
Making Team Projects with Novices More Effective: An Experience Report

Carlos Paradis
University of Hawaii at Manoa

cvas@hawaii.edu

Rick Kazman
University at Hawaii at Manoa

kazman@hawaii.edu

Anthony Peruma
University of Hawaii at Manoa

peruma@hawaii.edu

Abstract

Computer Science capstone projects have shifted
to offer more opportunities for students to engage
with stakeholders as a team to simulate a real-life
work scenario. Most works focus on the class design
modifications and requirements for both students and
stakeholders. However, discussions on how said
requirements are instantiated in a concrete software
development process that can accommodate both
students and stakeholders are only briefly presented, and
challenges are presented from a class standpoint. This
work is an experience of one project in the capstone
course in the Information and Computer Sciences
Department at the University of Hawaii at Manoa.

1. Introduction

To adequately equip computer science students for
success in the industry, it is crucial to offer them
the chance to apply their theoretical knowledge and
practical skills to real-world projects, thereby gaining
firsthand experience and insights into the challenges
and requirements of the industry, fostering a deeper
understanding of its dynamics (Tenhunen et al. (2023)).
To this extent, most computer science departments
in higher educational institutes include a mandatory
Capstone Course for final-year undergraduate students
that span across one or two semesters.

Like other institutes, the Information and Computer
Sciences Department at the University of Hawai‘i at
Mānoa provides students the opportunity to practice
their software engineering skills through the capstone
project course - ICS 4961. Through this course, students
are grouped into small teams and work with a project
sponsor in building or enhancing a software application.

1https://www.ics.hawaii.edu/academics/capstone-project/

In this paper, we report on the lessons learned in one
such project involving Kaiaulu—–an open-source tool
for mining open-source software repositories.

Project courses in computer science offer a broad
range of benefits that contribute to a well-rounded
education and practical skill development. They require
students to work in teams and hence develop teamwork,
communication and collaboration skills. They involve
larger-scale problems than what students have typically
tackled in their prior courses. And they can give
exposure to industrial tooling and practices. They are,
however, quite time-consuming for both teachers and
students, and can pose pedagogical challenges in terms
of evaluation.

We believe that choosing to build upon an
existing project with a coherent and well-documented
architecture, as opposed to having the students code
something from scratch, provides greater exposure to
realistic development and maintenance concerns. Such
concerns are absent in most traditional semester-long
software engineering courses, which typically focus on
having the students create well-specified deliverables
packaged as assignments, with little ambiguity or
uncertainty. Kaiaulu, on the other hand, was a small but
growing real-world project.

Kaiaulu’s existing architectural decisions
constrained the students–—offering less freedom
and fewer opportunities for creativity. But in return the
students gained a coherent introduction to a real project
and realistic, highly structured software engineering
processes. The students were required to learn the
project’s processes and norms, as well as its code base
and requirements. In doing so they were introduced to
the practical issues that they will face when they join the
workforce: interacting with a variety of stakeholders,
dealing with revision control systems and issue trackers,

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 7700
URI: https://hdl.handle.net/10125/107313
978-0-9981331-7-1
(CC BY-NC-ND 4.0)



engaging in code reviews, dealing with automated
testing and continuous integration, and creating concise
documentation.

Lessons learned in this work can serve schools,
government, and industry alike, as they can be applied to
other capstone projects or summer internships—projects
with a constrained time-frame. In such projects the
sponsors typically face a trade-off between learning
curves—it takes a significant portion of the project
time for the students to learn enough to be able to
contribute—and obtaining meaningful assets from those
students.

This paper is organized as follows: In section 2 we
presented related literature. Section 3 then introduces
the tool Kaiaulu, which the student team worked on as
part of their capstone. The subsequent section 4, Case
Study, presents the subset of the class requirements that
constrained the scope of the capstone and how they were
embedded in the team’s software development process.
The Discussion section 5 presents the learned lessons of
the case study. Finally, we offer our Conclusions and
Future Work in section 6.

2. Related Work

There has been significant research in the area of
project-centric software engineering courses for more
than 30 years, dating back to the ground-breaking work
of Bruegge et al. (1991).

Laplante et al. (2019) discuss the evolution of
their software engineering capstone course over the
span of 12 years. The authors report on the lessons
learned and recommendations, such as emphasizing
the use of agile methodologies. Paasivaara et al.
(2019) report on their experience of having students
work on industry projects as part of their capstone
project. Through sponsor surveys, the authors report
that the course is beneficial for both students and
sponsors, with sponsors mentioning recruitment and
technology research as one of their primary benefits.
In their experience report, Schorr (2020) discusses
their capstone source and student feedback. The
author notes that in this course, students decide on the
problem they intend to solve and the technology stack.
However, the author does note that such an approach
results in more effort for the class lecturer. Through
a student survey, the author reports on the positive
aspects of the course, such as student creativity and
motivation. In another experience report, Verdicchio
(2021) provides recommendations for adopting a
classroom-based capstone course to another modality
due to disruptions caused by natural disasters or health
pandemics. The authors highlight that modality changes

are less challenging for projects that incorporate agile
methodologies. In their experience report, Daun
et al. (2016) show that their teaching approach for an
industry-oriented capstone course is more successful
with graduate students than undergraduate students for
reasons such as maturity and background knowledge.

Mertz and Quesenberry (2018) present a model for
student engagement with project sponsors. This model
has evolved over 20 years and is suitable for use in
class projects and internships. The authors report that
while the model includes the generation of software
engineering artifacts, the primary benefit is students
build relationships with their sponsors and improve
their problem-solving skills. Likewise, Schneider et al.
(2020) also present a hybrid agile organizational model
for capstone projects. The authors report that overall,
their model is successful but also highlights areas for
improvement. Morales-Trujillo et al. (2022) examined
6,854 peer evaluations from 193 students to understand
the quality of the evaluations and how students evaluate
their colleagues. The authors report that most feedback
students provided was positive and that stronger students
tend to provide more detailed feedback than weaker
students. Spichkova (2022) discusses their experience
redesigning a software engineering project course to
make the course more engaging and give students the
experience to be work-ready. The author presents a
series of learnings based on their experience and student
feedback.

In the above-mentioned studies, the authors discuss
the benefits of such courses: more realistic and
engaging projects, the ability to put the students’ largely
theoretical experience into practice, and exposure
to real-world requirements, tools, techniques, and
standards. We fully agree with these claims, as we have
observed similar benefits in our own project experience.
We add to this body of research a discussion of how the
creation, documentation, and dissemination of a clear
software architecture for the system being extended has
constrained and informed the activities of the students.
This, we claim, improves their educational experiences
and outcomes: the constraints of the architecture are
a good thing as they provide guidance, context, and
structure to the students’ learning experiences.

3. ICS 496 - Capstone Project

Introduced in Fall 2022, ICS 496 is a mandatory
one-semester, 3-credit, course for final-year
undergraduate students enrolled in the general B.S.
Computer Science program. The course enables
students to work in a team environment and utilize the
knowledge gained throughout their academic journey

Page 7701



in planning, executing, and delivering a software
project. The course is designed to nurture critical
thinking, problem-solving skills, teamwork, project
management proficiency, and adept communication
skills, emphasizing hands-on learning rather than
lectures. The course provides students with practical
exposure to real-world software development, equipping
them with the necessary skills and understanding to
meet industry demands and expectations.

3.1. Course Structure

Despite the absence of traditional lectures, the
course is allocated two 75-minute timeslots per week.
The scheduling serves two primary purposes. Firstly,
it guarantees that students working on the same project
have a shared designated time to meet and collaborate
or engage with their sponsor (i.e., client). Secondly,
these timeslots facilitate student project presentations,
as elaborated in Section 3.4.

Furthermore, in addition to presentations, each team
must create a project poster they present at the end of
the semester. Student grades are based on the quality of
their class presentations and sponsor feedback.

3.2. Project Sponsors

The course projects are sponsored by various
entities that include the faculty of the department,
faculty from other departments within the university,
state/federal agencies/departments (e.g., US Army),
non-profit organizations, or industry partners. Before
the semester begins, sponsors submit project proposals
to the course instructor, who reviews and shares them
with the students. As part of the proposal submission,
sponsors are required to review and acknowledge an
expectations document, which we discuss in Section 3.3.
Projects include enhancing existing software systems
or building new software systems. These systems
can be desktop, mobile, or web applications. Project
assignments are determined by the course instructor,
taking into account factors like students’ preferences,
skills, and the sponsor’s needs.

Throughout the project lifecycle, students work
closely with their sponsors, engaging in regular
communication, collaboration, and demonstrations to
ensure that the project aligns with the sponsor’s
expectations and requirements. The project sponsor
offers guidance, feedback, and assistance in addressing
any project-related queries or challenges that arise. This
approach allows students to gain valuable experience
in stakeholder collaboration and communication, which
are crucial for the success of real-world software
development projects and their own professional

development. Students are expected to hold at least
one weekly meeting with the project sponsor and
one internal meeting. During the sponsor meetings,
students are encouraged to demonstrate their progress,
obtain feedback, and discuss requirements and technical
matters. Additionally, students sometimes utilize
instant messaging platforms like Discord for ad-hoc
communication with the sponsor.

3.3. Student & Sponsor Expectations

Unlike in a traditional course, where the students
primarily interact with the course instructor, ICS 496
places significant emphasis on fostering student-sponsor
interaction. Therefore, to ensure a mutually beneficial
experience for both students and sponsors, individuals
from each group must review and acknowledge a defined
set of expectations and responsibilities. Below is a
summary of these expectations.

3.3.1. Student Expectations Students must
represent the department professionally, adhere to
software engineering best practices, and maintain
design and code quality standards. Students should
use version control and follow a standard software
development process, hold weekly internal team
meetings and sponsor meetings, and respond promptly
to sponsor inquiries. Students must ensure that project
confidentiality is maintained and obtain sponsor
approval for code and artifact sharing. The team is
responsible for project planning and tracking, issue
tracking, and risk mitigation planning. They should also
promptly report sponsor-related issues and participate
in feedback meetings with the course instructor.

3.3.2. Sponsor Expectations Project sponsors in
this course are expected to adhere to several guidelines.
They should ensure that students focus on designing,
implementing, and testing software systems rather
than performing non-software development tasks, like
help-desk duties or reading/writing research papers.
Sponsors should provide clear project requirements,
actively participate in weekly status meetings, and
respond to team inquiries within designated timeframes.
Collaboration in risk mitigation and granting access
to essential resources (including data and systems)
are also expected. Sponsors must acknowledge that
students are full-time undergraduates who must balance
project commitments with other academic obligations.
Finally, sponsors must promptly communicate any
team-related issues to the course instructor and complete
end-of-semester student evaluations.

Page 7702



3.4. Project Presentations

Throughout the semester, students have designated
checkpoints where they deliver presentations
showcasing their progress, discuss project risks
and issues, and share software development best
practices and project management techniques utilized
in their projects.

The initial project presentation takes place
approximately two weeks into the semester, serving
as an opportunity for students to showcase their
understanding of the client’s business problem,
project requirements, and the chosen tools and
processes. Mid-semester, students engage in the
second presentation, during which they discuss their
achievements, ongoing tasks, as well as project risks and
issues they have encountered. Finally, at the end of the
semester, students deliver their final presentation. This
presentation not only highlights their accomplishments
but also includes a reflection on the obstacles faced and
valuable insights gained throughout the course.

3.5. Course Progress

In this subsection, we reflect on the progress of
the course, such as sponsor and student feedback.
While this course is relatively new compared to other
departmental offerings, we are receiving encouraging
feedback from sponsors and students. Our project
sponsors have generally been pleased with the course
and students on the team (for example, refer Quote 1),
with one sponsor maintaining engagement over multiple
semesters. However, a common concern that has arisen
is the course duration, as most sponsors have expressed
a preference for it to be extended to two semesters. It
is also interesting to note that some sponsors remarked
about the learning experience the student gained by
working on real-world projects, as shown in Quote 2.
Furthermore, sponsor feedback enables the department
to identify areas of improvement in the program
curriculum and opens the doors for internship and
full-time job opportunities for our students.

“Capstone projects strengthen our partnership
between the University and the DoD, but notably it
allowed us to witness ICS student talent and skill.”

Quote 1: General sponsor feedback.

“It was a pleasure to work with <student> for the
past 3 months on the <company> Internship
program...Although he already has some development
experience, I think <student> with this project got a
taste of team-based development in an MVC
application utilizing Agile team philosophy.”

Quote 2: Sponsor feedback about student improvement.

Through project reflections and course evaluations,
students highlighted that their learnings were not limited
to technical concepts. Soft skills, especially effective
communication, and teamwork, were significant
learnings for them, which they had not adequately
experienced in prior courses. Additionally, project
management and sponsor interfacing were also new
experiences for most students, especially the need
to adapt and be flexible when sponsors change their
requirements (for example, refer Quote 3). Finally,
unlike traditional course projects, the capstone course
exposes students to the real-world situations and
conditions of software development. Furthermore, since
sponsor feedback is a major component of a student’s
grade, students are incentivized to perform at their
highest level while cultivating a sense of accountability
and professionalism.

“Gained the skills and knowledge of how it’s like to
work for an actual company and how they approach
the business/industry side of things vs the technical
side.”

Quote 3: Student feedback.

4. Case Study - Kaiaulu

In this section, we provide a detailed examination
of the capstone course by means of a case study
on a specific sponsor’s project. This project the
students worked on is called Kaiaulu.2 Kaiaulu
is a tool for automating the mining of software
repositories. Researchers and analysts need to mine
software repositories, so that they can analyze them,
supporting a wide variety of purposes. Mining software
repositories often requires the handling of multiple data
sources to analyze a project’s ecosystem. Minimally,
a researcher is required to understand the data source
in its native form, acquire it (typically using some
API), parse and save it (e.g. as a table of data).
Unnecessary overheard is incurred if a tool needs to be
purpose-built to accomplish all these steps. A better

2https://github.com/sailuh/kaiaulu

Page 7703



way is to automate the acquisition, parsing, and analysis
steps by using an existing tool (Paradis and Kazman
(2022)). Kaiaulu is an R package that helps with mining
data from software development communities and their
artifacts (Git logs, mailing lists, files, etc.), to help
understand them and to understand how they evolve.
Kaiaulu provides:

• Parsers to tabulate and manage the naming of
software artifacts (R/parser.R)

• Filters to control the scope of analysis (R/filter.R)

• Downloaders for Issue Trackers, Pull Requests,
and Mailing Lists (R/download.R, R/github.R)

• Networks to represent software communities as
graphs (R/network.R, R/graph.R)

• Identity Matching to connect artifacts together
(R/identity.R)

• Metrics commonly used in software research
(R/metrics.R)

• Interfaces to third party tools that can provide
further analysis (R/dv8.R)

• Reusable Analysis Notebooks which
comprehensively present the above features,
and warn about threats and pitfalls based on the
research literature (vignettes/)

• A Command-Line Interface for server-side
analysis (exec/)

• Project Configuration Files that are readable,
shareable, supporting reproducibility (conf/)

• A common, simple data model using tables and a
regularized nomenclature which can be combined
performing table joins.

As described in Section 3.3, students and sponsors
are expected to adhere to a defined set of expectations
and responsibilities. Below, we summarize those which
impacted the design of the Kaiaulu Case Study:

1. Task Plan and Task Types. The sponsor
must provide the project team with detailed
requirements for the proposed software system.
The student team activities should involve the
design, implementation, and testing of a software
system.

2. Task Status, Metrics, and Evaluation. The
student team should identify (and document) risks
and inform the relevant stakeholders in weekly
meetings or as soon as possible. The team should
also create and maintain artifacts to show project
status, metrics, and other details. Three project
presentations to the entire class were required
of students, all of which explicitly required
evaluation of the tasks performed. In addition, the
sponsor must complete an evaluation form at the
end of the semester.

3. Communication and Feedback. The sponsor
must have weekly meetings, respond to questions,
review and provide feedback/sign off on artifacts,
and mitigate risks associated with the project. The
student team should also have internal weekly
meetings and provide an agenda to sponsor
weekly meetings in advance. One of the students
must serve as a point of contact. Both the sponsor
and the team should meet monthly with the class
instructor and/or report any concerns.

4. Data Access. Where appropriate, the sponsor
must provide the team with access to data,
systems, code, and other artifacts related to the
project the team is working on. Students are
expected to use or provision a version control
system.

In the subsequent sections, we discuss how we
realized each of the class expectations.

4.1. Task Plan and Task Types

The task plan was formed with three major
milestones using GitHub’s milestones interface:

1. First Milestone: Because Kaiaulu is an existing
system, the first milestone was to familiarize
students as users. The team was then expected
to provide as a deliverable a user experience
report (described in a GitHub’s issue comment),
highlighting both specific points of confusion and
solutions to them. Subsequently, where examples
were found lacking, unit tests were implemented,
and a “Cheat Sheet”3 for the associated Notebook
functionality was created.

2. Second Milestone: The team was required
to implement a Bugzilla4 Wrapper, and a
Crawler Downloader/Parser to make available

3https://github.com/sailuh/kaiaulu cheatsheet/tree/main/
cheatsheets

4https://github.com/bugzilla/bugzilla

Page 7704



issues and issue comments data from open
source projects which use Bugzilla as their issue
tracker. The wrapper served to tabulate JSON
files downloaded by Perceval5, while the crawler
provided an independent implementation using
Bugzilla’s API. A Notebook was also required
to demonstrate both Wrapper and Crawler
functionality. This feature is of value to end
users of Kaiaulu because, for example, analyzing
a project’s bug data enables users to identify the
buggiest files in the project.

3. Third Milestone: The team was to implement
an interface to ArchDia’s DV86 command line
interface, enabling literate programming for DV8.
This consisted of a set of wrappers to specific DV8
commands, additional data transformations not
available in DV8, and an R Notebook showcasing
the data pipeline. The value proposition of
this feature is that DV8 enables the architectural
analysis of a project’s source code and so provided
a valuable analysis tool to add to Kaiaulu’s
arsenal.

We next highlight the rationale behind our choice of
milestones which we believe are helpful as guidelines
for summer internship situations or other capstone
projects:

The first milestone provided an excellent
opportunity to evaluate if Kaiaulu’s existing
documentation was sufficient to provide a coherent
mental model for first-time users, which is otherwise
difficult for system maintainers to assess. It also
provided a short time-frame for the first deliverable.
In fact, the students’ learning curve was the true
deliverable here. R language knowledge was mostly
required to be able to read R code and write unit tests,
alleviating some of the member’s learning burden,
as not all were initially familiar with R. The team’s
questions could also be directly addressed by the
sponsor.

The second milestone provided the first substantive
deliverable. The first task—creating a wrapper to
Perceval—provided the students an easy entry point,
utilizing an existing interface and data files, so the team
could understand the existing crawler and data. The
second task—creating Kaiulu’s own crawler—was more
difficult as it required the crawler to directly interacting
with Bugzilla’s API and address shortcomings identified
in the wrapper (which we present in the Discussion
section 5). Milestone 2 was also relatively decoupled
from the rest of Kaiaulu: Its implementation only

5https://github.com/chaoss/grimoirelab-perceval
6https://archdia.com/

needed to conform to the overall architecture, which
should have already been clear by Milestone 1. No
dependencies to the existing code base were required.
However, writing in the R language was now required,
and the nomenclature of data fields was expected to
conform to other bug tracker downloaders which already
existed in Kaiaulu. Again, the team’s questions were
directly addressed by the sponsor.

Finally, the third milestone leveraged pre-existing
functionality in Kaiaulu, which challenged the
team with respect to their first milestone: If the
documentation was improved, navigating the existing
code base to find the necessary functions should have
been easier. Any documentation that may have been
initially missed served as a strong incentive: new
functions implemented in this milestone had to be
carefully documented. Moreover, unlike the prior
milestones, only partial information about the DV8
system was available from the sponsor. The team was
required to reach out to the sponsor’s collaborators to
obtain the necessary information to finish this task.
Here, the team had to plan more carefully how to
parallelize the acquisition of new information and the
coding tasks to avoid a situation where they were unable
to make progress while waiting for a response.

4.2. Task Status, Metrics, and Evaluation

To track task status, we set the three milestones
around the three presentation deadlines required by the
class. Moreover, each milestone was assigned a set of
GitHub issues during the semester. For each milestone,
one issue served to track the entire milestone’s progress,
similarly to Jira’s Epic issues7. The remaining issues
tracked specific tasks and were assigned to each team
member. GitHub’s “Projects” were also used to create
a Kanban board to track progress on each issue,
facilitating progress monitoring. Since the sponsor
tracked task status at the individual level, this allowed
the team members to move independently across the
three milestones, offering greater flexibility for progress
(as milestones were independent of one another), and
code revisions. Specifically, team members could opt
to move to the next milestone independently of their
peers’ milestones, or they could choose to assist their
colleagues. This gave us the opportunity to evaluate
their judgment and rationale on either option depending
on the circumstances, which we will further describe in
the Discussion section 5.

7https://support.atlassian.com/jira-cloud-administration/docs/
what-are-issue-types/

Page 7705



4.3. Communication and Feedback

Beyond the required weekly meetings, which were
via video-conference, all development communication
occurred on issues and pull requests, by sponsor request.
Pull requests were also used to provide a feedback loop
between the team’s commits and requests for revisions,
until the changes were ready for merging. Because the
sponsor closely observed the issue progress and code
revisions, it was easy to assist students with project risk
estimation based on the perceived difficulties of each
team member and each task.

4.4. Data Access

Since Kaiaulu is open source and publicly available,
providing access to source code was a trivial task.
For the third milestone, ArchDia’s DV8 provides free
educational licenses. Other necessary data could be
obtained by executing Kaiaulu against open-source
projects. The team’s final presentation included, for
example, visualizations of their own contributions to the
project using Kaiaulu.

5. Discussion

In this section, we discuss lessons learned in each of
the project’s milestones.

5.1. Milestone 1: User Experience Report,
Unit Tests and Cheat Sheet

For this milestone, the team was tasked with Kaiaulu
setup on their local machines and the execution of
the Social Smell notebook8. They were then required
to provide a user experience report. To better define
the user experience report, the team was provided
with the definition of every documentation artifact in
Kaiaulu for evaluation with respect to their difficulties
when learning the system, which we describe here to
contextualize their report:

1. README.md: Provided on the GitHub
repository, it is the starting point of the
documentation.

2. R Notebooks: Describe an analysis pipeline
using multiple functions from the API. It is often
the second documentation file read in R packages
for examples.

3. R Functions Doxygen (API): When reading R
Notebooks, users may be more interested in

8https://github.com/sailuh/kaiaulu/blob/master/vignettes/
social smell showcase.Rmd

creating their own R Notebooks, in which case
the individual function documentation should
suffice. Every function in the package contains
pre-defined documentation fields. Required are
a title, short description, definition of every
parameter, and optionally the returned value of
the function. Parameter documentation may
hyperlink other functions required to obtain the
input. The optional field See also documents other
functions that use the described function return
as input. Finally, reference fields can provide
additional resources, such as scientific literature
for metrics.

4. Project Configuration Files: Kaiaulu defines
configuration files for project analysis in .yml.
They encode assumptions made in the analysis,
e.g. the commit hash for the git log, the time
window of interest, filters used and more.

5. Wiki: The wiki provides an extension to the
README.md file, such as guidance to download
and install third-party software or further
background information on project configuration
file parameters if the user is not familiar with the
analysis.

6. CONTRIBUTING.md: This file specifies on
GitHub guidance for other users on how to
contribute to the project, open issues, ask
questions, etc. Since Kaiaulu often receives
contributions from students, clarity of this
document is of greater importance.

7. Self-Generated Website: Kaiaulu utilizes the
R package ‘pkgdown’, which generates a
documentation website9 consolidating all of
the information above (except the Wiki and
CONTRIBUTING.md).

The experience report deliverable detailed, on a per
documentation artifact basis, the perceived deficiencies.
Since the detailed report itself is beyond the scope of
this work, we summarize our findings instead. The team
experienced difficulties with what third-party software
tools were required to be installed, and how to proceed
if they owned an unsupported operating system (e.g.
Windows), or were new to GitHub. Difficulties were
also experienced in executing the Notebook in regards
to understanding the point of the analysis (the theoretical
background was beyond the scope of the Notebook and
included in a separate published paper). Finally, the
documentation of some functions was found to be too
terse.

9http://itm0.shidler.hawaii.edu/kaiaulu

Page 7706



Despite the noted difficulties, the students were
still able to execute part of the assigned Social
Smells notebook even before the first meeting. Some
difficulties were expected, due to their lack of theoretical
background on the subject of the analysis in the R
notebook. This was to be expected. It had been
more extensively discussed in prior published work, and
addressed during the weekly meetings. While the issues
raised on the lack of documentation were reasonable,
it also became clear to the team that time constraints
limited the level of documentation detail that could be
made available. Indeed, the team had to decide against
addressing some of the documentation limitations to
move forward to the next milestones deadlines, while
the more pressing documentation issues were addressed,
including providing new examples and unit tests. The
documentation issues which remained, nonetheless were
documented on the issue tracker to be addressed in the
future by the sponsor or other team. To provide further
clarity to the Social Smells Notebook, a cheat sheet was
also created.10

Lastly, a highlight of this milestone was that a bug
in a more recent version of Perceval11 was identified,
reported by the team, acknowledged, and fixed by
Perceval contributors.

5.2. Milestone 2: Bugzilla Wrapper and
Crawler

In Milestone 1, the user experience report was
primarily a single group deliverable. For Milestone
2 the group was given a list of tasks to choose from
and individually self-assign via one issue representing
the second milestone. Subsequently, individual
progress was tracked through the milestone. The
individual assignment choices, their individual request
for feedback, and their difficulties then became more
transparent. This assisted the sponsor in ensuring that
the group was on track to fulfill the milestones.

While the Bugzilla Wrapper and Crawler were
independent tasks, we observed two members of the
team ending up with, on the surface, an issue blocker
situation. Specifically, the task division required
one member to write a parser for another member’s
downloader function. The sponsor interceded with the
blocker by agreeing on a common interface for both the
downloader and parser using sample data obtained from
Bugzilla’s API and documentation, therefore removing
the task dependency.

Milestone 2 also familiarized the team with seeking
information outside Kaiaulu, in this case, the Bugzilla

10Examples of cheat sheets can be found at https://github.com/
rstudio/cheatsheets

11https://github.com/chaoss/grimoirelab-perceval

API documentation. Once milestone 2’s first deliverable
started to be committed to Pull Requests, a new layer
of interaction with the sponsor was introduced: Code
revisions. A final highlight of this milestone was that
one team member completed the tasks ahead of the
others (pending sponsor revisions), and decided to move
to Milestone 3 ahead of the rest of the group. This
decision would prove vital for the group to successfully
complete all three milestones, as we discuss next, and
highlights the importance of keeping the milestones as
independent as possible.

5.3. Milestone 3: Iterative DV8

Milestone 3 presented the most challenging task for
the team. This was due to both the code dependencies
of the task on existing Kaiaulu functionality, and also a
new situation with respect to team status.

Progress: each team member was now located in a
different milestone in regards to their first submission,
as their tasks were not entirely completed. For
clarity, we refer to each member as M1, M2, and M3
indicating their respective milestones. Once one team
member decided to move to milestone 3, again the
sponsor provided a set of tasks, and the team members
self-assigned the tasks.

As noted in the previous section, M3’s decision to
move ahead of the group to Milestone 3 provided vital
to the successful completion of this task. Specifically,
because sponsor knowledge of DV8 was limited, M3
was now required to solicit this information. While
waiting for a response, M3 continued to perform
revisions for Milestone 2 and Milestone 1. This
task alternation process was made possible by the
development process being properly documented and
separated on GitHub’s Pull Requests.

When M3 obtained sufficient information from the
DV8 group, the sponsor interceded on the milestone
assignment. To decrease project risk, M1 was
re-assigned to Milestone 3, and M2 inherited M1’s
second milestone tasks (as at the time, M2’s familiarity
with milestone 2 would allow the member to be more
efficient). In return, M2 and M1 negotiated that M1
would inherit more tasks from M2 on Milestone 3, as
Milestone 1 tasks were deemed easier.

Code dependencies: the set of tasks provided to
the team contained varying levels of difficulty, which
was made clear to the team during task selection.
The simplest task type was a repetition of Milestone
2, requiring only simple system call wrappers. The
second type required defining new functionality building
on a few wrapper commands. Finally, the third
and hardest task required implementing an exporter

Page 7707



function for interoperability with DV8. The last task
difficulty required both understanding Kaiaulu functions
to generate a graph representation of the data, and DV8’s
data schema, for conversion. Because all the commands,
together, formed a data pipeline from parsing a Git log
to analyzing architectural flaws in DV8, an R Notebook
and Cheat Sheet was also required.

Surprisingly, the task that required the most revisions
was not the implementation of the feature itself, but
rather the API documentation. Because DV8 defined its
own file nomenclature, which diverged from Kaiaulu’s,
careful documentation of the R functions was vital so
that both users of Kaiaulu and DV8 could understand
the intent of a function from each tool’s perspective,
and also the files it generated. Additionally, function
cross-referencing was added via Doxygen in Kaiaulu.

A final highlight of this milestone was the
identification of bugs in existing functionality for
milestone 3. This was observed in the results of one
of the assigned tasks to the students, as we will discuss
in section 5.4.

5.4. Sponsor Interference

As noted in prior sections, the sponsor strategically
“interfered” with the development process so the team
could focus on development and stay on track to
accomplish the deliverables. Because we believe this
was instrumental to the success of the tasks, we
enumerate here a few situations where we deemed
interference necessary. For example, the sponsor
interfered during the milestone re-assignment to ensure
that no team member fell too far behind , or did not gain
sufficient exposure across different development tasks.

When the team identified that their deliverable was
affected by a bug, the bug fixing was deferred to the
sponsor while the team member worked on another task.
This provided the opportunity for a unique dialogue
between team members and the sponsor on diagnosing
an existing bug (beyond the planned scope of the team
work) eventually fixing it, and identifying unit tests for
them.

Code revisions were extremely helpful in better
understanding each team member’s strengths and
weaknesses, allowing for the sponsor to provide an
easier learning curve for all involved. Indeed, at times
the sponsor requested one team member who performed
the task correctly, to aid another team member who
needed help, or requested the group used the weekly
individual meetings to compare revision notes to avoid
repeating each other’s mistakes. Towards milestone 3,
the sponsor also incorporated Kaiaulu’s GitHub Actions
to automatically check that no function documentation

was missing fields, which automated some of the
revision processes for the team.

A few tasks were removed from the team to
ensure that more critical features were finished. For
example, the Milestone 3 notebook was re-assigned to
the sponsor, so that the end-to-end pipeline could be
tested in a timely manner, and revisions were sent to
the team before the final deadline. Failure to do so
would have resulted in untested deliverables due to time
constraints.

In milestone 1, some of the unit tests could not
be implemented by the team as they required the
assumption of large files. In this case, the sponsor, who
was more familiar with the data needed for the unit tests,
provided the team with setUp and tearDown functions to
generate mock data for unit tests.

Finally, feedback was provided for both team’s final
presentation and poster.

5.5. Future Process Improvements

While we were able to adjust and improve the
process to ensure more exposure to the team for various
parts of software development, and to ensure core
deliverables could be finished in time, we were unable to
implement other ideas in the process as their realization
came toward the end of the project. We enumerate them
here for future iterations.

During Milestone 3, one opportunity arose for one
team member to perform in-line code review for another
in their pull request. In future iterations, it would be
interesting to request the team to perform one round
of code reviews with one another before sponsor code
reviews.

In milestone 1, the code review was presented as an
issue comment. A better alternative would be to directly
refer to the region of the documentation in the issue to
facilitate quick inspection. An even better alternative
would be to leverage GitHub’s ability to comment inline
directly on the file.

We found some of the issues became overly long
when consolidating information from third-party tools
(one reached over 60 comments!). At this point we
needed to adopt a convention of ‘reply to <hyperlink
post> to keep track of multiple threads of discussion
with the same issue. We found GitHub’s issue interface
lacking in that regard. Interestingly, the relatively new
”Discussions” section of GitHub allows for threaded
discussion. In future iterations, we may use the
Discussions space more heavily for clarity.

Page 7708



6. Conclusions and Future Work

In this work, we discussed the ICS 496 Capstone
project course, and presented an experience report
of using Kaiaulu to instantiate a specific project.
We believe the choice of an existing tool with
a well-documented architecture provided unique
opportunities to employ a development process that can
be both rewarding as a learning experience for students,
and also offer useful deliverables to stakeholders. While
the use of software development on GitHub using
commits, issues, pull requests and Kanban boards is
not novel in itself, the contribution of this work was
centered on the definition of tasks.

We feel that our focus on having students work on
an existing system has real benefits. It is more realistic
than the kinds of greenfield, small-scale development
that characterize the majority of the assignments that
an undergraduate computer science major undertakes.
Working on an existing system provides benefits and
challenges similar to what a student will experience
when they enter the job market. Having said this, we do
plan to experiment with greenfield projects in the future,
to compare and contrast.

Specifically, the tasks not only provided exposure
to various software development processes but also
provided progressive learning challenges. This was
compatible with a constrained time schedule and
realistic considering the experience of the team
members. We also discussed specific learning
experience challenges beyond just implementation,
including soliciting information outside the project and
being resourceful and adaptable. An added bonus of this
project is that, since Kaiaulu is open source, not only the
code but the development process is also available for
the students to provide in their resumes.

We believe that these are important characteristics
for any project-based course in software engineering: 1)
appropriately small to start so that students can learn and
do something in a relatively short time period, 2) the
work should scale incrementally so that the student’s
increasing knowledge and confidence are matched by
ever-more challenging tasks, and 3) realistic eventually;
that is, the final product should have complex scope.
These characteristics balance the needs of pedagogy
with the needs of industrial relevance.

References

Bruegge, B., Cheng, J., & Shaw, M. (1991). A software
engineering project course with a real client
(tech. rep. CMU/SEI-91-EM-004). Carnegie
Mellon University.

Daun, M., Salmon, A., Weyer, T., Pohl, K., &
Tenbergen, B. (2016). Project-based learning
with examples from industry in university
courses. 29th Intl. Conf. on Software
Engineering Education and Training,
184–193.

Laplante, P. A., Defranco, J. F., & Guimaraes, E. (2019).
Evolution of a graduate software engineering
capstone course—a course review.

Mertz, J., & Quesenberry, J. (2018). A scalable model
of community-based experiential learning
through courses and international projects.
2018 World Engineering Education Forum,
1–6.

Morales-Trujillo, M. E., Galster, M., Gilson, F., &
Mathews, M. (2022). A three-year study on
peer evaluation in a software engineering
project course. IEEE Transactions on
Education, 65(3), 409–418.

Paasivaara, M., Vanhanen, J., & Lassenius, C. (2019).
Collaborating with industrial customers in
a capstone project course: The customers’
perspective. 41st Intl. Conf. on Software
Engineering, 12–22.

Paradis, C., & Kazman, R. (2022). Building the
MSR tool Kaiaulu: Design principles and
experiences. In P. Scandurra, M. Galster,
R. Mirandola, & D. Weyns (Eds.), Software
architecture (pp. 107–129). Springer.

Schneider, J.-G., Eklund, P. W., Lee, K., Chen, F.,
Cain, A., & Abdelrazek, M. (2020). Adopting
industry agile practices in large-scale capstone
education. 42nd Intl. Conf. on Software
Engineering, 119–129.

Schorr, R. (2020). Experience report on key success
factors for promoting students’ engagement
in software development group projects.
2020 IEEE World Conference on Engineering
Education, 1–5.

Spichkova, M. (2022). Industry-oriented project-based
learning of software engineering. Intl. Conf.
on Engineering of Complex Computer Systems,
51–60.

Tenhunen, S., Männistö, T., Luukkainen, M., &
Ihantola, P. (2023). A systematic literature
review of capstone courses in software
engineering. Information and Software
Technology, 159, 107191.

Verdicchio, M. (2021). Hurricanes and pandemics:
An experience report on adapting software
engineering courses to ensure continuity of
instruction. J. Comput. Sci. Coll., 36(5),
150–159.

Page 7709


