phones) 
and high-risk, high-consequence security settings such 
as international nuclear safeguards. It is important that 
users have appropriately calibrated trust in these VUIs. 
Here, we bridge the domains of international nuclear 
safeguards, trust in technology, and VUI guidelines by 
examining human performance and trust in a VUI 
digital assistant for a safeguards seal examination task. 
This study serves as the foundation for future work 
investigating the impact of factors such as 
explainability, provenance, confidence, and granularity 
information on user trust in VUIs. This research will 
help establish best practice guidelines for VUIs within 
the context of international nuclear safeguards, which 
may also be applied to other national security VUI 
applications.  
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1. Introduction  

1.1. Nuclear Safeguards Domain 

Safeguards inspectors from the International 
Atomic Energy Agency (IAEA) perform audits on 
commercial nuclear facilities around the world as part 
of treaty-based nuclear nonproliferation commitments. 
If inspectors find indications of nuclear material 
diversion or misuse, it could indicate the facilities are 
surreptitiously being used to develop nuclear weapons 
programs. Because of the broad political and economic 
ramifications of their findings, safeguards inspectors are 
faced with the challenging task of accurately detecting 
subtle signals of diversion or misuse while avoiding 
falsely accusing innocent countries. Nuclear material 

that is appropriately accounted for increases confidence 
between states that they do not require their own nuclear 
weapons program to counter potential illicit programs 
from their neighbors or adversaries. The international 
nuclear safeguards research community is invested in 
identifying new technology to aid inspectors in their 
tasks, such as voice user interface (VUI) digital 
assistants (e.g., Smartt, Gastelum, Rutkowski, Peter-
Stein, & Shoman, 2021). Further research is needed to 
better understand appropriate levels of trust in VUIs 
prior to their adoption for specialized safeguards 
inspection tasks (e.g., seal examination or nuclear 
materials measurement). Findings within the safeguards 
domain may also be extended to other high-consequence 
inspection decision spaces, with implications for border 
security, physical protection, nuclear arms control, and 
export control, among others.  

1.2. Trust in Technology 

 Over the past thirty years, the cognitive science 
community has produced a substantial body of research 
on trust in technologies such as automation and/or 
robotics (Hancock, et al., 2011; Hancock, Kessler, 
Kaplan, Brill, & Szalma, 2021; Hoff & Bashir, 2015; 
Kohn, de Visser, Wiese, Lee, & Shaw, 2021; Lee & 
Moray, 1994; Schaefer, Chen, Szalma, & Hancock, 
2016; Sheridan, 2019). Mobile digital assistants such as 
Apple’s Siri or Amazon’s Alexa have become 
ubiquitous as artificial intelligence (AI) becomes 
increasingly sophisticated, and the global market for 
VUIs is expected to expand substantially in the coming 
years (Research & Markets, 2023). In response, 
researchers have extended investigations of trust in 
technology to AI and cognitive assistants (Anton, 
Oesterreich, Schuir, & Teuteberg, 2022; Kaplan, 
Kessler, Brill, & Hancock, 2021; National Academies 
of Sciences, Engineering, and Medicine, 2022; Siddike 
& Kohda, 2019). The user experience (UX) and 
computer science communities have simultaneously 
delved into best practices for conversational assistants 
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(Pearl, 2016; Platz, 2020; Deibel & Evanhoe, 2021; 
Murad, Cowan, Munteanu, & Clark, 2019).  
 Trust is a varied and multi-faceted concept. Siddike 
and Kohda (2019) define trust in cognitive assistants (a 
close proxy to VUIs for safeguards inspectors) as the 
belief that the technology will help one reach a desired 
decision. Lee and See (2004) note the importance of 
trust when uncertainty and vulnerability are inherent to 
the situation. Trust in technology often also incorporates 
measures of reliance on the technology as well as 
compliance with its suggestions.  
 Performance of the system, predictability of the 
system (match to user expectations), system reliability 
and dependability (consistency and effectiveness), 
transparency of decisions (verification), and provenance 
(source of information) are common factors highlighted 
in trust taxonomies (Schaefer, Chen, Szalma, & 
Hancock, 2016; Siddike & Kohda, 2019; Chien, Lewis, 
Semnani-Azad, & Sycara, 2014; McGuinness, Glass, 
Wolverton, & da Silva, 2007; Maier, 2021; Jung, 
Dorner, Weindhardt, & Pusmaz, 2018). Trust is also 
built over time through consistent positive experiences 
(Lee & See, 2004; Merritt & Ilgen, 2008). Finally, VUIs 
should be designed using UX best practices for both 
content and interaction patterns, since a system that is 
seen as both useful and usable will be more likely to be 
adopted and trusted (Anton, Oesterreich, Schuir, & 
Teuteberg, 2022).  

1.3. Research Focus 

 This work targets the intersection of trust in 
technology with VUI digital assistants in the nuclear 
safeguards application domain. The experiments 
reported here are the first of a larger research line aimed 
at examining the role of trust factors such as 
explainability, granularity (level of detail provided), 
provenance, and confidence for VUI digital assistants in 
the context of key nuclear inspections tasks (seal 
examination and nuclear materials measurement). 
Subsequent work in this research line will also extend 
and replicate these findings with nuclear safeguards 
subject matter experts. 
 Here, we quantitatively measure trust in the VUI as 
compliance with the voice assistant’s recommendations 
and its interaction with participant accuracy and 
response time on the inspection task. We also collect 
subjective ratings of trust and reliability (compared 
against actual reliability) as well as responses to the 
Trust of Automated Systems Test (TOAST) 
questionnaire. TOAST is a scale for measuring trust in 
automated systems that aligns well with our targeted 
tasks and has previously been applied to national 
security settings (Wojton, Porter, Lane, Bieber, & 
Madhavan, 2020). Individual differences in propensity 

toward technology adoption were also measured via the 
Affinity for Technology (ATI) scale (Franke, Attig, & 
Wessel, 2018). 
 We hypothesize that participant decisions will be 
influenced by input from the VUI, and that their 
performance on the inspection task will correlate with 
subjective measures of trust. These experiments will 
also serve as a baseline against which to test direct 
manipulations of additional factors we hypothesize will 
positively influence trust in the VUI (e.g., providing 
explainability information on the location of detected 
issues with a seal) as well as the impact of professional 
knowledge (e.g., VUIs may need to provide more or less 
detailed information due to inspectors’ tamper detection 
skill). They also build upon prior work examining the 
cognitive impact of errors from visual machine learning-
based assistance for visual analysis tasks within the 
international nuclear safeguards domain (Gastelum, 
Matzen, Divis, & Howell, 2022; Divis, Howell, Matzen, 
Stites, & Gastelum, 2022) and expand burgeoning work 
on trust in VUIs from industry applications to a high-
consequence, global security space. Factors important 
for trusting a VUI may manifest differently when global 
security is on the line (e.g., detecting illicit nuclear 
materials or a network attack) compared to everyday 
digital assistant tasks (e.g., starting a timer while 
baking). 

2. Methodology  

 We conducted two experiments examining user 
trust in a VUI within the context of an international 
nuclear safeguards seal examination task. Participants 
were asked to imagine they worked for the United 
Nations as part of a specialized team of safeguards 
inspectors. Inspectors secure containers with seals that 
indicate if containers have been opened since the last 
inspection. After a brief training session on tamper 
detection that included practice trials, participants were 
shown simulated seals and asked to decide whether to 
keep or remove each seal. Seals showing normal wear 
and tear only were to be kept in place. Seals showing 
signs of tamper were to be removed and replaced. 
Participants viewed each seal and heard 
recommendations provided by the Voice Assistant 
Laboratory (“VAL”) digital assistant. VAL read the seal 
ID and indicated whether her analysis identified signs of 
tamper. Participants were told that VAL was not always 
right but would provide information intended to help 
them make their decision. Experiment 2 also varied the 
accuracy of VAL’s vocalization of the seal ID. These 
studies were designed to evaluate the impact of 
manipulations of the seal checking task on user trust in 
the system. 
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2.1. Participants 

 Data was collected on Pavlovia 
(www.pavlovia.org) and Prolific (www.prolific.co) 
using participants in America fluent in English with a 
90% minimum prior approval rate. Participants were 
compensated at greater than or equal to New Mexico 
minimum wage ($6 for 15-30 minutes of participation). 
As an incentive to perform the task carefully, 
participants were also provided with a three-cent bonus 
for each trial they got correct (up to $2.25). Experiment 
1 included data from 30 participants (after removing and 
replacing data from two participants who either failed 
attention check questions or had technical difficulties 
with the study). Fifteen participants reported their 
gender as male (15 female), and their mean age was 31.8 
(SD = 8.0) years old. Experiment 2 included data from 
41 participants (after removing and replacing data from 
three participants who failed attention check questions). 
Nineteen participants reported their gender as male (22 
female), and their mean age was 38.7 (SD = 12.2) years 
old. 

2.2. Materials 

 Stimuli for the seal examination task were created 
by layering a generic seal image, seal ID, wear and tear 
pattern, and (optional) tamper pattern1. See Figure 1 for 
an example seal. Wear and tear patterns were 
represented with thick, rounded marks that occurred on 
the face of the seal. We included both low wear and tear 
patterns (fewer markers with more transparency) and 
high wear and tear patterns (more marks with less 
transparency). Tamper marks were represented by thin, 
jagged lines which could occur on the bottom or front 
face of the seal. They could also be high difficulty (more 
transparent) or low difficulty (less transparent). Seal IDs 
were randomly generated unique 5-digit numbers.  
 Participants were shown descriptions and examples 
of both wear and tear patterns and tamper patterns 
during the instructions. Practice trials provided 
additional feedback to help participants calibrate their 
understanding of tamper detection within this task. The 
wear and tear patterns and tamper patterns were also 
normed for detection difficulty in an independent study 
prior to running the experiments reported here. The 
norming study was designed to calibrate difficulty of the 
patterns and did not include assistance from a VUI. We 
tested 40 wear and tear patterns (20 low; 20 high) and 
30 tamper patterns (15 within a quadrant on the front of 
the seal; 15 within either side of the bottom of the seal). 
Those tamper patterns were tested at four levels of 

 
1 The seals were created for experimental purposes only. They 
intentionally were not representative of actual IAEA or U.S. 

transparency to vary detection difficulty. Across three 
between-subjects counterbalancing conditions, 45 
participants indicated the presence or absence of tamper 
on seals with a wear and tear pattern only, tamper 
pattern only, a combination of wear and tear and tamper 
patterns, or a control (no wear and tear or tamper 
patterns).  Based on participant accuracy in the norming 
study, patterns were selected to create stimuli for 
subsequent experiments so that difficulty was neither 
too high (i.e., detection at floor in the norming study) or 
too low (i.e., detection at ceiling in the norming study). 
Average tamper detection in the norming study was 
48% for difficult patterns and 91% for easier patterns. 
This selection led to tampered seals that could be quite 
challenging—but not impossible—to detect, with 
independently calibrated difficulty metrics.  
 Participants were also provided with a visual 
representation of VAL. When VAL was run on a seal, 
the visual representation was animated and VAL 
provided the analysis (e.g., “Analyzing seal. Seal 46152 
shows normal wear and tear.” or “Analyzing seal. Seal 
35489 shows signs of tamper.”). VAL had a female 
voice with an American accent. 
 

 
Figure 1. Example of seal and the Voice Assistant Laboratory 
(VAL). Larger blotches on front face of the seal are examples of 
wear and tear. Narrow scratches in upper left corner are an 
example of tamper (outlined with yellow box for demonstration 
purposes only). Images are not to scale. 

 At the conclusion of the experiment, participants 
were given a post-task questionnaire. Participants rated 
their trust in VAL (“On a scale from 0 to 10, how much 
did you trust VAL?”) and the reliability of VAL (“On a 
scale from 0 to 100, how reliable did you find VAL’s 
information?”). They then completed the TOAST 
questionnaire (Wojton, Porter, Lane, Bieber, & 
Madhavan, 2020) and the ATI scale (Franke, Attig, & 
Wessel, 2018). 

Government seals, nor were the markings representative of actual 
wear and tear or tamper events. 
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2.3. Procedure  

 Participants provided consent to participate and 
then worked through instructions and practice trials 
before starting the main seal examination task. For each 
seal, participants saw a representation of VAL and 
clicked to run her on the next seal. VAL verbally 
provided her analysis, and the seal was displayed. 
Participants then decided whether to keep the seal, 
remove and replace the seal, or re-run VAL. Participants 
could only re-run VAL once per seal.  
 Participants saw 75 experiment trials plus 3 
attention check trials. Seals could either be normal (no 
tamper) or tampered. VAL would indicate either that the 
seal showed normal wear and tear or that it showed signs 
of tamper. Forty seals were true negatives (normal seals 
that VAL said were normal). Twenty seals were true 
positives (tampered seals that VAL said were tampered). 
Five seals were false negatives (tampered seals that 
VAL said were normal). Ten seals were false positives 
(normal seals that VAL said were tampered). Therefore, 
67% of the seals were normal. VAL correctly detected 
tamper (presence or absence of tamper) 80% of the time. 
If participants re-ran VAL on a seal where her initial 
analysis was correct (true negatives and true positives), 
then her analysis remained the same. If participants re-
ran VAL on a seal where her initial analysis was 
incorrect (false negatives and false positives), then her 
analysis could change (50% of false negative and false 
positive seals were flagged a priori to change to the 
correct analysis).  
 All trials were counterbalanced across low and high 
wear and tear patterns, low and high difficulty tamper 
patterns, and tamper location (front or bottom) for VAL 
decision categories. Participants were split between two 
between-subjects counterbalancing conditions that 
included different combinations of seal patterns. 
 Participants completed the post-task questionnaire 
after finishing the seal examination ask. They were then 
thanked for their participation and given payment. The 
task took about 15-30 minutes to complete.  
 Experiment 2 included an additional manipulation 
in the seal examination task for seal ID. In 8 of the 40 
true negative seals (for which the correct response 
would have otherwise been to leave the seal in place), 
VAL transposed two numbers in the seal ID (e.g., 34589 
instead of 35489). Participants were told in the 
instructions that they should remove any seals where 
VAL provided the wrong seal ID. Over the entire seal 
examination task in Experiment 2, VAL provided the 
correct seal ID 89.3% of the time. VAL provided the 
correct seal ID and correctly detected tamper 69.3% of 
the time. 

3. Results 

 All statistical tests were held at an α = .05 level. 
Unless otherwise noted, mixed-effects models with 
Tukey corrections for multiple comparisons were used 
for all statistical analyses. 

3.1. Experiment 1  

 Data were dropped for 12 (out of 2250) trials due to 
response times (RTs) greater than three standard 
deviations beyond the mean.  
 Participants rarely re-ran VAL (3.75% of seals); 
half of the participants re-ran VAL at least one time. 
There were no statistically significant differences in the 
post-task questionnaire measures between participants 
who re-ran VAL at least once and those who did not. 
Most re-runs occurred on false positives (11.5% of false 
positive seals). Since RT cannot be consistently 
interpreted with re-run trials and the patterns of results 
were similar for accuracy and RT metrics regardless of 
whether re-run trials were included, re-run trials were 
excluded from all subsequent analyses unless otherwise 
noted. 
 Participants’ responses were counted as accurate if 
they aligned with the ground truth for the seal (normal 
or tamper). A mixed effects model was run predicting 
participant accuracy from the fixed effect of VAL 
decision category (true negative, true positive, false 
negative, or false positive) with random effects for 
participant. All differences were statistically significant 
(all Z > 3.72 and p < .0001) except for false negatives 
relative to false positives. Accuracy was highest for true 
negatives followed by true positives. Accuracy was 
lowest when VAL provided an incorrect 
recommendation (false negatives and false positives). 
See Figure 2.   

  
Figure 2. Proportion correct in Experiment 1 by ground truth 
(normal or tamper) and category of response from VAL (excluding 
re-runs). Error bars represent standard error of the mean. 
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Figure 3. Response time in seconds for correct trials in Experiment 
1 by ground truth (normal or tamper) and category of response from 
VAL (excluding re-runs). Error bars represent standard error of the 
mean. 

 Analysis of RT data was limited to accurate trials. 
A mixed effects model was conducted predicting RT 
from the fixed effect of VAL decision category with 
random effects for participant. Decisions for false 
positive trials were significantly slower than all other 
categories (all Z > 3.72 and p < .0001). No other 
significant differences were found between decision 
categories. See Figure 3. 
 Participants’ mean trust rating was 6.50 on a scale 
from 0 to 10 (SD = 1.94); their mean reliability rating 
was 68.33 on a scale from 0 to 100 (SD = 18.72). Not 
accounting for re-runs2, VAL’s actual reliability was 
80%; participants significantly underestimated VAL’s 
reliability by 11.67% (t = -3.41, df =29, p = .002). 
 The TOAST included 9 questions rated on a 7-point 
Likert scale, with higher ratings indicating higher trust. 
Participants’ mean ratings were 5.82 (SD = 0.93) for the 
System Understandability subcomponent and 3.93 (SD 
= 0.92) for the System Performance subcomponent. The 
ATI questions were rated on a 6-point Likert scale, with 
higher ratings indicating higher affinity for technology 
interaction. Participants’ mean ATI rating was 3.65 (SD 
= 0.85). 
 Pearson’s correlations between overall accuracy 
and the post-task questionnaire are shown in Table 1. 
Trust and reliability ratings were highly correlated, 
indicating those questions were treated similarly by 
participants. Participants’ accuracy correlated with the 
trust and reliability scores they assigned to VAL, but not 
their TOAST ratings nor ATI self-assessments. The 
TOAST System Performance subcomponent was also 
highly correlated with trust and reliability scores. The 

 
2 VAL’s reliability remains similar whether re-runs are treated as an 
additional trial (mean = 78.0%, SD = 3.6%) or only VAL’s final 
decision is used to calculate reliability (mean = 80.7%, SD = 1.7%). 

ATI and TOAST System Usability scores only 
significantly correlated with one another. 
 

 
Table 1. Experiment 1 correlation matrix for overall accuracy on 
seal examination task, trust rating, reliability rating, TOAST System 
Understanding (SU) subcomponent, TOAST System Performance 
(SP) subcomponent, and ATI. Statistical significance is indicated by 
* (p < .05), ** (p < .01), *** (p < .001), or n.s. (not statistically 
significant). 

3.2. Experiment 2 

 Data were dropped for 43 (out of 3075) trials due to 
RTs greater than three standard deviations beyond the 
mean.  
 Participants re-ran VAL on 10.6% of the seals; 80% 
of participants re-ran VAL at least one time. There were 
no statistically significant differences in the post-task 
questionnaire measures between participants who re-ran 
VAL at least once and those who did not. Re-runs were 
most common for false positives (19.7% of false 
positive seals) and true negatives where VAL 
transposed the seal ID (18.3% of true negative seals with 
a transposed ID). Once again, re-run trials were 
excluded from analysis of RT and accuracy data unless 
otherwise noted. 
 Participants’ responses were counted as accurate if 
they aligned with the ground truth for the seal (normal 
or tamper) and if they removed the seal when the ID was 
transposed (even if the seal was otherwise normal). A 
mixed effects model was run predicting participant 
accuracy from the fixed effect of VAL decision category 
(true negative with correct ID, true negative with 
transposed ID, true positive, false negative, or false 
positive) with random effects for participant. All 
differences were statistically significant (all Z > 1.64 
and p < .05) except for false negatives relative to false 
positives. Accuracy was highest for true negatives with 
correct seal IDs followed by true positives. Accuracy 
was lowest when VAL provided incorrect information, 
with lower accuracy when VAL read seal IDs 
incorrectly (true negatives with transposed IDs) than 
when she provided incorrect analyses about tamper 
detection (false negatives and false positives). See 
Figure 4.  

For the sake of simplicity, all subsequent analyses for Experiment 1 
assume VAL has an 80% reliability. 

Trust Reliability TOAST-SU TOAST-SP ATI
Accuracy 0.52** 0.44* n.s. n.s. n.s.
Trust 0.98*** n.s. 0.74*** n.s.
Reliability n.s. 0.74*** n.s.
TOAST-SU n.s. 0.38*
TOAST-SP n.s.
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Figure 4. Proportion correct in Experiment 2 by ground truth 
(normal or tamper) and category of response from VAL (excluding 
re-runs). Errors bars represent standard error of the mean. 

 Re-run interactions were of note when considering 
trials where VAL transposed the seal ID. A mixed 
effects model was conducted predicting accuracy on 
seals where VAL transposed the seal ID, with the fixed 
effect of re-run interaction (no re-run, re-run without a 
change, and re-run with a change to the correct ID) and 
random effects for participant. It revealed that 
participants were significantly more likely to make the 
correct decision when they re-ran VAL on seals where 
she initially provided the wrong seal ID, regardless of 
whether she provided a correct seal ID on the re-run (all 
Z > 2,58 all p <.01). Accuracy was 38% (SD = 29%) for 
trials where participants did not re-run VAL, 85% (SD 
= 31%) for trials where participants re-ran VAL and her 
answer did not change, and 96% (SD = 17%) for trials 
where participants re-ran VAL and her answer changed.  

Analysis of RT data was limited to correct trials. A 
mixed effects model was conducted predicting RT from 
the fixed effect of VAL decision category with random 
effects for participant. Decisions for false positive trials 
were significantly slower than all other categories (all Z 
> 3.72 and p < .0001). True negatives with transposed 
IDs were also significantly faster than true negatives 
with correct IDs or true positives (all Z > 1.64 and p < 
.05). No other significant differences were found 
between decision categories. See Figure 5. 
 Participants’ mean trust rating was 6.15 (SD = 
2.09). VAL’s reliability3 for getting both the tamper 
detection and seal ID correct was 69.3%. Participants’ 
mean reliability rating of 66.3% (SD = 19.6%) was not 
statistically significantly different from VAL’s actual 
reliability. Participants’ mean ratings on the 7-point 
Likert scale TOAST questions were 5.69 (SD = 0.90) for 
the System Understandability subcomponent and 3.69 
(SD = 0.97) for the System Performance subcomponent. 

 
3 Once again, reliability was similar when counting each re-run as a 
new trial (mean = 65.6%, SD = 5.6%) or only using VAL’s final 
decision in the reliability calculation (mean = 71.4%, SD = 3.7%). 

Participants’ mean rating on the 6-point Likert scale 
ATI was 3.65 (SD = 0.96). 

 
Figure 5. Response time in seconds for correct trials in Experiment 
2 by ground truth (normal or tamper) and category of response from 
VAL (excluding re-runs). Error bars represent standard error of the 
mean. 

 See Table 2 for Pearson’s correlations between 
accuracy on the seal examination task and the post-task 
questionnaire. Once again, trust and reliability were 
highly correlated. However, only the TOAST System 
Usability subcomponent correlated with accuracy in the 
seal examination task. The TOAST System 
Performance subcomponent correlated with trust, 
reliability, and TOAST System Understandability. The 
ATI was not significantly correlated with any other 
measure. 
 When comparing the post-task questionnaire 
responses across the two experiments there were no 
statistically significant differences. 
 

 
Table 2. Experiment 2 correlation matrix for overall accuracy on 
seal examination task, trust rating, reliability rating, TOAST System 
Understanding (SU) subcomponent, TOAST System Performance 
(SP) subcomponent, and ATI. Statistical significance is indicated by 
* (p < .05), ** (p < .01), *** (p < .001), or n.s. (not statistically 
significant). 

4. Discussion 

 Across both experiments, participants were most 
accurate when VAL provided correct information (with 

Analyses for Experiment 2 use the simple reliability metric which 
does not include re-runs (69.3%). 

Trust Reliability TOAST-SU TOAST-SP ATI
Accuracy n.s. n.s. 0.36* n.s. n.s.
Trust 0.95*** n.s. 0.74*** n.s.
Reliability n.s. 0.72*** n.s.
TOAST-SU 0.33* n.s.
TOAST-SP n.s.
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highest accuracy on true negatives seals with the correct 
ID). Participants’ accuracy dropped by approximately 
35-40% when VAL detected tamper on a normal (no 
tamper) seal and by approximately 20-25% when VAL 
did not detect tamper on tampered seals. This drop in 
performance indicates that participants were influenced 
by VAL’s recommendations. This interpretation is 
further supported by substantially slower response times 
(2-3 seconds slower) for false positive trials. 
Participants spent more time searching for signs of 
tamper on a normal seal when VAL incorrectly 
indicated tamper.  
 Slower response times for false positives might be 
alleviated by providing explanations such as location 
information for the detected tamper. Verbal descriptions 
of the location of detected tamper are similar to the 
visual bounding boxes commonly displayed by machine 
learning algorithms during visual target detection tasks. 
However, this additional explainability information can 
also reduce human accuracy performance due to 
overconfidence in the model’s decision (e.g., as with 
bounding boxes in Cunningham, Drew, & Wolfe, 2017). 
Follow-on work providing additional explainability 
information for VAL’s recommendation will help to 
inform the potential costs and benefits of including 
supplementary explainability information in the VUI. 
 Participants missed VAL’s incorrect reading of the 
seal ID on 62% of the transposed seal ID trials. This 
outcome could indicate that participants were not 
carefully listening to VAL’s reading of the seal ID 
and/or they were focused more on the tamper detection 
task than on VAL’s analysis. While re-runs were 
uncommon, participants who re-ran VAL when she 
provided an incorrect seal ID were more likely to make 
the correct decision than those who did not re-run VAL. 
These participants might have used the re-run feature to 
check VAL’s incorrect seal ID. In our targeted 
application of IAEA nuclear safeguards, inspectors 
must perform multiple tasks while examining seals—
including confirming seal IDs, checking for signs of 
tamper, and checking against a list of seals pre-selected 
for replacement or off-site examination. Similar 
multitasking needs will hold for other global security 
applications. Voice assistants must be able to support all 
critical tasks—and at the very least, not undermine 
secondary tasks such as seal identification. 
 While the accuracy and response time metrics give 
us insight into the influence VAL had on participants’ 
behavior and their compliance with her 
recommendations, the post-task questionnaire allows us 
to examine participants’ subjective ratings of trust in the 
VUI more directly. Across both experiments, trust and 
reliability ratings were highly correlated, indicating that 
participants thought of the two concepts similarly for 
this study. The TOAST System Performance 

subcomponent also tended to correlate with trust and 
reliability ratings, whereas the TOAST System 
Understandability subcomponent did not. This pattern is 
consistent with past work showing that System 
Performance is more important for trust than System 
Understanding (Wojton, Porter, Lane, Bieber, & 
Madhavan, 2020). Participants tended to give 
numerically higher ratings for VAL’s System 
Understandability than System Performance, indicating 
that understanding how VAL worked was less of an 
issue than satisfaction with her performance. They also 
tended to underestimate VAL’s reliability in the first 
experiment where seal IDs were always correct. 
Participants’ reliability ratings were better calibrated for 
the second experiment where seal IDs were sometimes 
incorrect. It is unclear whether the improved calibration 
in the second experiment was driven by participants 
noticing the incorrect seal IDs or by VAL simply having 
a lower reliability in the second experiment that better 
matched participants’ expectations. The relationship 
between accuracy performance in the seal examination 
task and subjective trust ratings was not stable across the 
two experiments—trust and reliability scores were 
positively correlated with accuracy in the first 
experiment, but only system understandability was 
positively correlated with accuracy in the second 
experiment. The exact mechanism driving that change 
is unclear, but it highlights the importance of 
considering the complexities of the targeted application 
when measuring trust in a VUI.  
 International nuclear safeguards inspectors must 
have appropriately calibrated trust in their tools, 
including future digital assistants. Tools that are trusted 
too little lose their utility; while tools that are trusted too 
much can lead to complacency. Either of these scenarios 
could result in high-consequence errors. We 
hypothesize that factors such as explainability, 
confidence, granularity, and/or provenance information 
can influence users’ trust in a VUI decision aid. While 
these studies focus on nuclear safeguards applications, 
the findings also have implications for trust in cognitive 
assistants and/or VUIs in personal, industry, and 
government settings (National Science Foundation, 
2018; National Academies of Sciences, Engineering, 
and Medicine, 2022; Pearl, 2016). This work also ties 
back to VUI considerations in other high-consequence 
settings such as emergency response teams (Preum, et 
al., 2018) and pilots (Estes, et al., 2018), building on and 
expanding important factors for VUI usability and trust 
such as environmental noise and perceived distraction.  
 These experiments are the first in a line of research 
examining trust in VUI assistants for safeguards 
applications; they provide a proof of concept and 
baseline to test against in the future. Here, we found that 
the VUI influenced participants’ decision making and 
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that participants’ perceptions of the VUI’s reliability 
were not always well calibrated with its underlying 
performance. In future work, we will examine how 
varying tamper location explanations and confidence 
information impact trust and performance. We will also 
expand the tasking to include nuclear material 
measurements and replicate key findings with nuclear 
safeguards professionals. The results will inform best 
practices and guidelines for VUIs and high-consequence 
domains in general, but particularly for future nuclear 
safeguards voice assistants.  

6. Acknowledgements 

 We would like to thank Haley Norris for her help in 
designing the seals and pattern layers. This research was 
funded by the National Nuclear Security 
Administration’s Office of Defense Nuclear 
Nonproliferation. Sandia National Laboratories is a 
multimission laboratory managed and operated by 
National Technology & Engineering Solutions of 
Sandia, LLC, a wholly owned subsidiary of Honeywell 
International Inc., for the U.S. Department of Energy’s 
National Nuclear Security Administration under 
contract DE-NA0003525.  

7. References 

Anton, E., Oesterreich, T. D., Schuir, J., & Teuteberg, J. 
(2022). Painting A Holistic Picture of Trust in and 
Adoption of Conversational Agents: A Meta-Analytic 
Structural Equation Modeling Approach. Proceedings of 
the 55th Hawaii International Conference on System 
Sciences, 5871-5880. 

Bell, S., Benaloh, J., Byrne, M. D., DeBeauvoir, D., Eakin, 
B., Kortum, P., . . . Winn, M. (2013). STAR-Vote: A 
secure, transparent, auditable, and reliable voting 
system. USENIX Journal of Election and Technology 
Systems, 18-37. 

Chien, S.-Y., Lewis, M., Semnani-Azad, Z., & Sycara, K. 
(2014). An empirical model of cultural factors on trust 
in automation. Proceedings of the human factors and 
ergonomics society annual meeting. 58(1), pp. 859-863. 
Los Angeles, CA: SAGE Publications. 

Cunningham, C. A., Drew, T., & Wolfe, J. M. (2017). 
Analog computer-aided detection (CAD) information 
can be more effective than binary marks. Attention, 
Perception, & Psychophysics, 79, 679-690. 

Deibel, D., & Evanhoe, R. (2021). Conversations with 
things: UX design for chat and voice. Rosenfeld. 

Divis, K., Howell, B., Matzen, L., Stites, M., & Gastelum, Z. 
(2022). The cognitive effects of machine learning aid in 
domain-specific and domain-general tasks. Proceedings 
of the 55th Annual Hawaii International Conference on 
System Science, (pp. 1-8). 

Estes, S., Helleberg, J., Long, K., Menzenski, J., Myles, C., 
Pollack, M., . . . Stein, J. (2018). Principles for 

minimizing cognitive assistance distraction in the 
cockpit. 2018 IEEE/AIAA 37th Digital Avionics Systems 
Conference (DASC), 1-6. 
doi:10.1109/DASC.2018.8569802 

Franke, T., Attig, C., & Wessel, D. (2018). A personal 
resource for technology interaction: Development and 
validation of the Affinity for Technology Interaction 
(ATI) scale. International Journal of Human-Computer 
Interaction, 35(6), 456-467. 

Gastelum, Z. N., Matzen, L. E., Divis, K. M., & Howell, B. 
(2022). Cognitive impacts of computer vision-based 
decision support for international nuclear safeguards-
relevant visual analysis tasks. Proceedings of the IAEA 
Symposium on International Safeguards.  

Hancock, P. A., Billings, D. R., Schaefer, K. E., Chen, J. Y., 
De Visser, E. J., & Parasuraman, R. (2011). A meta-
analysis of factors affecting trust in human-robot 
interaction. Human Factors, 53(5), 517-527. 

Hancock, P. A., Kessler, T. T., Kaplan, A. D., Brill, J. C., & 
Szalma, J. L. (2021). Evolving trust in robots: 
specification through sequential and comparative meta-
analyses. Human Factors, 63(7), 1196-1229. 

Hoff, K. A., & Bashir, M. (2015). Trust in automation: 
Integrating empirical evidence on factors that influence 
trust. Human Factors, 57(3), 407-434. 

Jung, D., Dorner, V., Weindhardt, C., & Pusmaz, H. (2018). 
Designing a robo-advisor for risk-averse, low-budget 
consumers. Electron. Mark., 28(3), 367-380. 

Kaplan, A. D., Kessler, T. T., Brill, J. C., & Hancock, P. A. 
(2021). Trust in artificial intelligence: Meta-analytic 
findings. Human Factors. 
doi:10.1177/00187208211013988 

Kohn, S. C., de Visser, E. J., Wiese, E., Lee, Y.-C., & Shaw, 
T. H. (2021). Measurement of trust in automation: A 
narrative review and reference guide. Frontiers in 
Psychology, 12. 

Lee, J. D., & Moray, N. (1994). Trust, self-confidence, and 
operators' adaptation to automation. International 
Journal of Human-Computer Studies, 40, 153-184. 

Lee, J. D., & See, K. A. (2004). Trust in automation: 
Designing for appropriate reliance. Human Factors, 
46(1), 50-80. 

Maier, T. (2021). An exploration of cognitive assistants and 
their challenges. [Doctoral dissertation, The 
Pennsylvania State University]. 

Matzen, L. E., Stites, M. C., Howell, B. C., & Gastelum, Z. 
N. (2021). Different visualizations of machine learning 
outputs influence the spped and accuracy of user 
evaluations". IEEE InfoVis x Vision Science Workshop.  

McGuinness, L. D., Glass, A., Wolverton, M., & da Silva, P. 
P. (2007). Explaining task processing in cognitive 
assistants that learn. Proceedings of AAAI Spring 
Symposium: Interaction Challenges for Intelligent 
Assistants, (pp. 80-87). 

Merritt, S. M., & Ilgen, D. R. (2008). Not all trust is created 
equal: Dispositional and history-based trust in human-
automation interactions. Human Factors, 50, 194-210. 

Murad, C., Cowan, B. R., Munteanu, C., & Clark, L. (2019). 
Revolution or evolution? Speech interaction and HCI 
design guidelines. IEEE Pervasive Computing, (pp. 33-
45). 

Page 921



National Academies of Sciences, Engineering, and Medicine. 
(2022). Human-AI Teaming: State-of-the-Art and 
Research Needs. Washington, DC: The National 
Academies Press. doi:https://doi.org/10.17226/26355 

National Science Foundation. (2018). Intelligent Cognitive 
Assistants. SRC. Retrieved from 
https://www.src.org/program/ica/research-needs/ica-
research-needs-20180207.pdf 

Pearl, C. (2016). Designing voice user interfaces: Principles 
of conversational experiences. O'Reilly. 

Platz, C. (2020). Designing beyond devices: Creating 
multimodal, cross-device experiences. Rosenfeld. 

Preum, S. M., Shu, S., Ting, J., Lin, V., Williams, R., 
Stankovic, J., & Alemzadeh, H. (2018). Towards a 
cognitive assistant system for emergency response. 
ACM/IEEE International Conference on Cyber-Physical 
Systems, (pp. 347-348). 

Research & Markets. (2023). Voice User Interface Global 
Market Report 2023. Retrieved from 
www.researchandmarkets.com/reports/5783085/ 

Schaefer, K. E., Chen, J. Y., Szalma, J. L., & Hancock, P. A. 
(2016). A meta-analysis of factors influencing the 
development of trust in automation: Implications for 
understanding autonomy in future systems. Human 
Factors, 58(3), 377-400. 

Sheridan, T. B. (2019). Individual differences in attributes of 
trust in automation: measurement and application to 
system design. Frontiers in Psychology, 10, 1117. 

Siddike, M. A., & Kohda, Y. (2019). Trust in cognitive 
assistants: A theoretical framework. International 
Journal of Applied Industrial Engineering, 6(1), 60-71. 

Smartt, H., Gastelum, Z., Rutkowski, J., Peter-Stein, N., & 
Shoman, N. (2021). Hey Inspecta! Proceedings of the 
INMM & ESARDA Joint Virtual Annual Meeting.  

Wojton, H. M., Porter, D., Lane, S. T., Bieber, C., & 
Madhavan, P. (2020). Initial validation of the trust of 
automated systems test (TOAST). Journal of Social 
Psychology, 1-16. 

 

Page 922


	1. Introduction
	1.1. Nuclear Safeguards Domain
	1.2. Trust in Technology
	1.3. Research Focus

	2. Methodology
	2.1. Participants
	2.2. Materials
	2.3. Procedure

	3. Results
	3.1. Experiment 1
	3.2. Experiment 2

	4. Discussion
	6. Acknowledgements
	7. References

