
An Empirical Study of Social Debt in Open-Source Projects:
Social Drivers and the “Known Devil” Community Smell

H-M Chen, R. Kazman
University of Hawaii

{hmchen,kazman}@hawaii.edu

G. Catolino, M. Manca, D. Tamburri, W-J van de Heuvel
TU Eindhoven

{g.catolino, massimo.manca}@jads.nl, d.a.tamburri@tue.nl,
W.J.A.M.v.d.Heuvel@jads.nl

Abstract

Social debt, the accumulation of unforeseen project
costs from suboptimal human-centered software
development processes, is an important dimension of
technical debt that cannot be ignored. Recent
research on social debt focusing on the detection of
specific debt indicators, called community smells, has
largely been conceptual and few of them are
operationalizable. In addition, studies on the causes of
community smells focused on group processes instead
of individual tendencies. In this paper, we define and
investigate four social drivers—factors that influence
individual developer choices in their collaboration—
in 13 open-source projects over four years: 1) inertia,
2) co-authorship (by chance or by choice), 3)
experience heterophily, and 4) organization
homophily. Building on previous studies and theories
from sociology and psychology, we hypothesize how
these drivers influence software quality outcomes. Our
network analysis results include a contradiction to
existing studies about experience heterophily and
reveal a new community smell, which we call “Known
Devil”, that can be automatically detected.

Keywords: Technical Debt, Social Debt, Community
Smells, Social Drivers, Social Network Analysis

1. Introduction

 Research in technical debt has steadily received
increased attention from academia and practice alike
(Ernst et al., 2021; Google trend, 2023) since the term
was created by Cunnigham in 1992 (Cunningham,
1992). It was initially a metaphor to explain software
development actions and decisions akin to borrowing
money to achieve goals. The research gradually
progressed and expanded from software
implementation concerns (at the code level) to the
entire software engineering life cycle including
requirements, design and architecture,
implementation, testing, documentation, and

deployment debt (Ernst et al., 2021; Li et al., 2015).
Most importantly, the field has recently been further r
expanded to include a project management aspect
called social debt. Social debt has been studied in the
social sciences for more than 50 years and is now
borrowed by the software engineering community to
describe an important and difficult challenge: the
accumulation of unforeseen project costs from
suboptimal human-centered software development
processes (such as problems in coordination,
collaboration, communication, and cooperation) and
organizational structures (Caballero-Espinosa et al.,
2023). Social debt has been shown to impact the
quality outcomes of a software system in addition to
impacting software teams, development processes and
organizations (Tamburri et al., 2015; 2021).
 The relatively recent inclusion of social debt into
technical debt research is largely based on the socio-
technical congruence (STC) hypothesis which builds
on Conway’s Law, that design structures and rules
mirror the organizational structures of the
organizations that produce them (Conway 1968;
Conway 2023; Colfer & Baldwin, 2016; Sierra et al.,
2018). Many researchers have studied how the
alignment or misalignment of social communication
structures and technical dependencies affect software
quality. However, the results of the existing research
were not conclusive and further research has been
called for (Mauerer et al., 2022).
 Other research has concentrated on identifying
“community smells” which are sociotechnical anti-
patterns, and sources of social debt (Caballero-
Espinosa et al. 2023; Tamburri et al., 2021). So far
there have been 30 community smells identified by the
social debt research community (Caballero-Espinosa
et al., 2023). Automation of the detection of these
smells has been a focus as it allows more efficient
social debt management. So far, only four of the 30
smells can be detected automatically in a software
project (Tamburri et al., 2021). These are:
1) organizational silo effect: Siloed areas of the
developer community that do not communicate,
except through one or two of their respective

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 7239
URI: https://hdl.handle.net/10125/107255
978-0-9981331-7-1
(CC BY-NC-ND 4.0)

members, 2) lone-wolf effect: unsanctioned or defiant
contributors who carry out their work with little
consideration of their peers, their decisions and
communications, 3) black-cloud effect: Information
overload due to lack of structured communication or
cooperation governance, and 4) radio-silence effect:
leaders and teammates perform tasks in very formal
and complex organizations. As such, team
communication structures are not conducive to
disseminating information across the teams
efficiently.
 Most importantly, the descriptions, which consist
of the causes and effects of community smells, are
primarily conceptual. There are few empirical studies
on the causes and effects of these smells, linking these
to software quality measures. In particular, in the
context of STC, what drives individual developers to
behave, communicate or collaborate (e.g., we call
social drivers) could affect the formation of
community smells and social debt.
 Our research aims to fill the void of existing
research (see Figure 1: Research Framework). Based
on our empirical investigation of 13 open-source
projects, each spanning 4 years, our Phase 1 research
(indicated in the yellow boxes in Figure 1 and
presented in this paper) has identified four social
drivers: 1) Inertia: in our study, the likelihood of
selecting a past collaborator was almost 9 times higher
than selecting a new potential candidate. 2) co-
authorship by design or by chance, working on the
same file: Developers were aware of those working on
related tasks and tended to coordinate with them. 3)
Experience heterophily: different levels of expertise
triggered conflicts in the processes for decision-
making and for effectively sharing knowledge. 4)
Organization homophily (developers being from the
same organization) was, surprisingly, the least
impactful social driver of the four.
 In addition, our results from network analysis
identified a new community smell: “Known Devil”.
As we will show this smell is directly linked to a
crucial software quality measure—bug rate—and can
be automatically detected. These results and lessons
learned from our phase 1 research provide a stepping
stone for our Phase II research which focuses on STC
and how community smells relate to technical
dependencies and design smells and so provide insight
to mitigate social debt.
 In what follows, we present our research questions
and theoretical foundation. In section 3, the research
methodology for our Phase I research is described. In
Sections 4-5, the data analysis, results and research
limitation will be discussed. Section 6 concludes our
Phase I research with comments on further research in
our Phase II plan.

Figure 1. Research Framework

2. Related Study & Research Questions

 Prior studies (Tamburri et al., 2015; 2019) have
shown how social structure can have an impact on
software project outcomes but fell short in terms of
operationalizing the social relations and their impacts.
In (Caballero-Espinosa et al. 2023), a total of 44
causes and 103 effects from the 30 community smells
in the literature were extracted and categorized. The
four most frequent types of causes include context
(e.g., very formal processes, rigid procedures or
standards), communication (poor or lack of),
composition (of different expertise or professional
background), and coordination (e.g., high task
fragmentation, wasting time implementing
modifications, increased isolation of teammates and
disengaged developers).
 The types of effects categorized in (Caballero-
Espinosa et al. 2023) include cooperation, technical
debt effect, communication, coordination, cognition
(e.g., ignoring product requirements or architectural
decisions), economic effects, conflicts, and dual nature
effects which are technical problems that share traits of
poor task coordination and conflicts. Cooperation was
the most frequent type of effect, pointing out the
importance of partnership, trust, and collective
efficacy. The technical debt effect was the second
most frequent type, which was identified in 13 out of
30 community smells. These results illustrate the
close relationship between social debt and technical
debt. Note that many already define social debt to be
a type of technical debt (Ernst et al., 2021).

We aim to provide empirical evidence of some of
the aforementioned causes and effects as well as
finding the antecedents of the causes (e.g., social
drivers) as shown in Figure 1. We focus on individual
developer choices rather than group processes which
were the focus of many prior studies. Two research
questions are thus pursued:

Page 7240

RQ1: What are the social drivers, e.g., motivation and
strategies of individual developers that drive the
exchange of information?

RQ2: How do the resulting communication strategies
influence the software quality outcomes?

In the search for social drivers which originate
from the motivations and strategies of individual
developers, an open-source context is appropriate for
our study. In the open-source world, the social
dynamics of software engineering are largely shaped
by aggregating individual choices and those choices
are influenced, in turn, by communication strategies
(Conrad & Poole, 2012). Most of their communication
strategy or behavior is carried out based on their need
to improve their efficiency, as (Catolino et al., 2020)
found. In addition, several psychological,
organizational learning, and open system theories
provide foundations for our hypotheses.
 First, the law of inertia, also called Newton's first
law, states that: “A body at rest will remain at rest
unless acted on by an unbalanced force” (OpenStax,
2023; Hanson,1963). This has been applied to group
processes and termed “organizational inertia” (Godkin
& Allcorn, 2008).. On the individual level, this refers
to the tendency to perpetuate past behaviors. On one
hand, inertia may generate high trust between software
engineers, but on the other hand, it may prevent them
from finding more efficient or effective collaborations.
As a result, we can only postulate that inertia will
affect performance outcomes.
H1: the tendency to perpetuate past collaborations
instead of creating new ones will impact performance.
 Second, homophily (McPherson, 2011) is the
principle that interactions are more frequent between
similar peers rather than dissimilar ones. When the
communication happens mainly between developers
belonging to the same organization, the benefits of the
cooperation strategy may decrease. Therefore,
H2: the tendency to collaborate within the
organization is negatively associated with
performance.
 Third, the open system theory states that all
organizations are affected considerably by their
environmental factors (Katz & Kahn, 1978). In the
open-source world, choosing or being assigned to
work on the same file by chance is a significant social
driver in that developers are forced to communicate.
If the collaboration is by choice, it may be due to
inertia as hypothesized in H1. Otherwise, the forced
communication by the coincidence of working on the
same file may require more effort on the part of the
collaborators, which may result in degraded
performance. Hence,
H3: Working with others on the same files is
negatively associated with performance.

 Fourth, organizational learning, the process of
creating and transferring knowledge within an
organization, is influenced by its social structure. In
particular, according to the participation framework
view (Lave & Wenger, 1991), learning happens
through firsthand experience enabled by social
interactions. The study in (Škerlavaj et al., 2010)
showed a prevailing communication between
individuals similar in their level (homophily of
experience) or belonging to a common organization
(homophily) may create a barrier to information
sharing. Thus, a heterophily strategy in experience and
belonging could increase the project teams’
knowledge and thus improve performance outcomes.
Therefore,
H4: the tendency to collaborate with others having
different expertise levels is negatively associated with
performance.

3. Research Methodology

To operationalize the analysis of these hypotheses
our first step was to retrieve and pre-process data from
open-source version control systems and mailing lists.
The selection of open-source projects for our
investigation was motivated by the availability of
appropriately rich data. The selection criteria include
established reputation, size, having at least 4 years of
history to mine and active mailing lists. We chose 13
large, well-known active open-source projects and for
each of them extracted data covering a period of 4
years. The description of the projects are in Table 1,
including average number of developers, commits and
email per time window, number of organizations and
absolute number of company developers in the whole
period. Tenure is an approximation of the age in years
of the project at the earliest date of analysis.

Table 1. Description of 13 Projects Selected

This dataset was cleaned and modeled as temporal

edges as explained in sub-sections 3.1, 3.2, and 3.3.
Different kinds of relationships—edges—were
extracted from this dataset, such as collaboration and

Page 7241

communication. After the creation of the edge tables,
they were plugged into the relational event model
developed in the R package Goldfish. As explained in
section 3.5, a fixed effect model was used to estimate
the effect of engineers’ behavior on performance,
testing our hypothesis.

3.1. Data collection and pre-processing

 The data sources are the log files extracted from
the version control systems, as well as the mailing list
archives and issue trackers of the 13 open-source
projects. The mailing list and issue trackers contain
the communication among software engineers (Bird et
al., 2006). Prefixes from the email headers, such
as ’re’, ’fwd’, etc., were removed to improve matching
email subjects. When we retrieved the revision history
from each version control system, we ensured
consistent naming by renaming files to use their most
recent name. Similarly, as people may have multiple
email addresses or nicknames, several heuristics were
created to identify and connect them. After these
heuristics were applied, the name groups and emails
were manually inspected and corrected where
necessary. The organizations involved in the project
were determined by looking at the frequency of the
email domains. When frequent domains of a company
were found, they were researched to verify that the
organization was indeed involved in the development.

Developer experience is calculated using a
weighted sum of the commits where they appear either
as authors or committers. The weight is the inverse of
their age expressed in years. For example, a commit
carried out 2 years earlier would have a weight equal
to 0.5. The reason is that experience associated with
old contributions tends to diminish as time goes by due
to forgetting and due to project changes. A time
window of 2 months was chosen as the basis for
analysis. The authors and the committers within a
given time window are classified as actors when they
actively contributed to the mailing list or the source
code. Committers, however, are counted even when
they did not participate actively. This is because
committers are usually involved longer in the project.
However, if they disappeared for a long period—more
than 2 time intervals—they were removed from the
community. From the traces of commits and emails
the communication and collaboration relationships
were built. These are further discussed in the next sub-
sections.

3.2. Temporal relationship modeling

 Temporal networks are used when the connections
between nodes arise and vanish dynamically. Hence,

the edge table also includes the information of event
time. In (Butts, 2008), the author introduced a
framework to model the patterns in the sequence of
events between actors over time; they called these
temporal edges “relational events”. This event
consists of three elements: the sender, the receiver, and
the time of occurrence. Relational event models are
useful to capture the endogenous variables that
influence the flow of interactions. For instance, actors
in a network are usually bounded by social norms that
influence their behavior. Using a network model
allows us to test hypotheses about the agents’ behavior
in the network. A temporal view of the network is
suitable because the open-source community has high
turnover (Vasilescu et al., 2015) and the set of
developers and the relationships between them change
often over time. In this study, both collaboration and
communication networks have temporal components
described in more detail in the next sub-sections.

3.3. Temporal Collaboration Network

 The heuristic we adopted to find collaboration is
similar to those use by (Jermakovics et al. 2011),
Lopez-Fernandez et al., 2004) and (Joblin et al., 2015).
We determine collaboration between two authors if
they have modified the same file. Measuring the
correlation between the collaboration and the
communication networks we found a statistically
significant similarity using Quadratic Assignment
Procedure (QAP) as illustrated by (Krackardt, 1987),
(Anderson, 1999) and (Hubert & Arabie, 1989). QAP
makes thousands of random permutations of the input
graphs and measures the correlation between them.
This creates a distribution of values that allows
estimating the likelihood of the observed value in a
series of random graphs. In most of the cases, it was
found that the p-value was below 0.05, meaning that it
was very unlikely to find a similar correlation between
two random graphs.
 As in (Joblin et al. 2015), the order of the commits
was used to identify directed collaborations between
authors: when one author co-changed a file after
another a link is created from the former to the latter.
However, after a long period, this relation is more
tenuous. Hence a threshold of 45 days was set as the
maximum amount of time between co-changes to
consider it as a collaboration. Several thresholds were
tried, such as 15, 20, 40, 55, 60 days, and 45 days was
the threshold that produced collaboration networks
with the highest correlation with the communication
network. The list of relationships obtained with this
method was used to build the collaboration network.
The directions and the weights were removed because
they were not important in this analysis.

Page 7242

3.4. Temporal Communication Network

Developers open and comment on threads to
communicate with others. We considered a
communication to be intentional when two or more
developers commented on threads that have the same
subject. An edge is created from the sender of an email
to the previous senders of emails with the same
subject. The communication edge list includes the
sender, the receiver, and the date and time of the email.
Emails are usually responded to in a couple of days;
hence people who sent an email with the same subject
are linked only if 7 days or fewer have passed. We
experimented with different thresholds before
choosing this number of days but the final graph did
not change significantly.

3.5. Modeling with Dynamic Network Actor
Models (DyNAMs) for Relational Events

DyNAMs (Stadtfeld, & Block, 2017) is a network
model that estimates the probability of a relational
event given the process state. The process state (yt) is
the information at time t that describes the previous
interactions. It includes the node-set, the previous
relationships between nodes, the nodal attributes, and
in some cases also exogenous variables, such as the
presence of specific relationships between nodes.
Previous relationships can be used to build statistics of
the course of interactions. For example, statistics may
take into account the number of emails sent from one
person to another. This information may be important
to predict a future interaction. Thus, the information
collected at time t, yt, is used to predict the next
relational event w. The coefficients of the statistics
chosen are used to explain the behavior of the agents.
For example, if developers sent a significantly higher
number of emails to people belonging to the same
organization, it is likely that the next event will be an
email between developers of that organization. If the
coefficients are statistically significant, they can
predict the process of interactions and hypothesis
testing about the behavior may be conducted with this
approach. We can then test such hypotheses through
the analysis of the significance of the coefficients as a
linear regression.

DyNAMs is used in this study to explain the
behavior in the exchange of emails between
developers. It is reasonable to assume that the project
members follow organizational strategies to improve
their efficiency. Hence, the target variable is the
communication link between any two pair of nodes in
the network at a specific time. The DyNAMs’
coefficients represent the developers’ preferences in
selecting a collaborator: their cooperation strategy.

Once the developers’ strategy is estimated using the
DyNAMs model, a linear model is used to measure
how their strategy (the DyNAMs’ coefficients) affect
the average number of bugs generated during
development. The dataset uses observations at
multiple time windows for all 13 projects.

3.6 Fixed-effect linear model

 The DyNAMs coefficients represent the
developers’ preferences in selecting a collaborator.
Thus, they represent the developers’ cooperation
strategy. Once the developers’ strategy is estimated
using the DyNAMs model, a linear model is used to
measure how the developers’ strategy (the DyNAMs
coefficients) affect the average number of generated
bugs during development. The dataset is a panel of
data involving observation at several time windows of
13 projects. Thus, a fixed effect model is used to
include individual differences among the projects.
This implies including a different intercept for each
project. The equation of the model (Equation 1) is:

where the first four variables are the coefficients of the
DyNAMs sub-model choice (Equation 2).

 Transitivity (trans) pertains to the choice of a weak
tie as a receiver, whereas reciprocity (recip) refers to
the developers replying to others. The dependent
variable is the logarithm of the number of commits that
may have introduced bugs. The logarithm is used
instead of the original values because the distribution
was skewed with a long right tail. The logarithm
transformation resulted in a bell-shaped distribution
resembling a normal distribution.
 To find the most suitable model several tests were
performed. First, it was tested whether there were
individual differences, the fixed effects, among
projects. This was measured with an F-test which tests
the hypothesis that all the individual intercepts of the
projects are equal. Thus, the null hypothesis H0 is: w01
=w02 = ... = w13 while the alternative hypothesis H1
is that wxx are not all the same.

Page 7243

 Second, it was tested whether the error terms
were correlated with regressors using the Hausman
test. If that happens, the fixed effect estimates
converge to the real values in large samples but not the
random effects estimates. Therefore, if there is
correlation between errors and regressors, the
estimates of the models will differ significantly. The
Hausman test’s null hypothesis states that the fixed
effect and random effect estimates are the same, which
implies absence of correlation between errors and
regressors. The alternative hypothesis states the
opposite. If the null hypothesis is rejected, the fixed
effect model is preferred while the random effect is
preferred if the null hypothesis is accepted. In some
of the projects the number of bugs was auto-correlated
with its past values. Thus the Breusch-Godfrey test
was used to test for auto-correlation. Breusch-
Godfrey test’s null hypothesis is the absence of serial
correlation. A p-value less than the threshold of 0.05
brings to the rejection of the null hypothesis. Thus, the
alternative hypothesis which states the presence of
auto-correlation would be accepted. Several models
with different variables and transformation were
compared using the adjusted r squared.

4. Results and Analysis

4.1 DyNAMs interpretation

 As mentioned, the DyNAMs’ coefficients
represent the developers’ preferences in selecting a
collaborator (e.g., social drivers). The results are
summarized in Figure 2, ranking the four social drivers
in order.

Figure 2: DyNAMs’ coefficients mean values

 1) Inertia (intertia_coeff): Most of the inertia
effects were significantly positive and between the
values of 1 and 4, with a mean of 2.19. This means that
on average developers are almost 9 times more likely
(exp(2.19)) to continue to communicate with past

collaborators. This result showed that communication
tended to flow frequently between the same persons.

Figure 3: Coefficient distributions and their

relationships to bugs

 2) Co-authorship by design or by chance
(tie_coeff): Working on the same file, on average,
positively influenced communication choices.
Developers may seek information from others
working on the same file because they think their tasks
should be coordinated with them. In such a case, they
would need complementary information from them to
accomplish their work. The average of the tie
coefficients’ values is 0.656. Therefore developers are
1.65 times more likely to choose to communicate with
others working on the same file rather than someone
working in another portion of the software.
 3) Experience heterophily (diff_exp_coeff):
Differences in experience influenced the choice of a
collaborator. Developers with lower levels of
experience sought information from those with greater
levels. In open-source projects, it is quite common to
have a small group of developers who produce the
greatest amount of code. And in this study, it was
found that these developers were more likely to

Page 7244

provide information to the less experienced ones,
probably to mentor them. But the influence of the
difference in expertise on choosing a cooperator is
weak on average. Contrary to popular belief, we found
that these developers were more likely to provide
information to the less experienced ones, probably to
mentor them. The “Diff experience” coefficient is on
average 0.41, as shown in Figure 2.
 4) Organization homophily (same_organization
_coeff): Organization homophily coefficients are
displayed in Figure 3 at an aggregate level. Here, it can
be seen that most of the values are close to zero and a
rather small portion are greater than 0.5 in absolute
value. It can be deduced that developers, on average,
do not consider belonging to the same organization
relevant factor when deciding a collaborator.

4.2 Fixed-effect linear model results

 As mentioned, a linear model is used to measure
how the social drivers (the DyNAMs’ coefficients)
affect the average number of generated bugs during
development and a fixed effect model is used to
include individual differences among the projects.
The coefficient w shown in the above equation of the
model (Equation 1) represents the marginal effect of
developers’ behavior on the number of bugs they
generated. Hence it measures how the number of bugs
varies in contingency with the average behavior of
developers. The model is log-linear and thus the slope
and the elasticity changes at any point of y keeping the
same sign of w; the coefficient can be interpreted as an
approximation of the dependent variable’s percentage
variation when the predictor changes by 1 unit. The
coefficient for each of the four social drivers were
found as shown in Figures 4. Table 2 indicates that
the four social drivers all influenced performance
significantly.

Figure 4: Fixed effect coefficients

Table 2.

4.3 Hypotheses testing results

 In this study we chose to use bug rate as the primary
measure of software quality. The bug rates are
determined by downloading each project’s issue
tracker data, selecting those labeled as “bug” and
counting only those that had been resolved via a
commit (and never reopened). The hypotheses
testing results are summarized in Figure 3, with
respect to bug rates.

H1 is supported: the tendency to perpetuate past
collaborations instead of creating new ones will
impact performance.
 The coefficient can be interpreted as an
approximation of the dependent variable’s percent
variation when the predictor changes by 1 unit.
Therefore, a unitary increase in inertia corresponds to
a 14.3% increase in bugs, on average. Repeated
collaborations elicit social capital because the
collaborators develop a common expertise that
facilitates their understanding. In addition, it causes
stability in the community and improves routines that
regulate knowledge flows. It could happen that a
strong inertia may prevent poor collaborations from
dissolving, even when they should. Therefore, it seems
quite likely that very high inertia values could hamper
project performance. To measure this possibility, the
square of the inertia coefficient was added to the

Page 7245

model. However, it was not significant and the model
performance did not improve.
 The Inertia coefficient was significantly different
from zero. Hence, there is enough empirical evidence
to reject the null hypothesis that inertia effect does not
influence performance. The confidence intervals were
large due to a high variance of the Inertia estimate. The
coefficient’s variance and therefore the estimate’s
accuracy will improve by collecting more data.

H2 is supported: the tendency to collaborate within
the organization is negatively associated with
performance (increased bug rate).
 The fixed effect model shows that a unitary
increase in organization homophily coefficient
generates a 23.3% increase of bugs on average.
However, most of the same organization’s coefficients
are around -0.5 and 0.5. Hence, it is more appropriate
to talk about a 0.1 variation in the organizational
homophily coefficient. A 0.1 homophily coefficient
variation is associated with a 2.33% variation of the
bugs in the same direction. The positive relationship
between homophily coefficients and bugs suggests
that the community will suffer when communication
flows mainly between similar individuals in the same
organization. This may result in a delay of information
transfer from one organization to another.

Figure 5: Organization homophily coefficients (in
black) and buggy lines of code (in red) over time

H3 is supported: Working with others on the same
files is negatively associated with performance
(increased bug rate).
 Developers tended to prefer cooperating and
collaborating with others working on the same file.
This behavior, however, had a significant impact on
the bug rate. Tasks that are not based purely on a
single file and which require coordination (for
example, changing a file that other files depend on) are

frequently not dealt with properly and hence generate
more bugs. The scatter plot in the fourth row of Figure
3 shows a positive relationship between the coefficient
values and the number of bugs. This suggests that the
preference to communicate with co-authors of the
same file may create tunnel vision. This may lead to
inadequate communication to modify and to integrate
files without causing bugs. The co-authorship
coefficient w2 is 0.121. Adding the square to test for a
decreasing marginal effect did not improve the model.
 When collaborations tend to get stronger among
those co-authoring the same files and weaker with
others working in different files, errors are more
frequent. This suggests that tasks that are not included
on the same file but needing coordination are not dealt
with properly and generate bugs.

H4 is not supported: the tendency to collaborate with
others having different expertise levels is positively
associated with performance (decreased bug rate).
 Contrary to expectations, the number of bugs
developers generate is positively associated with their
tendency to communicate at higher rates with those
dissimilar in experience. The theory of situated
learning through social contacts with dissimilar
individual does not find confirmation in our study. A
possible alternative explanation could be that
developers tend to acquire more useful and
understandable information from those that have a
similar level of expertise.

5. Discussion

First, from our results, a community smell we call
“Known Devil” is identified. The tendency to
perpetuate past collaborations instead of creating new
ones due to inertia is an intent to minimize risk, as the
saying goes: “Better the devil you know than the devil
you don't.” However, the choice to avoid the risk of
working with a new collaborator may result in higher
bug rates especially when they work on the same
files—our study defines collaboration as working on
the same file. Inertia prevents finding the optimal
collaborators and may create inefficiencies and errors
as hypothesized in H3. This community smell is
therefore associated with two social drivers and can be
automatically detected as devised in our study.

Second, H4 not being supported seems to be
strongly related to the “Known Devil” community
smell we identified. This is because we assume that
prior collaborators had the same or similar
backgrounds and experience levels. However, this
assumption may not hold true. This calls for further
investigation.

Page 7246

Third, our results indicate working on the same
file is a strong social driver. However, further analysis
is needed to separate co-authorship by chance from the
co-authorship by choice in working on the same file;
it is difficult to distinguish the two in the open-source
environment. Does the collaboration start first and
then the collaborators decide to choose to work on the
same file? Or the other way around?

Fourth, the findings of H3—that working on the
same file is associated with higher bug rate—needs to
be further studied in our Phase II research, as indicated
in Figure 1. We hypothesize that there are technical
dependencies that are beyond simply collaborating on
files. This suggests that there exists a misalignment of
social structure vs. technical structure which causes
the increased bug rate. This will be investigated in our
Phase II research in which we will also expand the
outcome measurement beyond bug rate, including
team productivity, developer satisfaction, developer
intention to stay, and other software quality measures.
 Finally, our current Phase I research has the
following limitations:
a. This analysis focused on 308 observations of 13

open-source projects. Thus, the generalization of
the results may be limited.

b. Data about communication were retrieved from
mailing lists. However, developers have other
communication channels, e.g. personal contacts,
private emails, etc. This communication could not
be observed. However, it is reasonable to assume
that most of the communication happened within
the official channel, that is the mailing list, in an
open-source environment.

c. As mentioned, the values of organizational
homophily were limited to a small range.
Therefore, these findings on homophily effects
cannot be generalized with high accuracy for
cases of high homophilous behaviors.

d. The communication and collaboration network
construction could have an impact on results.
However, the method used here was based on past
research and additional statistical analyses.

 Useful enhancements to this research program
include: 1) distinguishing between different activities,
such as bug fixing, documentation or code
contributions, etc. to understand the decision-making
process and division of tasks, and 2) classifying the
content of the emails using text mining to understand
the kinds of information exchanged.

6. Conclusions

 Previous studies on social debt, and social smells
in particular, are conceptual in nature and focus on
group processes instead of individual tendencies. Our

study helps to discover the antecedents (causes) of
social debt on the individual developer level—social
drivers—and their effects on software quality (bugs).
Built on theories in sociology, systems, organizations,
and psychology, we identified four social drivers
(inertia, co-authorship by design or by chance,
experience heterophily, and organization homophily)
which were all found to significantly influence
developers’ choices in finding a collaborator. For our
investigation, we chose 13 large, well-known open-
source projects and for each of them extracted data
covering a period of 4 years. Employing the Dynamic
Network Actor Models (DyNAMs) and a fixed-effect
linear model, we tested four hypotheses. We found:

• H1 is supported: the tendency to perpetuate
past collaborations instead of creating new
ones will impact performance. This study
shows that the impact is negative.

• H2 is supported: the tendency to collaborate
within the organization is negatively
associated with performance.

• H3 is supported: Working with others on the
same files is negatively associated with
performance.

 Contrary to previous studies and existing theories:
• H4 is not supported: the tendency to

collaborate with others having different
expertise levels is positively associated with
performance.

 From these results, the “Known Devil”
community smell has emerged. As the saying goes
“Better the devil you know than the devil you don't.”
The tendency to perpetuate past collaborations instead
of creating new ones due to inertia may result in higher
bug rates especially when they work on the same files.
This community smell is associated with two social
drivers and can be automatically detected as devised
in our study. Many mitigation strategies (Ernst et al.,
2021, pp. 208-210) can, however, be devised for
avoiding the Known Devil social smell which may
increase social debt. A few actions are recommended:
1) Raise awareness of this smell and one’s tendency to
work with “known devils”. 2) Monitor collaborations
on files so that individual developers can be made
known of their “known devils”. This is the benefit of
being able to detect smells automatically. 3) Create a
broader list of potential collaborators for developers to
choose from. 4) Design social-networking
opportunities for developers to get to know more
people who could be potential collaborators.
 The present study has a few limitations and cannot
be generalized outside the open-source project
context. Nevertheless, as depicted in our research
framework in Figure 1, it contributes to illuminate an
important research direction in understanding social

Page 7247

debt, which is an integral part of technical debt that
needs to be well-managed in any modern organization.

7. Acknowledgments

This project was partially supported by the European
Union's Horizon Europe research and innovation
program (grant #101073945; SAFE-CITIES) and the
National Science Foundation award #2232721.

8. References

Anderson, B. S., Butts, C., & Carley, K. (1999). The
interaction of size and density with graph-level
indices. Social networks, 21(3), 239-267.

Bird, C., Gourley, A., Devanbu, P., Gertz, M., &
Swaminathan, A. (2006). Mining email social
networks. In Proc. 2006 Intl workshop on Mining
software repositories, 137-143.

Butts, C. T. (2008). A relational event framework for social
action. Sociological Methodology, 38(1), 155-200.

Caballero-Espinosa, E., Carver, J. & Stowers, K. (2023).
Community smells—The sources of social debt: A
systematic literature review. Information and
Software Technology, 153.

 Catolino G., Palomba F., Tamburri, D. A., Serebrenik, A.
Ferrucci. F. (2020). Refactoring community smells in
the wild: the practitioner’s field manual. Proc. 42nd
Intl Conference on Software Engineering, 25–34.

Colfer, L. J., & Baldwin, C. Y. (2016). The mirroring
hypothesis: theory, evidence, and exceptions.
Industrial and Corporate Change, 25(5), 709-738.

Conrad C. & Poole, M.S. (2012). Strategic organizational
communication: In a global economy. Wiley &Sons.

Conway, M. E. (1968). How do Committees Invent?.
Datamation, 14 (5), 28–31.

Conway, M. E. (2023) Conway's Law.
https://www.melconway.com/Home/Conways_Law.
html)

Cunningham, W. (1992) The WyCash Portfolio
Management System. OOPSLA '92 Experience
Report. http://c2.com/doc/oopsla92.html

Ernst, N., Delange, J., & Kazman, R. (2021). Technical Debt
in Practice—How to Find It and Fix It. MIT Press.

Godkin, L., & Allcorn, S. (2008). Overcoming
organizational inertia: A tripartite model for achieving
strategic organizational change. J. Applied Business
and Economics, 8(1), 82.

Google trend. (2023). Technical debt trend 2004-2023.
https://trends.google.com/trends/explore?date=all&g
eo=US&q=technical%20debt&hl=en

Hanson, N, R. (1963) The Law of Inertia: A Philosopher's
Touchstone. Philosophy of Science, 30 (2).

Hubert, L, & Arabie, P. (1989). Combinatorial data analysis:
Confirmatory comparisons between sets of matrices.
Applied stochastic models and data analysis, 5(3),
273-325.

Jermakovics, A., Sillitti, A., & Succi, G. (2011). Mining and
visualizing developer networks from version control

systems. In Proc. of 4th Intl Workshop on Cooperative
and Human Aspects of Software Engineering, 24-31.

Joblin, M., Mauerer, W., Apel, S., Siegmund, J., & Riehle,
D. (2015). From developer networks to verified
communities: A fine-grained approach. In 2015 IEEE
Intl Conference on Software Engineering, 563-573).

Katz, D., & Kahn, R. L. (1978). Organizations and the
system concept. Classics of organization theory, 80.

Krackardt, D. (1987). QAP partialling as a test of
spuriousness. Social networks, 9(2), 171-186.

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate
peripheral participation. Cambridge University Press.

Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic
mapping study on technical debt and its management.
J. Systems and Software, 101, 193-220.

Lopez-Fernandez, L., Robles, G., & Gonzalez-Barahona, J.
M. (2004). Applying Social Network Analysis to the
Information in CVS Repositories. Proc. MSR 2004.

Mauerer, W., Joblin M., Tamburri, D., Paradis, C., Kazman
R., & Apel, S. (2022). In Search of Socio-Technical
Congruence: A Large-Scale Longitudinal Study, IEEE
Trans. Software Engineering, 48(8), 3159-3184.

McPherson, M., Smith-Lovin, L., & Cook J.M. (2001).
Birds of a feather. Homophily in social networks.
Annual review of sociology, 27(1), 415–444.

Openstax. Newton’s first law.
https://openstax.org/books/university-physics-volume-
1/pages/5-2-newtons-first-law.

Paradis, C. & Kazman, R. (2021). Building the MSR tool
Kaiaulu: Design Principles and Experiences, Proc.
European Conference on Software Architecture
(ECSA) 2021, 107-129.

Sierra, J. M., Vizcaíno A, Genero, M. & Piattini, M (2018).
A systematic mapping study about socio-technical
congruence, Information and Software Technology
(94), 111-129.

Škerlavaj, M., Dimovski, V., & Desouza, K. C. (2010).
Patterns and structures of intra-organizational learning
networks within a knowledge-intensive organization. J.
Information Technology, 25(2), 189-204.

Stadtfeld, C., & Block, P. (2017). Interactions, actors, and
time: Dynamic network actor models for relational
events. Sociological Science, 4, 318-352.

Tamburri, F., Kruchten P., Lago P & van Vliet H. (2015).
Social debt in software engineering: insights from
industry. J. Internet Services and Applications, 6(10).

Tamburri, D., Kazman, R. & Fahimi, H. (2016). The
Architect’s Role in Community Shepherding. IEEE
Software, 33 (6), 70-79.

Tamburri D., Palomba, F. & Kazman, R. (2021). Exploring
Community Smells in Open-Source: An Automated
Approach. IEEE Trans. Software Engineering, 47(3),
630-652.

Tamburri, D., Kazman, R., & Fahimi, H. (2022). On the
Relationship Between Organizational Structure
Patterns and Architecture in Agile Teams”, IEEE
Trans. Software Engineering, 49 (1), 325-347.

 Vasilescu, B., Filkov, V., & Serebrenik, A. (2015).
Perceptions of diversity on git hub: A user survey. 8th
Intl Workshop on Cooperative and Human Aspects of
Software Engineering, 50-56.

Page 7248

