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Abstract 

Social debt, the accumulation of unforeseen project 
costs from suboptimal human-centered software 
development processes, is an important dimension of 
technical debt that cannot be ignored.  Recent 
research on social debt focusing on the detection of 
specific debt indicators, called community smells, has 
largely been conceptual and few of them are 
operationalizable. In addition, studies on the causes of 
community smells focused on group processes instead 
of individual tendencies.  In this paper, we define and 
investigate four social drivers—factors that influence 
individual developer choices in their collaboration—
in 13 open-source projects over four years: 1) inertia, 
2) co-authorship (by chance or by choice), 3) 
experience heterophily, and 4) organization 
homophily.  Building on previous studies and theories 
from sociology and psychology, we hypothesize how 
these drivers influence software quality outcomes. Our 
network analysis results include a contradiction to 
existing studies about experience heterophily and 
reveal a new community smell, which we call “Known 
Devil”, that can be automatically detected.  
 
Keywords:  Technical Debt, Social Debt, Community 
Smells, Social Drivers, Social Network Analysis 
 
 
1. Introduction  
 
     Research in technical debt has steadily received 
increased attention from academia and practice alike 
(Ernst et al., 2021; Google trend, 2023) since the term 
was created by Cunnigham in 1992 (Cunningham, 
1992).   It was initially a metaphor to explain software 
development actions and decisions akin to borrowing 
money to achieve goals.   The research gradually 
progressed and expanded from software 
implementation concerns (at the code level) to the 
entire software engineering life cycle including 
requirements, design and architecture, 
implementation, testing, documentation, and 

deployment debt (Ernst et al., 2021; Li et al., 2015).  
Most importantly, the field has recently been further r 
expanded to include a project management aspect 
called social debt. Social debt has been studied in the 
social sciences for more than 50 years and is now 
borrowed by the software engineering community to 
describe an important and difficult challenge:  the 
accumulation of unforeseen project costs from 
suboptimal human-centered software development 
processes (such as problems in coordination, 
collaboration, communication, and cooperation) and 
organizational structures (Caballero-Espinosa et al., 
2023).  Social debt has been shown to impact the 
quality outcomes of a software system in addition to 
impacting software teams, development processes and 
organizations (Tamburri et al., 2015; 2021).    
     The relatively recent inclusion of social debt into 
technical debt research is largely based on the socio-
technical congruence (STC) hypothesis which builds 
on Conway’s Law, that design structures and rules 
mirror the organizational structures of the 
organizations that produce them (Conway 1968; 
Conway 2023; Colfer & Baldwin, 2016; Sierra et al., 
2018). Many researchers have studied how the 
alignment or misalignment of social communication 
structures and technical dependencies affect software 
quality.  However, the results of the existing research 
were not conclusive and further research has been 
called for (Mauerer et al., 2022). 
     Other research has concentrated on identifying 
“community smells” which are sociotechnical anti-
patterns, and sources of social debt (Caballero-
Espinosa et al. 2023; Tamburri et al., 2021).  So far 
there have been 30 community smells identified by the 
social debt research community (Caballero-Espinosa 
et al., 2023). Automation of the detection of these 
smells has been a focus as it allows more efficient 
social debt management. So far, only four of the 30 
smells can be detected automatically in a software 
project (Tamburri et al., 2021). These are:  
1) organizational silo effect: Siloed areas of the 
developer community that do not communicate, 
except through one or two of their respective 
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members,  2) lone-wolf effect: unsanctioned or defiant 
contributors who carry out their work with little 
consideration of their peers, their decisions and 
communications,   3) black-cloud effect: Information 
overload due to lack of structured communication or 
cooperation governance,  and 4) radio-silence effect: 
leaders and teammates perform tasks in very formal 
and complex organizations. As such, team 
communication structures are not conducive to 
disseminating information across the teams 
efficiently.  
       Most importantly, the descriptions, which consist 
of the causes and effects of community smells, are 
primarily conceptual.  There are few empirical studies 
on the causes and effects of these smells, linking these 
to software quality measures. In particular, in the 
context of STC, what drives individual developers to 
behave, communicate or collaborate (e.g., we call 
social drivers) could affect the formation of  
community smells and social debt.    
     Our research aims to fill the void of existing 
research (see Figure 1: Research Framework).  Based 
on our empirical investigation of 13 open-source 
projects, each spanning 4 years, our Phase 1 research 
(indicated in the yellow boxes in Figure 1 and 
presented in this paper)  has identified four social 
drivers:  1)  Inertia:  in our study, the likelihood of 
selecting a past collaborator was almost 9 times higher 
than selecting a new potential candidate. 2) co-
authorship by design or by chance, working  on the 
same file: Developers were aware of those working on 
related tasks and tended to coordinate with them. 3) 
Experience heterophily: different levels of expertise 
triggered conflicts in the processes for decision-
making and for effectively sharing knowledge. 4) 
Organization homophily (developers being from the 
same organization) was, surprisingly, the least 
impactful social driver of the four.   
    In addition, our results from network analysis 
identified a new community smell: “Known Devil”.  
As we will show this smell is directly linked to a 
crucial software quality measure—bug rate—and can 
be automatically detected.  These results and lessons 
learned from our phase 1 research provide a stepping 
stone for our Phase II research which focuses on STC 
and how community smells relate to technical 
dependencies and design smells and so provide insight 
to mitigate social debt.    
     In what follows, we present our research questions 
and theoretical foundation.  In section 3, the research 
methodology for our Phase I research is described.   In 
Sections 4-5, the data analysis, results and research 
limitation will be discussed.   Section 6 concludes our 
Phase I research with comments on further research in 
our Phase II plan.  

    

 
Figure 1. Research Framework 

2. Related Study & Research Questions 

     Prior studies (Tamburri et al., 2015; 2019) have 
shown how social structure can have an impact on 
software project outcomes but fell short in terms of 
operationalizing the social relations and their impacts. 
In (Caballero-Espinosa et al. 2023), a total of 44 
causes and 103 effects from the 30 community smells 
in the literature were extracted and categorized.  The 
four most frequent types of causes include context 
(e.g., very formal processes, rigid procedures or 
standards), communication (poor or lack of), 
composition (of different expertise or professional 
background), and coordination (e.g., high task 
fragmentation, wasting time implementing 
modifications, increased isolation of teammates and 
disengaged developers).     
     The types of effects categorized in (Caballero-
Espinosa et al. 2023) include cooperation, technical 
debt effect, communication, coordination, cognition 
(e.g., ignoring product requirements or architectural 
decisions), economic effects, conflicts, and dual nature 
effects which are technical problems that share traits of 
poor task coordination and conflicts.  Cooperation was 
the most frequent type of effect, pointing out the 
importance of partnership, trust, and collective 
efficacy.  The technical debt effect was the second 
most frequent type, which was identified in 13 out of 
30 community smells.  These results illustrate the 
close relationship between social debt and technical 
debt.   Note that many already define social debt to be 
a type of technical debt (Ernst et al., 2021).   

We aim to provide empirical evidence of some of 
the aforementioned causes and effects as well as 
finding the antecedents of the causes (e.g., social 
drivers) as shown in Figure 1.  We focus on individual 
developer choices rather than group processes which 
were the focus of many prior studies.  Two research 
questions are thus pursued:  
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RQ1: What are the social drivers, e.g., motivation and 
strategies of individual developers that drive the 
exchange of information? 

RQ2:   How do the resulting communication strategies 
influence the software quality outcomes?  

In the search for social drivers which originate 
from the motivations and strategies of individual 
developers, an open-source context is appropriate for 
our study. In the open-source world, the social 
dynamics of software engineering are largely shaped 
by aggregating individual choices and those choices 
are influenced, in turn, by communication strategies 
(Conrad & Poole, 2012). Most of their communication 
strategy or behavior is carried out based on their need 
to  improve their efficiency, as (Catolino et al., 2020)  
found. In addition, several psychological, 
organizational learning, and open system theories 
provide foundations for our hypotheses. 
        First, the law of inertia, also called Newton's first 
law, states that: “A body at rest will remain at rest 
unless acted on by an unbalanced force” (OpenStax, 
2023; Hanson,1963).  This has been applied to group 
processes and termed “organizational inertia” (Godkin 
& Allcorn, 2008)..  On the individual level, this refers 
to the tendency to perpetuate past behaviors. On one 
hand, inertia may generate high trust between software 
engineers, but on the other hand, it may prevent them 
from finding more efficient or effective collaborations.  
As a result, we can only postulate that inertia will 
affect performance outcomes. 
H1: the tendency to perpetuate past collaborations 
instead of creating new ones will impact performance. 
      Second, homophily (McPherson, 2011) is the 
principle that interactions are more frequent between 
similar peers rather than dissimilar ones. When the 
communication happens mainly between developers 
belonging to the same organization, the benefits of the 
cooperation strategy may decrease.   Therefore,  
H2: the tendency to collaborate within the 
organization is negatively associated with 
performance. 
    Third, the open system theory states that all 
organizations are affected considerably by their 
environmental factors (Katz & Kahn, 1978). In the 
open-source world, choosing or being assigned to 
work on the same file by chance is a significant social 
driver in that developers are forced to communicate.  
If the collaboration is by choice, it may be due to 
inertia as hypothesized in H1. Otherwise, the forced 
communication by the coincidence of working on the 
same file may require more effort on the part of the 
collaborators, which may result in degraded 
performance.  Hence, 
H3: Working with others on the same files is 
negatively associated with performance. 

      Fourth, organizational learning, the process of 
creating and transferring knowledge within an 
organization, is influenced by its social structure. In 
particular, according to the participation framework 
view (Lave & Wenger, 1991), learning happens 
through firsthand experience enabled by social 
interactions. The study in (Škerlavaj et al., 2010) 
showed a prevailing communication between 
individuals similar in their level (homophily of 
experience) or belonging to a common organization 
(homophily) may create a barrier to information 
sharing. Thus, a heterophily strategy in experience and 
belonging could increase the project teams’ 
knowledge and thus improve performance outcomes. 
Therefore,  
H4: the tendency to collaborate with others having 
different expertise levels is negatively associated with 
performance. 

3.  Research Methodology  

To operationalize the analysis of these hypotheses 
our first step was to retrieve and pre-process data from 
open-source version control systems and mailing lists. 
The selection of open-source projects for our 
investigation was motivated by the availability of 
appropriately rich data. The selection criteria include 
established reputation, size, having at least 4 years of 
history to mine and active mailing lists. We chose 13 
large, well-known active open-source projects and for 
each of them extracted data covering a period of 4 
years. The description of the projects are in Table 1, 
including average number of developers, commits and 
email per time window, number of organizations and 
absolute number of company developers in the whole 
period. Tenure is an approximation of the age in years 
of the project at the earliest date of analysis. 

 
Table 1.  Description of 13 Projects Selected 

 
This dataset was cleaned and modeled as temporal 

edges as explained in sub-sections 3.1, 3.2, and 3.3. 
Different kinds of relationships—edges—were 
extracted from this dataset, such as collaboration and 
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communication.  After the creation of the edge tables, 
they were plugged into the relational event model 
developed in the R package Goldfish.  As explained in 
section 3.5, a fixed effect model was used to estimate 
the effect of engineers’ behavior on performance, 
testing our hypothesis.  

3.1. Data collection and pre-processing   

      The data sources are the log files extracted from 
the version control systems, as well as the mailing list 
archives and issue trackers of the 13 open-source 
projects.  The mailing list and issue trackers contain 
the communication among software engineers (Bird et 
al., 2006). Prefixes from the email headers, such 
as ’re’, ’fwd’, etc., were removed to improve matching 
email subjects. When we retrieved the revision history 
from each version control system, we ensured 
consistent naming by renaming files to use their most 
recent name. Similarly, as people may have multiple 
email addresses or nicknames, several heuristics were 
created to identify and connect them. After these 
heuristics were applied, the name groups and emails 
were manually inspected and corrected where 
necessary. The organizations involved in the project 
were determined by looking at the frequency of the 
email domains. When frequent domains of a company 
were found, they were researched to verify that the 
organization was indeed involved in the development.  

Developer experience is calculated using a 
weighted sum of the commits where they appear either 
as authors or committers. The weight is the inverse of 
their age expressed in years. For example, a commit 
carried out 2 years earlier would have a weight equal 
to 0.5. The reason is that experience associated with 
old contributions tends to diminish as time goes by due 
to forgetting and due to project changes. A time 
window of 2 months was chosen as the basis for 
analysis.  The authors and the committers within a 
given time window are classified as actors when they 
actively contributed to the mailing list or the source 
code. Committers, however, are counted even when 
they did not participate actively. This is because 
committers are usually involved longer in the project. 
However, if they disappeared for a long period—more 
than 2 time intervals—they were removed from the 
community.  From the traces of commits and emails 
the communication and collaboration relationships 
were built. These are further discussed in the next sub-
sections. 

3.2. Temporal relationship modeling 

     Temporal networks are used when the connections 
between nodes arise and vanish dynamically. Hence, 

the edge table also includes the information of event 
time.  In (Butts, 2008), the author introduced a 
framework to model the patterns in the sequence of 
events between actors over time; they called these 
temporal edges “relational events”.  This event 
consists of three elements: the sender, the receiver, and 
the time of occurrence. Relational event models are 
useful to capture the endogenous variables that 
influence the flow of interactions. For instance, actors 
in a network are usually bounded by social norms that 
influence their behavior. Using a network model 
allows us to test hypotheses about the agents’ behavior 
in the network. A temporal view of the network is 
suitable because the open-source community has high 
turnover (Vasilescu et al., 2015) and the set of 
developers and the relationships between them change 
often over time.  In this study, both collaboration and 
communication networks have temporal components 
described in more detail in the next sub-sections. 

3.3. Temporal Collaboration Network 

     The heuristic we adopted to find collaboration is 
similar to those use by (Jermakovics et al. 2011),  
Lopez-Fernandez et al., 2004) and (Joblin et al., 2015). 
We determine collaboration between two authors if 
they have modified the same file. Measuring the 
correlation between the collaboration and the 
communication networks we found a statistically 
significant similarity using Quadratic Assignment 
Procedure (QAP) as illustrated by (Krackardt, 1987), 
(Anderson, 1999) and (Hubert & Arabie, 1989).  QAP 
makes thousands of random permutations of the input 
graphs and measures the correlation between them. 
This creates a distribution of values that allows 
estimating the likelihood of the observed value in a 
series of random graphs. In most of the cases, it was 
found that the p-value was below 0.05, meaning that it 
was very unlikely to find a similar correlation between 
two random graphs.  
    As in (Joblin et al. 2015), the order of the commits 
was used to identify directed collaborations between 
authors: when one author co-changed a file after 
another a link is created from the former to the latter. 
However, after a long period, this relation is more 
tenuous. Hence a threshold of 45 days was set as the 
maximum amount of time between co-changes to 
consider it as a collaboration. Several thresholds were 
tried, such as 15, 20, 40, 55, 60 days, and 45 days was 
the threshold that produced collaboration networks 
with the highest correlation with the communication 
network. The list of relationships obtained with this 
method was used to build the collaboration network. 
The directions and the weights were removed because 
they were not important in this analysis. 
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3.4.  Temporal Communication Network  

Developers open and comment on threads to 
communicate with others. We considered a 
communication to be intentional when two or more 
developers commented on threads that have the same 
subject. An edge is created from the sender of an email 
to the previous senders of emails with the same 
subject. The communication edge list includes the 
sender, the receiver, and the date and time of the email. 
Emails are usually responded to in a couple of days; 
hence people who sent an email with the same subject 
are linked only if 7 days or fewer have passed. We 
experimented with different thresholds before 
choosing this number of days but the final graph did 
not change significantly. 

3.5. Modeling with Dynamic Network Actor 
Models (DyNAMs) for Relational Events 

DyNAMs (Stadtfeld, & Block, 2017) is a network 
model that estimates the probability of a relational 
event given the process state. The process state (yt) is 
the information at time t that describes the previous 
interactions. It includes the node-set, the previous 
relationships between nodes, the nodal attributes, and 
in some cases also exogenous variables, such as the 
presence of specific relationships between nodes. 
Previous relationships can be used to build statistics of 
the course of interactions. For example, statistics may 
take into account the number of emails sent from one 
person to another. This information may be important 
to predict a future interaction. Thus, the information 
collected at time t, yt, is used to predict the next 
relational event w. The coefficients of the statistics 
chosen are used to explain the behavior of the agents. 
For example, if developers sent a significantly higher 
number of emails to people belonging to the same 
organization, it is likely that the next event will be an 
email between developers of that organization. If the 
coefficients are statistically significant, they can 
predict the process of interactions and hypothesis 
testing about the behavior may be conducted with this 
approach. We can then test such hypotheses through 
the analysis of the significance of the coefficients as a 
linear regression.  

DyNAMs is used in this study to explain the 
behavior in the exchange of emails between 
developers. It is reasonable to assume that the project 
members follow organizational strategies to improve 
their efficiency. Hence, the target variable is the 
communication link between any two pair of nodes in 
the network at a specific time. The DyNAMs’ 
coefficients represent the developers’ preferences in 
selecting a collaborator: their cooperation strategy. 

Once the developers’ strategy is estimated using the 
DyNAMs model, a linear model is used to measure 
how their strategy (the DyNAMs’ coefficients) affect 
the average number of bugs generated during 
development. The dataset uses observations at 
multiple time windows for all 13 projects.  

3.6 Fixed-effect linear model 

      The DyNAMs coefficients represent the 
developers’ preferences in selecting a collaborator. 
Thus, they represent the developers’ cooperation 
strategy. Once the developers’ strategy is estimated 
using the DyNAMs model, a linear model is used to 
measure how the developers’ strategy (the DyNAMs 
coefficients) affect the average number of generated 
bugs during development. The dataset is a panel of 
data involving observation at several time windows of 
13 projects. Thus, a fixed effect model is used to 
include individual differences among the projects. 
This implies including a different intercept for each 
project. The equation of the model  (Equation 1) is: 

 
 
where the first four variables are the coefficients of the 
DyNAMs sub-model choice (Equation 2).  

 
     Transitivity (trans) pertains to the choice of a weak 
tie as a receiver, whereas reciprocity (recip) refers to 
the developers replying to others. The dependent 
variable is the logarithm of the number of commits that 
may have introduced bugs. The logarithm is used 
instead of the original values because the distribution 
was skewed with a long right tail. The logarithm 
transformation resulted in a bell-shaped distribution 
resembling a normal distribution. 
       To find the most suitable model several tests were 
performed. First, it was tested whether there were 
individual differences, the fixed effects, among 
projects. This was measured with an F-test which tests 
the hypothesis that all the individual intercepts of the 
projects are equal. Thus, the null hypothesis H0 is: w01  
=w02 = ... = w13 while the alternative hypothesis H1 
is that wxx are not all the same. 
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        Second, it was tested whether the error terms 
were correlated with regressors using the Hausman 
test. If that happens, the fixed effect estimates 
converge to the real values in large samples but not the 
random effects estimates. Therefore, if there is 
correlation between errors and regressors, the 
estimates of the models will differ significantly. The 
Hausman test’s null hypothesis states that the fixed 
effect and random effect estimates are the same, which 
implies absence of correlation between errors and 
regressors. The alternative hypothesis states the 
opposite. If the null hypothesis is rejected, the fixed 
effect model is preferred while the random effect is 
preferred if the null hypothesis is accepted.  In some 
of the projects the number of bugs was auto-correlated 
with its past values. Thus the Breusch-Godfrey test 
was used to test for auto-correlation.  Breusch-
Godfrey test’s null hypothesis is the absence of serial 
correlation. A p-value less than the threshold of 0.05 
brings to the rejection of the null hypothesis. Thus, the 
alternative hypothesis which states the presence of 
auto-correlation would be accepted.  Several models 
with different variables and transformation were 
compared using the adjusted r squared. 

4. Results  and Analysis 

4.1 DyNAMs interpretation 

        As mentioned, the DyNAMs’ coefficients 
represent the developers’ preferences in selecting a 
collaborator (e.g., social drivers).   The results are 
summarized in Figure 2, ranking the four social drivers 
in order.  
 

 
Figure 2: DyNAMs’ coefficients mean values 

 
    1) Inertia (intertia_coeff): Most of the inertia 
effects were significantly positive and between the 
values of 1 and 4, with a mean of 2.19. This means that 
on average developers are almost 9 times more likely 
(exp(2.19)) to continue to communicate with past 

collaborators. This result showed that communication 
tended to flow frequently between the same persons. 

 
Figure 3: Coefficient distributions and their 

relationships to bugs 
 
      2) Co-authorship by design or by chance 
(tie_coeff): Working on the same file, on average, 
positively influenced communication choices. 
Developers may seek information from others 
working on the same file because they think their tasks 
should be coordinated with them. In such a case, they 
would need complementary information from them to 
accomplish their work. The average of the tie 
coefficients’ values is 0.656. Therefore developers are 
1.65 times more likely to choose to communicate with 
others working on the same file rather than someone 
working in another portion of the software. 
       3) Experience heterophily (diff_exp_coeff): 
Differences in experience influenced the choice of a 
collaborator. Developers with lower levels of 
experience sought information from those with greater 
levels.  In open-source projects, it is quite common to 
have a small group of developers who produce the 
greatest amount of code. And in this study, it was 
found that these developers were more likely to 
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provide information to the less experienced ones, 
probably to mentor them. But the influence of the 
difference in expertise on choosing a cooperator is 
weak on average.  Contrary to popular belief, we found 
that these developers were more likely to provide 
information to the less experienced ones, probably to 
mentor them. The “Diff experience” coefficient is on 
average 0.41, as shown in Figure 2.  
        4) Organization homophily (same_organization 
_coeff): Organization homophily coefficients are 
displayed in Figure 3 at an aggregate level. Here, it can 
be seen that most of the values are close to zero and a 
rather small portion are greater than 0.5 in absolute 
value. It can be deduced that developers, on average, 
do not consider belonging to the same organization 
relevant factor when deciding a collaborator. 

4.2    Fixed-effect linear model results  

     As mentioned, a linear model is used to measure 
how the social drivers (the DyNAMs’ coefficients) 
affect the average number of generated bugs during 
development and a fixed effect model is used to 
include individual differences among the projects.  
The coefficient w shown in the above equation of the 
model (Equation 1) represents the marginal effect of 
developers’ behavior on the number of bugs they 
generated.  Hence it measures how the number of bugs 
varies in contingency with the average behavior of 
developers. The model is log-linear and thus the slope 
and the elasticity changes at any point of y keeping the 
same sign of w; the coefficient can be interpreted as an 
approximation of the dependent variable’s percentage 
variation when the predictor changes by 1 unit.  The 
coefficient for each of the four social drivers were 
found as shown in Figures 4.  Table 2 indicates that 
the four social drivers all influenced performance 
significantly. 

 
 

Figure 4: Fixed effect coefficients  
 

Table 2. 

 

 

4.3 Hypotheses testing results  

     In this study we chose to use bug rate as the primary 
measure of software quality.  The bug rates are 
determined by downloading each project’s issue 
tracker data, selecting those labeled as “bug” and 
counting only those that had been resolved via a 
commit (and never reopened).    The hypotheses 
testing results are summarized in Figure 3, with 
respect to bug rates.   
 
H1 is supported: the tendency to perpetuate past 
collaborations instead of creating new ones will 
impact performance.  
     The coefficient can be interpreted as an 
approximation of the dependent variable’s percent 
variation when the predictor changes by 1 unit. 
Therefore, a unitary increase in inertia corresponds to 
a 14.3% increase in bugs, on average. Repeated 
collaborations elicit social capital because the 
collaborators develop a common expertise that 
facilitates their understanding. In addition, it causes 
stability in the community and improves routines that 
regulate knowledge flows. It could happen that a 
strong inertia may prevent poor collaborations from 
dissolving, even when they should. Therefore, it seems 
quite likely that very high inertia values could hamper 
project performance. To measure this possibility, the 
square of the inertia coefficient was added to the 
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model. However, it was not significant and the model 
performance did not improve.  
      The Inertia coefficient was significantly different 
from zero. Hence, there is enough empirical evidence 
to reject the null hypothesis that inertia effect does not 
influence performance. The confidence intervals were 
large due to a high variance of the Inertia estimate. The 
coefficient’s variance and therefore the estimate’s 
accuracy will improve by collecting more data. 
 
H2 is supported: the tendency to collaborate within 
the organization is negatively associated with 
performance (increased bug rate). 
      The fixed effect model shows that a unitary 
increase in organization homophily coefficient 
generates a 23.3% increase of bugs on average. 
However, most of the same organization’s coefficients 
are around -0.5 and 0.5. Hence, it is more appropriate 
to talk about a 0.1 variation in the organizational 
homophily coefficient. A 0.1 homophily coefficient 
variation is associated with a 2.33% variation of the 
bugs in the same direction. The positive relationship 
between homophily coefficients and bugs suggests 
that the community will suffer when communication 
flows mainly between similar individuals in the same 
organization. This may result in a delay of information 
transfer from one organization to another. 

 

Figure 5: Organization homophily coefficients (in 
black) and buggy lines of code (in red) over time 

H3 is supported: Working with others on the same 
files is negatively associated with performance 
(increased bug rate). 
       Developers tended to prefer cooperating and 
collaborating with others working on the same file. 
This behavior, however, had a significant impact on 
the bug rate.   Tasks that are not based purely on a 
single file and which require coordination (for 
example, changing a file that other files depend on) are 

frequently not dealt with properly and hence generate 
more bugs.  The scatter plot in the fourth row of Figure 
3 shows a positive relationship between the coefficient 
values and the number of bugs. This suggests that the 
preference to communicate with co-authors of the 
same file may create tunnel vision.  This may lead to 
inadequate communication to modify and to integrate 
files without causing bugs. The co-authorship 
coefficient w2 is 0.121. Adding the square to test for a 
decreasing marginal effect did not improve the model.  
     When collaborations tend to get stronger among 
those co-authoring the same files and weaker with 
others working in different files, errors are more 
frequent. This suggests that tasks that are not included 
on the same file but needing coordination are not dealt 
with properly and generate bugs. 
  
H4 is not supported: the tendency to collaborate with 
others having different expertise levels is positively 
associated with performance (decreased bug rate).  
     Contrary to expectations, the number of bugs 
developers generate is positively associated with their 
tendency to communicate at higher rates with those 
dissimilar in experience. The theory of situated 
learning through social contacts with dissimilar 
individual does not find confirmation in our study. A 
possible alternative explanation could be that 
developers tend to acquire more useful and 
understandable information from those that have a 
similar level of expertise. 

5. Discussion  

First, from our results, a community smell we call 
“Known Devil” is identified. The tendency to 
perpetuate past collaborations instead of creating new 
ones due to inertia is an intent to minimize risk, as the 
saying goes: “Better the devil you know than the devil 
you don't.”  However, the choice to avoid the risk of 
working with a new collaborator may result in higher 
bug rates especially when they work on the same 
files—our study defines collaboration as working on 
the same file.  Inertia prevents finding the optimal 
collaborators and may create inefficiencies and errors 
as hypothesized in H3.   This community smell is 
therefore associated with two social drivers and can be 
automatically detected as devised in our study.    

Second, H4 not being supported seems to be 
strongly related to the “Known Devil” community 
smell we identified.   This is because we assume that 
prior collaborators had the same or similar 
backgrounds and experience levels.  However, this 
assumption may not hold true.   This calls for further 
investigation.  
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Third, our results indicate working on the same 
file is a strong social driver.  However, further analysis 
is needed to separate co-authorship by chance from the 
co-authorship by choice in working on the same file;    
it is difficult to distinguish the two in the open-source 
environment. Does the collaboration start first and 
then the collaborators decide to choose to work on the 
same file?  Or the other way around?   

Fourth, the findings of H3—that working on the 
same file is associated with higher bug rate—needs to 
be further studied in our Phase II research, as indicated 
in Figure 1. We hypothesize that there are technical 
dependencies that are beyond simply collaborating on 
files. This suggests that there exists a misalignment of 
social structure vs. technical structure  which causes 
the increased bug rate. This will be investigated in our 
Phase II research in which we will also expand the 
outcome measurement beyond bug rate, including 
team productivity, developer satisfaction, developer 
intention to stay, and other software quality measures.   
      Finally, our current Phase I research has the 
following limitations: 
a. This analysis focused on 308 observations of 13 

open-source projects. Thus, the generalization of 
the results may be limited. 

b. Data about communication were retrieved from 
mailing lists. However, developers have other 
communication channels, e.g. personal contacts, 
private emails, etc. This communication could not 
be observed. However, it is reasonable to assume 
that most of the communication happened within 
the official channel, that is the mailing list, in an 
open-source environment.    

c. As mentioned, the values of organizational 
homophily were limited to a small range. 
Therefore, these findings on homophily effects 
cannot be generalized with high accuracy for 
cases of high homophilous behaviors. 

d. The communication and collaboration network 
construction could have an impact on results.  
However, the method used here was based on past 
research and additional statistical analyses. 

      Useful enhancements to this research program 
include: 1) distinguishing between different activities, 
such as bug fixing, documentation or code 
contributions, etc. to understand the decision-making 
process and division of tasks, and 2)  classifying the 
content of the emails using text mining to understand 
the kinds of information exchanged. 

6. Conclusions  

       Previous studies on social debt, and social smells 
in particular, are conceptual in nature and focus on 
group processes instead of individual tendencies.  Our 

study helps to discover the antecedents (causes) of 
social debt on the individual developer level—social 
drivers—and their effects on software quality (bugs).  
Built on theories in sociology, systems, organizations, 
and psychology, we identified four social drivers 
(inertia, co-authorship by design or by chance, 
experience heterophily, and organization homophily) 
which were all found to significantly influence 
developers’ choices in finding a collaborator. For our 
investigation, we chose 13 large, well-known open-
source projects and for each of them extracted data 
covering a period of 4 years. Employing the Dynamic 
Network Actor Models (DyNAMs) and a fixed-effect 
linear model, we tested four hypotheses. We found:   

• H1 is supported: the tendency to perpetuate 
past collaborations instead of creating new 
ones will impact performance. This study 
shows that the impact is negative.  

• H2 is supported: the tendency to collaborate 
within the organization is negatively 
associated with performance.  

• H3 is supported: Working with others on the 
same files is negatively associated with 
performance. 

     Contrary to previous studies and existing theories:  
• H4 is not supported: the tendency to 

collaborate with others having different 
expertise levels is positively associated with 
performance.  

       From these results, the “Known Devil” 
community smell has emerged.  As the saying goes 
“Better the devil you know than the devil you don't.” 
The tendency to perpetuate past collaborations instead 
of creating new ones due to inertia may result in higher 
bug rates especially when they work on the same files. 
This community smell is associated with two social 
drivers and can be automatically detected as devised 
in our study.   Many mitigation strategies (Ernst et al., 
2021, pp. 208-210) can, however, be devised for 
avoiding the Known Devil social smell which may 
increase social debt. A few actions are recommended:  
1) Raise awareness of this smell and one’s tendency to 
work with “known devils”.   2) Monitor collaborations 
on files so that individual developers can be made 
known of their “known devils”.  This is the benefit of 
being able to detect smells automatically.   3) Create a 
broader list of potential collaborators for developers to 
choose from. 4) Design social-networking 
opportunities for developers to get to know more 
people who could be potential collaborators.  
       The present study has a few limitations and cannot 
be generalized outside the open-source project 
context.  Nevertheless, as depicted in our research 
framework in Figure 1, it contributes to illuminate an 
important research direction in understanding social 
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debt, which is an integral part of technical debt that 
needs to be well-managed in any modern organization. 
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