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Abstract

Medical studies are an essential part of advancing
research. A uniform, flexible software infrastructure that
allows for straightforward data management stands at
the core of studies that involve multiple sites. Such
a solution must accommodate the specific technical
needs of clinical practitioners and researchers, such
as uploading, viewing, downloading, annotating, and
sharing image material in various forms. The current
tool landscape needs a solution that bridges the gap
between intuitive data governance and usability without
introducing undesired technical and legal overhead. We
present “Lean Study Host” (LSH), a novel, open-source
approach to clinical study data management that caters
to clinicians, technical staff, and data protection
officers. It seeks to reduce technical, administrative,
and legal overhead to allow studies to focus more
efforts on research. It combines a cloud-native,
microservice-based architecture, deidentification, and
on-premises hosting to keep data sovereignty within the
local institution.

Keywords: Study management, Healthcare
infrastructure, CI/CD, FHIR, Data management
platform

1. Introduction

Evidence-based medicine is advanced through
research and studies. Images acquired from different
modalities and multiple hospitals are a major part of
them. Image-based studies have long been the standard
in various medical fields (Patel et al., 2011, Lewin et al.,
2007, Fayad and Fuster, 2000), as they serve diagnostic
purposes and allow for therapy monitoring.

Computer Tomography (CT) or Magnetic

Resonance Imaging (MRI) recordings, are valuable
sources of information throughout the entire treatment
process. Advances in the field of machine learning
gave rise to increasingly complex algorithms (Sun
et al., 2020, Hörst et al., 2023, Fleagle et al., 1989)
that rival the performance of human specialists, if given
sufficient data. This data is usually collected through
a collaboration of multiple sites, which can lead to
conflicting interests. Efforts to encourage data sharing
may not be successful in practice (Watson et al., 2022),
which may lead to the unwarranted repetition of studies.

The current software landscape lacks open-source
software that addresses problems that commonly arise
in such a scenario in a satisfactory manner. We propose
”Lean Study Host” to tackle these challenges. The
overarching goal of LSH is to help medical researchers
uncover widespread, emergent patterns affecting public
health and how they can be addressed optimally. To
investigate this more dynamically, an easily deployable,
customizable, and extensible solution for conducting
medical, image-based studies is of utmost importance.
In this context, LSH serves as a universally deployable
platform that can be used as is or extended to fit a
specific use case of a study. At the same time, it
provides means of user group management, monitoring
changes made to study data, and auditability to be
fully compliant with legal requirements. Our approach
leverages standardized, tried, and tested open-source
software and the most prevalent medical standards and
protocols to build a robust, reliable system.

In this submission, we compile the requirements
for study software. These requirements are further
influenced by legal matters and aspects such as data
protection and data governance. Our contribution fulfills
these requirements holistically. From an information
technology perspective on the problem, LSH relies on
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modern technologies such as containerization, through
which we gain a high degree of scalability in the
cloud-native approach and a high degree of transparency
through the Git-driven deployment architecture.

The paper is structured as follows: In section 2,
we describe the research context and outline works that
influence our work, followed by the state-of-the-art 3.
In section 4, the building blocks of LSH are described,
while section 5 describes the actual use cases concerning
the conduction of medical studies with LSH. Finally, we
discuss compliance matters in section 6 as well as its
limitations in section 7 and conclude the paper in section
8.

2. Research Context & Considerations

From an organizational standpoint, data platforms
at the core of such undertakings can be defined as
“multi-stakeholder arrangements for the organization
of data storage, processing and sharing.” (Gubser
et al., 2023, p. 1). Data governance stands at
the core of these agreements “to reconcile conflicting
interests in data (use), which diverge amongst the
different stakeholders involved in terms of its value
and risks.” (Grafenstein, 2022, p. 5). The
different data governance entities can be organized in
three layers: the normative layer, the organizational
layer and the technological layer (Grafenstein, 2022).
LSH addresses data governance in the technological
layer. Consequently, it relies on decisions made by
stakeholders on the other layers. Using sensitive
healthcare data entails a tradeoff between research
interests and patient-related data privacy: On one hand,
the information contained in images is crucial for the
development of new treatments and can serve important
purposes for data modeling. On the other hand, it is
very sensitive data as it describes the very nature of the
patient. This sensitivity has long been recognized as
any kind of image-based information, and its metadata
are considered Patient Health Information (PHI), which
is protected by the European General Data Protection
Regulation as well as the U.S. Health Insurance
Portability and Accountability Act. Despite numerous
works that highlight the legal, organizational and
technical differences in governance of data platforms,
there is a distinct lack of technical solutions that are
flexible enough to meet changing demands. If multiple
sites cooperate, a multilateral agreement is required to
document how patient information is correctly handled.

A primary source of concern in the domain of
image-based studies stems from metadata contained
in so-called tags defined by the Digital Imaging
and Communications in Medicine (DICOM) standard.

These tags contain a multitude of information, ranging
from device serial numbers to a patient’s birth data.
On one extreme of the tradeoff, any metadata attached
to the image would be redacted. However, this
practice may contradict the requirements of a study
since certain background information may be required
to draw conclusions about a pathology. A patient’s
sex, age, and ethnicity may be highly influential in
determining the treatment outcome but can also be used
to help identify a patient. Consequently, each study
must decide how to treat every individual tag to preserve
the information necessary for the research objective. In
contrast, any information that violates legal constraints
must be redacted.

This becomes even more relevant when the data
collected in a study is used to train machine learning
algorithms or in other downstream applications. Besides
privacy concerns, other aspects need to be taken into
account as well. A concept that is often mentioned
in this domain is the FAIRness of data (Wilkinson
et al., 2016), which means that it is findable, accessible,
interoperable and reusable. These criteria play an
important role, especially in downstream tasks that
involve machine learning or data science applications.
Interoperability standards such as Health Level 7 (HL7)
Fast Healthcare Interoperability Resources (FHIR)
(Bender and Sartipi, 2013) can help address this.

The European Commission recognized several of
these challenges and addressed them in a legislative
proposal titled “The European Health Data Space”
which was subsequently analyzed in a corresponding
research paper (Marcus et al., 2022). Among
other findings, the authors conclude that “Privacy for
secondary use can be achieved through anonymisation.
Decentralized data pools at national level might further
contribute to privacy” (Marcus et al., 2022, p. 8).
Further, they recommend the unionwide use of FHIR to
aid interoperability. FHIR can help with more than just
interoperability: an API connected to a dedicated server
also serves documentary purposes. A real-time catalog
of stored resources is available through a server’s
REST API. These implementation efforts are driven
by recommendations on data cataloguing (Grafenstein,
2022) and the need to extend the availability of
self-hostable, FHIR-supporting data platforms to a
wider audience (Davidson et al., 2023).

To the best of our knowledge, a software that
addresses all of these concerns is not yet available
in clinical use. As such, we propose LSH to align
the knowledge of existing work with new legislative
guidelines and insights gathered from research.
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Table 1. Requirements, solutions and comparison with other tools

Requirement
Software

LSH REDCap Nora XNAT JIP

Open-source MIT License ✗ ✗ ✓ ✓

DICOM viewer OHIF-based ✗ ✓ ✓ ✓

Deidentification DICOM standard-guided, based on deid ✗ ✗ ✓ ✗

WSI support Conversion is OrthancWSIDicomizer based,
visualization uses OpenLayers

✗ ✗ ✗ ✗

Full FHIR support Backbone is formed by HAPI FHIR ✗ ✗ ✗ ✗

3. State of the Art

Other endeavors that precede this work influenced
the design choices that were made during the
development of LSH. One such work was presented
by Shaban-Nejad et al., 2017 on population health
information systems. During their research, the authors
identified several reoccurring challenges. One of them
is that “different data sources are heterogeneous with
discrepancies that present challenges for their collection,
integration, and processing [...]” (Shaban-Nejad et al.,
2017, p. 45). To address this in our work, data
harmonization can be configured on a per-rollout basis
to avoid inhomogeneities as best as possible. As a
consequence, pipelines can ensure that different forms
of data get converted to formats that are deemed usable.
All stored data adheres to predefined standards such as
DICOM or HL7 FHIR. These measures enable data to
be easily shared across instances or migrated to existing
infrastructure. Contrary to their work, LSH does not
focus on distributed learning systems but on the entire
study conduction process as a whole.

Another approach to sharing data and applications
responsibly was presented by Choudhury et al., 2020.
The authors introduce the so-called Personal Health
Train in their work, which serves as a framework for
federated machine learning. However, they do not
address the same, clinical research setting, but give
recommendations on the handling of data (such as the
FAIR principles). Another software that has found
widespread use for the support of clinical studies is
Research Electronic Data Capture (REDCap) (Harris
et al., 2009). While there is some functional overlap
with LSH’s features, several differences will be outlined.
First and foremost, our work puts explicit emphasis
on image-based studies. Our implementation does not
rely on forms and questionnaires that are manually
filled to acquire data. Instead, we rely on data
already present in common file formats. Moreover,
our system is fully containerized and is more easily
deployable. In contrast to tools like REDCap, our
solution assumes no prerequisites apart from a container

engine. Containerization significantly reduces the time
and effort that needs to be put into the setup, among
other benefits that will be covered in more detail in
the next section. Furthermore, our implementation
includes a fully functional, dedicated PACS that offers
researchers an intuitive way of interacting with image
data. Another medical research tool is the Joint Imaging
Platform (Scherer et al., 2020) (JIP). In their work, the
authors describe another approach to managing imaging
data. In contrast to other solutions, JIP recognized the
need for systems like a PACS and integrated it into
their ecosystem. In comparison, LSH integrates a FHIR
server to document the study’s resources as well and
emphasizes extensibility and interchangeability.

Studies can differ significantly in their needs,
such as individual apps, custom processing,
harmonization pipelines, and viewers. LSH embraces
the heterogeneous nature of image-based studies and
decides against a static solution: LSH strives to be
minimalist by only supplying the tools that are required
but increase the accessibility of exposed services to
be able to deploy custom extensions if needed rapidly.
In consequence, deployments are easy to set up and
maintain. There are other data platform initiatives such
as XNAT central (Herrick et al., 2016), IDA (Crawford
et al., 2016) and Vivli (Bierer et al., 2016) that serve the
purpose of making health data accessible to the public.
LSH serves the purpose of representing an intermediate
stage where data can be shared before being made
available to large data repositories: Data collected in
the clinical routine may not be immediately fit to be
shared as it may not be deidentified, cleaned or sorted.
After data has been collected in LSH, processed and
cleared for public use, it can then be made available to
supra-institutional data repositories. Other approaches
that rely on distributed ledger technology (DLT) exist
in this landscape as well. While employing blockchain
technology in this setting does merit certain benefits
(Beyene et al., 2022), they are fundamentally different
in their architecture and use case and are thus out of the
scope of this work. In summary, the implementation
of standards that are soon to be made mandatory in the
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Figure 1. Lean Study host organizes individual

components in layers which form a building block that

is easy to manage

European Union, the integration of well established
clinical software as well as design decisions set it apart
from other open-source software. Requirements for
such a platform were derived from research, clinical
practice and other implementations in this domain. An
overview of requirements as well as how LSH addresses
them is given in Table 1. Moreover, we compare it with
other established tools (REDCap Harris et al., 2009,
Nora Anastasopoulos et al., 2017, XNAT (Herrick et al.,
2016), JIP (Scherer et al., 2020)). This makes LSH a
cutting-edge solution that addresses the challenges of
medical studies holistically and novelly.

4. Building Blocks of the Implementation

LSH consists of different building blocks that form
the tool stack. An overview of the components is given
in Figure 1. The following chapter explains how certain
core concepts, as well as the mentioned building blocks,
comprise the LSH ecosystem.

4.1. Containerization

Containerization is the process of packaging an
application along with its dependencies, configuration
files, and other necessary components into a lightweight
and portable environment called a container. Containers
provide an isolated and consistent environment for
running applications, making it easier to deploy and
manage them across different platforms by reducing
the overhead of managing and installing dependencies
or debugging system-specific errors. Numerous key
benefits give rise to the use of containers in this
case. One such benefit is portability: containers can
run on any platform that supports containerization,
making it easier to move applications across different
environments without the need for significant changes.
This is of utmost importance as different hardware

and operating systems are prevalent in the research
landscape. Another benefit is scalability: containers
can be scaled up or down quickly and easily to meet
changing demands, making them ideal for applications
with varying workloads. Moreover, the efficiency of
the system can benefit as containers are lightweight
and require fewer system resources than traditional
virtual machines, enabling greater efficiency in resource
utilization. Last but not least, security can be improved
as well. containers are designed to be secure by default,
with built-in features such as isolation, sandboxing, and
resource limitations to prevent unauthorized access and
attacks.

4.2. Access and User Management

It is necessary to restrict certain privileges, such
as viewing or modifying existing data to specific
users or user groups. Further, rigorous documentation
regarding these operations must be in place to monitor
changes and access data tightly. Teleport greatly
simplifies this by utilizing an Identity-Aware Access
Proxy every connection passes through. Accordingly,
clear and central user management is crucial. LSH relies
on the use of KeyCloak, a commercially maintained
open-source authentication provider. Finally, KeyCloak
enables a uniform single sign-on mechanism for the
different tools that can be composed in LSH.

Both tools fulfill different tasks, despite serving the
same overarching goal: On the one hand, Teleport
secures infrastructure by controlling and monitoring
access to servers and other resources, while on the other
hand, KeyCloak secures the individual applications
running on said infrastructure by managing user
authentication, access control, and identity federation.
Therefore, users can be granted access to services and
infrastructure based on their assigned roles. Moreover,
these tools secure the host infrastructure with two-factor
authentication (2FA). This adds an additional layer of
security to protect sensitive data and infrastructure. This
also helps with auditability as all accesses to monitored
infrastructure can be logged and reviewed.

4.3. Picture Archiving and Communication
System

A Picture Archiving and Communication System
(PACS) is a medical imaging technology used for
storing, retrieving, managing, and distributing medical
images like CT and MRI scans as well as other DICOM
standard based image material. It enables users to access
and view patient images and information from any
location, thus aiding diagnosis, treatment planning, and
patient care. A PACS integrates with other healthcare
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information systems and Electronic Health Records
(EHRs) (as is the case with the LSH ecosystem) to
provide a comprehensive view of a patient’s medical
history. Inside the LSH ecosystem, a PACS is a central
access point for any DICOM data collected during
the study. It can be configured to receive, filter, and
send studies via DICOMweb to seamlessly integrate
with existing PACS solutions. This means that most
acquisition modalities in clinical use can be connected
to the PACS instance running in the LSH ecosystem to
allow data transfer directly from the device or another
PACS instance to the study platform.

Another vital component accessible via the PACS
is an Open Health Imaging Foundation (OHIF) viewer
instance (Ziegler et al., 2020) that can display DICOM
images. Moreover, clinicians can annotate and comment
on selected images, making it easier to share and
document image- or patient-specific information. In
LSH, the recommended implementation of a PACS is
formed by Orthanc (Jodogne, 2018).

4.4. Storage and Backups

The data storage is formed by MinIO S3 buckets
that are deployed alongside LSH. For each running
bucket instance, a backup bucket inside a separate
container is deployed that mirrors the contents of the
production container. In case of a malfunction or
unexpected service outage, data can be restored from
backup copies. More than one redundant backup can
be stored, depending on the expected volatility of the
employed hardware. Access to MinIO buckets can
be granted to developers to access raw data for, e.g.,
machine learning applications. Various events can cause
the loss of data or the corruption of the storage medium,
the cause of these events can range from hardware faults
to human error or other sporadically occurring events.

4.5. Data Management

Large cohort sizes, as well as multiple data sources,
require scalable solutions to track resources associated
with a study participant as well as relevant metadata.
LSH’s central information management is built around
FHIR. FHIR is an open standard for documenting and
exchanging healthcare information electronically. It
was developed by the health IT standards organization,
Health Level Seven International (HL7), and is
the modern, established standard for healthcare
data exchange. It is built on ubiquitous web
technologies such as RESTful APIs, JSON, and
XML, making implementing, extending, and integrating
with existing systems easier. The FHIR standard
promotes interoperability, simplifies implementation,

and improves patient care by providing a consistent
framework for exchanging clinical and administrative
data between healthcare systems. The RESTful
API allows a straightforward entry point for all
microservices requiring access to study information. In
addition to that, FHIR serves documentary purposes
for all collected data. For instance, the patient count,
number of available images, and other resources can be
retrieved quickly through simplistic HTTPS requests. In
contrast to DICOM files, FHIR documents a subset of
its metadata and stores it in its corresponding resource.
Furthermore, FHIR is able to represent semantic
structures such as imaging instances grouped in series
that belong to an imaging study. This allows users
to quickly understand relationships between different
types of data.

Moreover, the FHIR server also serves important
functions for downstream applications, especially
for machine learning and data science-based ones.
Applications can make use of SMARTonFHIR (Mandel
et al., 2016) to get secure access to EHRs in the
study. Requests made to the FHIR server aid in finding,
filtering, and accessing the information contained in its
stored resources. The results of requests made to the
same server are reproducible, simplifying the interaction
with data in a multi-centric setting. It thus forms an
additional abstraction layer that allows users to work
with the collected data more efficiently. Thus, the FHIR
server functions as the brain of the data layer, as all
resources connected to the study are documented in a
central place. One implementation of a suitable server
is HAPI FHIR. FHIR resource creation is triggered
by the storages and orchestrated by a Django server
component. Once a file is uploaded via the web UI
or received from a connected DICOM modality, it is
redirected to its designated storage location inside the
MinIO bucket. Depending on the type of file, one of
two workflows can be triggered: DICOM files are sent
to the PACS and the corresponding FHIR resource on
the server is updated whenever a new series instance is
uploaded.

Non-DICOM files are uploaded into their designated
bucket. Whenever a create, read, update, or delete
(CRUD) operation is registered inside the bucket, the
corresponding resource on the FHIR server is updated.
There are two ways these notifications can be issued
to the Django server. Webhooks are better suited
for smaller, simple studies. Whenever a monitored
event happens, a URL on the Django server is called
that handles the resource CRUD overhead. Secondly,
a message broker like RabbitMQ can be used in
large-scale studies that need to support a larger, more
complex ecosystem of applications.
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4.6. Deidentification

LSH defines a default pipeline to deidentify
DICOM files. Contrary to the term “anonymization”,
“deidentification” means the best effort towards
anonymization. At the time of writing, the normative
Attribute Confidentiality Profiles defined in DICOM
PS3.15 2023b - Security and System Management
Profiles Committee, 2023 state that: “An Application
may claim conformance to the Basic Application Level
Confidentiality Profile and Options as a deidentified
if it protects and retains all Attributes as specified
in the Profile and Options.” (Committee, 2023,
De-identifier section). The basis for deidentification
efforts is formed by the basic profile described in
PS3.15 2023b E.1-1. Prior to rollout, deidentification
options defined in the supplement can be specified
during configuration. For example the option “Retain
Patient Characteristics Option” defined therein can
be selected to retain information like the patient’s
ethnicity. After configuration, a human-readable
deidentification recipe defines how different DICOM
tags are handled (cf. Figure 2). For instance, a
patient’s name and contact information as well as the
physician’s information need to be redacted to prevent
identification of the patient. In theory, any DICOM
tag can be removed or modified with the exception
of the ones defined as mandatory by the DICOM
standard. This step is responsible for implementing
the mandatory guidelines on data protection defined
in a data management plan or stakeholder agreement.
Other data such as technical configurations of e.g. a
CT scan may be preserved to allow for downstream
analysis. This is accomplished through the use of
pydicom’s deidentification framework (Sochat et al.,
2018). The same principle can be applied to any
data format containing PHI. Generally, LSH supports
two forms of metadata modification: whitelisting and
blacklisting. Whitelisting assumes that all metadata
from DICOM data is removed except for the ones
defined on the whitelist. Blacklisting inverts that
concept; all metadata is allowed except for the tags
defined on the blacklist. Generally, we advise using
the more restrictive whitelisting approach, because it is
easier to review which metadata is used.

4.7. Git Centered Development and
Operations

For LSH, we use a declarative workflow to deploy
instances for dedicated studies. Each study is defined
by its own Git repository. This is derived from the
source repository via a so-called fork. This allows
project-specific configurations to be made in the fork on

FORMAT dicom
%h e a d e r
ADD P a t i e n t I d e n t i t y R e m o v e d YES
# Curve Data ” (50 xx , xxxx ) ”
REMOVE c o n t a i n s : ˆ 5 0 . { 6 } $
# Over l ay comments and d a t a
REMOVE c o n t a i n s : ˆ 6 0 . { 2 } [ 3 4 ] 0 0 0 $
# P r i v a t e t a g s ggggeeee
# where gggg i s odd
REMOVE c o n t a i n s : ˆ . { 3 } [ 1 3 5 7 9 ] . { 4 } $
# Change t a g s by e x p l i c i t name
BLANK AccessionNumber

Figure 2. Excerpt of a deidentification recipe

a project-by-project basis. At the same time, changes
to the code base can be reflected through the link
in the forked LSH instances that have already been
rolled out, so that fixes in study-related projects can be
transferred back to the source repository. Through this
workflow, Git becomes a central place for managing
and maintaining all LSH instances. During the rollout
or continuous delivery, we leverage the Kubernetes
integration of GitLab, which is also directly integrated
into the Web UI. This happens based on individual
projects. After the repository is connected to the
Kubernetes cluster, the required Kubernetes applications
are rolled out for each project. Part of this is a runner
that manages and executes the Continuous Integration /
Continuous Delivery (CI/CD) pipelines. This principle
ensures that the essential issues of separation of duties
and data management are addressed by completely
isolating the runtimes.

5. Use Cases

LSH was developed because of a growing demand
for a suitable research study management solution. It
is currently in trial use in several projects researching
various forms of cancer. The following use cases
represent the initially most requested ones and how they
shape LSH’s design.

5.1. Use Case: Data Collection, Conversion,
and Harmonization

Data collection stands at the core of any medical
research study. LSH provides an easy-to-use web
interface that allows users to register patients and upload
data associated with them quickly. Researchers and
clinicians can easily share data collected at multiple
sites. All DICOM data can be processed using the
same pipeline. This ensures that all data has a
common entry point and remains accessible for DICOM
parsers like pydicom (Mason, 2011). Custom pipelines
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Figure 3. Pipeline for whole-slide image conversion

can be designed to handle frequently encountered,
non-DICOM file formats. One such example are
histopathological whole-slide images. These files
can be notoriously large in size (up to 100 GB per
image) because multiple, tiled zoom layers can be
contained in the file format (cf. Figure 3). In
order to make them more manageable in size, they
can be converted to DICOM images. For this
purpose, different implementations can be used, such
as dicom wsi developed by Gu et al., 2021. However,
Orthanc also implements this functionality in its own
OrthancWSIDicomizer that works well with the Orthanc
PACS. Based on these tools, a custom pipeline (cf.
Figure 3) is constructed to convert this data to a more
manageable file format and to make it accessible from
the PACS.

5.2. Use Case: Viewing and Sharing Data

The deployment of a dedicated PACS provides
clinicians and other personnel with a centralized,
familiar place to view and share (imaging) data. Viewers
such as OHIF, or Stone Web Viewer (Jodogne, 2022)
are able to visualize images from different modalities.
Users from different sites can thus easily cooperate in
analyzing and discussing patient data. Users can draw
from the rich toolset OHIF provides, such as taking
measurements, making annotations, or downloading
images for other use. Converted histopathological data
may require a different viewer due to the pyramidal,
tiled structure of this data. Orthanc can make use
of OpenLayers, an open-source viewer that is able to
visualize the converted file properly.

5.3. Use Case: Providing an Infrastructure
basis for Application Development

As a study progresses, new feature requests may
come up. These can be fulfilled by extending
the existing deployment with new applications or
prototypes. Although the argument can be made
that any existing solution can be extended with new
functionality, this process is strikingly straightforward
in LSH as it has been a reoccurring topic. We
firmly believe that the technical constraints of static
installations must not limit a study: Instead of
participants having to adjust their workflows to be
compatible with an existing deployment, it should
be flexible enough to fit changing needs. This is
reflected by numerous design choices, such as the
microservice-architecture, containerization, and CI/CD.
A new microservice interacting with existing ones
can thus be developed and prototyped in a secluded
container before being rolled out to a deployment using
the predefined CI/CD workflow. Services like the FHIR
server and the Orthanc PACS possess RESTful APIs that
facilitate data exchange, which new microservices can
build on top of.

Training segmentation and classification models or
using existing ones for inference requires direct access
to data. To generate training data, e.g., Label Studio
(Tkachenko et al., 2020) can be deployed in LSH to
enable users to generate ground truths for training. In
this scenario, the data is directly accessed from LSH’s
S3 buckets to be annotated in Label Studio before being
stored. The API can be accessed using various popular
programming languages. Alternatively, the annotation
functionality of OHIF can be used as well. This means
that data can be directly loaded from the S3 instance
in, eliminating the need for creating and synchronizing
local copies. This solution targets research teams
that prefer training models locally or on designated
machines. Teams with access to suitable hardware
can use Kubeflow to leverage the potential of machine
learning models directly on Kubernetes. Kubeflow
enables the training, serving, and management of
models that can be directly trained on data collected
during the study stored in the MinIO buckets.

5.4. Testing and Validation

Components such as deidentification, whole slide
image conversion, FHIR resource CRUD, etc. were
thoroughly tested using dummy data and test users
before they were moved to clinical trial use. In
addition to pure technical testing, services are deployed
in experimental, clinical use as early as possible to test
their robustness in real-world, practical settings.
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6. Requirement Compliance

In this section, common requirements regarding
security, legal guidelines and deployment are covered.

Security and Access Management All confidential
data must be secured against unauthorized access. To
ensure that only registered and authorized users can
access the LSH ecosystem, Teleport and KeyCloak
are used as reliable authentication and authorization
providers.

Legal Conformity LSH works without external
dependencies or services, ensuring that data is only
ever transported from the user to storage and vice
versa. Moreover, this provides complete control and
governance over the collected data. The combination
of transparent PHI handling and on-premises hosting
makes PHI handling straightforward to understand and
regulate. In addition, any operations that create or
modify existing data are logged in a file that allows for
precise traceability of data from its creation to its current
state.

Deployment The adoption of a Git-based, continuous
rollout process ensures utmost transparency throughout
the entire development lifecycle. By centrally managing
the code base, the system achieves maintainability
and upholds a commendable level of code quality.
Leveraging deployment on a Kubernetes cluster
enables the realization of a highly reliable setup,
satisfying all necessary requirements. Additionally, the
administrative burden is greatly minimized thanks to a
substantial degree of automation.

7. Limitations

The storage, use and management of health data
is subject to ongoing legal and ethical debates that
can only be addressed with technical solutions to
a limited extent. LSH still requires stakeholder
agreements and data management plans to guide the
configuration on a technical level. It cannot be deployed
without any legal and organizational considerations,
but does streamline the process of implementing a
consensus reached prior on a technical level. This
is done by means of deidentification, controlling
CRUD privileges of participants for microservices,
authentication, encryption of data in storage and
event logging. Moreover, it does cater primarily to
image-based studies. The core building blocks and
underlying technical workflows are tailored towards
image-based data formats: If non-image based data
forms the majority of data collected in a study, other
solutions may be more advantageous.

Figure 4. Integration of Lean Study Host into a

research routine

8. Conclusion & Future Work

LSH is a modular and easily extensible tool for
conducting medical studies, especially in the clinical
context. The ability to handle complex, multimodal
medical imaging studies makes it relevant for studies in
fields such as oncology, neurology, and cardiology. LSH
is built around three core user groups (cf. Figure 4).
Clinicians: Experience gathered in previous studies has
exposed the need for an easy-to-use, easy-to-understand,
and intuitive way of uploading and sharing collected
data. Adding data to an existing study is meant to
introduce as little interference to the clinical routine
as possible. Sharing data securely and functionally is
done with the help of a PACS. Tedious efforts such
as copying, removing PHI, and sending data are made
obsolete by introducing a smart, secure web service that
serves as a unified entry point for study data.
Data protection personnel: The proposed solution
complies with current legal demands by providing
access logs, data deidentification prior to storage, and
the option of on-premises hosting.
Researchers and developers: This user group benefits
from easy access to raw data and APIs to retrieve
data for visualization, model training, and development
purposes. Moreover, existing tools and infrastructure
can be connected to LSH’s ecosystem to bring the
comfort of known environments to study practitioners.
We summarize our contributions as follows:

• A cloud-native deployment solution for hosting
medical, image-based studies in the form of
standalone, independent deployments.

• A fully integrated Git workflow, allowing for
rapid deployments and adjustments at scale.

• A solution that is highly customizable due to
interchangeable modules for all components.

• Adaptable pipelines for harmonization and
deidentification of common data formats.

• A privacy-preserving solution that enables
fine-grained privilege management to ensure that
institutions stay in full control of their data.
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The integration of newly arising software standards
(such as FHIR) makes it fit for future use under
new legislative guidelines. It will thus find continued
deployment for all image-based study needs at our
institution and be further maintained to provide its
services to an increasing number of research groups.
On the technological layer of data management and
governance, we present a novel ecosystem that lowers
the technical overhead of study data management that is
packaged in an easy to understand and easy to modify,
open-source framework. In future work, we plan to
extend the current tool stack with new microservices and
features. Moreover we will outline how our approach
has impacted the studies that are currently ongoing and
document the insights gained from clinical practice.
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