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Abstract 
With an increase in smart applications and 

ubiquitous IoT computing, it has become increasingly 
necessary to investigate available approaches to 
processing sensor data. Complex event processing 
provides a means of associating sensor measurements 
to categories of observed events, such as entry and 
occupancy, which are more meaningful to smart 
application developers. Recent advancements in 
semantic complex event processing (SCEP) provide an 
opportunity to evaluate matched events within the 
context of organization-defined policies defined as 
semantic ontologies. However, research into the 
application of SCEP to smart applications is currently 
scarce. In this paper, we introduce the Knowledge 
Core SCEP architecture which extends the traditional 
SCEP architecture to a constellation of smart 
installations with organizational policies. The 
application of this architecture can provide smart 
application developers and maintainers with a novel 
means of processing the data generated by their smart 
application within a context of what matters to their 
organization. 

 
Keywords: Software architecture, CEP, SCEP, Smart 
installation, Ontological monitoring. 

1. Introduction  

The last decade has seen an explosion of smart 
applications built on vast sensor networks with the 
number of sensors only increasing. This rise in smart 
applications provides an opportunity for novel 
methods and architectures that can utilize the available 
data to produce meaningful alerts. For the last decade, 
researchers have been investigating the use of complex 
event processing (CEP) (Luckham, 1996) (Schaaf et 
al., 2012) to match sensor data to events that are 
interesting to application developers and domain 
experts. Additional contributions have come in the 
form of semantic CEP (SCEP) (Schaaf et al., 2012) 

(Teymourian et al., 2009) which can match observed 
events to pre-defined ontologies with human-
understandable meaning. SCEP engines give 
application developers and their maintainers the 
opportunity to identify events spread throughout their 
data within a context that matters to their organization. 

Despite recent advancements in SCEP, research 
into its application to smart domains is scarce. Over 
the past decade, few efforts have been made to apply 
SCEP to smart applications other than recent 
publications concerning smart homes (Vassiliades et al., 
2020) and basic IoT applications (Daoudagh et al., 
2022). These applications are purportedly successful 
but not followed by additional research. In addition, 
they lack resource and access control policies that are 
relevant to a great deal of smart applications that are 
subject to security, privacy, and accessibility concerns 
that can be monitored by available sensors. With the 
growing number of smart applications that include VR 
digital twins and semi-autonomous robotic platforms, 
it is necessary to investigate novel methods into 
extracting semantically meaningful data from sensor 
networks. 

In this paper, we introduce the Knowledge Core 
SCEP architecture which extends the traditional SCEP 
architecture to a smart constellation. We define a 
smart constellation as a set of distinct smart 
installations that can share a limited set of resources 
with varying costs-of-use relative to those resources. 
Smart installations include any building or residence 
that deploys sensors on a monitored network for 
safety, security, performance, and accessibility. For 
the work of this paper, a smart constellation would 
include a collection of two smart university buildings 
(indoor) and one smart industrial building (outdoor) 
that are intended to have similar sensor networks and 
monitoring needs. The installations can share data, 
personnel, and equipment, but the availability and 
timeliness of these resources vary across locations due 
to the physical distances between the installations. The 
Knowledge Core SCEP engine has the capability of 
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assessing matched events within the context of 
organizational policies, their significance, and the 
resource cost of available responses. 

2. Background 

CEP was first introduced by Luckham (1996) as 
part of the development of Rapide. The work of 
Luckham and later collaborators has culminated into 
the CEP architecture shown in Figure 1. The CEP 
architecture consists of four major components: event 
specification, event processing rules, an event 
processing engine, and an enterprise integration 
backbone. Event specification describes all events that 
can take place as well as their interactions with each 
other. Event processing rules handle the events by re-
formatting, aggregating, or even generating new 
events. The event processing engine executes the rules 
for the defined events. Lastly, the enterprise 
integration backbone acts as a mediator between the 
CEP architecture and the enterprise system to which 
it’s deployed. 

The original CEP architecture was designed 
around raw sensor data being stored as event data in a 
relational database. Custom specifications had to be 
defined by hand and were often specified in a SQL 
derivative. In the two decades since Luckham’s 
original paper, several commercial CEP systems have 
become available, each touting their own custom SQL 
derivative (Alaghbari et al., 2022). These commercial 
applications have minor differences between one 
another, but none stray too far from Luckham’s 
original concept of an event. Although, event 
processing has since expanded to include events 
related to other IoT initiatives and analytics over 
textual, graphical, and video data streams (Dayarathna 
& Perera, 2019). Teymourian et al. (2009) later 
extended the CEP architecture to utilize a resource 
description framework (RDF) based on then current 
ideas of the semantic web. This initial development of 
SCEP introduced a novel relationship between events 
and semantic ontologies that could provide context to 
those events. However, event specification remained a 
key challenge that only increased in complexity with 
the introduction of semantic ontologies, such as OWL. 
The initial approach to this challenge was yet again 
another SQL-like specification language called 
SPARQL, which is the domain specific language for 
querying RDF databases. 

At the same time, other authors were pursuing 
formal notations for representing observable events. 
Broda et al. (2009) developed SAGE, a monitoring 
and control system that employed event calculus to 
design a specification of events to be monitored by the 
system. Event calculus extends first order logic to 

model temporal relationships of events as time points 
and fluents, which hold values that can change over 
time. This in turn allows an event or sequence of 
events to be modeled as changes to a fluent over 
successive time points. Skarlatidis et al. (2015) 
extended these notions into probabilistic event 
calculus by introducing a mapping between 
propositions in event calculus and statements of 
conditional probabilities. In their work, the likelihood 
of each proposition was evaluated using a Markov 
Logic Network. 

 

 
Figure 1. CEP architecture (Schaaf et al., 2012) 

More recently, Patkos et al. (2016) have 
employed these efforts within SCEP to model the 
likelihood of complex events using an enhanced 
Bayesian network. Their SCEP architecture was 
deployed within the context of a smart home to assist 
physically challenged individuals with daily activities. 
Their efforts show that probabilistic event calculus and 
belief networks can be employed within an SCEP 
architecture to ascertain the likelihood that an event is 
occurring. It is one of few efforts that have been taken 
to incorporate SCEP within the wider context of IoT. 
Daoudagh et al. (2022) introduce DAEMON, an 
ontological approach for monitoring IoT cyber-
security. Their architecture includes an SCEP engine 
to match against known malicious and anomalous 
events that threaten the security of their IoT devices. 

Based on our research into the literature, it is our 
opinion that there are no readily available surveys of 
recent applications of SCEP architectures or 
applications apart from efforts taken to survey general 
applications of event processing (Dayarathna & 
Perera, 2019). It is therefore our understanding that 
SCEP has not been applied to a smart installation other 
than a smart home. Furthermore, many smart 
installations deploy sensors as a means of assuring the 
security, privacy, and accessibility of the facility. 
These properties can be encoded as organizational 
policies, such as those published by the National 
Institute of Standards and Technology (NIST). NIST 
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publishes guidelines for families of cyber-physical 
controls with organization defined enhancements. The 
published guidelines on the family of physical controls 
(National Institute of Standards and Technology 
[NIST], 2020) serves as an appropriate model for 
smart installation policies and is utilized within US 
critical infrastructure. SCEP is a highly applicable 
technology for processing observed events that impact 
organizational policies but research to that end is 
scarce. Further research is needed to extend the SCEP 
architecture to smart installations with organizational 
policies, which is the aim of this paper. 

3. Knowledge Core Architecture 

The SCEP architecture introduced by Teymourian 
et al. (2009) can be seen in Figure 2. This architecture 
was intended to be a general improvement upon the 
CEP architecture both in its more modern design (for 
2009) and its inclusion of a semantic framework. The 
architecture is broken into two parts, bridged together 
by middleware, which could utilize any transport 
protocol. The semantic CEP engine is broken into 
three different parts. The state processor determines 
the initial state of the event processing, based on the 
simple event stream. This is used by the rule engine to 
determine what subsequent information is needed to 
warrant the generation of a complex event. These 
event requirements are handled by a query processor 
which crafts queries responsible for retrieving the 
necessary information. The queries are handled by the 
triple store adapter which consults two components: 
the event history and the knowledge base 
ontologies/rules. The event history contains the 
previous simple events while the knowledge base 
contains information over the rules themselves, 
represented in a composite ontology. 

The SCEP architecture, like the CEP architecture 
before it, is highly applicable to applications that 
involve a sensor network (Broda et al., 2009) 
(Daoudagh et al., 2022) in which notable (or 
anomalous) events are drawn from a combination of 
sources rather than just one individual sensor. In the 
domain of CEP and SCEP, raw sensor data is 
categorized into a discrete set of simple events. These 
simple events are the atomic units of the SCEP 
architecture and are stored as triples in the SCEP triple 
store. As seen on left-hand side of Figure 2, the 
original SCEP architecture proposes that sensors 
would transmit data on an integrating middleware bus 
connected to the triple store (bottom-right) and SCEP 
engine (top-right). To better accommodate smart 
applications today, this integrating middleware bus 
requires support from load balancers that can reduce 
the load on the bus from the array of available sensors. 

Otherwise, the bus becomes clogged and the SCEP 
engine cannot process queries against the triple store 
in a timely manner. 

 

 
Figure 2. SCEP architecture (Schaaf et al., 2012) 

Smart installations, such as those employed in this 
paper, are commonly cited as a use case for both the 
CEP and SCEP architectures. However, the number of 
demonstrable use cases in related literature is very 
limited. Notable examples include smart homes 
(Vassiliades et al., 2020) and other basic IoT 
applications (Daoudagh et al., 2022). The goal of these 
previous applications was to determine if a monitored 
user is engaging in one of a set of pre-defined 
activities. The applications lack resource and access 
control policies that govern how users engage with the 
installation as well as the function of the SCEP system. 
Without these policies, applications of SCEP 
architectures are limited to the detection of events 
without an awareness of the greater significance that 
those events might hold given the context in which 
they occur. 

When policies are applied to an installation, the 
same event can have a different meaning depending on 
which policies it impacts. Entry into a room can be 
insignificant ingress, a violation of fire codes, an 
intrusion, or a point-of-interest depending on instituted 
policies. While policies may differ depending on the 
installation, a constellation still requires consistency in 
its representation of events across connected 
installations to allow for potential adaptations and the 
inferred extension of policies from one installation to 
another. Our approach to the SCEP architecture has 
the potential to capture the significance that policies 
bear in the monitoring and maintenance of a smart 
installation within a smart constellation. 

Our research use cases work with smart 
installations that target more realistic deployments of 
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sensor networks to allow for intelligent decision 
making. Thus, the smart installations are subject to 
policies that dictate installation use and performance, 
such as the security policies introduced by NIST 
(2020). We introduce an extended SCEP architecture 
capable of evaluating whether monitored activity 
complies with or contradicts an installation’s policies, 
with an intent to generate alerts when the latter occurs. 
One of the primary benefits of these alerts is the ability 
to connect sensors and their data to the wider context 
of the organization’s goals and the relative 
significance of those goals. For example, the 
occupancy of a room has more significant meaning if 
room activity is viewed under the lens of a possible 
fire or an on-campus intruder. Allowing for variation 
in policy significance is the foundation of a system that 
can justify autonomous or semi-autonomous 
responses, such as those outlined in the NIST (2021), 
within a context that humans can understand. When 
such responses involve a variation of resource cost, 
human-explainable justification should be required so 
that an appropriate cost is paid for an equitable and 
revisable outcome. 

 

 
Figure 3. Knowledge Core SCEP architecture 

Figure 3 shows our extended Knowledge Core 
SCEP architecture deployed for our smart 
constellation use case. In our initial investigation into 
applying the original SCEP architecture (Figure 3), we 
encountered several challenges that needed to be 
addressed from an architectural perspective. The most 
significant changes from Figure 2 to Figure 3 are how 
sensors are integrated into the architecture, the shift to 
an explicit distributed virtual middleware bus, and the 
introduction of a policy processor. These changes 
reflect the modern demands of a smart application 
both in terms of the volume of data that sensors output 
and the distribution of load required to handle that 
volume. While Figure 3 shows a single instance of the 
Knowledge Core SCEP engine, additional instances 

can be constructed and connected via the virtual 
middleware bus. The relocation of events and the 
inclusion of a policy processor further illuminates the 
role that events have in the engine and their eventual 
association with policies that dictate their significance. 

The edge of the Knowledge Core SCEP 
architecture as shown in Figure 3 consists of a wide 
array of sensors and spoke networks (top-left). These 
networks are intended to be customizable and 
unfettered by the demands of the Knowledge Core 
SCEP engine. Sensors in these networks can be 
installed and configured in whatever manner is most 
appropriate for the sensor and what it is monitoring. 
The only requirement is that sensors in the same sensor 
network be connected to a single spoke, which bridges 
the sensor network to the Knowledge Core SCEP 
engine via a hub (bottom-left). This topology is 
commonly known as a hub-and-spoke network. The 
hub acts as a mediator between the sensor networks 
and the rest of the Knowledge Core SCEP architecture. 
The hub is also responsible for rate limiting, filtering, 
and caching sensor data as appropriate for the 
installation. Raw sensor data collected within the hub 
is then output to the virtual middleware bus (middle-
right) as a collection of simple events. These simple 
events travel along the virtual middleware bus to a 
collection of triple stores (bottom-right), which store 
simple events in a semantic framework as semantic 
subject-predicate-object triples. It is expected that 
each installation would have one hub and one triple 
store, but additional hubs and stores can be added to 
accommodate larger and/or more demanding 
installations. 

The virtual middleware bus connects instances of 
the Knowledge Core SCEP engine (top-right) to the 
triple stores that possess the semantic data. Triples in 
the RDF triple store are pulled into the engine via the 
SPARQL query processor. SPARQL, developed for 
use in the semantic web, employs SQL-like syntax to 
describe semantic queries to the RDF to extrapolate 
over which triples should be extracted (see Section 
4.1). Triples drawn into the query processor are then 
restructured as complex events (see Section 4.1) and 
output to the event rules processor. 

The event rules processor is a consolidation of the 
state processor and the rules engine from the original 
SCEP architecture shown in Figure 2. The event rules 
processor matches complex events to rules specified in 
probabilistic event calculus (Skarlatidis et al., 2015) 
(see Section 4.2). This notation in combination with a 
belief network (Patkos et al., 2016) allows for complex 
events to be assigned a degree of certainty that can be 
further combined to assign a certainty to the rule itself. 
These weighted rules are then utilized by the policy 
processor (see Section 4.3) which matches the rules 
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against related policies to determine the certainty with 
which policies have been satisfied or violated. The 
violation of policies results in alerts that can be pushed 
out from the Knowledge Core engine through its 
façade API (top). 

3.1. Sensor Networks 

Smart applications typically involve a large 
volume of data due to the number of sensors employed 
and the frequency at which those sensors report. For 
our application, we deploy sensors that combine 
humidity, temperature, infrared-motion, and LEDs 
into one Arduino device that communicates over Wi-
Fi or a USB connection. We employ these sensors in 
combination with others, such as magnetic door 
sensors and O2/CO2 sensors. A single room of a smart 
installation might contain at least a dozen sensors that 
report twice per second via Wi-Fi or to a nearby 
machine over USB. An installation can contain dozens 
of rooms or regions that would need to be monitored 
this way. To accommodate the load that these sensors 
would place on an integrating middleware bus (Figure 
2), we’ve connected them to the Knowledge Core 
SCEP architecture via a hub-and-spoke network 
topology as seen on the left of Figure 3. 

 

 
Figure 4. Arduino sensor configuration 

A diagram of the custom configuration of our 
sensors and their pin connections to an Adafruit 
Breakout board (middle) are shown in Figure 4. The 
Arduino sensor includes a DHT11/DHT22 sensor 
(right) to measure temperature and humidity, a 
Pyroelectric infrared (PIR) motion sensor (left), and 
LEDs (top) for visual indicators such as when motion 
is detected (red) and when the device is connected 

(blue). The sensor does not include a sufficiently 
accurate onboard timer, so the Arduino must be synced 
with a network time protocol (NTP) server via another 
machine that can assign timestamps to readings. For 
our experiments, we have written a simple Python 
script to monitor serial connections on a nearby Linux 
machine that reports timestamped measurements to 
the spoke. 

3.2. Sensor Spokes and Hubs 

A spoke is a component that is responsible for 
accepting, combining, and retransmitting sensor data. 
Spokes are useful for distributing the number of 
required connections across separate machines. They 
also serve as an endpoint to minimize the volume of 
edge data. The latter case is common in smart city 
applications and fog computing where a high degree 
of sensors exist. The spokes in our architecture are 
responsible for directly interfacing with regions of 
sensors. A single installation could have one or more 
spokes depending on the size of the installation, where 
a spoke might be responsible for a single room, 
section, department, or network, depending on the 
needs and topology of the installation. Unlike in the 
original SCEP architecture (Figure 2), sensor networks 
are not connected directly to the middleware but are 
instead bridged to the Knowledge Core SCEP 
architecture via hubs. 

A hub is a component that is responsible for 
interfacing with one or more spokes. To support an 
array of hubs across different installations, the bus is 
both virtual and distributed as described in Figure 3. 
The hub serves as an outlet to further reduce the 
volume that sensors might otherwise place on the bus 
as not every sensor reading needs to be reported. Smart 
installations are notorious for having a sparseness of 
interesting data. For example, sensors monitoring 
activity within a conference room might report two 
times per second every second of every day. However, 
if the conference room is only used when booked and 
that only occurs for a portion of the workday, then 
these sensors only report observed activity about 10% 
of the time. This is not to say that the other 90% of 
sensor readings can be ignored. That the conference 
room is not in use during those other times is pertinent 
if the conference room is to be booked or to assure it 
against intrusion. The sparseness of activity implies 
instead that not all data from the same sensors can be 
weighed equally over time, which is especially 
important when attempting to extrapolate meaning 
from the data. 

For our application, we developed a set of Python 
Flask web services as a proof-of-concept that are 
deployed via Docker containers. Spokes collect sensor 
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data via a RESTful API and then transmit that data to 
their respective hub. Hubs also serve a key role in 
caching sensor data. One of the features in our smart 
constellation that stretches the triple store is the need 
to both maintain sensor data over a large period of time 
and support the reasoning capabilities of the 
Knowledge Core SCEP engine, which are often at 
odds with each other due to the performance overhead 
of RDF. To alleviate these concerns, hubs cache 
incoming sensor data to a local PostgreSQL database 
before reporting data on the virtual middleware bus. 
Each hub has a limited cache of data that only lasts 
long enough to ensure that relevant sensor data is not 
lost. For long term storage, data from the PostgreSQL 
database is uploaded to a cloud database hosted in 
Microsoft Azure. This upload allows sensor data to be 
retrieved later in its raw form. Any sensor data 
accepted into the triple store is first converted to an 
XML triple, which is not required to be a lossless 
conversion. As such, the triple store would not be the 
appropriate place to preserve raw sensor data and 
should be viewed instead as a database for event 
processing rather than as a storage solution. 

3.3. Virtual Middleware BUS 

The Knowledge Core SCEP architecture relies on 
a decentralized, distributed virtual bus for the 
middleware between Knowledge Core SCEP engine 
instances, hubs, and triple stores. The core idea behind 
a virtual bus is that the bus is implemented over an 
application protocol rather than as a single physical 
network or lower-level transport protocol. This in turn 
allows for devices to join and interact with the 
middleware through a simple API that abstracts away 
the topology of the middleware. In our case, we 
implement the virtual middleware bus as a series of 
HTTP endpoints that are deployed via Docker 
containers organized into a connected set of ring 
networks, one for each smart installation. Simple 
events and queries that are emitted on the bus are 
passed to the triple stores while triples are passed to 
the Knowledge Core SCEP engine that requested 
them. 

3.4. RDF Triple Store 

The semantic framework that’s typically 
employed in an SCEP architecture RDF which stores 
semantic triples. RDF was first introduced as part of 
the development of the semantic web. It is a non-
relational graph database that represents triples in 
graph form rather than as columns in a table. For the 
purposes of event processing, each individual triple 
represents a semantic relationship between an event 

and one feature of a sensor measurement, such as the 
sensor’s device identifier or its sensor reading. The 
dimensions of an event are represented as a collection 
of related triples composed into a graph, such as the 
graph presented in Figure 5. For example, the triple 
(sosa:Observation, sosa:madeBySensor, “device1”) 
indicates the existence of a sensor observation made 
by “device1”, where the terms sosa:Observation and 
sosa:madeBySensor are members of the public SOSA 
ontology. Ontological terms can be roughly thought of 
as human-readable tags with pre-defined semantic 
meaning. An advantage of this format is that it allows 
for triples to be extended into other ontologies via any 
of its three members. 

 

Figure 5. PIR motion presence as stored in RDF 

Figure 5 shows a graphical example of a PIR 
motion sensor reading stored in RDF. The root of this 
graph is the service node (left), which exists as a part 
of a triple connecting it to observation (middle) via the 
ontological term virsa-inst: servedObservation. The 
term virsa-inst: servedObservation is an ontological 
term that we’ve defined to reflect that this data is an 
observation from our installation dubbed VIRSA. The 
observation is associated with sensor values by way of 
other predicates. We use predicates from three public 
ontologies SOSA, QUDT, and XSD that can be 
integrated with our own newly defined predicates. The 
sosa:madeBySensor predicate (top-left) identifies the 
device that performed the reading while the 
sosa:observedProperty (top-right) identifies the kind 
of sensor that reported. For a PIR motion sensor, the 
kind of device is indicated by virsa-
inst:MotionPresence, which is a unique term that we 
introduced to differentiate between kinds of sensors. 
The time (bottom) at which that observation was taken 
can be predicated by the sosa:resultTime and stored in 
the xsd:dateTimeStamp format. The result (right) of 
the observation is identified by the sosa:hasResult 
predicate and is typified through the QUDT ontology. 
In this case, the result is a qudt:value stored as an 
xsd:boolean. This graph can be instanced for each PIR 
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motion sensor reading by assigning value literals to the 
device, xsd:dateTimeStamp, and xsd:boolean nodes. 

The contribution of this event specification is an 
ontological representation of a sensor reading that can 
be applied to any sensor within a smart installation. 
The description shown in Figure 5 is particular to a 
motion sensor that outputs Boolean flags. However, 
this graph can be templated to any type of sensor by 
replacing the virsa-inst:MotionPresence with a custom 
tag that identifies the kind of sensor and the XSD type 
that best matches the type of the sensor’s output. This 
specification can be connected to any RDF by 
connecting its service node to the root of the RDF or 
any other appropriate node within its graph. It can also 
be extended into any other ontology by using the 
observation node as the subject of semantic triples that 
predicate into that ontology. We exemplify this by 
extending the PIR motion presence specification into 
a new NIST ontology in Section 4.3. 

The downside to RDF is that queries over the data 
require a graph walk which is significantly slower than 
performing table lookups in a relational database. For 
example, identifying the time of PIR motion sensor 
readings would require walking through a graph 
composed of millions of instances of Figure 5. This in 
turn influences the need to have separate supporting 
relational databases if large amounts of data need to be 
extracted from the database at one time as would be 
common for traditional database access. For our 
implementation, we use the Apache Jena Fuseki 
database which provides a native high performance 
triple store that aims to alleviate the performance 
concerns introduced by RDF. 

4. Knowledge Core SCEP Engine  

The Knowledge Core SCEP engine is where event 
processing takes place within the Knowledge Core 
SCEP architecture. It is partitioned into three layers 
which include the SPARQL query processor, the event 
rules processor, and the policy processor. Each layer 
is responsible for applying a transformation to the 
output of the layer underneath it. The input to the 
Knowledge Core SCEP engine consists of triples like 
those shown in Figure 5. Its final output is a stream of 
alerts that signal violations of organizational policies. 
In our implementation, triples are polled from the RDF 
store every 30 seconds, and events are emitted by the 
Knowledge Core SCEP engine via a web socket, 
which accepts subscriptions through the Knowledge 
Core façade API. 

The novelty of the Knowledge Core SCEP engine 
is its ability to utilize a unique feature of RDF for the 
evaluation of organizational policies. Unlike relational 
databases, RDF supports the open world assumption 

which permits the inferencing of data not currently 
represented within the triple store. The open world 
assumption states that not all data which is valid is 
known. As such, events that are unobserved might still 
have validly occurred and can be inferred. For 
example, when people use conference rooms to host 
meetings, they will often close the door to ensure that 
the meeting is uninterrupted by outside noise and to be 
similarly courteous to others. However, if the same 
conference room is booked for an office party, the door 
may be left open for the full duration of the party. In 
the case of the meeting, attendees would need to open 
and then close the door when joining the meeting, 
which would not be the case in the event of the office 
party. If we assume that door is being monitored, then 
under the open world assumption, it is possible to infer 
that door activity occurred. In smart installations, the 
ways in which people interact with buildings, rooms, 
resources, etc. are dynamic and the absence of data 
should not be held as an indication of the non-
existence of events. 

By leveraging rules of inference, such as the 
inference API available to the Fuseki server, the 
Knowledge Core SCEP engine can better match 
observations to complex events and ultimately to 
organizational policies. By definition, inferred data is 
not known with complete certainty. As such, the 
Knowledge Core SCEP engine couples inference rules 
with a belief network that can assign belief to complex 
events whether or not they include inferred data. The 
result is a set of beliefs in complex events that can be 
combined with the significance of affected 
organizational policies to perform an assessment of 
installation compliance. 

4.1. SPARQL Query Processor 

Figure 6. PIR motion sensor SPARQL query 

The SPARQL query processor is responsible for 
emitting pre-defined SPARQL queries that are used to 
elaborate over triples stored in RDF. Once extracted, 
triples are then composed into complex events, which 

(1) SELECT DISTINCT ?dev ?prop ?val ?time  
  WHERE { 
(2) ?service <virsa-inst:servedObservation> 
    ?obs . 
(3) ?obs <sosa:madeBySensor> ?dev . 
(4) ?obs <sosa:observedProperty> ?prop . 
(5) ?obs <sosa:hasResult> ?result . 
(6) ?result <qudt:Quantity-quantityValue>  
    ?qVal . 
(7) ?qVal <qudt:value> ?val . 
(8) ?obs <sosa:resultTime> ?time . 
(9) FILTER(?time >=  
      "..."^^<xsd:dateTimeStamp>) 
(10) } 
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are compositions of simple events. Figure 6 shows a 
trimmed snippet of a SPARQL query used for 
extracting triples associated with motion sensors. This 
query has been modified to fit within the available 
margins of this paper. The first line (1) of the SPARQL 
query lists which variables are being selected. Each 
variable begins with a question mark, such as ?dev and 
?prop. In this case, we’re looking for unique pairing of 
device name, sensor property, reading value, and 
observation time. The following statement (2-8) give 
constructions of triples that can be matched against the 
RDF graph to construct the values listed in the select 
statement (1). 

For example, the device name is extracted in 
statement (3) using a triple whose subject is ?obs and 
whose predicate is <sosa:madeBySensor> (see Figure 
5). ?obs is a new variable introduced by the prior 
statement (2). With respect to device name, statements 
(1-3) can be interpreted as, select all device names that 
are the name of a sensor whose observation was taken 
within the VIRSA installation. Statement (9) provides 
a filter so that only recent observations are returned. 
The literal “…” is a placeholder for the oldest 
timestamp that should be accepted. 

To construct the complex event for room entry, 
we use the query for motion presence and join its result 
with a similar query for door activity over the same 
time interval. Simple events, triples, and complex 
events are represented in XML. It’s possible that the 
queries might not find any matches, that only one of 
the two queries would find a match, or that available 
observations don’t indicate the existence of an entry 
event. The SPARQL query processor is not required to 
produce complex events that are valid for a given rule. 
The SPARQL query processor emits the result of the 
conjoined queries for the event rules processor to 
evaluate. 

4.2. Event Rules Processor 

Complex events emitted by the SPARQL query 
processor are then matched against pre-defined event 
rules inside of the event rules processor. Given the 
open world assumption, it is possible that complex 
events generated by SPARQL queries that are not well 
formed can still be used to infer missing data. Going 
back to our earlier example, a conference room that’s 
hosting an office party would include several room 
entry events, but only a few of these events might 
involve interaction with the door. As such, complex 
events for room entry might only contain matches 
against motion presence but not door activity. It might 
also be the case that no room entry occurred. The 
responsibility of the event rules processor therefore is 
to match complex events against event rules with an 

associated degree of certainty. To compute the degree 
of certainty of complex events, event rules are 
described in probabilistic event calculus (Skarlatidis et 
al., 2015). 

Using our example, we can describe a room entry 
event as a proposition of simple events involving 
motion exterior to the room, the opening of the door, 
motion interior to the room, and the closing of the 
door. The closing of the door would then be followed 
by interior motion and room activity, assuming that 
there are other sensors in the room. These would be 
the most ideal circumstances for an entry event. 
Similarly, an exit event can be described in the same 
terms but with interior motion occurring before 
exterior motion. This idea can be formally represented 
in probabilistic event calculus as follows. 

 
ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑅𝑅1,𝑅𝑅2),𝑇𝑇2)
⇐ [𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1),𝑇𝑇1)
∧ ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑅𝑅1,𝑅𝑅2),𝑇𝑇1)
∧ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1),𝑇𝑇2)
∧ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2),𝑇𝑇2)
∧ ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑅𝑅1,𝑅𝑅2),𝑇𝑇2)] 

 
The proposition above describes room entry into 

room R2 from room R1 using a connecting door 
between time T1 and time T2. This event is implied by 
the conjunction of the following terms. Each of those 
terms is a separate event that can be observed by a 
sensor. These events are motion detected in R1 at T1 
along with the door between R1 and R2 being opened 
at T1, which is to say that motion is observed outside 
the room being entered while the door is being opened. 
These two events are succeeded by cessation of 
motion in R1 at T2 along with observed motion in R2 
at T2 while the door between R1 and R2 is being 
closed. This is to say that motion outside of the room 
being entered ends once the person enters the room 
and closes the door. The whole proposition can thus be 
read as “an entry event into a room follows from 
someone outside the room opening the door, entering 
the room, and then closing the door.” An exit event 
from room R2 could likewise be modeled as an entry 
event into room R1 from R2. 

 
𝑃𝑃�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋 = 𝑅𝑅2)� 
= 𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐),𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋 = 𝑅𝑅2)� 
∙ 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜),𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋 = 𝑅𝑅1)) 

 
Given the proposition of an entry event into room 

R2, we can then compute its likelihood from the joint 
probability of the observed events. The above 
statement shows how that probability is calculated. 
The likelihood of entry into room R2 follows from the 
product of the joint likelihood of the door being closed 
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with motion in R2 and the joint likelihood of the door 
being opened with motion in room R1. Specifically, 
the joint probability of the door being closed while in 
room R2 is conditioned on the other joint probability, 
but this has been left off for brevity. 

However, it is unclear from the above statement 
how to calculate the likelihood of a room entry event 
should the complex event be ill-formed. If the door is 
not opened or closed, the natural choice would be to 
compute the likelihood of room entry as 0, which 
would not be correct if someone entered the room 
while the door was open. Therefore, we propose to 
include a belief network within the event rules 
processor that can infer the likelihoods of each event 
from relevant evidence. For example, the door open 
and door close events could be inferred with higher 
certainty should there be a prior complex event with 
motion around the door, the door being opened, and 
then left opened. Markov Logic Networks or enhanced 
Bayesian networks can be used to infer the certainty of 
rule matches. The computed certainty can then be 
utilized by the policy processor to assess compliance 
with organizational policies. 

4.3. Policy Processor 

By employing a belief network, it would be 
possible to infer complex events with some degree of 
certainty. Part of the inference would not only be to 
infer whether a complex event might exist despite 
absent simple events but also whether the complex 
event might relate to a pre-defined set of policies. 
Smart installations are often subject to a governing set 
of policies that determine their security requirements. 
Since we are applying the Knowledge Core SCEP 
architecture to a constellation of smart installations, 
we utilize physical access control policies published 
by NIST (2020). This family of policies dictate 
controls that can be further elaborated and applied to a 
physical location. One such relevant policy is “PE-6: 
Monitor Physical Access”, which states that physical 
access to the facility where the system resides should 
be monitored to detect and respond to physical 
security incidents. It includes four control 
enhancements. We use control enhancement 4, which 
states that physical access to a controlled system 
should be monitored in addition to the room that 
contains it or any of its components. To our 
knowledge, no author working with SCEP has sought 
to employ these controls or similar controls. 

To incorporate this family of policies within our 
smart installation, we introduce a simplified NIST 
ontology, which includes predicates for 
<nist:assuresPolicy> and <nist:pe6-4>. We then 
extend the event specification from Figure 5. by 

predicating over the observation node with 
<nist:assuresPolicy> where the object of the predicate 
is <nist:pe6-4>. We similarly expand the SPARQL 
query to capture all <nist:assuresPolicy> triples so that 
they can be included in the construction of complex 
events. The policy processor then assesses compliance 
with organizational policies given the certainty in 
matched complex events that exist within their 
ontology. 

The contribution of this effort lays a foundation 
that could provide human experts with a novel way to 
interact with smart installations. The application of 
policies would allow an expert to visualize their data 
in terms of its impact on potential policies that are or 
would be used to govern the security of their 
installation. For example, entry and exit events go 
from a description of people entering or leaving a 
room to a description of whether or not that room is 
observing fire codes or has been the subject of 
intrusion. Violations of such policies then become 
alerts generated by the Knowledge Core SCEP 
architecture and available for consumption by human 
operators or as justification for autonomous responses. 

5. Future Work  

There are several efforts that have been left for 
future work. One notable challenge within the domain 
of SCEP is rule generation and the relationship 
between formal event rules and SPARQL queries. 
Given the grammatical structure, it might be possible 
to transcompile event rules to SPARQL queries and 
vice versa. Furthermore, given a propensity of data, 
rules could be inferred from the RDF databases across 
the constellation. Similarly, the use of machine 
learning techniques such as LLM's can possibly be 
used to investigate new relationships between simple 
and complex events. Efforts are underway to use the 
ontology of organization policies as it has been applied 
to one smart installation to infer application of that 
ontology to all other installations within the same 
constellation. This would allow for a dynamic 
application of organizational policies that could prove 
extremely useful within smart applications and 
especially digital twins. 

The additional inclusion of organizational 
policies into SCEP presents a significant opportunity 
to assess responses and mitigation strategies in the 
event of failed compliance. It is our intention to apply 
temporal reasoning and risk assessment to the policy 
processor to evaluate possible responses that a system 
could take when organization policies aren’t met. In 
addition, we aim to perform a quantitative analysis of 
novel applications of the proposed Knowledge Core 
SCEP architecture in comparison to other published 
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applications of SCEP architectures, such as those cited 
in this paper. 

6. Conclusion  

In this paper, we introduce the Knowledge Core 
SCEP architecture which is an extension of the 
traditional SCEP architecture to a constellation of 
smart installations with organizational policies. The 
architecture that we propose includes improvements to 
meet the demands of modern sensor networks via a 
distributed, virtual middleware bus with connected 
hub-and-spoke networks. It also includes a novel 
construction of the SCEP engine via an inclusion of a 
policy processor that evaluates complex events within 
the context of pre-defined organizational policies. The 
Knowledge Core SCEP engine includes a belief 
network that can assign a degree of certainty to 
matched complex events that exist within an ontology 
of organization-defined policies. The degree of 
certainty in matched complex events is used to assess 
compliance with organizational policies and generate 
alerts when compliance is not met. With the inclusion 
of future work, this architecture would provide a novel 
way for domain experts to interact with the data 
generated by their smart installations. 
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