
Assessing Team Security Maturity in Large-Scale Agile Development

Sascha Nägele
Technical University of Munich

sascha.naegele@tum.de

Jan-Philipp Watzelt
Technical University of Munich

jan-philipp.watzelt@tum.de

Florian Matthes
Technical University of Munich

matthes@tum.de

Abstract

Organizations struggle to balance agile team
autonomy and strict security governance in large-scale
agile development environments. In particular,
conventional top-down IT governance mechanisms often
conflict with the desired autonomy of decentralized agile
teams. Our research presents a novel approach to
resolve the tension between security governance and
development agility: a criteria-based security maturity
assessment that enables greater autonomy for mature
agile teams. Leveraging design science research, a
literature review, and an interview study, we introduce
two key contributions: a criteria catalog for evaluating
a team’s capabilities and a team security maturity
model. Our expert evaluation confirms their value
for systematically assessing the teams’ capabilities to
deliver secure and compliant applications, allowing
organizations to grant more autonomy to mature teams
and prioritize supporting lower-maturity teams. Future
work could go beyond expert interviews and implement
and evaluate the team security maturity model through a
case study or experiments.

Keywords: Large-scale agile development, team
maturity, security, governance, compliance

1. Introduction

As organizations increasingly adopt scaled agile
methods to achieve benefits such as faster time-to-market
(Uludağ et al., 2021), they simultaneously face mounting
security challenges due to escalating threats and more
stringent legislation (Rindell et al., 2021). This dynamic
creates a unique set of challenges within large-scale agile
development (LSAD) environments (van der Heijden
et al., 2018), fueling a tension between the necessity

for centralized security governance and the desire for
autonomy among agile development teams (Horlach
et al., 2018; Nägele et al., 2022).

A potential solution to alleviate this tension is to
evaluate the team maturity and capability, and grant
autonomy accordingly (Poth et al., 2021). More
mature development teams may be more capable of
self-governing their security posture, requiring less
top-down control (Nägele et al., 2022).

However, concrete guidance on how to assess the
security maturity of agile development teams is scarce.
None of the maturity models identified in the literature
focus on the security capability of agile teams, which
is why we also considered models from non-academic
sources. These existing maturity models either focus
on organization-wide assessments and therefore are not
usable for maturity assessments of individual teams,
or capture team security maturity in the form of
activity checklists rather than measuring the maturity
of each activity. Furthermore, they rely solely on
single assessment types like self-assessments and do
not specifically address the autonomy-control friction
in LSAD.

To fill this gap, our research question (RQ) is:
RQ: How can a maturity model be designed and

implemented to assess a team’s capability to develop
secure and security-compliant applications in LSAD?

We employ a design science research (DSR)
methodology to create a team security maturity model
that addresses the identified gap in academic literature
and the shortcomings of existing models. To increase
the rigor and relevance of our artifact, we conducted a
systematic literature review (SLR) and an interview study
within our DSR approach.

Our results provide practical guidance on how to
assess the security capability of agile teams in LSAD

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 7259
URI: https://hdl.handle.net/10125/107257
978-0-9981331-7-1
(CC BY-NC-ND 4.0)



settings and balance the autonomy control tension.
The paper is structured as follows. Sections 2 and 3

cover background and related work. Section 4 explains
our research method. Section 5 introduces our ten
criteria for team security maturity that build the basis
for our maturity model, presented in Section 6. Section 7
summarizes the results of our evaluation, and Sections 8
and 9 discuss and conclude our findings.

2. Theoretical background

According to Dikert et al. (2016), LSAD environments
comprise at least 50 people or six teams. We selected this
definition for our study due to its systematic derivation
from a mapping study and its use among other LSAD
researchers (Uludağ et al., 2021).

In our study, security denotes a subset of information
security, which aims to “ensure business continuity
and minimize business damage by preventing and
minimizing the impact of security incidents” (von Solms,
1998, p. 224). This involves safeguarding the
availability, integrity, and confidentiality of information
and systems (Bell et al., 2017). Given our research
emphasis on development teams, our focus within
information security is on secure software development
and application security, targeting risk minimization
through technical and organizational measures during
software application development and operation (Bell
et al., 2017). Security compliance refers to adherence to
security requirements (Julisch, 2008), which may stem
from two sources: external, such as regulatory bodies
or industry standards, and internal, from policies and
guidelines.

To assess the capability of teams to fulfill such
requirements, we propose using a maturity model. The
most frequently cited type of maturity model in literature
is the Capability Maturity Model Integration, a derivative
of the Capability Maturity Model (CMM) (Wendler,
2012). However, so-called maturity grids represent
an important alternative to these models (Maier et al.,
2012). They can be used both as an assessment and as an
improvement tool and differ from CMM-based models
in the aspects of work orientation, mode of assessment,
and intention (Maier et al., 2012).

3. Related work

We identified six existing maturity models relevant
to our objective of assessing team security maturity.
We excluded models aiming to assess the agility of
development teams from our research scope, since they
do not provide actionable guidance for our research
goal to assess security capabilities. Only two of the

six models originate from academic literature, but they
both do not focus on security. Due to this scarcity of
applicable models, we included non-academic sources as
explained in Section 4, which resulted in four additional
relevant models. We categorize them into two types:
organization-level and team-level models.

Organization-level security maturity models, namely
the Software Assurance Maturity Model (SAMM)
(OWASP Foundation, 2022) and the Building Security
in Maturity Model (BSIMM) (Synopsys, 2021)
are primarily oriented towards whole-organization
assessment, deviating from our study’s focus on
team assessment. However, we deem these models
relevant to our study because they offer guidance
transferable to the context of individual teams and
provide instructions for integrating maturity models into
overarching organizational processes.

Poth et al. (2021) introduce a team maturity model
designed to assess team performance, adhering to the
principle that higher maturity leads to more autonomy.
While not primarily focused on security, the model
incorporates security as one of its pillars within its
fundamental structure of pillars, domains, and topics.

Pagel’s (2020) DevSecOps Maturity Model
(DSOMM) provides security measures and prioritization
when deploying DevOps teams. The model utilizes
dimensions, sub-dimensions, and maturity levels.
Dimensions represent categories, such as “build and
deploy”, and sub-dimensions further specify those
dimensions, e.g., “patch management”. DSOMM
describes sets of activities required to achieve a certain
maturity, whereas our model proposes examining
maturity for each capability.

The Security Belts model (AppSecure.nrw, 2021),
inspired in part by DSOMM and SAMM, similarly
structures security capabilities and assesses team
maturity. As in our model, its primary focus is on
assessing the maturity level of teams for secure software
development. The structural approach of this model
assigns maturity levels based on performed activities,
akin to a checklist. In contrast, our proposition involves
investigating maturity levels within each topic.

Finally, Britto et al. (2016) describe in a case study
how Ericsson uses team maturity levels to adjust the
responsibility of distributed development teams, among
other findings. Although not directly linked to security,
this study exemplifies practical applications of team
maturity in large-scale environments.

To summarize, our proposed model distinguishes
itself by employing a maturity grid system with textual
descriptions for each topic’s maturity level. Moreover,
our model incorporates a multi-source approach,
combining self-assessments, external assessments, and

Page 7260



automated metrics to bolster result validity. Uniquely,
our model’s creation and evaluation occur specifically
within the context of security and LSAD, a feature not
found in the other models. Finally, we close a gap
in academic literature, since all the presented models
focused on the security maturity of development teams
stem from non-academic sources.

4. Research method

To address our RQ, we utilized the DSR process
of Peffers et al. (2007) because it enabled us to
systematically create and evaluate a solution artifact, the
TSMM, to address an identified problem, in our case, the
autonomy control tension in security and LSAD. Rigor
was ensured by conducting an SLR while relevance was
obtained through interviews and workshops with industry
experts. We chose these methods because they are typical
examples of suitable methods to create maturity models
in the context of IT (Becker et al., 2009).

Further details of these methods are provided below,
and additional information can be found in our research
protocol and supplementary material (Nägele et al.,
2023).

4.1. Systematic literature review

Our SLR aimed to identify influencing factors for
developing secure and security-compliant applications in
LSAD, as well as existing team security maturity models.
We divided our SLR into four phases. These phases are
derived from Webster and Watson’s (2002) suggestions
for structuring a literature review and described in the
following.

Phase 1 - Foundation: We chose our databases -
ACM, Web of Science, Science Direct, IEEE, Google
Scholar, and Scopus - based on initial results and the
selection of other LSAD researchers (Dikert et al., 2016).
Subsequently, we formulated and iteratively refined our
search string, resulting in: (’large-scale agile’ OR ’agile
at scale’) AND ’software’ AND (’team’ OR ’teamwork’)
AND (’maturity’ OR ’assessment’ OR ’self-assessment’
OR ’capability’ OR ’quality’ OR ’security’).

Phase 2 - Synthesis and analysis: In the second
phase, we applied our search string, aggregated the
results, and initiated the analysis process by eliminating
duplicates and screening titles for relevance. For Google
Scholar, we used the additional “exclude citations”
and “review article” filters to reduce the number of
results. From the resultant 138 publications, we evaluated
abstracts and applied exclusion criteria prior to full-text
review. We excluded publications predating the 2001
Agile Manifesto, non-English full texts, and publications
outside of journals or conferences. This resulted in

51 papers, of which we deemed ten relevant based on
full-text analysis.

Phase 3 - Extension: We enriched our literature
set via backward and forward searches. Backward
snowballing, applied to the background and related work
sections of the most relevant publications, identified 28
new candidate articles. Forward snowballing involved
using Google Scholar to track all articles citing the
four publications we deemed most relevant, yielding 44
more candidate publications. Following the procedure
of the second phase, we merged and screened the new
titles from both methods. Since we could not find any
maturity models that assess the security competence of
development teams, and only two maturity models that
are at least partially relevant to our research objective,
we decided to include non-academic sources. This led
to four additional models for our related work discussed
in Section 3. We consider this reasonable in light of
the application-oriented nature of our research. Overall,
the third phase led to the inclusion of 12 additional
publications.

Phase 4 - Evaluation: We identified and selected
recurring best practices on how to evaluate the security
capability of development teams from our 22 identified
publications and documented and categorized the results
in a concept matrix, as proposed by Webster and Watson
(2002). The concept matrix is the basis for our written
analysis and presentation of our results in Section 5.

4.2. Interviews and workshops

We conducted expert interviews to demonstrate
and evaluate our artifacts to ensure practical relevance
and applicability. We used the ACM standard (ACM
SIGSOFT, 2023) for qualitative surveys to guide our
interview study. In the following, we will briefly explain
the study design and data collection and analysis.

Study design: We created and used a semi-structured
questionnaire because it provides stringent interview
guidance while allowing enough freedom in the answers
and the possibility for individual adjustments during the
interview, e.g., based on the experts’ expertise (Döring
et al., 2016). The experts were acquired through LinkedIn
and our research network. The interviewee roles included
(information) security consultants and architects, secure
development experts, a senior secure development
researcher, and a software quality and governance
expert. Represented industries are automotive, finance,
engineering, and media.

Data collection: We conducted synchronous
interviews with one participant at a time using online
videoconferencing tools. In total, we conducted 12
interviews. The average interview duration was 50

Page 7261



N
on

-A
ss

oc
ia

te
d 

SD
LC

A
ss

oc
ia

te
d 

SD
LC

Activities Does the team have procedures to identify security threats and vulnerabilities, both manually (e.g., code 
reviews) and through tools (e.g., SAST and DAST)?

Development Does the team promptly address identified vulnerabilities? Does it establish and uphold quality gates?

Documentation Does the team create consistently structured security documentation with minimal overhead?

Product What is the level of security quality and compliance of the products developed by the team?

Responsibility Does the team consider security as a requirement and assign corresponding responsibilities?

Awareness Does the team understand the relevance of security (compliance) for their product?

Composition Does the team include at least one security expert, such as a Security Champion, for support?

Knowledge Is the team familiar with the security best practices and policies applicable to their product? Are there 
established mechanisms for knowledge sharing within the team?

Training Does the team (regularly) engage in improvements on security-related topics?

Collaboration Does the team frequently engage with security experts outside the team?

Criteria Example assessment questions

Figure 1. Overview of the team security maturity criteria

minutes. The average security experience of our
interviewees was six years, and seven years in scaling
agile. With the consent of the participants, we recorded
the sessions and transcribed them.

Data analysis: We used the approach by Kuckartz
(2016) to analyze our interview study data because it
offers a deductive-inductive classification of interview
statements. We conducted the content structuring
analysis of our interview transcripts using the qualitative
data analysis software MAXQDA.

As a supplementary method, we organized two
workshops with two secure development experts active
in LSAD to facilitate in-depth discussions of our
solution artifacts. These workshops, each spanning three
hours, offered the possibility for a more comprehensive
discourse compared to the interviews and coined the
selection of the security maturity criteria and related
recommendations, as well as the structure and content of
the TSMM.

5. Team security maturity criteria

We propose ten criteria for assessing team security
maturity, laying the groundwork for our maturity model.
Inspired by Bishop and Rowland’s (2019) literature
review structure on agility and security, we categorize the
criteria into two groups: non-associated and associated
with the software development lifecycle (SDLC) phases,
each containing five criteria. Both categories are crucial
for a mature team, which we characterize not only by
security competencies during development, but also
by overarching criteria like security awareness, team
composition, and collaboration with other roles, which is

especially important in the context of LSAD.
Figure 1 provides an overview of the criteria and

exemplary measurement questions. In the following, we
explain the criteria by presenting the relevant theory and
our recommendations and suggestions, influenced by our
expert interviews.

5.1. Criteria non-associated with the SDLC

Awareness: Teams often view security as
nonessential in software development (van der Heijden
et al., 2018). However, understanding its importance
fosters responsible handling of security requirements
and boosts motivation (Bodin & Golberg, 2021).
Although interconnected, we consider awareness and
security knowledge separate criteria to emphasize their
importance. The experiences of our interviewees
reveal crucial differences in the prioritization of security
when teams comprehend specific risks linked to their
product rather than merely fulfilling obligations. This
understanding enables careful selection of suitable
security measures, potentially reducing long-term efforts.
To assess maturity, we suggest inquiring whether teams
understand the product-specific security relevance of
their system.

Composition: A team’s composition, such as the
inclusion of a security champion (SC), significantly
influences its capacity to develop secure applications
(Jaatun & Soares Cruzes, 2021). The SC, typically
a software engineer specialized in security and often
instrumental in raising awareness and quality, guides
the team with security-related tasks like risk analysis
or security code reviews. Continuous training and

Page 7262



experience sharing are crucial for the SC (Pagel, 2020),
who often collaborates with other teams in security
communities (Nägele et al., 2022).

We suggest evaluating teams based on the presence of
at least one security-knowledgeable developer and their
commitment to continuous learning and ability to share
knowledge with the team.

Knowledge: Developing high-quality products
necessitates knowledge of relevant best practices,
standards, and their application (Poth, Kottke, & Riel,
2021). Mature teams incorporate security early by
understanding design principles and adhering to industry
or internal company standards (AppSecure.nrw, 2021).
Thus, knowledge sharing within the team is essential and
can be promoted by dedicated roles such as an SC (Bodin
& Golberg, 2021), as previously described. An evaluation
should ascertain whether the team comprehends the
security best practices germane to their product and if
efficient knowledge-sharing mechanisms are established.

Training: Enhancing security competency of team
members reduces security risks (Bartsch, 2011; van der
Heijden et al., 2018) and is essential for organizations
(Synopsys, 2021). On-demand self-learning resources
are particularly advantageous in LSAD environments
(Poth et al., 2020). Hands-on security training,
specifically tailored for developers, offers substantial
value, for instance, by illustrating common software
vulnerabilities (Bodin & Golberg, 2021). Therefore,
measurement should focus on whether the team regularly
improves its capability on security-related subjects.

Collaboration: Beyond internal teamwork,
collaboration with external stakeholders is crucial for
security in LSAD (Nägele et al., 2022). Agile teams may
lack expertise to address security issues independently.
In practice, security engineers (SEs) or (security)
architects support on request (Britto et al., 2016), and
agile teams collaborate with information security officers
(ISOs) to discuss risks, potential countermeasures as
well as their implementation (van der Heijden et al.,
2018). Thus, the team maturity assessment should
incorporate factors such as the quality and frequency of
interactions with external stakeholders like SEs or ISOs.

5.2. Criteria associated with the SDLC

Activities: Conducting security activities is
indispensable throughout the SDLC for enhancing
software security. They bolster a software product’s
security posture and augment security knowledge and
awareness (Nägele et al., 2022). Hence, the selection,
quality, and frequency of security activities performed
by a development team can serve as an indicator of their
maturity level. The more a team refines its proficiency

in individual security activities, the greater its overall
security posture is enhanced. The simplest maturity
assessment based on this criterion may examine whether
a team routinely engages in suitable activities. These
could include, e.g., threat modeling, penetration tests,
the application of static (SAST) and dynamic application
security testing (DAST) tools during development, or
security code reviews prior to deployments. More
advanced assessments could also examine the quality
of those activities.

Development: Mature teams excel at preemptively
preventing or fixing vulnerabilities during development
(Pagel, 2020). This early remediation is beneficial
because fixing defects during testing or maintenance is
significantly more expensive than in the development
phase (Dawson et al., 2010). An important mechanism
to detect security issues as early as possible is the usage
of quality gates, which could be defined as a minimum
requirement to achieve higher maturity (AppSecure.nrw,
2021). Our model recommends encouraging automated
capabilities during the team’s journey to increase their
security maturity. Instead of manual reviews, automated
quality gates, e.g., through SAST and DAST tools,
should be used whenever the criticality of the release
allows it. Organizations could also evaluate if their
teams learn from past vulnerabilities and incorporate
their detection into the development process.

Documentation: Writing sufficient documentation
without impeding agility presents a considerable
challenge in agile development (Beznosov & Kruchten,
2004). Proper documentation is crucial for security
compliance and enhances transparency, fosters
understanding, and aids in maintaining and further
developing software (Alsaqaf et al., 2017). In addition,
specific security activities, such as threat modeling,
necessitate a certain level of documentation, for example,
architectural diagrams. Given the significance of
documentation, we incorporate it as a criterion for team
maturity assessment. However, we advise evaluating
not merely the documentation quality but also the level
of effort and its integration into iterative workflows.
Security documentation should maintain a delicate
balance between a sufficient level of detail, consistent
structure, and low overhead.

Product: The quality of the outcomes produced
by teams can serve as a measure of maturity. Audits
conducted by external organizations can provide an
objective evaluation of a software product (Bartsch,
2011). Such audits may also indirectly motivate
developers to write secure code to avoid potential
embarrassment (Bodin & Golberg, 2021). Examples
include penetration testing, bug bounty programs, or
security code and architecture reviews (Synopsys, 2021).

Page 7263



Alternatively, internal resources could be deployed
for the same purpose. Product assessments offer the
benefit of objectively determining whether the team’s
performance aligns with the organization’s quality
benchmarks, facilitating comparative analysis across
teams (Bartsch, 2011). We propose that the quality of
a team’s product, as determined by non-team members
through reviews, be used as an evaluation criterion for
their security maturity. We further recommend evaluating
the team’s response to feedback, such as how identified
security risks or vulnerabilities are addressed.

Responsibility: The responsibility for security in
development teams is often unclear (van der Heijden
et al., 2018), making it crucial yet challenging to
precisely articulate security requirements, integrate them
into agile workflows, and distribute responsibilities.
Issues may arise when central security teams issue
vague or overly prescriptive requirements, worsened by
interdependencies and shared accountability in scaled
environments, or conflicting requirements from various
SEs or ISOs (Alsaqaf et al., 2017). Hence, it is
essential to evaluate if a team regularly identifies security
requirements, integrates them into agile methods, and
clearly assigns responsibilities.

6. Team security maturity model (TSMM)

The TSMM is an exemplary model to determine the
maturity of a development team in developing secure
and security-compliant applications, based on the criteria
previously presented in Section 5.

In the following, we first outline the structure of our
model and then explain its composition. More details can
be found in our supplementary material (Nägele et al.,
2023).

6.1. Overall structure

To diagnose and enhance the state of development
teams with minimal complexity, we decided to construct
a maturity grid, aligning with the inherent objective
of such models (Maier et al., 2012). Its assessment
mode, featuring textual description to determine maturity
levels, lends practicality to our model by enabling teams
to understand the maturity levels for each topic more
easily, thereby allowing better self-classification of their
maturity. We chose four maturity levels for each topic to
avoid an “escape category” that may emerge from an odd
number of response options because it is perceived as a
mean (Porst, 2011).

We propose three data sources to optimize
determining the maturity score: Self-assessments by
development teams, assessments by roles external to the
team, and systems from which data can be extracted

(semi-)automatically.

Figure 2. Outline of the TSMM structure

Following Poth et al. (2021), our TSMM is structured
into pillars, domains, and topics, as shown in Figure 2.
The TSMM contains three pillars, corresponding to the
data sources, with each pillar subdivided into domains for
grouping similar content, and further divided into topics
featuring precise statements for classifying maturity. We
implemented the TSMM in two ways: In Excel, as a
simple and universally applicable solution, and as a web
application prototype.

6.2. Self-assessment

We propose that teams carry out the bulk of the
TSMM assessment themselves in a decentralized manner
to bolster ownership and distribute effort. Our aim
is to concentrate on pivotal elements and streamline
the self-assessment process to enhance acceptance.
Subsequently, we briefly delineate each self-assessable
domain.

Table 1. Excerpt of the TSMM knowledge domain

ID Topic

K1 We understand the significance of security in
the context of our product.

K2 We are aware of and adhere to internal and
external standards relevant to our product.

K3 We facilitate knowledge-sharing sessions
among team members.

K4 We identify and plan to rectify security
knowledge gaps.

K5 We are aware of and use standardized
components for secure development.

Knowledge: This domain primarily evaluates a
team’s security (compliance) knowledge. We present
an exemplary excerpt of this domain from the TSMM in
Table 1 for illustration purposes. Topic K1 encourages
a profound understanding of the significance of security
in relation to their product, which is designed to instill
intrinsic motivation. Our interview study disclosed that
many experts witnessed security standards and guidelines
being viewed as superfluous burdens due to a lack
of comprehensive understanding of their core purpose.
Furthermore, we strive to nurture the exchange of security
knowledge within the team through topic K3. This aims

Page 7264



to mitigate risks associated with knowledge siloing, such
as potential loss due to sickness or departure.

Activities: The effective execution of security
activities enhances product security and compliance.
While the TSMM does not prescribe activities, it
encourages teams to make informed decisions to choose
activities best suited to their needs.

Documentation: Maintaining adequate
documentation is critical for (security) compliance and
enables certain security activities such as risk analysis.
Thus, the TSMM topics encourage teams to create,
maintain, and review security documentation while
emphasizing the need for minimal overhead.

Build and deployment: This domain focuses on
pre-release security, integrating the criteria activities,
development, and responsibility. Emphasizing quality
gates to uphold release security, we underscore regular
component maintenance, patching, and backup creation.
In addition, the topics encourage automation and
low-effort security testing, urging a reproducible build
process with integrated security measures. Maturity
levels range from non-existent to a robust DevSecOps
pipeline. In addition, a topic assesses the consideration
of security throughout the SDLC for early vulnerability
detection and remediation.

Organization: Mainly derived from the criteria
composition and collaboration, the topics of the
organization domain encourage teams that seek greater
autonomy to take on defined security responsibilities. At
least one developer should possess advanced security
knowledge and guide the team, such as by serving as an
SC or similar role. In addition, teams are encouraged
to identify and consult security experts outside of the
team, particularly in the context of LSAD. The model
also addresses the need for defined procedures to resolve
conflicting security requirements between teams and for
handovers of security responsibilities, a key insight from
a workshop.

6.3. External assessment

The external assessment pillar includes the two
domains audit and culture and facilitates evaluation by
individuals external to the team, aiming to validate and
expand the self-assessments. Typical roles in an LSAD
environment that could conduct such an assessment are
SEs who collaborate with multiple agile teams.

Audit: The audit domain mainly integrates the
product criterion by assessing the security maturity of
the produced software products of a team. For this topic,
it is constructive to use a security expert who knows
the required standards and regulations that apply to the
product to verify. In addition, the external reviewers

could also assess the development processes, security
automation, and quality gates.

Culture: The TSMM envisions external reviews not
solely for technical maturity. External assessments might
also be beneficial to evaluate the criteria of training,
composition, and collaboration. The derived topics
encourage teams to cultivate a culture of continuous
improvement to achieve enhanced product quality. An
external perspective could offer valuable insights into
improvement paths. Regularly collaborating security
experts may be utilized to assess the team’s security
maturity, drawing from their interactions with the team.
Furthermore, the maturity calculations also consider
participation in security communities.

6.4. Automated assessment

The automated pillar uses data from security
tools, necessitating customization to each organization.
Organizations must identify data sources, develop
strategies for data extraction, transformation, and
delivery, and select and evaluate the compatibility of
performance metrics with the TSMM’s four customizable
maturity levels. A web application implementation of
the TSMM offers flexible data integration options, while
an Excel implementation, though more limited, provides
options like SQL connectors. Besides the primary testing
domain, the TSMM also features an auxiliary domain to
outline automation opportunities.

Testing: The testing domain is based on the activities
and product criteria. We propose that SAST and DAST
tools are used as data sources, as well as results of
manual penetration tests or bug bounty programs. We
have formulated corresponding topics and suggest using
suitable performance indicators, such as the amount
and criticality of security findings, response times to
rectify findings (aggregated by criticality), and amount
and criticality of security incidents.

Auxiliary metrics: Automated metrics could extend
beyond security testing tools and consider any data
potentially indicative of a team’s maturity level. Our
topics encompass examples like the inclusion of security
requirements or risk-labeled tickets in software project
management tools, and the team’s engagement and
progress in security training tools. However, the
chosen metrics should be non-intrusive, and the TSMM
encourages teams to actively participate in selecting
metrics and defining maturity levels, e.g., through
decentralized security communities.

7. Evaluation

Generally, experts found the tripartite data sources
for maturity score computation beneficial, with

Page 7265



particular approval for the automated pillar due to
its facilitation of continuous assessments devoid of
manual intervention. They deemed the TSMM content
sensible and the grid-style nature very useful, albeit
requiring customization to fit the context of each
respective organization. Experts stressed that the defined
topics and corresponding maturity levels are contingent
upon numerous factors, such as employed technology,
centrally provided tools and infrastructure, and the
resulting responsibilities of individual development
teams. Highlighted examples include management
of backups for application infrastructure and their
data, logging and monitoring practices, utilization and
maintenance of third-party tools and libraries, and
provision of security testing tools such as static code
analysis and vulnerability scanners by central teams.

Experts underscored that the maturity model’s
topics should not excessively inhibit the autonomy
of development teams. For instance, rather than
mandating specific techniques for identifying and
addressing common vulnerabilities, the assessment
could ascertain the presence of such measures, not
necessarily their exact form. Discussions also centered
on whether team assessment should be primarily based
on team capabilities or also incorporate their output,
meaning whether an assessment of their developed
software products should impact the team maturity
score. A majority of experts favored the inclusion of
product-specific aspects.

The external assessment pillar was valued for offering
a more objective perspective, validating self-assessments,
and revealing potential oversights. However, conflicts
of interest were noted when team-external roles, like
in-house security engineers, were funded by the team’s
budget. This situation was summarized by an expert as
“you do not bite the hand that feeds you”, indicating that
while security engineers are well-suited for assessments,
they may evaluate less critically if financed by the team
they are assessing.

Several respondents highlighted the automated
pillar’s significance, as it offers continuous monitoring
without the potentially lengthy gaps of self- or third-party
assessments. One expert suggested considering whether
teams should be able to override results, such as in
cases of false positives, to maintain the relevance of
maturity scores and team motivation. However, such
overrides should be flagged for transparency. Finally,
one interviewee stated that “it is essential to remember
that you should not use a sledgehammer to crack a
nut”, stressing that organizations need to ensure that the
scope of the assessment is appropriate and not overly
burdensome.

8. Discussion

8.1. Key findings

Our research yielded five key findings which we
summarize in the following.

First, the ten proposed team security maturity criteria
provide a holistic foundation for creating new maturity
models to evaluate the security competency of agile
teams. Organizations could also utilize these criteria
to assess the completeness of existing models. The
expert interviewees concurred with the significance
of these factors and did not identify any overlooked
critical aspects, though they contributed valuable detailed
insights. However, we acknowledge the potential
existence of other significant factors not yet identified.

Second, introducing team maturity levels can
ameliorate the tension between autonomy and control
in LSAD. By fostering transparency and motivating
teams to bolster their proficiency in creating secure
and compliant applications, central security governance
teams can allocate their finite resources more judiciously,
e.g., by prioritizing the support of low-maturity teams.
Teams with a higher level of maturity, on the other hand,
may work more autonomously, thereby better aligning
with agile methods. Therefore, the TSMM requires
a sustainable integration with security governance,
functioning more as a facilitator than a traditional
controller. Despite potential initial resistance from
central governance and security teams due to concerns
of diminished influence and control, we expect that the
overall security posture and value creation significantly
profit from empowering development teams to improve
their security maturity and take greater responsibility.
As development teams are closest to their own products,
they are best positioned to secure them, given adequate
security capabilities. As a result, increasing team
maturity also mitigates some of the unique security
challenges of LSAD, for example, the alignment of
security objectives in distributed settings (van der
Heijden et al., 2018). More mature teams require less
security coordination and quality assurance.

Third, our evaluations demonstrate a preference
among experts for a mixed source approach in calculating
team maturity scores, integrating self- and external
assessments, and (semi-)automated metrics. While each
source may be biased in isolation, their combination
yields a holistic perspective.

Fourth, the TSMM offers considerable transparency
and feedback, providing insights into an organization’s
security posture and guiding teams to improve by
identifying potential weak spots and areas requiring
training. By analyzing team maturity profiles,

Page 7266



organizations can optimize security measures, whether
by replacing outdated controls or extrapolating
organization-wide actions from teams producing the most
secure applications.

Finally, the exact configuration of assessment types,
maturity levels, and content of the model is closely linked
to the organizational structure, prevailing product risks,
and predominant technologies utilized by development
teams. Consequently, the main contribution of our
TSMM lies less in the specific details of the model and
more in its overarching idea and structure. Our primary
intent in presenting the TSMM is to inspire organizations
to harness the potential of team security maturity and
adapt their governance procedures and empower agile
teams without compromising security.

The TSMM fills a gap by evaluating maturity
of capabilities with a grid-style approach rather than
providing a checklist of required practices. It employs
descriptive text for classifying maturity levels, aiding
self-assessments. This concept could be applied to other
concerns of product quality besides security.

8.2. Limitations

In order to adhere to curtail potential research
limitations, our study closely followed the empirical
standards for software engineering research (ACM
SIGSOFT, 2023) during both the interviews and
systematic review. The interviews served to evaluate
our results. However, given the restrictive time frame
of an interview, an exhaustive exploration of each topic
along with the practical application of the model within
an LSAD environment—particularly observing its impact
on factors such as the overall security maturity of
development teams—remained beyond the scope of this
study. This represents a limitation of our present research,
and the exploration of these aspects forms part of our
future research agenda.

To improve reliability, all interviews were
recorded and transcribed. For the analysis, we
conducted systematic, reproducible content analysis
and classification as described by Kuckartz (2016). To
ensure construct validity (Runeson & Höst, 2009) in our
interviews, we employed semi-structured questionnaires,
which were first tested for comprehensibility, and
ambiguities were clarified directly through dialogues
with the interviewees. However, given the conversational
nature of the semi-structured approach, potential
deviations and imprecisions were inherently difficult
to eliminate. Lastly, to scrutinize and offset threats to
the validity of our designed artifact ensuing from our
DSR process, we utilized the guidelines proffered by
Lukyanenko et al. (2014).

9. Conclusion

The rise of scaled agile methods and the growing
importance of security create tension between autonomy
and control in LSAD. To ease this conflict, we encourage
using security maturity scores for development teams.
We used DSR to address our RQ on designing a team
security maturity model, involving an SLR, expert
interviews, and workshops to achieve rigor and practical
relevance.

We found ten key criteria from the literature to assess
a team’s ability to develop secure applications, which we
used to create and evaluate the maturity model through
expert interviews and workshops. Since our evaluation
has been limited to expert interviews, future studies
could apply and analyze the TSMM in LSAD settings,
examining its effectiveness in measuring team capability
and implications on the autonomy-control tension during
actual use.

References

ACM SIGSOFT. (2023). Empirical standards for
conducting and evaluating research in software
engineering. Retrieved June 14, 2023, from
github.com/acmsigsoft/EmpiricalStandards

Alsaqaf, W., Daneva, M., & Wieringa, R. (2017). Quality
requirements in large-scale distributed agile
projects – a systematic literature review. Lecture
Notes in Computer Science, 10153, 219–234.

AppSecure.nrw. (2021). Security-belts. Retrieved June
14, 2023, from github.com/AppSecure- nrw/
security-belts

Bartsch, S. (2011). Practitioners’ perspectives on security
in agile development. 2011 Sixth International
Conference on Availability, Reliability and
Security, 479–484.

Becker, J., Knackstedt, R., & Pöppelbuß, J. (2009).
Developing maturity models for it management.
Business & Information Systems Engineering,
1(3), 213–222.

Bell, L., Brunton-Spall, M., Smith, R., & Bird, J. (2017).
Agile application security: Enabling security in
a continuous delivery pipeline. O’Reilly.

Beznosov, K., & Kruchten, P. (2004). Towards agile
security assurance. Proceedings of the 2004
workshop on New security paradigms, 47–54.

Bishop, D., & Rowland, P. (2019). Agile and secure
software development: An unfinished story.

Bodin, N., & Golberg, H. K. B. (2021). Software security
culture in development teams: An empirical
study. NTNU.

Page 7267



Britto, R., Smite, D., & Damm, L.-O. (2016). Software
architects in large-scale distributed projects:
An ericsson case study. IEEE Software, 33(6),
48–55.

Dawson, M., Burrell, D., Rahim, E., & Brewster, S.
(2010). Integrating software assurance into
the software development life cycle (sdlc).
Journal of Information Systems Technology and
Planning, 3, 49–53.

Dikert, K., Paasivaara, M., & Lassenius, C. (2016).
Challenges and success factors for large-scale
agile transformations: A systematic literature
review. Journal of Systems and Software, 119,
87–108.

Döring, N., Bortz, J., Pöschl, S., Werner, C. S.,
Schermelleh-Engel, K., Gerhard, C., &
Gäde, J. C. (2016). Forschungsmethoden
und evaluation in den sozial- und
humanwissenschaften. Springer.

Horlach, B., Böhmann, T., Schirmer, I., & Drews,
P. (2018). It governance in scaling agile
frameworks. In Mkwi 2018.

Jaatun, M. G., & Soares Cruzes, D. (2021). Care and
feeding of your security champion. Int. Conf.
on Cyber Situational Awareness, Data Analytics
and Assessment, 1–7.

Julisch, K. (2008). Security compliance. Proceedings of
the 2008 workshop on New security paradigms,
71.

Kuckartz, U. (2016). Qualitative inhaltsanalyse.
methoden, praxis, computerunterstützung.
Beltz.

Lukyanenko, R., Evermann, J., & Parsons, J. (2014).
Instantiation validity in is design research.
Springer.

Maier, A. M., Moultrie, J., & Clarkson, P. J.
(2012). Assessing organizational capabilities:
Reviewing and guiding the development
of maturity grids. IEEE Transactions on
Engineering Management, 59(1), 138–159.

Nägele, S., Watzelt, J.-P., & Matthes, F. (2022).
Investigating the current state of security in
large-scale agile development. 23rd Int. Conf.
on Agile Software Development (XP), 203–219.

Nägele, S., Watzelt, J.-P., & Matthes, F. (2023).
Supplementary material. Retrieved September
3, 2023, from https : / / doi .org /10 .6084 /m9 .
figshare.c.6819243.v1

OWASP Foundation. (2022). Owasp samm v2. Retrieved
June 14, 2023, from owaspsamm.org/

Pagel, T. (2020). Owasp devsecops maturity model.
Retrieved June 14, 2023, from dsomm.timo-
pagel.de/

Peffers, K., Tuunanen, T., Rothenberger, M., &
Chatterjee, S. (2007). A design science research
methodology for information systems research.
Journal of Management Information Systems,
24, 45–77.

Porst, R. (2011). Fragebogen: Ein Arbeitsbuch. VS
Verlag für Sozialwissenschaften.

Poth, A., Kottke, M., Mahr, T., & Riel, A. (2021).
Teamwork quality in technology-driven product
teams in large-scale agile organizations. Journal
of Software: Evolution and Process, e2388.

Poth, A., Kottke, M., & Riel, A. (2020). Scaling
agile on large enterprise level with self-service
kits to support autonomous teams. 2020
15th Conference on Computer Science and
Information Systems (FedCSIS), 731–737.

Poth, A., Kottke, M., & Riel, A. (2021). Measuring
teamwork quality in large-scale agile
organisations evaluation and integration
of the atwq approach. IET Software, 15,
443–452.

Rindell, K., Ruohonen, J., Holvitie, J., Hyrynsalmi, S.,
& Leppänen, V. (2021). Security in agile
software development: A practitioner survey.
Information and Software Technology, 131,
106488.

Runeson, P., & Höst, M. (2009). Guidelines for
conducting and reporting case study research
in software engineering. Empirical Software
Engineering, 14(2), 131–164.

Synopsys. (2021). Building security in maturity model
12 — bsimm. Retrieved March 1, 2022, from
bsimm . com / content / dam / bsimm / reports /
bsimm12-foundations.pdf

Uludağ, Ö., Putta, A., Paasivaara, M., & Matthes,
F. (2021). Evolution of the agile scaling
frameworks. 22nd Int. Conf. on Agile Software
Development (XP), 123–139.

van der Heijden, A., Broasca, C., & Serebrenik, A. (2018).
An empirical perspective on security challenges
in large-scale agile software development.
12th ACM/IEEE Int. Symposium on Empirical
Software Engineering and Measurement.

von Solms, R. (1998). Information security management:
The code of practice. Information Management
& Computer Security, 6(5), 224–225.

Webster, J., & Watson, R. T. (2002). Analyzing the past
to prepare for the future: Writing a literature
review.

Wendler, R. (2012). The maturity of maturity model
research: A systematic mapping study.
Information and Software Technology, 54(12),
1317–1339.

Page 7268


