
Knowledge Core: An SCEP Architecture for Smart Installations with
Organization-Defined Policies

 Ian Riley, Logan Quirk, Allen Marshall, Jacob Brue, Joe Shymanski, Vincent Gonzales, Rose Gamble

Tandy School of Computer Science,
University of Tulsa,

Tulsa, Oklahoma, USA 74104
ian-riley@utulsa.edu, gamble@utulsa.edu

Abstract
With an increase in smart applications and

ubiquitous IoT computing, it has become increasingly
necessary to investigate available approaches to
processing sensor data. Complex event processing
provides a means of associating sensor measurements
to categories of observed events, such as entry and
occupancy, which are more meaningful to smart
application developers. Recent advancements in
semantic complex event processing (SCEP) provide an
opportunity to evaluate matched events within the
context of organization-defined policies defined as
semantic ontologies. However, research into the
application of SCEP to smart applications is currently
scarce. In this paper, we introduce the Knowledge
Core SCEP architecture which extends the traditional
SCEP architecture to a constellation of smart
installations with organizational policies. The
application of this architecture can provide smart
application developers and maintainers with a novel
means of processing the data generated by their smart
application within a context of what matters to their
organization.

Keywords: Software architecture, CEP, SCEP, Smart
installation, Ontological monitoring.

1. Introduction

The last decade has seen an explosion of smart
applications built on vast sensor networks with the
number of sensors only increasing. This rise in smart
applications provides an opportunity for novel
methods and architectures that can utilize the available
data to produce meaningful alerts. For the last decade,
researchers have been investigating the use of complex
event processing (CEP) (Luckham, 1996) (Schaaf et
al., 2012) to match sensor data to events that are
interesting to application developers and domain
experts. Additional contributions have come in the
form of semantic CEP (SCEP) (Schaaf et al., 2012)

(Teymourian et al., 2009) which can match observed
events to pre-defined ontologies with human-
understandable meaning. SCEP engines give
application developers and their maintainers the
opportunity to identify events spread throughout their
data within a context that matters to their organization.

Despite recent advancements in SCEP, research
into its application to smart domains is scarce. Over
the past decade, few efforts have been made to apply
SCEP to smart applications other than recent
publications concerning smart homes (Vassiliades et al.,
2020) and basic IoT applications (Daoudagh et al.,
2022). These applications are purportedly successful
but not followed by additional research. In addition,
they lack resource and access control policies that are
relevant to a great deal of smart applications that are
subject to security, privacy, and accessibility concerns
that can be monitored by available sensors. With the
growing number of smart applications that include VR
digital twins and semi-autonomous robotic platforms,
it is necessary to investigate novel methods into
extracting semantically meaningful data from sensor
networks.

In this paper, we introduce the Knowledge Core
SCEP architecture which extends the traditional SCEP
architecture to a smart constellation. We define a
smart constellation as a set of distinct smart
installations that can share a limited set of resources
with varying costs-of-use relative to those resources.
Smart installations include any building or residence
that deploys sensors on a monitored network for
safety, security, performance, and accessibility. For
the work of this paper, a smart constellation would
include a collection of two smart university buildings
(indoor) and one smart industrial building (outdoor)
that are intended to have similar sensor networks and
monitoring needs. The installations can share data,
personnel, and equipment, but the availability and
timeliness of these resources vary across locations due
to the physical distances between the installations. The
Knowledge Core SCEP engine has the capability of

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 7665
URI: https://hdl.handle.net/10125/107308
978-0-9981331-7-1
(CC BY-NC-ND 4.0)

assessing matched events within the context of
organizational policies, their significance, and the
resource cost of available responses.

2. Background

CEP was first introduced by Luckham (1996) as
part of the development of Rapide. The work of
Luckham and later collaborators has culminated into
the CEP architecture shown in Figure 1. The CEP
architecture consists of four major components: event
specification, event processing rules, an event
processing engine, and an enterprise integration
backbone. Event specification describes all events that
can take place as well as their interactions with each
other. Event processing rules handle the events by re-
formatting, aggregating, or even generating new
events. The event processing engine executes the rules
for the defined events. Lastly, the enterprise
integration backbone acts as a mediator between the
CEP architecture and the enterprise system to which
it’s deployed.

The original CEP architecture was designed
around raw sensor data being stored as event data in a
relational database. Custom specifications had to be
defined by hand and were often specified in a SQL
derivative. In the two decades since Luckham’s
original paper, several commercial CEP systems have
become available, each touting their own custom SQL
derivative (Alaghbari et al., 2022). These commercial
applications have minor differences between one
another, but none stray too far from Luckham’s
original concept of an event. Although, event
processing has since expanded to include events
related to other IoT initiatives and analytics over
textual, graphical, and video data streams (Dayarathna
& Perera, 2019). Teymourian et al. (2009) later
extended the CEP architecture to utilize a resource
description framework (RDF) based on then current
ideas of the semantic web. This initial development of
SCEP introduced a novel relationship between events
and semantic ontologies that could provide context to
those events. However, event specification remained a
key challenge that only increased in complexity with
the introduction of semantic ontologies, such as OWL.
The initial approach to this challenge was yet again
another SQL-like specification language called
SPARQL, which is the domain specific language for
querying RDF databases.

At the same time, other authors were pursuing
formal notations for representing observable events.
Broda et al. (2009) developed SAGE, a monitoring
and control system that employed event calculus to
design a specification of events to be monitored by the
system. Event calculus extends first order logic to

model temporal relationships of events as time points
and fluents, which hold values that can change over
time. This in turn allows an event or sequence of
events to be modeled as changes to a fluent over
successive time points. Skarlatidis et al. (2015)
extended these notions into probabilistic event
calculus by introducing a mapping between
propositions in event calculus and statements of
conditional probabilities. In their work, the likelihood
of each proposition was evaluated using a Markov
Logic Network.

Figure 1. CEP architecture (Schaaf et al., 2012)

More recently, Patkos et al. (2016) have
employed these efforts within SCEP to model the
likelihood of complex events using an enhanced
Bayesian network. Their SCEP architecture was
deployed within the context of a smart home to assist
physically challenged individuals with daily activities.
Their efforts show that probabilistic event calculus and
belief networks can be employed within an SCEP
architecture to ascertain the likelihood that an event is
occurring. It is one of few efforts that have been taken
to incorporate SCEP within the wider context of IoT.
Daoudagh et al. (2022) introduce DAEMON, an
ontological approach for monitoring IoT cyber-
security. Their architecture includes an SCEP engine
to match against known malicious and anomalous
events that threaten the security of their IoT devices.

Based on our research into the literature, it is our
opinion that there are no readily available surveys of
recent applications of SCEP architectures or
applications apart from efforts taken to survey general
applications of event processing (Dayarathna &
Perera, 2019). It is therefore our understanding that
SCEP has not been applied to a smart installation other
than a smart home. Furthermore, many smart
installations deploy sensors as a means of assuring the
security, privacy, and accessibility of the facility.
These properties can be encoded as organizational
policies, such as those published by the National
Institute of Standards and Technology (NIST). NIST

Page 7666

publishes guidelines for families of cyber-physical
controls with organization defined enhancements. The
published guidelines on the family of physical controls
(National Institute of Standards and Technology
[NIST], 2020) serves as an appropriate model for
smart installation policies and is utilized within US
critical infrastructure. SCEP is a highly applicable
technology for processing observed events that impact
organizational policies but research to that end is
scarce. Further research is needed to extend the SCEP
architecture to smart installations with organizational
policies, which is the aim of this paper.

3. Knowledge Core Architecture

The SCEP architecture introduced by Teymourian
et al. (2009) can be seen in Figure 2. This architecture
was intended to be a general improvement upon the
CEP architecture both in its more modern design (for
2009) and its inclusion of a semantic framework. The
architecture is broken into two parts, bridged together
by middleware, which could utilize any transport
protocol. The semantic CEP engine is broken into
three different parts. The state processor determines
the initial state of the event processing, based on the
simple event stream. This is used by the rule engine to
determine what subsequent information is needed to
warrant the generation of a complex event. These
event requirements are handled by a query processor
which crafts queries responsible for retrieving the
necessary information. The queries are handled by the
triple store adapter which consults two components:
the event history and the knowledge base
ontologies/rules. The event history contains the
previous simple events while the knowledge base
contains information over the rules themselves,
represented in a composite ontology.

The SCEP architecture, like the CEP architecture
before it, is highly applicable to applications that
involve a sensor network (Broda et al., 2009)
(Daoudagh et al., 2022) in which notable (or
anomalous) events are drawn from a combination of
sources rather than just one individual sensor. In the
domain of CEP and SCEP, raw sensor data is
categorized into a discrete set of simple events. These
simple events are the atomic units of the SCEP
architecture and are stored as triples in the SCEP triple
store. As seen on left-hand side of Figure 2, the
original SCEP architecture proposes that sensors
would transmit data on an integrating middleware bus
connected to the triple store (bottom-right) and SCEP
engine (top-right). To better accommodate smart
applications today, this integrating middleware bus
requires support from load balancers that can reduce
the load on the bus from the array of available sensors.

Otherwise, the bus becomes clogged and the SCEP
engine cannot process queries against the triple store
in a timely manner.

Figure 2. SCEP architecture (Schaaf et al., 2012)

Smart installations, such as those employed in this
paper, are commonly cited as a use case for both the
CEP and SCEP architectures. However, the number of
demonstrable use cases in related literature is very
limited. Notable examples include smart homes
(Vassiliades et al., 2020) and other basic IoT
applications (Daoudagh et al., 2022). The goal of these
previous applications was to determine if a monitored
user is engaging in one of a set of pre-defined
activities. The applications lack resource and access
control policies that govern how users engage with the
installation as well as the function of the SCEP system.
Without these policies, applications of SCEP
architectures are limited to the detection of events
without an awareness of the greater significance that
those events might hold given the context in which
they occur.

When policies are applied to an installation, the
same event can have a different meaning depending on
which policies it impacts. Entry into a room can be
insignificant ingress, a violation of fire codes, an
intrusion, or a point-of-interest depending on instituted
policies. While policies may differ depending on the
installation, a constellation still requires consistency in
its representation of events across connected
installations to allow for potential adaptations and the
inferred extension of policies from one installation to
another. Our approach to the SCEP architecture has
the potential to capture the significance that policies
bear in the monitoring and maintenance of a smart
installation within a smart constellation.

Our research use cases work with smart
installations that target more realistic deployments of

Page 7667

sensor networks to allow for intelligent decision
making. Thus, the smart installations are subject to
policies that dictate installation use and performance,
such as the security policies introduced by NIST
(2020). We introduce an extended SCEP architecture
capable of evaluating whether monitored activity
complies with or contradicts an installation’s policies,
with an intent to generate alerts when the latter occurs.
One of the primary benefits of these alerts is the ability
to connect sensors and their data to the wider context
of the organization’s goals and the relative
significance of those goals. For example, the
occupancy of a room has more significant meaning if
room activity is viewed under the lens of a possible
fire or an on-campus intruder. Allowing for variation
in policy significance is the foundation of a system that
can justify autonomous or semi-autonomous
responses, such as those outlined in the NIST (2021),
within a context that humans can understand. When
such responses involve a variation of resource cost,
human-explainable justification should be required so
that an appropriate cost is paid for an equitable and
revisable outcome.

Figure 3. Knowledge Core SCEP architecture

Figure 3 shows our extended Knowledge Core
SCEP architecture deployed for our smart
constellation use case. In our initial investigation into
applying the original SCEP architecture (Figure 3), we
encountered several challenges that needed to be
addressed from an architectural perspective. The most
significant changes from Figure 2 to Figure 3 are how
sensors are integrated into the architecture, the shift to
an explicit distributed virtual middleware bus, and the
introduction of a policy processor. These changes
reflect the modern demands of a smart application
both in terms of the volume of data that sensors output
and the distribution of load required to handle that
volume. While Figure 3 shows a single instance of the
Knowledge Core SCEP engine, additional instances

can be constructed and connected via the virtual
middleware bus. The relocation of events and the
inclusion of a policy processor further illuminates the
role that events have in the engine and their eventual
association with policies that dictate their significance.

The edge of the Knowledge Core SCEP
architecture as shown in Figure 3 consists of a wide
array of sensors and spoke networks (top-left). These
networks are intended to be customizable and
unfettered by the demands of the Knowledge Core
SCEP engine. Sensors in these networks can be
installed and configured in whatever manner is most
appropriate for the sensor and what it is monitoring.
The only requirement is that sensors in the same sensor
network be connected to a single spoke, which bridges
the sensor network to the Knowledge Core SCEP
engine via a hub (bottom-left). This topology is
commonly known as a hub-and-spoke network. The
hub acts as a mediator between the sensor networks
and the rest of the Knowledge Core SCEP architecture.
The hub is also responsible for rate limiting, filtering,
and caching sensor data as appropriate for the
installation. Raw sensor data collected within the hub
is then output to the virtual middleware bus (middle-
right) as a collection of simple events. These simple
events travel along the virtual middleware bus to a
collection of triple stores (bottom-right), which store
simple events in a semantic framework as semantic
subject-predicate-object triples. It is expected that
each installation would have one hub and one triple
store, but additional hubs and stores can be added to
accommodate larger and/or more demanding
installations.

The virtual middleware bus connects instances of
the Knowledge Core SCEP engine (top-right) to the
triple stores that possess the semantic data. Triples in
the RDF triple store are pulled into the engine via the
SPARQL query processor. SPARQL, developed for
use in the semantic web, employs SQL-like syntax to
describe semantic queries to the RDF to extrapolate
over which triples should be extracted (see Section
4.1). Triples drawn into the query processor are then
restructured as complex events (see Section 4.1) and
output to the event rules processor.

The event rules processor is a consolidation of the
state processor and the rules engine from the original
SCEP architecture shown in Figure 2. The event rules
processor matches complex events to rules specified in
probabilistic event calculus (Skarlatidis et al., 2015)
(see Section 4.2). This notation in combination with a
belief network (Patkos et al., 2016) allows for complex
events to be assigned a degree of certainty that can be
further combined to assign a certainty to the rule itself.
These weighted rules are then utilized by the policy
processor (see Section 4.3) which matches the rules

Page 7668

against related policies to determine the certainty with
which policies have been satisfied or violated. The
violation of policies results in alerts that can be pushed
out from the Knowledge Core engine through its
façade API (top).

3.1. Sensor Networks

Smart applications typically involve a large
volume of data due to the number of sensors employed
and the frequency at which those sensors report. For
our application, we deploy sensors that combine
humidity, temperature, infrared-motion, and LEDs
into one Arduino device that communicates over Wi-
Fi or a USB connection. We employ these sensors in
combination with others, such as magnetic door
sensors and O2/CO2 sensors. A single room of a smart
installation might contain at least a dozen sensors that
report twice per second via Wi-Fi or to a nearby
machine over USB. An installation can contain dozens
of rooms or regions that would need to be monitored
this way. To accommodate the load that these sensors
would place on an integrating middleware bus (Figure
2), we’ve connected them to the Knowledge Core
SCEP architecture via a hub-and-spoke network
topology as seen on the left of Figure 3.

Figure 4. Arduino sensor configuration

A diagram of the custom configuration of our
sensors and their pin connections to an Adafruit
Breakout board (middle) are shown in Figure 4. The
Arduino sensor includes a DHT11/DHT22 sensor
(right) to measure temperature and humidity, a
Pyroelectric infrared (PIR) motion sensor (left), and
LEDs (top) for visual indicators such as when motion
is detected (red) and when the device is connected

(blue). The sensor does not include a sufficiently
accurate onboard timer, so the Arduino must be synced
with a network time protocol (NTP) server via another
machine that can assign timestamps to readings. For
our experiments, we have written a simple Python
script to monitor serial connections on a nearby Linux
machine that reports timestamped measurements to
the spoke.

3.2. Sensor Spokes and Hubs

A spoke is a component that is responsible for
accepting, combining, and retransmitting sensor data.
Spokes are useful for distributing the number of
required connections across separate machines. They
also serve as an endpoint to minimize the volume of
edge data. The latter case is common in smart city
applications and fog computing where a high degree
of sensors exist. The spokes in our architecture are
responsible for directly interfacing with regions of
sensors. A single installation could have one or more
spokes depending on the size of the installation, where
a spoke might be responsible for a single room,
section, department, or network, depending on the
needs and topology of the installation. Unlike in the
original SCEP architecture (Figure 2), sensor networks
are not connected directly to the middleware but are
instead bridged to the Knowledge Core SCEP
architecture via hubs.

A hub is a component that is responsible for
interfacing with one or more spokes. To support an
array of hubs across different installations, the bus is
both virtual and distributed as described in Figure 3.
The hub serves as an outlet to further reduce the
volume that sensors might otherwise place on the bus
as not every sensor reading needs to be reported. Smart
installations are notorious for having a sparseness of
interesting data. For example, sensors monitoring
activity within a conference room might report two
times per second every second of every day. However,
if the conference room is only used when booked and
that only occurs for a portion of the workday, then
these sensors only report observed activity about 10%
of the time. This is not to say that the other 90% of
sensor readings can be ignored. That the conference
room is not in use during those other times is pertinent
if the conference room is to be booked or to assure it
against intrusion. The sparseness of activity implies
instead that not all data from the same sensors can be
weighed equally over time, which is especially
important when attempting to extrapolate meaning
from the data.

For our application, we developed a set of Python
Flask web services as a proof-of-concept that are
deployed via Docker containers. Spokes collect sensor

Page 7669

data via a RESTful API and then transmit that data to
their respective hub. Hubs also serve a key role in
caching sensor data. One of the features in our smart
constellation that stretches the triple store is the need
to both maintain sensor data over a large period of time
and support the reasoning capabilities of the
Knowledge Core SCEP engine, which are often at
odds with each other due to the performance overhead
of RDF. To alleviate these concerns, hubs cache
incoming sensor data to a local PostgreSQL database
before reporting data on the virtual middleware bus.
Each hub has a limited cache of data that only lasts
long enough to ensure that relevant sensor data is not
lost. For long term storage, data from the PostgreSQL
database is uploaded to a cloud database hosted in
Microsoft Azure. This upload allows sensor data to be
retrieved later in its raw form. Any sensor data
accepted into the triple store is first converted to an
XML triple, which is not required to be a lossless
conversion. As such, the triple store would not be the
appropriate place to preserve raw sensor data and
should be viewed instead as a database for event
processing rather than as a storage solution.

3.3. Virtual Middleware BUS

The Knowledge Core SCEP architecture relies on
a decentralized, distributed virtual bus for the
middleware between Knowledge Core SCEP engine
instances, hubs, and triple stores. The core idea behind
a virtual bus is that the bus is implemented over an
application protocol rather than as a single physical
network or lower-level transport protocol. This in turn
allows for devices to join and interact with the
middleware through a simple API that abstracts away
the topology of the middleware. In our case, we
implement the virtual middleware bus as a series of
HTTP endpoints that are deployed via Docker
containers organized into a connected set of ring
networks, one for each smart installation. Simple
events and queries that are emitted on the bus are
passed to the triple stores while triples are passed to
the Knowledge Core SCEP engine that requested
them.

3.4. RDF Triple Store

The semantic framework that’s typically
employed in an SCEP architecture RDF which stores
semantic triples. RDF was first introduced as part of
the development of the semantic web. It is a non-
relational graph database that represents triples in
graph form rather than as columns in a table. For the
purposes of event processing, each individual triple
represents a semantic relationship between an event

and one feature of a sensor measurement, such as the
sensor’s device identifier or its sensor reading. The
dimensions of an event are represented as a collection
of related triples composed into a graph, such as the
graph presented in Figure 5. For example, the triple
(sosa:Observation, sosa:madeBySensor, “device1”)
indicates the existence of a sensor observation made
by “device1”, where the terms sosa:Observation and
sosa:madeBySensor are members of the public SOSA
ontology. Ontological terms can be roughly thought of
as human-readable tags with pre-defined semantic
meaning. An advantage of this format is that it allows
for triples to be extended into other ontologies via any
of its three members.

Figure 5. PIR motion presence as stored in RDF

Figure 5 shows a graphical example of a PIR
motion sensor reading stored in RDF. The root of this
graph is the service node (left), which exists as a part
of a triple connecting it to observation (middle) via the
ontological term virsa-inst: servedObservation. The
term virsa-inst: servedObservation is an ontological
term that we’ve defined to reflect that this data is an
observation from our installation dubbed VIRSA. The
observation is associated with sensor values by way of
other predicates. We use predicates from three public
ontologies SOSA, QUDT, and XSD that can be
integrated with our own newly defined predicates. The
sosa:madeBySensor predicate (top-left) identifies the
device that performed the reading while the
sosa:observedProperty (top-right) identifies the kind
of sensor that reported. For a PIR motion sensor, the
kind of device is indicated by virsa-
inst:MotionPresence, which is a unique term that we
introduced to differentiate between kinds of sensors.
The time (bottom) at which that observation was taken
can be predicated by the sosa:resultTime and stored in
the xsd:dateTimeStamp format. The result (right) of
the observation is identified by the sosa:hasResult
predicate and is typified through the QUDT ontology.
In this case, the result is a qudt:value stored as an
xsd:boolean. This graph can be instanced for each PIR

Page 7670

motion sensor reading by assigning value literals to the
device, xsd:dateTimeStamp, and xsd:boolean nodes.

The contribution of this event specification is an
ontological representation of a sensor reading that can
be applied to any sensor within a smart installation.
The description shown in Figure 5 is particular to a
motion sensor that outputs Boolean flags. However,
this graph can be templated to any type of sensor by
replacing the virsa-inst:MotionPresence with a custom
tag that identifies the kind of sensor and the XSD type
that best matches the type of the sensor’s output. This
specification can be connected to any RDF by
connecting its service node to the root of the RDF or
any other appropriate node within its graph. It can also
be extended into any other ontology by using the
observation node as the subject of semantic triples that
predicate into that ontology. We exemplify this by
extending the PIR motion presence specification into
a new NIST ontology in Section 4.3.

The downside to RDF is that queries over the data
require a graph walk which is significantly slower than
performing table lookups in a relational database. For
example, identifying the time of PIR motion sensor
readings would require walking through a graph
composed of millions of instances of Figure 5. This in
turn influences the need to have separate supporting
relational databases if large amounts of data need to be
extracted from the database at one time as would be
common for traditional database access. For our
implementation, we use the Apache Jena Fuseki
database which provides a native high performance
triple store that aims to alleviate the performance
concerns introduced by RDF.

4. Knowledge Core SCEP Engine

The Knowledge Core SCEP engine is where event
processing takes place within the Knowledge Core
SCEP architecture. It is partitioned into three layers
which include the SPARQL query processor, the event
rules processor, and the policy processor. Each layer
is responsible for applying a transformation to the
output of the layer underneath it. The input to the
Knowledge Core SCEP engine consists of triples like
those shown in Figure 5. Its final output is a stream of
alerts that signal violations of organizational policies.
In our implementation, triples are polled from the RDF
store every 30 seconds, and events are emitted by the
Knowledge Core SCEP engine via a web socket,
which accepts subscriptions through the Knowledge
Core façade API.

The novelty of the Knowledge Core SCEP engine
is its ability to utilize a unique feature of RDF for the
evaluation of organizational policies. Unlike relational
databases, RDF supports the open world assumption

which permits the inferencing of data not currently
represented within the triple store. The open world
assumption states that not all data which is valid is
known. As such, events that are unobserved might still
have validly occurred and can be inferred. For
example, when people use conference rooms to host
meetings, they will often close the door to ensure that
the meeting is uninterrupted by outside noise and to be
similarly courteous to others. However, if the same
conference room is booked for an office party, the door
may be left open for the full duration of the party. In
the case of the meeting, attendees would need to open
and then close the door when joining the meeting,
which would not be the case in the event of the office
party. If we assume that door is being monitored, then
under the open world assumption, it is possible to infer
that door activity occurred. In smart installations, the
ways in which people interact with buildings, rooms,
resources, etc. are dynamic and the absence of data
should not be held as an indication of the non-
existence of events.

By leveraging rules of inference, such as the
inference API available to the Fuseki server, the
Knowledge Core SCEP engine can better match
observations to complex events and ultimately to
organizational policies. By definition, inferred data is
not known with complete certainty. As such, the
Knowledge Core SCEP engine couples inference rules
with a belief network that can assign belief to complex
events whether or not they include inferred data. The
result is a set of beliefs in complex events that can be
combined with the significance of affected
organizational policies to perform an assessment of
installation compliance.

4.1. SPARQL Query Processor

Figure 6. PIR motion sensor SPARQL query

The SPARQL query processor is responsible for
emitting pre-defined SPARQL queries that are used to
elaborate over triples stored in RDF. Once extracted,
triples are then composed into complex events, which

(1) SELECT DISTINCT ?dev ?prop ?val ?time
 WHERE {
(2) ?service <virsa-inst:servedObservation>
 ?obs .
(3) ?obs <sosa:madeBySensor> ?dev .
(4) ?obs <sosa:observedProperty> ?prop .
(5) ?obs <sosa:hasResult> ?result .
(6) ?result <qudt:Quantity-quantityValue>
 ?qVal .
(7) ?qVal <qudt:value> ?val .
(8) ?obs <sosa:resultTime> ?time .
(9) FILTER(?time >=
 "..."^^<xsd:dateTimeStamp>)
(10) }

Page 7671

are compositions of simple events. Figure 6 shows a
trimmed snippet of a SPARQL query used for
extracting triples associated with motion sensors. This
query has been modified to fit within the available
margins of this paper. The first line (1) of the SPARQL
query lists which variables are being selected. Each
variable begins with a question mark, such as ?dev and
?prop. In this case, we’re looking for unique pairing of
device name, sensor property, reading value, and
observation time. The following statement (2-8) give
constructions of triples that can be matched against the
RDF graph to construct the values listed in the select
statement (1).

For example, the device name is extracted in
statement (3) using a triple whose subject is ?obs and
whose predicate is <sosa:madeBySensor> (see Figure
5). ?obs is a new variable introduced by the prior
statement (2). With respect to device name, statements
(1-3) can be interpreted as, select all device names that
are the name of a sensor whose observation was taken
within the VIRSA installation. Statement (9) provides
a filter so that only recent observations are returned.
The literal “…” is a placeholder for the oldest
timestamp that should be accepted.

To construct the complex event for room entry,
we use the query for motion presence and join its result
with a similar query for door activity over the same
time interval. Simple events, triples, and complex
events are represented in XML. It’s possible that the
queries might not find any matches, that only one of
the two queries would find a match, or that available
observations don’t indicate the existence of an entry
event. The SPARQL query processor is not required to
produce complex events that are valid for a given rule.
The SPARQL query processor emits the result of the
conjoined queries for the event rules processor to
evaluate.

4.2. Event Rules Processor

Complex events emitted by the SPARQL query
processor are then matched against pre-defined event
rules inside of the event rules processor. Given the
open world assumption, it is possible that complex
events generated by SPARQL queries that are not well
formed can still be used to infer missing data. Going
back to our earlier example, a conference room that’s
hosting an office party would include several room
entry events, but only a few of these events might
involve interaction with the door. As such, complex
events for room entry might only contain matches
against motion presence but not door activity. It might
also be the case that no room entry occurred. The
responsibility of the event rules processor therefore is
to match complex events against event rules with an

associated degree of certainty. To compute the degree
of certainty of complex events, event rules are
described in probabilistic event calculus (Skarlatidis et
al., 2015).

Using our example, we can describe a room entry
event as a proposition of simple events involving
motion exterior to the room, the opening of the door,
motion interior to the room, and the closing of the
door. The closing of the door would then be followed
by interior motion and room activity, assuming that
there are other sensors in the room. These would be
the most ideal circumstances for an entry event.
Similarly, an exit event can be described in the same
terms but with interior motion occurring before
exterior motion. This idea can be formally represented
in probabilistic event calculus as follows.

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑅𝑅1,𝑅𝑅2),𝑇𝑇2)
⇐ [𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1),𝑇𝑇1)
∧ ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑅𝑅1,𝑅𝑅2),𝑇𝑇1)
∧ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1),𝑇𝑇2)
∧ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2),𝑇𝑇2)
∧ ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑅𝑅1,𝑅𝑅2),𝑇𝑇2)]

The proposition above describes room entry into

room R2 from room R1 using a connecting door
between time T1 and time T2. This event is implied by
the conjunction of the following terms. Each of those
terms is a separate event that can be observed by a
sensor. These events are motion detected in R1 at T1
along with the door between R1 and R2 being opened
at T1, which is to say that motion is observed outside
the room being entered while the door is being opened.
These two events are succeeded by cessation of
motion in R1 at T2 along with observed motion in R2
at T2 while the door between R1 and R2 is being
closed. This is to say that motion outside of the room
being entered ends once the person enters the room
and closes the door. The whole proposition can thus be
read as “an entry event into a room follows from
someone outside the room opening the door, entering
the room, and then closing the door.” An exit event
from room R2 could likewise be modeled as an entry
event into room R1 from R2.

𝑃𝑃�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋 = 𝑅𝑅2)�
= 𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐),𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋 = 𝑅𝑅2)�
∙ 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜),𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋 = 𝑅𝑅1))

Given the proposition of an entry event into room

R2, we can then compute its likelihood from the joint
probability of the observed events. The above
statement shows how that probability is calculated.
The likelihood of entry into room R2 follows from the
product of the joint likelihood of the door being closed

Page 7672

with motion in R2 and the joint likelihood of the door
being opened with motion in room R1. Specifically,
the joint probability of the door being closed while in
room R2 is conditioned on the other joint probability,
but this has been left off for brevity.

However, it is unclear from the above statement
how to calculate the likelihood of a room entry event
should the complex event be ill-formed. If the door is
not opened or closed, the natural choice would be to
compute the likelihood of room entry as 0, which
would not be correct if someone entered the room
while the door was open. Therefore, we propose to
include a belief network within the event rules
processor that can infer the likelihoods of each event
from relevant evidence. For example, the door open
and door close events could be inferred with higher
certainty should there be a prior complex event with
motion around the door, the door being opened, and
then left opened. Markov Logic Networks or enhanced
Bayesian networks can be used to infer the certainty of
rule matches. The computed certainty can then be
utilized by the policy processor to assess compliance
with organizational policies.

4.3. Policy Processor

By employing a belief network, it would be
possible to infer complex events with some degree of
certainty. Part of the inference would not only be to
infer whether a complex event might exist despite
absent simple events but also whether the complex
event might relate to a pre-defined set of policies.
Smart installations are often subject to a governing set
of policies that determine their security requirements.
Since we are applying the Knowledge Core SCEP
architecture to a constellation of smart installations,
we utilize physical access control policies published
by NIST (2020). This family of policies dictate
controls that can be further elaborated and applied to a
physical location. One such relevant policy is “PE-6:
Monitor Physical Access”, which states that physical
access to the facility where the system resides should
be monitored to detect and respond to physical
security incidents. It includes four control
enhancements. We use control enhancement 4, which
states that physical access to a controlled system
should be monitored in addition to the room that
contains it or any of its components. To our
knowledge, no author working with SCEP has sought
to employ these controls or similar controls.

To incorporate this family of policies within our
smart installation, we introduce a simplified NIST
ontology, which includes predicates for
<nist:assuresPolicy> and <nist:pe6-4>. We then
extend the event specification from Figure 5. by

predicating over the observation node with
<nist:assuresPolicy> where the object of the predicate
is <nist:pe6-4>. We similarly expand the SPARQL
query to capture all <nist:assuresPolicy> triples so that
they can be included in the construction of complex
events. The policy processor then assesses compliance
with organizational policies given the certainty in
matched complex events that exist within their
ontology.

The contribution of this effort lays a foundation
that could provide human experts with a novel way to
interact with smart installations. The application of
policies would allow an expert to visualize their data
in terms of its impact on potential policies that are or
would be used to govern the security of their
installation. For example, entry and exit events go
from a description of people entering or leaving a
room to a description of whether or not that room is
observing fire codes or has been the subject of
intrusion. Violations of such policies then become
alerts generated by the Knowledge Core SCEP
architecture and available for consumption by human
operators or as justification for autonomous responses.

5. Future Work

There are several efforts that have been left for
future work. One notable challenge within the domain
of SCEP is rule generation and the relationship
between formal event rules and SPARQL queries.
Given the grammatical structure, it might be possible
to transcompile event rules to SPARQL queries and
vice versa. Furthermore, given a propensity of data,
rules could be inferred from the RDF databases across
the constellation. Similarly, the use of machine
learning techniques such as LLM's can possibly be
used to investigate new relationships between simple
and complex events. Efforts are underway to use the
ontology of organization policies as it has been applied
to one smart installation to infer application of that
ontology to all other installations within the same
constellation. This would allow for a dynamic
application of organizational policies that could prove
extremely useful within smart applications and
especially digital twins.

The additional inclusion of organizational
policies into SCEP presents a significant opportunity
to assess responses and mitigation strategies in the
event of failed compliance. It is our intention to apply
temporal reasoning and risk assessment to the policy
processor to evaluate possible responses that a system
could take when organization policies aren’t met. In
addition, we aim to perform a quantitative analysis of
novel applications of the proposed Knowledge Core
SCEP architecture in comparison to other published

Page 7673

applications of SCEP architectures, such as those cited
in this paper.

6. Conclusion

In this paper, we introduce the Knowledge Core
SCEP architecture which is an extension of the
traditional SCEP architecture to a constellation of
smart installations with organizational policies. The
architecture that we propose includes improvements to
meet the demands of modern sensor networks via a
distributed, virtual middleware bus with connected
hub-and-spoke networks. It also includes a novel
construction of the SCEP engine via an inclusion of a
policy processor that evaluates complex events within
the context of pre-defined organizational policies. The
Knowledge Core SCEP engine includes a belief
network that can assign a degree of certainty to
matched complex events that exist within an ontology
of organization-defined policies. The degree of
certainty in matched complex events is used to assess
compliance with organizational policies and generate
alerts when compliance is not met. With the inclusion
of future work, this architecture would provide a novel
way for domain experts to interact with the data
generated by their smart installations.

Acknowledgement. This material is based upon
work supported by the Engineer Research and
Development Center - Information Technology
Laboratory (ERDC-ITL) under Contract No.
W912HZ23C0009.

7. References

Alaghbari, K. A., Saad, M. H. M., Hussain, A., & Alam, M.
R. (2022). Complex event processing for physical and
cyber security in datacentres - Recent progress,
challenges and recommendations. Journal of cloud
computing, 11(1), Article 65.
https://doi.org/10.1186/s13677-022-00338-x

Broda, K., Clark, K., Miller, R., & Russo, A. (2009). SAGE:
A logical agent-based environment monitoring and
control system. In Tscheligi, M., Ruyter, B.,
Markopoulus, P., Wichert, R., Mirlacher, T.,
Meschterjakov, A., & Reitberger, W. (Eds.), Lecture
notes in computer science: Vol. 5859. Ambient
intelligence (pp. 112–117). Springer.
https://doi.org/10.1007/978-3-642-05408-2_14

Daoudagh, S., Marchetti, E., Calabrò, A., Ferrada, F.,
Oliveira, A. I., Barata, J., Peres, R., & Marques, F.
(2022). An ontology-based solution for monitoring IoT
cybersecurity. In Camarinha-Matos, L. M., Ribeiro, L.,
& Strous, L. (Eds.), IFIP advances in information and
communication technology: Vol. 665. Internet of
things. IoT through a multi-disciplinary perspective

(pp. 158–176). Springer. https://doi.org/10.1007/978-
3-031-18872-5_10

Dayarathna, M., & Perera, S. (2019). Recent advancements
in event processing. ACM computing surveys, 51(2),
Article 33. https://doi.org/10.1145/3170432

Luckham, D. C. (1996). Rapide: A language and toolset for
simulation of distributed systems by partial orderings
of events. Stanford University.
http://infolab.stanford.edu/pub/cstr/reports/csl/tr/96/70
5/CSL-TR-96-705.pdf

National Institute of Standards and Technology. (2020).
Security and privacy controls for information systems
and organizations. (NIST Special Publication 800-53,
Revision 5). U.S. Department of Commerce.
https://doi.org/10.6028/NIST.SP.800-53r5

National Institute of Standards and Technology. (2021).
Developing cyber-resilient systems: A systems security
engineering approach. (NIST Special Publication 800-
160, Volume 2 Revision 1). U.S. Department of
Commerce. https://doi.org/10.6028/NIST.SP.800-
160v2r1

Patkos, T., Plexousakis, D., Chibani, A., & Amirat, Y.
(2016). An event calculus production rule system for
reasoning in dynamic and uncertain domains. Theory
and practice of logic programming, 16(3), 325–352.
https://doi.org/10.1017/S1471068416000065

Schaaf, M., Grivas, S. G., Ackermann, D., Diekmann, A.,
Koschel, A., & Astrova, I. (2012). Semantic complex
event processing. In Mastorakis, N., Mladenov, V., &
Bojkovic, Z. (Eds.), Proceedings of the 5th WSEAS
congress on applied computing conference, and
proceedings of the 1st international conference on
biologically inspired computation (pp. 38–43). World
Scientific and Engineering Academy and Society.
http://www.wseas.us/e-
library/conferences/2012/Algarve/BICA/BICA-05.pdf

Skarlatidis, A., Paliouras, G., Artikis, A., & Vouros, G. A.
(2015). Probabilistic event calculus for event
recognition. ACM transactions on computational logic,
16(2), Article 11. https://doi.org/10.1145/2699916

Teymourian, K., Streibel, O., Paschke, A., Alnemr, R., &
Meinel, C. (2009). Towards semantic event-driven
systems. In Al-Agha, K., Badra, M., & Newby, G. B.
(Eds.), 2009 3rd international conference on new
technologies, mobility and security (pp. 347–352).
Institute of Electrical and Electronics Engineers.
https://doi.org/10.1109/NTMS.2009.5384713

Vassiliades, A., Bassiliades, N., Gouidis F., & Patkos, T.
(2020). A knowledge retrieval framework for
household objects and actions with external knowledge.
In Blomqvist, E., Groth, P., de Boer, V., Pellegrini, T.,
Alam, M., Käfer, T., Kieseberg, P., Kirrane, S.,
Meroño-Peñuela, A., Pandit, H. J. (Eds.), Lecture notes
in computer science: Vol. 12378. Semantic systems. In
the era of knowledge graphs (pp. 36–52). Springer.
https://doi.org/10.1007/978-3-030-59833-4_3

Page 7674

	1. Introduction
	2. Background
	3. Knowledge Core Architecture
	3.1. Sensor Networks
	3.2. Sensor Spokes and Hubs
	3.3. Virtual Middleware BUS
	3.4. RDF Triple Store

	4. Knowledge Core SCEP Engine
	4.1. SPARQL Query Processor
	4.2. Event Rules Processor
	4.3. Policy Processor

	5. Future Work
	6. Conclusion
	7. References

