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ABSTRACT 

Long-term exposure to air pollution has been shown to be associated to many 

different adverse health outcomes. Vehicles considerably contribute to pollutant emissions 

in urban areas. Air quality modeling is being widely used for research and regulatory 

studies to predict future traffic-related air pollution or in cases where air quality 

monitoring data are not available. In this study, near-road traffic-related particulate matter 

(PM) data were investigated. The application of dispersion modeling for research and 

regulatory analysis was explored. In addition, the effect of influential variables on traffic-

related dispersion modeling was investigated, followed by a comprehensive evaluation of 

AERMOD, developed by the United States Environmental Protection Agency for 

regulatory air dispersion modeling.  

Traffic contribution to a 24-hour PM2.5 increment in the near-road environment 

was estimated to be about 27% of background concentration. A multiple linear regression 

model can explain 85% of the variability of 24-hour PM2.5 concentrations in the near-road 

environment and shows improvement in near-road concentration predictions when 

accounting for wind speed and wind direction. 

In this study, dispersion modeling was used to perform a worst-case particulate 

matter hot-spot scenario analysis specific to El Paso, Texas. In addition, a novel 

application of dispersion modeling was developed to assess traffic-related air pollution 

exposure by integrating mobility patterns tracked by Global Positioning System (GPS) 

devices. The results exhibit a significant variation of traffic-related air pollution exposure 

across different time periods and spatial locations that cannot be captured by simpler 
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metrics such as traffic density and near-road distance or even modeling air pollution 

without accounting for mobility.  

The sensitivity of traffic-related air pollution dispersion modeling to a variety of 

input sets was investigated. Results show a significant effect of meteorological variables 

on near-road traffic-related air pollution. As such, annual average pollutant concentrations 

dispersed during nighttime conditions were shown to be higher by 100% to 120% 

compared to daytime periods for identical emission rates. This relative difference 

increased to 150% to 200% for rural land-use conditions. Emission and dispersion 

modeling based on regulatory guidelines was conducted to evaluate the effect of emission 

rate variation (due to the inclusion of resuspended dust in traffic-related PM2.5 emissions) 

on near-road traffic-related air pollution. Results show a nonlinearity between emission 

rates and concentrations due to the effect of meteorological variables and the geometry of 

the network, which emphasizes the importance of dispersion modeling for traffic-related 

air quality analysis. Results show the increase in PM2.5 emission rates due to resuspended 

dust inclusion on arterials range between 39% and 108% and between 16% and 19% on 

highways. This increase in emission rates is associated with an overall increase in near-

road traffic-related PM2.5 concentrations by between 49% and 74%, an important 

percentage range from an exposure and health point of view. Sensitivity analysis of 

dispersion modeling to source and dispersion parameters shows the importance of 

parametrization when assessing near-road traffic-related exposure.  

A comprehensive evaluation of AERMOD shows the necessity of using volume 

representation of vehicular emission sources. Results show general weaknesses of area 
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representation of emission sources in predicting concentrations at upwind locations, at 

higher elevations, and in cases of low wind speed. 
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1. INTRODUCTION 1

Adverse health effects from exposure to fine particulate matter (particulate matter 

that have a diameter of less than 2.5 micrometers: PM2.5) have been investigated in a 

growing number of studies (1-3). Exposure to an increased level of PM2.5 concentrations 

has been shown to be associated with many adverse health effects including but not limited 

to increased blood pressure and hypertension, increased rates of ischemic stroke, and 

narrow arterial diameter (4-7). Recent studies also reveal strong evidence of the 

relationship between long-term exposure to PM2.5 and common neurodegenerative 

diseases (8). Further studies also show a significant association between an increase in 

traffic-related PM2.5 exposure and diseases like cardiac anomalies (9). The increment of 

traffic-related PM2.5 in the near-road environment can potentially yield a series of adverse 

health effects for a large number of people who reside near roadways (10). Rowangould 

reported that more than 19% of the United States (US) population lives within 100 m of a 

high-volume roadway (11). According to the 2013 national household survey, 16.88 

million households live within half a block of a major transportation facility in 2011, 

resulting in the exposure of more than 40 million people to an elevated level of PM2.5 (12). 

Many people throughout the world also live near major roadways, so the worldwide 

population exposed to an elevated level of traffic-related air pollutants including PM2.5 is 

much larger.  

1 Reproduced with permission from: Askariyeh, M.H., Kota, S., Vallamsundar, S., Zietsman, J. and Ying, 

Q., Transportation Research Part D, Vol. 57, pp 392-402. Copyright 2017, Elsevier.  and  

Askariyeh, M.H., Zietsman, J. and Autenrieth, R., Atmospheric Environment, 

https://doi.org/10.1016/j.atmosenv.2019.117113, Copyright 2017, Elsevier.  

https://doi.org/10.1016/j.atmosenv.2019.117113
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Characterization of near-road traffic-related air pollutants has been performed in a 

variety of studies including tracer studies (13-16), short-term field studies (16-20), 

intensive field studies (21-23), and modeling (24-28). These studies show that traffic-

related air pollution depends on wind speed and direction, peaks at the nearest points to 

the roadway, decreases exponentially with distance from the road, and reaches the 

background concentration over a distance of a few hundred meters. A synthesis of 

previously collected real-world data show a 22% increment of PM2.5 in the near-road area 

compared with background PM2.5 concentration (29), while other studies estimate this 

value to be 13% to 20% (23) and 10% to 15% (30-32). 

The US Environmental Protection Agency (EPA) added a number of near-road 

monitors to its network and mandated inclusion of near-road monitoring data in the Air 

Quality Index (AQI) to reflect the potential for an elevated level of near-road PM2.5

concentration to which millions of people in major urban areas may be exposed on a daily 

basis (33). One of the key objectives of this program was to collect National Ambient Air 

Quality Standards (NAAQS)–comparable datasets in the near-road environment in order 

to support studies on adverse health effects of long-term exposure to PM2.5. However, air 

quality monitoring datasets have considerable temporal and spatial limitations. Having a 

better understanding of the temporal and spatial distribution of near-roadway air pollutants 

plays an instrumental role in assessing exposure to transportation-related air pollutants. Air 

dispersion models are being used generally to estimate the temporal and spatial variation of 

transportation-related air pollutants under near-roadway conditions for research and 

regulatory purposes (34). Several air dispersion models have been developed to predict 
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temporal and spatial dispersion of air pollutants (35-38). The American Meteorological 

Society – US EPA Regulatory Model (AERMOD) is the current regulatory dispersion 

model supplied by the EPA for estimating the temporal and spatial distribution of 

pollutants in stable and convective boundary layers for both simple and complex terrains 

(39-41). 

The capability of dispersion models like AERMOD needs to be evaluated so that 

predictions can be used with confidence in analyses of exposure and health effects, as well 

as regulatory analysis. Heist et al. (2013) (26) conducted a model inter-comparison study 

to assess the abilities of different near-road dispersion models, including CALINE3 (42), 

CALINE4 (15), ADMS (43, 44), RLINE (45), and AERMOD, using surface-level onsite 

data from the Caltrans Highway 99 tracer experiment and the Idaho Falls tracer study. The 

study found all models to have similar overall performance statistics except CALINE3, 

which produces a larger degree of scattering in concentration estimates. AERMOD 

appeared to have the best performance among all the dispersion models, especially for the 

highest concentrations. AERMOD results using volume sources also were found to be 

slightly better than the ones using area sources. Based in part on the findings of that study, 

the US EPA proposed replacing CALINE3 with AERMOD for all future transportation-

related air quality analyses (46). However, some other model validation studies show that 

AERMOD might not perform as well as expected. For example, Chen et al. (2009) (47) 

found CALINE4 and CAL3QHC predictions of airborne particulate matter (PM) to match 

well with observations, and they found AERMOD to lead to underpredictions at a near-

road site. Claggett and Bai (2012) (48) found both CAL3QHCR and AERMOD to 
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underpredict the observed PM2.5 concentration at a signalized intersection, but they found 

CAL3QHCR to have more data points within a factor of 2 of observations than AERMOD. 

The performance of AERMOD might be sensitive to the representation of vehicle 

emissions (i.e., volume vs. a resource). Claggett and Bai (2012) (48) and Claggett (2014) 

(49) found higher concentrations of PM to be predicted by AERMOD when emission

sources were characterized as area sources as opposed to volume sources. In contrast, 

Schewe (2011) (50) reported 1.8 to 3.8 times higher concentration predictions from 

AERMOD for highways configured as volume sources compared with those configured 

as area sources. It is obvious that more studies are needed to evaluate further the 

performance of AERMOD for near-road predictions using different model configurations. 

Air quality dispersion modeling using Gaussian models like AERMOD requires 

inputs to represent emission rates, meteorological conditions, and emission source 

characteristics. Numerous studies have investigated the effects of these three main input 

sets on near-roadway traffic-related air pollution dispersion modeling. Comprehensive 

studies of influential factors on near-roadway air pollutants show the significant role of 

wind direction in dispersion modeling using the Gaussian distribution equation (16), 

which is shown in field studies (18). Evaluation of AERMOD particularly has shown the 

determinant effects of wind direction (28) and speed on model performance and has 

revealed overprediction of concentrations under low-wind conditions (51, 52). Limitation 

of surface layer similarity theory in explaining dispersion mechanism in low-wind speed 

(34, 53), and a lack of reasonable vehicles induced turbulence (VIT) (54-59) can be the 
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main reasons for this inaccuracy in dispersion modeling. VIT has proved to play a 

determinant role in the dispersion mechanism under low-wind conditions (56, 59, 60).  

Different dispersion mechanisms and turbulences including VIT usually are 

considered in air dispersion models using parameterized forms (61). In particular, 

AERMOD estimates a meander component, vertical and horizontal wind velocity 

fluctuation due to turbulence (σw and σv [m/s]), and standard deviations of the vertical and 

lateral concentration distributions (σz and σy) (62). It also uses release height, the initial 

vertical dispersion coefficient (σzo), and the initial lateral dispersion coefficient (σyo) while 

modeling transportation-related emission sources as volume sources (62). The effects of 

the parametrization on dispersion modeling have been investigated using limited tracer 

study results, but there remains a lack of holistic studies of different dispersion factors 

using a comprehensive tracer study result set with a focus on traffic-related air pollution.  

Following a comprehensive literature review on near-roadway traffic-related air 

pollution, several gaps have been identified. Numerous studies show a variety of 

magnitudes for near-road traffic-related air pollution increment. Because near-roadway 

monitoring data are not always available and because of the need to predict future traffic-

related air pollution, dispersion modeling is being used widely for research and regulatory 

purposes. However, various aspects of research and regulatory dispersion modeling with 

a focus on vehicular emission sources need more work. For example, there have been few 

recent studies with focus on improving the process of PM hot-spot analyses, while the 

model setup and input data preparation for this purpose involve a considerable amount of 

time and effort to deal with technical details for the PM hot-spot analysis process. From a 
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research point of view, applying dispersion modeling for exposure assessment considering 

spatial variation of population location using a real-time Global Positioning System (GPS) 

dataset is a novel aspect of dispersion modeling applications. As previously explained, air 

pollution dispersion modeling requires three sets of main inputs: emission rates, 

meteorological inputs, and emission source characteristics (dispersion parameters). 

Although numerous studies have been conducted on dispersion modeling, a holistic 

sensitivity analysis of traffic-related dispersion modeling to its main input sets can supply 

a better understanding of how this process can be improved. One of the main reasons for 

these gaps in the literature (lack of a holistic sensitivity analysis and a comprehensive 

evaluation of traffic-related air pollution dispersion modeling) is the lack of accurate and 

comprehensive monitoring data. The availability of results from a General Motors tracer 

study conducted in the 1970s, as well as access to novel datasets, remove this obstacle and 

made possible this current research. 

This research has four objectives. The first objective is to quantify near-roadway 

traffic-related air pollution. The main purpose is to understand near-roadway traffic-

related air pollution. As such, all PM2.5 concentrations monitored by NAAQS stations in 

Houston including the near-road ones were used to quantify the PM2.5 increment due to 

traffic in the near-roadway environment based on EPA guidelines. 

The second objective of this research is to investigate the application of dispersion 

modeling in both research and regulatory traffic-related air quality analysis. The main 

purpose is to use dispersion modeling as a widely accepted procedure in predicting future 

traffic-related air pollutant concentration or when monitoring data are not available. As 
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such, guidance was provided (with a focus on regulatory guidelines) on performing a 

worst-case PM hot-spot analysis specific to El Paso, the only PM nonattainment area in 

Texas. In addition, dispersion modeling was used to assess exposure of a vulnerable 

community, pregnant women, to traffic-related air pollution. This study is one of the first 

to use real-time locations and dispersion modeling for exposure assessment. 

The third objective of this research is to evaluate the sensitivity of dispersion 

models to input sets. As such, the effect of variation in each of the three sets of inputs 

(meteorological variables, emission rates, and dispersion parameters) was investigated. 

The main purpose is to understand the individual effect of these different input sets on 

traffic-related dispersion modeling results and exposure assessment. 

The fourth objective of this research is to perform a comprehensive evaluation of 

traffic-related dispersion modeling. The main purpose is to evaluate the accuracy of 

dispersion modeling results given maximum control on traffic-related emission rates and 

monitoring. To this end, the General Motors tracer study results were used to evaluate 

dispersion model outputs at different heights and distances from the edge of the road. 

In conclusion, monitoring data and dispersion modeling were used in this study to 

understand traffic-related air pollution. Application of dispersion modeling in regulatory 

analysis and in exposure assessment was investigated. Additionally, the effect of utilizing 

different input sets to model air pollutant concentrations dispersed from vehicular 

emission sources was evaluated. Finally, strengths and weaknesses of dispersion modeling 

in an ideal situation (comprehensive tracer study results) were explored. Overall, the 



8 

results from this study will aid model developers, practitioners, and decision makers in 

having a better understanding of traffic-related air pollution. 
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2. TRAFFIC CONTRIBUTION TO THE NEAR-ROAD AIR POLLUTION2

2.1. The PM2.5 Increment Traffic Contributes in the Near-Road Environment 

A growing number of studies have reported the adverse health effects of long-term 

exposure to air pollutants, especially fine particulate matter (PM2.5). Vehicular emission 

sources have been shown to contribute to elevated air pollution concentrations in the near-

road environment, including PM2.5, based on monitoring data collected mainly during 

short-term campaigns. The United States Environmental Protection Agency (EPA) added 

near-road monitors to its national network to collect long-term National Ambient Air 

Quality Standard (NAAQS)–comparable data in the near-road environment. The EPA also 

mandated inclusion of near-road monitoring data in the Air Quality Index to reflect the 

elevated level of near-road PM2.5 concentrations to which millions of people in major 

urban areas are exposed to on a daily basis. For the first time, PM2.5 data collected at one 

of these near-road monitors were compared with those of other NAAQS monitors during 

2016 in Houston, Texas. One of these NAAQS monitors was selected based on EPA 

guidance for quantitative hotspot analyses of particulate matter to represent background 

concentrations. The near-road PM2.5 increment was statistically significant. The traffic 

contribution to 24-hour PM2.5 increment in the near-road environment was estimated to be 

about 23% of background concentration, which is close to estimates given by previous 

studies (22%) and is greater than a recent estimate based on a national-scale data analysis 

2 Reproduced with permission from: Askariyeh, M.H., Zietsman, J., and Autenrieth, R., Atmospheric 

Environment, https://doi.org/10.1016/j.atmosenv.2019.117113, Copyright 2019, Elsevier.   

https://doi.org/10.1016/j.atmosenv.2019.117113
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(17%), emphasizing the importance of background monitor selection criteria. Wind speed 

and direction were shown to have a considerable effect on PM2.5 increment in the near-

road environment. A multiple linear regression model was developed to predict 24-hour 

near-road PM2.5 concentrations using background PM2.5 concentration, wind speed, and 

wind direction. This model explained 83% of the variability of 24-hour PM2.5 

concentrations in the near-road environment and showed improvement in near-road 

concentration predictions when accounting for wind speed and wind direction.   

2.1.1. Introduction 

Adverse health effects of exposure to fine particulate matter (PM2.5) have been 

investigated in a growing number of studies (1-3). Exposure to an increased level of PM2.5 

concentrations has been associated with adverse health effects such as increased blood 

pressure and hypertension, increased rates of ischemic stroke, and narrower arterial 

diameter (4-7). Recent studies have also revealed strong evidence of the relationship 

between long-term exposure to PM2.5 and common neurodegenerative diseases (8). 

Further studies also have shown a significant association between an increase in traffic-

related PM2.5 and diseases like cardiac anomalies (9). The increment of traffic-related 

PM2.5 in the near-road environment can potentially yield a series of adverse health effects 

for a large number of people who reside near roadways (10). Rowangold (11) reported 

that more than 19% of the United States (US) population lives within 100 m of a high-

volume roadway. According to the 2013 national household survey, 16.88 million 

households lived within half a block of a major transportation facility in 2011, yielding 
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exposure of more than 40 million people to an elevated level of PM2.5 (12). Many people 

throughout the world also live near major roadways, so the worldwide population exposed 

to an elevated level of traffic-related air pollutants including PM2.5 is potentially much 

larger.  

The US Environmental Protection Agency (EPA) added a number of near-road 

monitors to its network and mandated inclusion of near-road monitoring data in the Air 

Quality Index (AQI) to reflect the potential for an elevated level of near-road PM2.5

concentration to which millions of people may be exposed on a daily basis in a 

considerable portion of major urban areas (33). One of the key objectives of this program 

was to collect National Ambient Air Quality Standards (NAAQS)–comparable datasets 

from the near-road environment as input to studies on adverse health effects of long-term 

exposure to PM2.5. The appropriate monitoring methods for this purpose are the Federal 

Reference Method (FRM), Federal Equivalent Method (FEM), and Approved Regional 

Method (ARM), despite some limitations of these methods (33, 63). EPA guidance (64) 

requires a probe for near-road monitoring to be located as close as possible to and not 

farther than 50 m from the outside nearest edge of the road and between 2 and 7 m in 

height from the road elevation. It also requires PM2.5 state and local air monitoring stations 

“to operate on at least a 1-day-in-3 sampling schedule” to be able to characterize elevated 

PM2.5 concentration near heavily traveled roads (33).  

Characterization of near-road traffic-related air pollutants has been performed in a 

variety of studies including tracer studies (13-16), short-term field studies (16-20), 

intensive field studies (7, 21-23), and modeling (24-28, 65). These studies have reported 
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that traffic-related air pollution depends on: wind speed and direction; peaks at the nearest 

points to the roadway; decreases exponentially with distance from the road; and, reaches 

the background concentration over a distance of a few hundred meters. A synthesis of 

previously collected real-world data showed a 22% increment of PM2.5 in the near-road 

area compared with background PM2.5 concentration (29), while other studies have 

estimated this value to be 13% to 20% (23), and 10% to 17% (30-32). It should be noted 

that a recent national-scale review of near-road concentrations provided the average near-

road PM2.5 increment in the US and did not investigate the Houston monitor because the 

methodology completeness criteria were not met for background monitor selection (30).   

A key factor in understanding the traffic contribution to the near-road increment 

of air pollution is the background concentration estimate when speciation monitor analysis 

(23, 66) is not available. EPA guidance (67) for quantitative hotspot analyses of particulate 

matter describes how to determine background concentrations from sources other than the 

study target. It describes how to use the data of a single monitor with similar 

characteristics, that is close in proximity, and that is located upwind of a target area to be 

as representative as possible for the background concentration. This guidance also 

explains how to use a wind rose to identify upwind sources and how to use inverse distance 

weighting to interpolate among several monitors if no single monitor represents the 

background concentration (67). Researchers have used concentrations observed at a 

distance of a few hundred meters from the target roadway and the first percentile of hourly 

near-road monitoring (19), as well as concentrations monitored at a location not affected 

by any close emission sources and a high correlation with target monitor (30), to determine 
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background concentrations and estimate traffic-related PM2.5 increment in the near-road 

environment. Considering different methods and datasets, mainly obtained from short-

term campaigns due to the rare availability of long-term near-road monitoring, range of 

values have been reported to quantify the traffic contribution to PM2.5 increment in the 

near-road environment.   

The main objective of this study was to quantify PM2.5 increment due to traffic 

contributions in a near-road environment at different wind speeds and wind directions 

using NAAQS-comparable near-road monitoring data. To accomplish this objective, the 

24-hour PM2.5 concentrations monitored at a near-road location, collected as part of the

EPA near-road monitoring network (33), as well as data from all other NAAQS 

monitoring stations during 2016 in Houston, were compared and analyzed. The monitor 

representing background PM2.5 concentrations was selected to estimate the PM2.5

increment due to traffic in a near-road environment. The PM2.5 increment due to traffic 

was evaluated under different wind speeds and wind directions, and a multiple linear 

regression model was developed to predict the near-road 24-hour PM2.5 concentration. To 

the knowledge of the authors, this is the first time that near-road PM2.5 concentrations 

observed by a NAAQS monitor in Houston were investigated to quantify the traffic 

contribution to near-road PM2.5 increment. The results of this study will give researchers 

a better understanding of the effect of transportation sectors on near-road PM2.5 

concentrations based on long-term observations that can be used for exposure assessments. 
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2.1.2. Materials and Methods 

2.1.2.1. Monitoring Data  

Selected for near-road monitoring was the north section of Interstate 610 in Houston, 

Texas (also called the North Loop), which is a heavily traveled road with a significant 

presence of heavy-duty diesel vehicles that is surrounded by a residential area. Continuous 

air monitoring station (CAMS) 1052, located on the north side of the North Loop became 

operational in April 2015. The CAMS 1052 probe was located at a 15-m distance and 4-

m height from the outside nearest edge of the road. A 1-day-in-3 sampling dataset of 

monitored PM2.5 using the gravimetric FRM at CAMS 1052, including the 24-hour PM2.5 

concentrations for 107 days during 2016, was available on the Texas Commission on 

Environmental Quality (TCEQ) database (68). The CAMS 1052 did not monitor hourly 

PM2.5 concentrations. Therefore, the only near-road PM2.5 monitoring data during 2016 in 

Houston is available in a 24-hour time resolution at CAMS 1052. The hourly PM2.5

concentration dataset for 10 other NAAQS beta attenuation monitors (BAMs) around 

Houston is also available on the TCEQ database. Among all air quality–monitoring 

stations in Houston, four stations were equipped with collocated FRM-BAM monitors, 

which provided both FRM and BAM data in 24-hour and hourly time resolutions during 

2016. Hence, there are 15 PM2.5 monitoring datasets available for Houston from 2016 (1 

near-road monitor, 10 BAMs, and 4 FRM datasets from collocated monitors).  

Figure 1 shows the location of the near-road PM2.5 monitor (CAMS 1052) and the 

10 other NAAQS monitoring stations in Houston. Considering the main intention of the 

EPA to collect near-road PM2.5 concentrations that are comparable with the NAAQS 
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monitoring dataset, PM2.5 concentrations monitored at CAMS 1052 were compared with 

those of other NAAQS monitors. To this end, the 24-hour PM2.5 concentrations were 

obtained from four FRM monitors (other than the near-road monitor during 2016 in 

Houston) and were calculated for all NAAQS BAMs to be compared with the 

corresponding 107 measurements of 24-hour concentrations at CAMS 1052 (near-road 

monitor). In addition, hourly wind speed and wind direction monitoring data at CAMS 

1052 (near-road environment) were obtained from the TCEQ dataset. It should be noted 

that gravimetric sampling is typically used to monitor the time-weighted average 

concentration of PM2.5 in different ambient situations (69, 70), and comparison of its data 

with continuous hourly data monitoring (obtained via BAM) has some limitations 

including sampling artifacts and averaging time differences (71-73). A comparison of 

PM2.5 monitoring data showed the precisions of FRM monitors and BAMs to be different 

(74). Although a recent comparison of FRM and BAM PM2.5 data obtained from a 

collocated monitor showed a correlation of 0.92 between two datasets (75), this might not 

be the case for Houston considering its hot and humid climate. Availability of PM2.5 

monitoring data obtained from collocated stations during 2016 in Houston gives the 

opportunity of performing a comparison between PM2.5 monitoring data obtained via FRM 

monitors and BAMs in Houston’s particular meteorological condition. 

2.1.2.2. Background Concentration 

Following the description on how to determine background concentrations in the 

EPA guidance (67) for hotspot analyses of particulate matter, 10 NAAQS monitoring 

locations in Houston were evaluated to estimate PM2.5 background concentration in 2016. 
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The hourly wind speed and wind direction monitored at CAMS 1052 (near-road 

environment) were used to draw a wind rose (Figure 1) and define the upwind direction 

for this particular near-road location. Because the prevailing wind blows from the 

southeast, the stations not located southeast of the near-road station (CAMS 78, 699) were 

not considered for background concentration. Among the eight monitoring stations located 

upwind of the near-road environment, the three stations close to a river or bay area (CAMS 

148, 45, and 1034) were not good candidates for background concentration estimation 

considering the different land use of the proximate area. The three stations located within 

a few hundred meters of a roadway or railroad (CAMS 1, 304, and 416) could not represent 

background concentration because they were potentially affected by a close emission 

source. CAMS 697 also was surrounded by unpaved roads and areas and local emission 

sources (76). Given these exclusions, just 1 monitoring location (CAMS 35) out of 10 was 

upwind, was surrounded by a similar land use, and was not located within an influence 

radius of an emission source, making it an acceptable candidate to represent background 

concentration. As mentioned before, PM2.5 concentrations were monitored via two 

monitoring methods, BAM and FRM, with two different time resolutions, hourly and 24-

hour, at CAMS 35. Considering the location of CAMS 35 and similarity in the PM2.5 

monitoring method, PM2.5 concentrations monitored at CAMS 35 (Deer Park Station) 

using FRM monitoring were considered representative of background PM2.5 in Houston 

relative to the near-road site, and the difference between CAMS 1052 (near-road 

concentration) and CAMS 35 FRM (background) data was considered to be the PM2.5 

“increment” due to traffic in the near-road environment. 
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Figure 1- Locations of 10 monitoring stations, as well as the near-road monitor in 

Houston, 2016. (The near-road monitoring station is shown by the red mark [CAMS 

1052], and other stations are shown by blue ones.) The wind rose shows prevailing 

winds at CAMS 1052 from the southeast. 
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2.1.2.3. Statistical Analysis 

To investigate the PM2.5 increment due to traffic in the near-road environment, a 

comparison of mean concentrations was performed between CAMS 1052 (near-road 

environment) and CAMS 35 FRM (background concentration) datasets. In addition, 

comparisons were made among all 15 sets of 24-hour concentrations to see how choosing 

different stations to represent background PM2.5 concentrations lead to a different 

conclusion on near-road increment due to traffic. In this study, JMP Pro 13.1.0 (77), a 

predictive analytics software, was used for statistical analysis. Figure 2 shows the relative 

frequency histograms of 24-hour PM2.5 concentrations at 11 NAAQS monitoring locations 

(Fig. 1) including 15 datasets. Performing a Shapiro-Wilk (78) normality test for each set 

(of 24-hour concentrations) revealed enough evidence (p-value< 0.05) against the 

normality of observation in 13 monitors other than CAMS 1052 (near-road environment) 

and 78. Because Figure 2 indicates that the data are log-normally distributed at most 

monitoring sites, a log transformation was applied to concentration data. Kolmogorov’s 

test (79) did not reveal significant evidence against the log-normal distribution of any of 

15 sets of 24-hour PM2.5 concentrations (p-values> 0.05).  

To perform all possible pairwise comparisons of the difference of means in 15 sets 

of 24-hour PM2.5 concentrations, Tukey’s honestly significant difference (HSD) test was 

performed on log-transformed values. The main reason to perform Tukey’s HSD test is 

that it is widely accepted to try parametric tests before moving to non-parametric test since 

parametric tests are generally more powerful than nonparametric tests (80). To investigate 

the effect of using different monitoring methods (BAM and FRM) on PM2.5 mean 
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concentrations observed in Houston, the Tukey’s HSD test results were used to perform a 

pairwise comparison of two monitoring datasets obtained from each of four collocated 

monitors. Also, multiple linear regression models were used to investigate the relationship 

of near-road concentrations with background concentrations, wind speed, and wind 

direction. 

2.1.2.4. Wind Effect on Near-Road Traffic-Related Air Pollution 

The hourly wind speed and wind direction monitored at CAMS 1052 (near-road 

environment) were used to evaluate the effect of wind on near-road PM2.5 increment. To 

this end, the average 24-hour vector of wind was calculated using 24-hourly wind vectors 

for each of 107 days. Plots of concentration roses (polar plots) were used to visualize wind 

speed and wind direction, as well as monitored concentrations all together in one figure. 

All concentrations and associated wind directions were classified into three wind classes 

of upwind, downwind, and parallel for statistical analysis to investigate if wind direction 

yields a statistically significant effect on near-road PM2.5 increment. It should be noted 

that parallel wind class was assigned to wind directions with up to 30⁰ deviation from the 

roadway centerline direction.  
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Figure 2- Relative frequency of 24-hour PM2.5 concentrations and fitted log-normal distribution at 15 monitors in 

Houston, 2016. Both datasets obtained from collocated FRM-BAM monitors are included   
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2.1.3. Results and Discussion 

2.1.3.1. Comparison of NAAQS Monitors 

Tukey’s HSD test was run to compare the 15 datasets based on log-transformed 

concentrations. Table 1 includes the results of Tukey’s test, along with the mean values of 

24-hour PM2.5 (non-transformed) concentrations observed in each NAAQS monitor

(calculated based on the corresponding number of available days out of 107). As can be 

seen, CAMS 304 (using FRM) has the highest and CAMS 1034 (BAM) has the lowest 

mean 24-hour PM2.5 concentration among 15 NAAQS monitors in Houston. Tukey’s test 

suggests that the mean concentration at CAMS 1052 is statistically significantly (p-value< 

0.05) higher than that of the selected background monitor by1.92 µg/m3 (equivalent to 

23% of background PM2.5 concentration), whereas the means of concentration monitored 

at CAMS 304 (FRM), 416, 697, 304, 699, 148 (FRM), 78, and 1 are not significantly 

different (p-value> 0.05) from the mean of CAMS 1052. Proximity to a roadway can 

explain the high PM2.5 concentration monitored at CAMS 304 (FRM), 416, 304, and 1. 

The relatively high PM2.5 concentration monitored at CAMS 78, 699, and 697 also can be 

explained by proximity to Conroe-North Houston Regional Airport (Lone Star Executive 

Airport), a railroad, and local emission sources, respectively. Monitored 24-hour PM2.5 

concentrations at CAMS 1034 were statistically different and lower than those of all other 

Houston NAAQS monitors in 2016, a fact that can be explained by the presence of no 

emission sources in the upwind direction. Pairwise comparisons (Table 1) show that the 

mean PM2.5 concentrations provided by two monitoring methods (FRM and BAM) are not 

statistically significantly different in four collocated monitors (p-value> 0.05). 
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Comparison of mean values provided in Table 1, along with EPA guidelines provided 

previously in this paper, emphasize the importance of considering all selection criteria to 

determine a proper monitor location to represent background concentration. 

Table 1- Statistics of 24-hour PM2.5 concentrations monitored at 11 stations in 

Houston, 2016 

Name CAMS Connecting Letters Report* n 
Mean 

(µg/m3) 

Clinton (FRM) 304 A 97 10.21 

North Loop (FRM) 1052 A B 107 10.11 

Park Place 416 A B C 83 9.74 

UH Coastal 697 A B C D 107 9.54 

Clinton 304 A B C D 107 9.39 

UH West Liberty 699 A B C D 104 9.09 

Baytown (FRM) 148 A B C D E 44 8.79 

Conroe Relocated 78 A B C D E F 105 8.78 

Houston East 1 A B C D E F 107 8.62 

Seabrook  45 B C D E F 62 8.24 

Deer Park (FRM) 35 C D E F 95 8.19 

Deer Park 35 D E F 107 7.92 

Baytown 148 E F 107 7.38 

Galveston (FRM) 1034 F G 74 6.74 

Galveston  1034 G 107 5.87 

* Levels not connected by the same letter are significantly different based on comparison

of all pair means using Tukey’s HSD test with 95% confidence (for example, the CAMS

1052’s PM2.5 concentration is statistically greater than those observed at CAMS 45, 35,

148, and 1034).

2.1.3.2. Near-Road Environment versus Background PM2.5 

Linear least squares regression was implemented to fit a model to background data 

in order to predict near-road concentration using a linear function of background 

concentration, as shown in Figure 3. A high Pearson’s correlation coefficient (r= 0.87) 

indicates that near-road PM2.5 concentration is highly correlated with background 
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concentration, as expected. The near-road measurements include background, whereas the 

background site is not influenced by the near-road increment explicitly, except for overall 

transportation contribution to the background concentration. The obtained coefficient of 

determination (r2= 0.75) shows that the fitted model (CNear-road= 0.85 CBackground + 3.13 + 

ε) can explain 75% of the variability of near-road 24-hour PM2.5 concentrations as a 

function of background concentration. The root mean square error (RMSE) for this model 

is 1.91.  

Figure 3- Near-road versus background 24-hour PM2.5 concentration (µg/m3), linear 

regression (ε is the error term), and the coefficient of determination (r2). 
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2.1.3.3. PM2.5 Concentration, Wind Speed, and Wind Direction 

Considering the proven influence of wind speed and wind direction on near-road traffic-

related air pollutant concentrations (16, 81), the effect of these two parameters also were 

investigated. The concentration rose plots shown in Figure 4 were used to visualize 24-

hour PM2.5 concentrations under the average wind vector for a corresponding day at 

background (Panel a) and near-road (Panel b) monitors. The concentration rose of the 

background monitor shows a more uniform distribution of concentrations in different wind 

directions compared with the near-road one that clearly shows higher concentrations when 

the wind blows predominantly from the south (90⁰ < α < 270⁰), where the highway is 

located. The higher level of near-road concentration with wind direction varying between 

90⁰ and 270⁰ can be explained by the fact that the near-road monitor is located downwind 

of the roadway in these cases and reflects the effect of traffic emissions. Both panels in 

Figure 4 illustrate lower concentrations for higher wind speeds, revealing a higher level 

of air pollutant mass transport from the emission source vicinity.  

Figure 4 (Panel b) shows the near-road concentration rose with a lower level of 

PM2.5 concentrations when the near-road environment is located upwind. It should be 

noted that this concentration rose (Figure 4, Panel b) also reflects the contribution of 

background concentration in each 24-hour PM2.5 concentration. To eliminate the effects 

of background concentration and focus on the effect of traffic-related air pollution in the 

near-road environment, a concentration rose of near-road increments was plotted, as 

shown in Figure 5. Figure 5 clearly shows how south and southeast winds yield greater 

increments in the near-road environment when the near-road monitor is located downwind 
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of the target freeway. The negative concentrations (shown by black dots) when the wind 

blows from the north (near-road environment located upwind) place emphasis on the small 

contribution of emission sources located north of the monitoring point and the important 

contribution of traffic (the highway) to PM2.5 concentrations monitored in this near-road 

environment. Some relatively higher concentrations also can be seen when low-speed 

winds blow from the north (monitor located upwind) or east (parallel), indicating elevated 

near-road increments with low-speed winds, as well as the effect of trapped traffic-related 

air pollutants on the near-road environment.   

Comparisons were performed to investigate if the wind direction effect on the near-

road PM2.5 increment (Figure 5) is statistically significant in different wind classes. For 

this effort, all wind directions were categorized into three classes: downwind (120⁰<α 

<240⁰), upwind (α< 60⁰ or α> 300⁰), and parallel (60⁰<α <120⁰ or 240⁰<α<300⁰). 
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Figure 4- Comparison of 24-hour PM2.5 concentrations (FRM) in corresponding 

wind speeds and wind directions at: a) background monitor (CAMS 35), and b) near-

road monitor (CAMS 1052). Colors show concentration, the distance to the center 

shows wind speed varying between 0 and 12 mph, and the angle shows wind direction 

varying between 0⁰ and 360⁰. 

a) 

b)
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Figure 5- PM2.5 increment in the near-road environment and corresponding wind 

speed and wind direction. 

Table 2 shows the statistics of near-road PM2.5 increments in different classes of 

wind direction. Performing a Shapiro-Wilk normality test for PM2.5 increments in three 

wind classes revealed enough evidence (p-value< 0.05) against the normality of 

increments when the near-road is located downwind of the highway. The Kruskal-Wallis 

test was performed for pairwise comparison of mean near-road increments in different 

classes of wind direction; it revealed evidence of statistically significantly (p-value< 0.05) 

higher increments when the near-road monitor was located downwind or parallel 

compared with upwind. 
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Table 2- Statistics and comparison of mean near-road PM2.5 increment in three 

classes of wind direction  

Wind Class 

Connecting 

Letters Report N 

Mean Increment 

(µg/m3) Std. Dev 

Upwind A 23 0.19 1.34 

Downwind B 40 2.47 2.02 

Parallel B 32 2.43 1.64 

Considering the identified effects of background concentration, wind speed, and 

wind direction on near-road air pollutants, a multiple linear regression model was 

developed to predict near-road air pollutants using these three variables. It should be noted 

that multiple linear regression is based on specific assumptions including normality in 

distribution and homogeneity in variance of data, while performing the Shapiro-Wilk test 

revealed significant evidence (p-value< 0.05) against the normality of background 

concentrations (CAMS 35). Because the current analysis was performed on a relatively 

large dataset, the stringent requirement for normality could be waived, and the Central 

Limit Theorem could be assumed to be in full effect. Statistical analysis of fitting a 

multiple linear model to the near-road 24-hour PM2.5 concentrations revealed a significant 

effect of background concentration, wind speed, and wind direction (p-values< 0.05). The 

multiple linear model including significant parameters and corresponding constants is: 

𝐶𝑛𝑒𝑎𝑟−𝑟𝑜𝑎𝑑 = 0.8 𝐶𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 − 0.297 𝑆𝑤 + 𝑓(𝐷𝑊) + 4.349

+ ε Equation (1) 

where: 

𝐶𝑛𝑒𝑎𝑟−𝑟𝑜𝑎𝑑 = Near-road 24-hour PM2.5 concentration (µg/m3)
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𝐶𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 = Background 24-hour PM2.5 concentration (µg/m3)

𝑆𝑤 = Wind speed (mph) 

𝐷𝑤 = Wind direction (°) 

𝑓(𝐷𝑊) =  {
0.811
0.672

−1.483

if 120⁰ < 𝐷𝑊 < 240⁰ (downwind) 

if 60⁰ < 𝐷𝑊 < 120⁰  or  240⁰ < 𝐷𝑊 < 300⁰ (parallel) 

if 𝐷𝑊 < 60⁰  or  𝐷𝑊 > 300⁰ (upwind) 

ε = Error term 

Figure 6 shows a paired comparison of modeled to monitored near-road 24-hour 

PM2.5 concentrations. The obtained adjusted coefficient of determination (r2), and RMSE 

for this model are 0.91, 0.83, and 1.54, respectively. Both models’ performance measures 

(adjusted r2, RMSE) obtained from multiple linear regression show improvement 

compared with those obtained from linear regression using background concentration as 

the only predictor. The adjusted r2 shows that the regression model with background 

concentrations, wind speed, and wind direction can explain 83% of the variability of near-

road 24-hour PM2.5 concentrations. 
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Figure 6- Multiple linear regression: paired comparison of model to monitored near-

road 24-hour PM2.5 concentrations. 

2.1.4. Conclusion 

For the first time, near-road PM2.5 observations during 2016 were compared with 

those of other NAAQS monitors in Houston. Performing pairwise comparisons of all 

NAAQS PM2.5 monitors revealed that the near-road monitor (CAMS 1052 located 15 m 

away from the edge of the freeway) observed PM2.5 concentrations higher than most of 

the other monitors. Relatively higher PM2.5 observations occurred for NAAQS monitoring 

stations located within a distance of a few hundred meters from a roadway. A NAAQS 

monitor (CAMS 35) was selected to represent background PM2.5 concentrations in 

Houston based on EPA-provided methodology for quantitative hotspot analyses of 
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particulate matter. Tukey’s test suggested that the mean concentration of the near-road 

monitor (CAMS 1052) is statistically significantly (p-value< 0.05) higher than that of the 

background monitor (CAMS 35). Regression analysis of near-road PM2.5 monitoring data 

also showed a roughly 23% increment compared with the selected background monitoring 

data. This increment is close to what Karner et al. (29) showed (22%) and is greater than 

the US average near-road PM2.5 increment (15%) that DeWinter et al. (30) reported. This 

difference might be caused by location- and traffic-specific characteristics. The difference 

in estimated near-road PM2.5 increments can also be caused by selection of the background 

monitors using different methodologies, which emphasizes the importance of background 

monitor selection criteria. The near-road PM2.5 increment was statistically lower when the 

near-road monitor was located upwind. Results demonstrated the effect of lower wind 

speeds on elevated near-road PM2.5 concentrations, even in parallel winds, which should 

be taken into consideration in near-road dispersion modeling. A multiple linear regression 

model was developed to predict the near-road PM2.5 concentrations using background 

PM2.5 concentration, wind speed, and wind direction. Three measures (Pearson’s 

correlation coefficient, the coefficient of determination, and RMSE) showed the multiple 

linear regression model performing better compared with the linear regression model 

using background concentration as the only predictor. The obtained adjusted r2 for the 

multiple linear regression model indicates that 83% of the variability of near-road 24-hour 

PM2.5 concentrations can be explained by a function of background PM2.5 concentration, 

wind speed, and wind direction. 
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3. DISPERSION MODELING APPLICATIONS

3.1. Transportation Conformity Particulate Matter Hot-Spot Process: A Worst-

Case Approach to Conduct Particulate Matter Hot-spot Analysis 

The U.S Environment Protection Agency (EPA) requires project level hot-spot 

particulate matter (PM) transportation conformity analysis for projects in non-attainment 

and maintenance areas. El Paso is the only PM non-attainment area in Texas, which is in 

violation of the NAAQS for PM10. Accordingly, PM hot-spot analysis is a requirement for 

projects of air quality concern (POAQC) in El Paso to ensure that the project will not 

contribute to localized violations of the NAAQS. The hot-spot analysis process is 

extensive, involving rigorous emissions and air dispersion modeling which requires state 

agencies to allocate considerable time and expertise. The objective of this study was to 

develop a worst-case scenario (WCS) analysis. WCS analysis consists of modeling with 

all possible combination of worst-case input parameters that would maximize PM10 

concentrations. WCS is based on the premise that if the design value obtained is found to 

be less than the NAAQS, then one can logically conclude that the WCS does not cause 

violations of the NAAQS. The analysis is conducted for the I-10-US-54 location in El 

Paso near the U.S-Mexico border with a high traffic activity.  

3.1.1. Introduction 

Particulate matter (PM) is fine particles that are classified based on their size. Fine 

particles (PM2.5) are mainly emitted from fuel combustion, and some industrial activities 

like processing metals (82). The U.S. EPA established the National Ambient Air Quality 

Standards (NAAQS) for PM. Transportation conformity analysis is required under the 
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Clean Air Act (CAA), Section 176(c) (42USC7506) (83) to make sure that federally 

supported transportation projects will not worsen existing air quality condition, or delay 

relevant timely plans. Hot-spot analysis is a prediction of future air pollution (84), and 

their comparison to the NAAQS. The hot-spot analyses are a part of the CAA conformity 

requirements for pollutants that have localized impacts, i.e. particulate matter (PM) or 

carbon monoxide (CO). The U.S. EPA developed PM hot spots quantitative analysis, 

which includes prediction of vehicular emissions using the Motor Vehicle Emission 

Simulator (MOVES) model, followed by the use of dispersion modeling using 

CAL3QHCR or AERMOD models to assess localized concentrations (67). The model set-

up and input data preparation involve time-intensive and requires specific technical 

details.  

The overall objective of this study was to provide guidance for definition of air 

quality projects and perform a worst-case PM hot-spot scenario (WCS) analysis specific 

to El Paso, TX. The study was focused on performing a “worst-case” scenario (WCS) 

analysis. WCS analysis consists of modeling with all possible combination of worst-case 

input parameters that would maximize PM10 concentrations. WCS is based on the premise 

that if the design values obtained is found to be less than the NAAQS, then one can 

logically conclude that the project planned will not cause violations of the NAAQS.  
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3.1.2. Methodology 

3.1.2.1. Case Study 

A WCS representative case study with high traffic volumes in El Paso is selected 

based on interagency consultation. The case study extent to be modeled for the WCS is 

consistent with the extent of the TxDOT’s I-10 Connect Project (shown in Figure 7). 

Interstate I-10 is the main interstate within the city limits of the city of El Paso and 

experiences heavy traffic congestion due to new regional developments. The purpose of 

the I-10 project is to analyze and recommend operational improvements to the I-10 

corridor. In the vicinity of the project area, I-10 and Loop 375 serve as major east-west 

freeway corridors while US-54 serves as a major north-south freeway corridor. The project 

area also includes access to the Port of Entry also known as Bridge of the Americas 

(BOTA).  

Due to its expansive nature, the project area was divided into three sections ( Figure 

7) and was assessed for highest overall impact. Part 2 (Figure 7) covering a major part of

I-10 interchange between La Luz Ave on the north and Rivera Ave on the south is selected

for worst case analysis. Further, Part 2 is surrounded by a higher percentage of residential 

and commercial establishments compared to the other sections of the project area. In 

addition to on-road sources, the case study consists of a number of trucking and 

distribution facilities.  
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3.1.2.2. Construction of Scenarios 

WCS analysis consists of modeling with all possible combination of worst-case 

input parameters that will maximize PM10 concentrations. Three sets of worst-case 

scenarios (WCS1, WCS2, and WCS3) were built based on different worst-case 

assumptions for the critical input parameters. In addition to the worst-case scenarios, an 

additional realistic scenario (RCS) was constructed based on realistic assumptions for the 

critical input parameters. The process of constructing worst-case and realistic-case 

scenarios consisted of a two-step process as listed below: 

• Identify critical parameters that impact PM10 emissions and concentration

estimates.

• Perform a sensitivity analysis for each parameters and identify the parameter value

that results in worst-case and realistic-case estimates

Input parameters that have the most impact on PM10 emissions are identified

based on sensitivity analyses performed as part of and relevant studies in literature (Volpe 

National Transportation Systems Center (85), EPA Staff (86), Coordinating Research 

Council (87), NCHRP Project 25-38 (88). The following input parameters were utilized 

for constructing the scenarios: 

Analysis Year 

According to the EPA’s PM hot-spot guidance (89), hot-spot analysis must cover 

the year of highest expected emissions. The highest emission year typically can either be 

the opening year or the horizon/design year. The opening year has the highest emission 

factors, and the design year will have the most traffic (though lower emission factors), so 
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one of these years is likely to be the year of highest expected emissions. To strike a 

balance, the WCS is based on the year that produces the highest emission rates (ERs) and 

is combined with the highest traffic. Emission rates are calculated for analysis years from 

2014 to 2020 at one year increment and 2020 to 2035 at five year increment. Based on the 

sensitivity analysis, year 2019 is identified as the worst-case year producing the highest 

ERs specific to El Paso. 

Annual Average Daily Traffic (AADT) 

The AADT is obtained from the TxDOT traffic projections from I-10 Connect 

Project. As part of the project, traffic demand modeling and traffic forecasting was 

performed. The project provided estimates of existing traffic volumes and forecasted 

future traffic volumes for build and no-build scenarios for calendar years 2012, 2017, 2037 

and 2047. The RCS is modeled based on the build forecasts assuming a realistic case 

growth rate of 2%. The WCS1 is modeled based on the build forecasts assuming a worst 

case growth rate of 4%. In addition to TxDOT’s traffic projections, new sources of data 

in the form of traffic counter information collected by TxDOT and real time speed data 

from INRIX were used to construct additional worst-case scenarios (WCS2, WCS3).  

Truck Composition 

Considering the determinant contribution of diesel trucks to a majority of PM 

emissions, Fleet mix specific to the case study is obtained for El Paso. The RCS is 

constructed based on the regional fleet mix (with a diesel truck fraction of 8%). The diesel 

truck fraction were increased to vary between 10 – 20% for different WCSs. 
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Seasonal Variation 

Studies show that PM emission rates are higher during winter months (86, 90). 

Since El Paso is considered to be a non-attainment area for PM10 during winter, all 

scenarios are modeled for January representative of the winter season.  

Average speed 

The effect of average speed distribution was analyzed by comparing emission rates 

associated with speed values ranging between 15 – 75 mph. As part of work on developing 

threshold values, speed values that produced the highest and lowest ERs were identified 

as listed in Table 3. Based on these values, and interagency consultation the average speed 

values for all scenarios were defined and displayed in Table 4. 



38 

Figure 7- Project extent 
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Table 3- Average speed from activity threshold values 

Vehicle Type Analysis Years Speed Bin ID 

(Speed in mph) 

Highest 

ERs 

Passenger Car (21) Years 2014 – 2035 16 (75 mph) 

Passenger Truck (31) Years 2014 – 2035 11 (50mph) 

Light Commercial Truck (32) Years 2014 – 2035 16 (75mph) 

Combination short haul truck (61) Years 2014 – 2035 4 (15mph) 

Combination long haul truck (62) Years 2014 – 2035 4 (15mph) 

Lowest 

ERs 

Passenger Car (21) Years 2014 – 2035 6 (25 mph) 

Passenger Truck (31) Years 2014 – 2035 5 (20mph) 

Light Commercial Truck (32) Years 2014 – 2035 5 (20mph) 

Combination short haul truck (61) Years 2014 – 2035 16 (75mph) 

Combination long haul truck (62) Years 2014 – 2035 16 (75mph) 

The critical input parameters and their corresponding values for all scenarios are 

listed in Table 4. While WCS1 was developed based on sensitivity analysis of critical 

input parameters, WCS2 parameters were fine-tuned based on data collected in real-world 

(from traffic counter and INRIX) and WCS3 was solely based on a 20% increase in WCS1 

traffic volume keeping all other parameters constant between WCS1 and WCS3. 
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Table 4- Critical input parameters for RCS, and WCS (WCS1, WCS2 and WCS3) 

Parameter RCS WCS1 WCS2 WCS3 

Analysis 

Period 

Winter, 2019 Winter, 2019 Winter, 2019 Winter, 2019 

AADT 

Growth rate 

applied on 

2017 build 

case AADT of 

I-10 Project

2% 4% 4% 20% increase 

from WCS1 

Fleet 

Composition 

All time 

periods: 8% 

Combination 

trucks 

All time 

periods: 15% 

Combination 

trucks 

Morning peak, 

midday and 

evening peak: 10% 

Combination trucks 

Overnight: 20% 

All time periods: 

15% Combination 

trucks 

Average 

Speed 

Highways: 

(a)Off-peak:

65mph

(b) Peak:

50mph  

Highways: 

(a)Off-peak:

55mph

(b) Peak:

15mph 

Highways: 

(a)Off-peak:

55mph (overnight),

45mph (midday)

(b)Peak:15mph

Highways: 

(a)Off-peak:

55mph

(b) Peak: 15mph

Arterials: 

(a)Off-peak:

40mph

(b) Peak :

25mph

Arterials: 

(a)Off-peak:

35mph

(b) Peak

:10mph

Arterials: 

Off-peak:   

25mph(overnight), 

10mph (midday) 

Peak: 10mph 

Arterials: 

(a)Off-peak:

35mph

(b) Peak :10mph

3.1.2.3. Data Components 

The overall framework to assess PM10 estimates for hot spot worst case analysis is 

shown in Figure 8. First, estimates of traffic activity were obtained from various data 

sources such as TxDOT traffic projections, traffic counter and emerging data source (e.g., 

INRIX) in varying resolution. The data was processed to have a consistent format and 

passed onto the emission module. The emission rates for tail pipe exhaust, brake wear, 

and tire wear were estimated using Motor Vehicles Emission Simulator (MOVES). The 

emission rates to road dust (resuspended dust) were estimated using AP-42. The emission 
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rates from MOVES and AP-42 were combined and processed in a format compatible for 

AERMOD dispersion model. AERMOD utilizes two main types of data, namely 

emissions data, and meteorological data. AERMOD produces concentration estimates at 

discrete receptor locations for different scenarios (WCSs, and RCS). Based on the 

modeled estimates for different scenarios and the NAAQS (150µg/m3), the range of 

background concentration to achieve compliance for 24-hours PM10 was obtained. 

Descriptions about these data components is discussed in this section.  
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Figure 8- Modeling components involved in PM worst case analysis 

3.1.2.4. Traffic Data 

Traffic data was obtained from three data sources, namely (a) TxDOT traffic 

projections for I-10 project (also referred to as the “BOTA” study), (b) TxDOT traffic 

counts measured in 2015 and (c) INRIX (91) real-time traffic data for I-10-US-54 location 

collected in 2016. Traffic parameters for on-road sources (or links) required for PM hot-
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spot analysis include traffic volume, fleet mix (or composition) and average speed. 

Sources of data utilized for each of these traffic parameters are listed below: 

• Traffic volume: in from of AADT (annual average daily traffic) was obtained from

the I-10 project projections and traffic counter data,

• Fleet mix: was obtained from regional conformity analysis specific to El Paso and

traffic counter data, and

• Speed data: in form of average speed estimates was obtained from sensitivity

analysis conducted as part of Phase 1 and the INRIX data set.

TxDOT’s traffic projections for the case study, consisted of ADT (average daily 

traffic) for the existing (year 2012), base year (2017), 2037 (20-yr design year) and 2047 

(30-yr pavement design year), for no build and build scenarios. The forecasts were 

developed using the Pivot Method with a combination of growth rate recommendations 

from TxDOT and Horizon model. Detailed information about the project can be found on 

TxDOT I-10 project website (92). The WCS1 AADT for 2019 for select roadway links is 

shown in Figure 9. 
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Figure 9- Worst case scenario AADT for select roadway links 

3.1.2.5. Emissions (On-road, Off-road and Road Dust) 

Emission estimates for on-road links and off-road network were obtained from 

EPA’s MOVES2014a model, and road dust emission estimates from AP-42 model. The 

project scale of analysis in MOVES emission model was utilized for localized emission 

estimated involved in PM10 hot-spot analysis. The ERs obtained were post-processed to 

obtain total emissions (grams) for each link corresponding to the fleet mix, and traffic 

volume. For start emissions related to the off-network facilities, the ERs were combined 

with the distribution center facility specific hourly start distribution to get hourly total 

emissions. The total idle emissions obtained from MOVES was adjusted based on the 

truck duration and percentage idling of the dwell time distribution. Table 3 lists the input 
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data parameters for MOVES modeling. Road dust emission rates were calculated 

according to the method provided in AP-42 for paved roads. 

3.1.2.6. Concentration Estimates 

As the case-study includes highways, arterials and off-network links, the 

AERMOD dispersion model was selected for the air dispersion modeling. Vehicular 

emission sources were modeled using area representation. A total of 126 links were 

modeled with one or more area sources based on traffic activity, and geometry. Emission 

rates from MOVES, and AP-42 were combined for all links and normalized by the area of 

the AERMOD sources. The receptor height from the ground level was set to be 1.8 m 

based on the average human breathing height. The first group of receptors were located at 

a 25-meter spacing for a distance of 100 meter after allowing for the 5 meters (16.4 ft). 

The second group of receptors were located at a distance of 50 meter for a distance ranging 

between 100 and 300 meters, and the third set of receptors placed at 100 meters spacing 

for the remaining part between 300 to 800 meters (Figure 10).  

The Texas Commission of Environmental Quality (TCEQ) produces pre-

processed meteorological data for all counties in Texas. For each county, TCEQ produces 

three sets of meteorological data corresponding to three categories of surface roughness 

(low (0.001-0.1m), medium (0.1-0.7m) and high (0.7-1.5m)). Based on the surface 

roughness obtained through processing of case study site specific land use data, 

appropriate meteorological data is recommended to be used (93). The surface roughness 

value for El Paso obtained by processing land cover data is 0.095 meter. 
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Table 5- Input parameters for MOVES model runs 
Input Item Description 

Run Specification 

Scale Project Scale (On-road), Inventory (off-road) 

Calculation Type Emission Rate 

Geographic Bounds El Paso, TX 

Time Period Analysis Years: 2019; 

Seasons: Winter (January) 

Time-of-day: Hourly 

Road Type Urban Restricted Access (highways) 

Urban Unrestricted Access (arterials) 

Off-network 

Vehicle Type 13 vehicle types 

Pollutant Type PM10 

Emission Process Highways: Running Exhaust, Crankcase Running Exhaust, Brake 

Wear and Tire Wear 

Off-network: Start and extended idling 

Project Data Manager (Project Specific Input Data) 

Link Length 1 mile 

Average Speed • RCS

Highway Off-peak: 65mph, Peak: 50mph

Arterial Off-peak: 40mph, Peak :25mph

• WCS1

Highway Off-peak: 55mph, Peak: 15mph

Arterial Off-peak: 35mph, Peak :10mph

• WCS2

Highway Off-peak: 55mph (overnight), 45mph (midday), Peak:

15mph

Arterial Off-peak: 25mph (overnight), 10mph (midday), Peak

:10mph

• WCS3

Highway Off-peak: 55mph, Peak: 15mph

Arterial Off-peak: 35mph, Peak :10mph

Fleet Composition 100% for each vehicle type 

Age Distribution Local specific data 

Meteorology Local specific hourly temperature and relative humidity 

Fuel Supply Local specific data 

Inspection-

maintenance 

program 

Local specific data is 
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Figure 10- Source and receptor placement 

Model outputs from AERMOD includes PM10 concentration estimates at 24-hour 

averaging time period at all receptors. Table 6 presents a summary of the key input data 

parameters from all three steps for the AERMOD model.  
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Table 6- Input data parameters for air dispersion modeling for AERMOD 

Modeling Parameters Inputs 

Base Imagery • Google Earth image covering the case study extent

Model Control Parameters • Pollutant: PM10

• Averaging Period: 24 hours

• Pollutant Properties: No deposition and settling

Meteorology • Pre-processed meteorological data consisting of

surface, upper air and land use data representative

of case study location is obtained from TCEQ for

five years (2008 to 2012)

Source Characterization • Sources were defined based on the physical

dimensions, and volume and speed as the traffic

activity indicators. The case study site is modeled

with a total of 126 links

Emission Factor • ERs from MOVES and AP-42

• ERs are normalized with reference to time and

source dimensions

Dispersion Parameters • Initial vertical dispersion is computed based on a

combination of initial vertical dispersion

coefficient values weighted by traffic volumes

• Release Height is computed based on a

combination of release heights values weighted by

traffic volumes

Receptor Characterization • Receptors positioned at a height of 1.8, are placed

at varying spacing of 25 – 100 meters extending to

a distance of 800 meters

• A total of 1,344 are placed

Output • Sixth highest 24-hr average concentration values

at all receptor locations are estimated
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3.1.4. Results 

The statistic required to determine compliance with the NAAQS for 24-hours 

PM10 was estimated using the 6th highest predicted concentration from the project and 

identifying the highest of these values (highest 6th highest value) across 5 years of 

meteorological data over all receptors. Concentration estimates were obtained for three 

sets of worst-case scenarios (WCS1, WCS2, and WCS3) and a realistic case scenario. 

Sensitivity analysis was performed to evaluate the difference in concentration estimates 

for different meteorological data sets processed for low and medium surface roughness. 

Difference in concentration values were also evaluated for different right-of-way distance 

from the roadway edge. In total, concentration estimates were obtained for a total of 12 

scenarios based on the variation of the following parameters: 

• Scenarios: (1) RCS, (2) WCS1, (3) WCS2, and (4) WCS4

• Surface Roughness: Meteorological data processed for low and medium surface

roughness

• First row of receptors: placed at 5m and 15m from the edge of roadway links

Results obtained are shown in Table 7. 

Among all scenarios, the WCS3 resulted in the highest estimates processed with 

low surface roughness meteorological data. The reduced friction from the low surface 

roughness to the wind blowing over the surface resulted in reduced dispersion of pollutants 

and thereby higher concentration estimates. As expected, higher estimates were observed 

at 5 meters first line of receptors compared to 15 meters is due to the peaking tendency of 

pollutant emissions released from vehicles. 
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Table 7- Highest 6th highest (H6H) PM10 concentrations 

Scenario First line of 

Receptors (m) 

H6H (µg/m3) 

Low Surface Roughness 

H6H (µg/m3) 

Medium Surface Roughness 

RCS 5 30.59 29.02 

RCS 15 24.49 21.57 

WCS 1 5 45.07 40.85 

WCS 1 15 35.2 30.32 

WCS 2 5 44.9 42.2 

WCS 2 15 33.7 29.8 

WCS 3 5 54.08 49.02 

WCS 3 15 42.24 36.38 

Approximately a 20% reduction in the H6H values was observed by changing the 

first line of receptors between 5 and 15 meters. Between the RCS and WCS1, 

approximately a 30% increase in the H6H PM10 concentrations at 24-hrs averaging period 

was observed. The WCS1 and WCS3 have identical parameters except for a 20% increase 

in AADT, this 20% increase translated into a 20% increase in the H6H concentration 

estimates. Between WCS2 and WCS3, changes in AADT, fleet mix and speed resulted in 

significant differences in PM10 estimates.  

Concentration maps showing the PM10 dispersion patterns for the WCS1 are 

shown in Figure 11. Higher concentrations were obtained near the major highway 

(Interstate I-10) that carries the highest traffic volumes during all time periods. 

Comparison of the PM10 concentration maps between all scenarios is shown in Figure 12. 

The dispersion patterns of PM10 concentrations was found to be similar for all scenarios, 

with the highest concentrations always obtained near the I-10 corridor.  
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Figure 11- PM10 concentration map (WCS1) 
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Figure 12- Comparison of concentration maps for different scenarios 

According to the EPA guidance (89), compliance with the NAAQS for 24-hours 

PM10 is determined based on the calculation of the “design value.” Design value (DV) is 

a measure that indicate the air pollutant concentration in a project area. Design value is 

compared to the NAAQS to determine compliance and it consists of two main 

components: (1) modeled concentration estimates from the project and (2) background 

concentration from all sources surrounding the project excluding the contribution from the 

project.  
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𝐷𝑒𝑠𝑖𝑔𝑛 𝑉𝑎𝑙𝑢𝑒 = 𝐴𝑖𝑟 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑀𝑜𝑑𝑒𝑙𝑖𝑛𝑔 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 + 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔 𝐷𝑎𝑡𝑎 

Equation (2) 

• Air Quality Modeling Results are calculated based on the 6th highest 24-hour

modeled concentration and identifying the highest of these values (highest 6th

highest value) across 5 years of meteorological data over all receptors

• Background Monitoring Data are calculated based on three most recent years data

Based on the modeled estimates from Table 7 and the NAAQS, the range of 

background concentration to achieve compliance for 24-hours PM10 is shown in Table 8. 

As seen in Table 8, as long as the background concentration is equal to or less than 95.92 

for the WCS3 which produces the highest concentration estimate among all scenarios, the 

project conformity requirement with the NAAQS is met.   

Table 8- Range of background concentrations to achieve compliance with NAAQS 

Scenario PM10 H6H (µg/m3) NAAQS Background 

Concentration 

(µg/m3) 

RCS 30.59 150 ≤ 119.41 

WCS1 45.07 150 ≤ 104.93 

WCS2 44.89 150 ≤ 105.11 

WCS3 54.08 150 ≤ 95.92 



3.1.5. Conclusion 

There are a number of insights that this study and its results yield and can be e 

helpful for conducting PM hot-spot analysis. First, the results emphasize the importance 

of careful selection and processing of input parameters for traffic, emissions and air 

dispersion components. As highlighted by the sensitivity analysis, quality assurance at 

every step of the modeling process is needed to avoid possible problems in prediction of 

air pollutant concentration.  

Another important insight is the importance of background PM concentration. 

Background PM were typically much higher than the project contribution that was 

modeled, thereby dominating the design value. Similarly, uncertainties and sensitivities in 

the modeled project contribution may be dominated by those associated with the 

background concentration. This consideration is important for understanding the potential 

outcome of a design value that hinges predominantly on the background. Another insight 

gained is the importance of road dust emission characterization due to the importance of 

road dust as a major category in the PM emission inventory. Currently, road dust ERs are 

calculated using AP-42, which is outdated and based on aggregate estimates. Additional 

research is needed to improve the associated modeling techniques for this process.  
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3.2. Pregnant Women Exposure to Traffic-related Air Pollution in South Texas3  

Given the significant public health and economic costs associated with the rapidly 

increasing prevalence of transportation-related health effects, there is a critical need to 

determine traffic-related emissions exposure at the individual level. Population groups 

vulnerable to adverse effects of traffic-related air pollution correspond to children, 

pregnant women and elderly because of their physiological conditions. Literature is 

limited in terms of studies focusing on these groups. A reason often cited is the limited 

information on mobility which is critical for exposure assessment at the individual level. 

Emerging datasets such as GPS and Bluetooth technologies continuously tracking human 

behavior are used for a wide variety of applications. The current study presents a method 

for assessing traffic-related emissions exposure by integrating mobility patterns tracked 

by GPS devices with dynamics of pollutant concentration modeled by regulatory models. 

The study is based on a pool of women (in their third trimester of pregnancy) residing in 

Hidalgo County, Texas who are equipped with wearable monitoring devices. The entire 

network-based transportation emissions and pollutant concentrations were estimated using 

EPA’s MOVES and AERMOD models, respectively. The obtained PM2.5 exposure levels 

exhibited considerable variation between time-periods within a day, with higher levels 

modeled during peak commuting periods, especially close to the U.S-Mexico border 

region and lower levels during midday periods. The study also assessed if there was any 

3 Reproduced with Permission from: Askariyeh, M.H., Vallamsundar, S., Zietsman, J., Ramani, T., 

International Journal of Environmental Research and Public Health, 16(13), 2433, Copyright 2019, MDPI. 
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difference between dynamic exposure, based on time-varying mobility patterns, and static 

exposure based solely on residential locations.  

3.2.1. Background 

Recent evidence shows traffic emissions to be a significant source of pollution (94) 

with several studies showing a strong association between elevated emissions levels and 

near-roadway areas (95-97). Accordingly, epidemiology studies document adverse 

respiratory, and cardiovascular effects (98-100) for populations living in close proximity to 

major roadways. Studies show specific adverse health effects of people exposed to 

Particulate Matter (PM) including heart diseases (101, 102), cancer risk (103), and adverse 

birth outcomes (104). Children, pregnant women, the elderly and people with existing health 

issues are some of the vulnerable population groups to PM that suffer from adverse health 

effects of traffic-related emissions exposure. Studies demonstrate a correlation between 

traffic-related emissions exposure with reduced fetal growth, preterm birth and post-term 

low birth weight and susceptibility to asthma (105, 106). 

Exposure to harmful concentrations of emissions depends on (1) the location and 

time of exposure; and (2) the emission concentrations in different microenvironments. 

Most epidemiological studies estimate exposure levels based on data from ambient 

monitors and census information (107-110). Due to the spatial movement of individuals, 

fixed ambient monitoring data might not accurately capture the exposure levels (1, 111) 

as they are not at a sufficient spatial resolution and do not provide a source-specific 

contribution. This limitation can be overcome by employing personal exposure 
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monitoring, which is typically limited in terms of the sample size due to their higher cost 

of covering larger samples. Air dispersion models, on the other hand, use numerical 

techniques to predict the dispersion patterns of emissions based on the source strength, 

rate of emission release, meteorology, and land use. Several prior studies evaluated 

exposure levels based on air dispersion models (112-114).  

Among the different population groups, there have been limited studies focused 

on assessing maternal exposure to air pollution (115-117). Exposure levels for pregnant 

women could vary compared to the general population because of their different activity 

patterns(116, 118). The National Human Activity Patterns Survey, an extensive survey 

conducted from the year 1992 to 1994 for 9386 people all over the US did not address 

pregnant women activity patterns (119). Limited studies (116) have determined the 

activity patterns based on self-reported assessments. These assessments could lead to 

inaccurate reporting of location or activity duration (120). Emerging technologies such as 

smartphones and Bluetooth devices are able to provide highly resolved spatial and 

temporal information about people’s activities. Anonymized data obtained from these 

technologies have the potential to improve the characterization of emissions exposure. 

This study focused on evaluating the traffic-related emission exposure for a group 

of pregnant women across different microenvironments. The study is based on 17 third 

trimester pregnant women who were equipped with a portable global positioning system 

(GPS) tracking device for three days. Specifically, this study focused on exposure to fine 

particulate matter with a diameter less than 2.5 µm (PM2.5). Exposure levels were modeled 

based on the active location information of people (also referred to as dynamic exposure) 
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compared to their fixed residential location of people (static exposure). The study used a 

combination of emerging techniques such as GPS technology, air dispersion modeling and 

spatial interpolation techniques to model dynamic population exposure to traffic-related 

pollution. This study was conducted in Hidalgo County, South Texas where the prevalence 

of childhood asthma is found to be the highest in the State of Texas. The key objective 

was achieved through the following steps: 

1) Calculate emissions and pollutant concentrations from traffic emissions at a refined

roadway link level for the entire county. The U.S. Environmental Protection Agency 

(EPA) regulatory models MOVES and AERMOD were employed for calculating the 

emission and pollutant concentration in the atmosphere. 

2) Examine dynamic exposure by combining the interpolated pollutant concentrations

with dynamic location information obtained from GPS devices 

3) Examine variability in modeled traffic-related emission exposure levels during a day

and 

4) Compare the differences between dynamic and static exposure assessment.

3.2.2. Methodology 

The emission module calculates emission rates based on traffic and other 

parameters. The emission data were modeled with EPA’s microscopic MOVES emission 

model that utilizes site-specific traffic activity data and other local specific data 

corresponding to vehicle age distribution, fuel supply, and inspection/maintenance 

parameters, etc. These emission rates were combined with meteorological were land use 
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data in the dispersion module. Site-specific meteorological and land use data are obtained 

from closest surface data and upper air weather stations. The emission dispersion was 

modeled using the AERMOD model at discrete receptor locations. A spatial interpolation 

technique was applied to the discrete concentration levels to create continuous surfaces of 

PM2.5 concentrations. Activity information of participants was tracked by GPS devices for 

24 hours at a 10-second resolution. Specific details about the different modeling 

components are discussed in this section. 

3.2.2.1. Air Dispersion Modeling 

AERMOD is a Gaussian-based dispersion model which incorporates factors that 

account for the rate the plume disperses in each direction, reflection from the ground and 

plume rise (121). The dispersion modeling process consists of three broad steps. 

Step 1: consists of obtaining the base imagery, specifying model control 

parameters, securing emission, meteorological and land use data. Base imagery shows the 

geographical locations corresponding to the study area and helps in geographically coding 

the sources and receptors. The model control parameters refer to the specific pollutant 

type, pollutant properties, and averaging period etc. Three types of data are required for 

processing the meteorological data, namely: (1) land use data that represent surface 

characteristics, (2) surface data collected at airports by the National Weather Service 

(NWS), and (3) upper air sounding data collected by NWS. The land use data was obtained 

from the U.S. Geological Survey (USGS) Land Use database (122). The raw data was 

processed by AERMOD preprocessors, (AERMET, AERMAP, AERMINUTE, and 

AERSURFACE) in a format compatible for AERMOD.  
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Step 2: consists of characterizing the emission sources (i.e., adjacent roadway 

links) and placing receptors. AERMOD area source characterization used to model the 

roadway links. Source (roadway link) dimensions were defined based on the roadway link 

orientation, geometry, and travel activity. Pollutant concentration levels were calculated 

at discrete receptor locations, placed at an average adult breathing height of 1.8m. To 

capture the peaking tendency of traffic-related emissions, receptors were placed at a higher 

density closer to roadways.  

Step 3: Based on inputs assembled from Steps 1 and 2, AERMOD estimates 

pollutant concentrations at a desired averaging period at all receptor locations. 

3.2.2.2. Spatial Interpolation  

Emission concentrations estimated at discrete receptor locations are converted into 

a continuous surface by employing a spatial interpolation technique in a geographic 

information system (GIS) platform. The inverse distance weighting (IDW) technique was 

utilized which estimates the value at an unknown location based on computed values at 

nearby locations. Closer locations (or receptors) were given more weight than those farther 

away, and the weight rate of decrease with distance was dependent on the power value (a 

power value of 2 is used in this study). 

3.2.2.3. Location-Allocation  

Spatial-temporal dynamics of people’s location was captured using portable GPS 

devices. The advantages of these techniques include minimum burden for participants, 

high-resolution continuous tracking of location and reduction of human errors in reporting 

the locations (123). This study used portable GPS technologies to track location 
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information of participants at a 10-second resolution for 24 hours. The location 

information was overlaid over the continuous concentration maps generated by AERMOD 

to obtain dynamic exposure levels of the participants across the study area. 

3.2.2.4. Exposure Assessment 

Early researchers (124, 125) first established the mathematical formulation 

(Equation 3) for exposure assessment as the product of time and concentrations in different 

locations;  

         𝐸 = ∫ 𝐶(𝑡)𝑑𝑡 Equation (3) 

where E is the cumulative exposure (concentration × time), C is the traffic-related 

emission concentration, and dt is the time spent in different locations. Time-weighted 

average exposure is estimated by dividing E by T (total time spent in all locations) (126). 

Three classifications of microenvironments were considered in this study. Incorporating 

these microenvironments, Equation 3 was customized into Equation 4 considering 

indoors, outdoors and in-vehicle.  

𝐸 = ∑(𝑇𝑖𝑖 𝐶𝑖𝑖 + 𝑇𝑖𝑜 𝐶𝑖𝑜 + 𝑇𝑖𝑣 𝐶𝑖𝑣 ) Equation (4) 

where Cii, Cio, Civ are indoor, outdoor and in-vehicle concentrations respectively; Tii, Tio, 

Tiv are the time spent in corresponding microenvironment. To incorporate the change in 

concentrations microenvironment, Equation 4 is modified into Equation 5. The adjustment 
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factors are used to account for the difference in indoor and in-vehicle concentration 

compared to ambient concentration.  

𝐸 = ∑(𝑇𝑖𝑖 𝐶𝑖𝑜 𝐴𝑜 + 𝑇𝑖𝑜 𝐶𝑖𝑜 + 𝑇𝑖𝑣 𝐶𝑖𝑣 𝐴𝑣) Equation (5) 

where Ai, and Av are the adjustment factors for indoor, and in-vehicle locations. The 

adjustment factors are obtained from the literature (127, 128). An adjustment factor of 

0.88 and 1.79 are used for indoor and in-vehicle microenvironments. Using this approach, 

cumulative exposure was calculated as a function of the person, time, and 

microenvironment.  

3.2.3. Case Study 

The case study is located in Hidalgo County (Figure 13), Texas. As of the 2010 

census, the county had an estimated population of 774,769, making it the eighth-most 

populous county in Texas. The county has the highest prevalence of childhood asthma in 

the State and accounts for the greatest share of people receiving food stamps (129). The 

largest city in Hidalgo is McAllen, while the county seat is Edinburg. 

https://en.wikipedia.org/wiki/2010_United_States_Census
https://en.wikipedia.org/wiki/2010_United_States_Census
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Figure 13- Case study location 

Study participants consisted of women in their third trimester of pregnancy 

recruited from the Rio Grande Valley Regional OBGYN Clinics in McAllen and 

Edinburg, TX. A pool of 17 participants carried a portable GPS device from October 2015 

to May 2016 for three non-consecutive 24-hour periods. This resulted in a total of 50 

sampling days (16 participated in the sampling on days and 1 conducted the sampling in 

two days). 

The PM2.5 traffic-related emissions and concentration levels were assessed for the 

entire Hidalgo County. Traffic activity data for all roadway links (excluding minor 

collectors and local roads) were obtained from traffic counters. The activity data collected 

included average daily traffic volumes, average vehicle trajectory, and fleet composition 

at the roadway link level. The average daily traffic volume is converted into hourly 
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volumes using growth factors and hourly traffic percentages. These adjustment factors and 

regional level information (related to age distribution, fuel supply, and 

inspection/maintenance program) were obtained from the latest on-road mobile source 

inventories prepared for Texas (130). Hourly distribution of traffic is shown in Figure 14. 

Traffic levels were found to be higher during morning and evening peak commuting 

periods and lower during overnight time periods.  

Figure 14- Distribution of AADT (left) and hourly traffic (right) 

The composite PM2.5 emission inventories for all roadway links were obtained 

from the latest version of MOVES emission model. Surface data was obtained from the 

McAllen International Airport and the upper air data from the Brownsville Airport. The 

wind rose diagram (Figure 15) shows the predominant wind direction to be in the south-

east direction. 
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Figure 15- Wind rose diagram 

Concentration estimates were obtained at discrete receptors placed at a density of 

250m near the urban core area which is increased to 500 m away resulting in a total of 

3,500 receptors for the study area as shown in Figure 16. The concentration levels were 

estimated at every receptor location at an hourly averaging period for 50 sampling days 

when the participants carried the GPS devices. Continuous surfaces of PM2.5 

concentrations were developed with inverse-distance weighted (IDW) interpolation based 

on concentration estimates at discrete receptor locations. Concentration maps generated 

for a total of 1200 hours (50 days × 24 hours) were then combined with the location 
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information of participants to assess their dynamic exposure. The spatial and temporal 

coordinates contained in the GPS information was used to identify the location and time 

spent by each participant in different microenvironments. Concentration data was 

extracted from the concentration maps by matching the location and time contained in the 

GPS data. Exposure values were calculated according to Eq (4) for all time steps within a 

day and are summed or averaged to obtain the participant’s cumulative or average 

exposure over 24 hours. 

Figure 16- AERMOD emission source and receptor placement for case study site 
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3.2.4. Results 

The case study extent and the participant’s location tracked for all sampling days 

is shown in Figure 17. Color points categorize the participant’s location as blue for indoor, 

yellow for outdoor, and red for in-vehicle microenvironments. The white circles indicate 

participant’s residential location and have a high percentage of recorded locations 

indicating a majority of time spent at home. In total, participants are found to spend 6.8%, 

88.1%, and 5.1% time outdoors, indoors and in-vehicle microenvironments, respectively. 

Figure 17- The time location trace from GPS coordinates for all 17 participants (50 

sampling days) 
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A traffic-related emission concentration map is shown in Figure 18. Matching the 

concentration levels with the participant’s location indicates higher levels of PM2.5 

concentrations along the driving location trace. This implies that participants experienced 

relatively higher exposure levels when they are traveling compared to the other 

microenvironments. This finding highlights the importance of incorporating participant’s 

location information in exposure assessment to identify if any short-term exposure (such 

as commuting) contributed significantly to overall exposure levels.  

Figure 18- The traffic-related PM2.5 mass concentration (µg/m3) modeled by 

AERMOD as a function of time and GPS coordinates for all 17 participants 
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Table 9- Traffic-related PM2.5 concentration (µg/m3) in three microenvironments 

over the 50 measurement days 

Micro- 

environment 

Traffic-

related 

PM2.5 Mass 

to Time 

Ratio 

Traffic-

related 

PM2.5 

Daily 

Mean 

(µg/m3) 

Traffic-

related 

PM2.5 

Standard 

Deviation Range (µg/m3) 

95% 

Confidence 

Interval 

Indoor 0.91 0.29 0.21 0.02 - 0.92 0.23 - 0.35 

Outdoor 1.45 0.26 0.27 0.00 - 1.61 0.19 - 0.34 

Driving 1.96 0.56 0.55 0.04 - 2.26 0.42 - 0.73 

Total 0.32 0.22 0.02 - 1.04 0.26 - 0.38 

Statistics of PM2.5 emission exposure levels over the sampling period is shown in 

Table 9. Average daily in-vehicle concentration ranged between 0.02 and 1.04 µg/m3, with 

a mean value of 0.32 µg/m3. Table 9 presents the significant variation in exposure levels 

depending on the microenvironment visited and amount of time spent in the 

microenvironment. The mass-to-time ratios are estimated to be 0.91, 1.45, and 1.96 for 

indoor, outdoor, and in-vehicle microenvironments, respectively. The in-vehicle mass-to-

time ratio is found to be doubled compared to the indoor microenvironment, due to the 

proximity to the emission source (roadway links) and the shielding offered by the 

buildings. The in-vehicle average concentrations obtained in this study are relatively low 

compared to other studies in literature. These values are attributed to low levels of traffic 

compared to other sources in the case study region.  According to the EPA’s emission 

based source sector classification for Hidalgo County (shown in Figure 19), the region is 

affected predominantly by dust and agricultural sources while mobile sources emissions 

account for 7% and fuel combustion accounts for 11%. 
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Figure 19- Emission based source sector classification for Hidalgo County (Source: 

USEPA, National Emission Inventory for 2014) 

Spatial distribution of emission exposure for one sampling day (December 15, 

2015) is shown in Figure 20. Higher concentration levels are observed near roadway links 

carrying higher traffic volumes. These links correspond to Interstate 2, one of the major 

east-west routes that traces the U.S-Mexico border and 69C which connects to the 

Mexican Federal Highway 97. Traffic and meteorological conditions have a dominating 

effect on the distribution of concentration levels. Traffic has a linear impact with higher 

concentration levels observed during peak morning (5 – 8 AM) and evening traffic hours 

(5 – 7 PM).  

Key meteorological parameters governing the dispersion correspond to 

atmospheric stability, and wind speed and direction. Higher concentrations are typically 

found to coincide with the direction of the prevailing or dominant wind. In terms of wind 

speed, higher speed results in higher dilution, thereby reducing the concentration 
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estimates. Atmospheric stability characterized by a continuous measure of Monin-

Obukhov length (131) in AERMOD can be broadly classified into unstable, stable and 

neutral conditions. Unstable conditions, occurring during early afternoon periods, 

decrease the concentration levels by increasing the atmospheric mixing effect. On the 

other end of the spectrum, stable conditions common during nighttime periods increase 

the concentration levels due to reduced atmospheric dispersion and neutral conditions are 

between the stable and unstable conditions. Due to stable atmospheric conditions, 

concentration levels during early morning periods, in spite of lower traffic conditions, are 

found to be higher.  Lower concentration levels are observed during midday periods 

(10AM-4PM) due to low traffic volumes and high atmospheric dispersion. Dynamic 

exposure levels were calculated according to Eq. 4 that takes into account the location of 

the participant, the amount of time spent at different locations and modeled concentrations 

at the corresponding locations. The hourly exposure values calculated for each sampling 

day was summed over 24 hours to obtain cumulative exposure levels.  

To highlight the importance of incorporating dynamic location information of 

participants, an additional analysis was performed based on fixed residential locations. 

The static approach adopted by a number of exposure studies assume people to be at static 

home locations (107-110, 128). The dynamic approach, on the other hand, takes into 

account the dynamic location information of people for calculating their exposure levels. 

The distribution of static and dynamic exposure is shown in Figure 21. The average 24-

hour static and dynamic exposure over the sampling period is found to be 0.29 µg/m3 and 

0.32 µg/m3 respectively. The results indicate that, for the entire sample, mean dynamic 
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exposure is 7% higher than the mean static exposure. The reason for the modest difference 

between static and dynamic exposure assessments may be explained by the activity 

patterns of participants considered for the current study. These participants, being in their 

third trimester of pregnancy, were predominantly at their residential locations as indicated 

by their GPS coordinates.  

3.2.5. Limitations of the Modeling Framework 

Like any modeling analysis, the analysis presented in this paper has a number of 

assumptions and uncertainties. While quantifying these uncertainties is not within the 

scope of this study, an overview of the model assumptions and input data uncertainties 

associated with the analysis is provided in this section. 

Firstly, the AERMOD model estimates concentration levels using a simplified 

Gaussian steady-state formulation. This formulation assumes steady-state meteorological 

conditions to exist throughout the case study location and within each hour.  In addition, 

Gaussian models are not capable of capturing the chemical transformation of pollutants 

and are applicable only to primary non-reactive pollutants. These models are thereby 

better suited for near-field situations where the conditions do not change significantly such 

as in the case of traffic-related dispersion. Secondly, the average daily traffic volumes are 

converted using regional growth factors and traffic percentages. These regional factors are 

not site-specific and could introduce discrepancies in the emissions estimates and thereby 

exposure levels.  
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Figure 20- Spatial-temporal distribution of traffic-related PM2.5 for a sampling day 

on December 15, 2015 
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Figure 21- Static and dynamic exposure measures of traffic-related PM2.5 
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Thirdly, concentration estimates for indoor and in-vehicle microenvironment are 

obtained from the modeled outdoor concentration combined with ratios from the literature. 

These ratios are not specific to the study area or the population sampled and could 

introduce discrepancies in the exposure estimates. Finally, the study did not include 

roadway emissions from the Mexico side of the U.S-Mexico border mainly because the 

impact from across the border is found to be beyond the near-road zone of influence in the 

study area. Vehicular emissions tend to peak within a few hundred meters from the 

roadway edge and quickly drops to background levels. This near-zone of influence varies 

by pollutant and typically literature suggests this distance to be no more than 1640–3280 

ft (29, 132) for most pollutants. The closest distance between a participant location and 

the border highway is 1.69 mi which is beyond the near-zone of influence. 

3.2.6. Conclusion 

The integration of health and transportation considerations is a topic of growing 

importance to transportation researchers and health practitioners. Quantifying the 

contribution of traffic-related emission exposure in the overall population exposure is a 

key first step to developing targeted policy and interventions to address this issue. The 

current study presented a method for integrating the dynamics of modeled pollutant 

concentrations with the location information of participants tracked using GPS devices. 

The results exhibited a significant variation of emission exposure across time periods and 

spatial locations, which cannot be captured by simpler metrics such as traffic density and 

near-road distance. The study evaluated measures of static exposure based on residential 
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location. Results showed an increase of 7% in overall exposure levels from static to 

dynamic assessment. While prior studies indicated significantly larger differences 

between dynamic and static exposure measures, current results do not indicate a 

significant improvement in accounting for dynamic location information of participants in 

exposure assessment. However, these results have to be interpreted in the specific context 

of this study as the participants involved were in their later stages of gestation and tended 

to increase the time spent at home.  

The current study contributes to the literature on exposure assessment methods in 

important ways. Firstly, the dynamic exposure method developed based on GPS data and 

air dispersion models offers several advantages over traditional exposure assessment 

methods. The method overcomes restrictions of ambient and personal monitoring in terms 

of the sample size, higher cost, equipment failure, pollutant type and averaging time 

measured. Secondly, the study the explored the utility of novel data collection 

technologies for exposure assessment. Such technologies can be explored by analyzing 

peoples’ behavioral patterns. Thirdly, the study has demonstrated the ability to capture the 

exposure levels in a vulnerable population group in a previously understudied and 

economically disparate region in South Texas. This is one of the early few studies that 

examined the activity patterns and emission exposure levels for a vulnerable population 

of pregnant women. In spite of increasing evidence linking traffic-related exposure and 

birth defects, there are limited studies examining maternal exposure levels. 

Recommendations for future research include investigating the impact of other emission 
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sources on the overall exposure levels and validate the modeled exposure levels with real-

world data (in form of personal monitoring).  

3.2.7. Financial Disclosure 

The project is funded by Texas A&M Transportation Institute’s (TTI’s) Strategic 

Research Program in addition to additional funding from Texas A&M’s Health Science 

Center (HSC). Faculty members from Johns Hopkins University (JHU) provided in-kind 

assistance, in the form of equipment use and faculty time.  
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4. DISPERSION MODEL SENSITIVITY ANALYSIS

4.1. Investigating the Impact of Meteorological Variables on Dispersion between 

Daytime and Nighttime Periods4 

In urban areas in Texas and the United States, roadway work zone and construction 

activities are often conducted at night to reduce the disruptions to traffic and to prevent 

congestion caused by lane closures during peak hours. The reduced traffic delays due to 

nighttime construction have the potential to reduce traffic emissions. However, the air 

quality impacts associated with moving these activities from the daytime to the nighttime 

have not been studied in detail. Air quality impacts depend on two major factors, namely 

the traffic emissions and meteorological conditions. While the impact of traffic emissions 

between time periods have been studied in the literature, there is limited understanding of 

the impact that meteorological conditions have on the dispersion of mobile source 

pollutants. This study specifically addresses this gap by evaluating the impact of the 

meteorological condition on pollutant concentrations under different input settings related 

to the region, land use, distance from roadways and averaging periods. The assessment of 

the impact of metrological conditions indicated that for the same amount of emissions 

(mass per time), the nighttime period could result in higher pollutant concentration (mass 

per volume) levels. However, given that traffic congestion and overall traffic volumes are 

generally substantially lower in the nighttime period, the findings do not imply that 

4 Reproduced with Permission from: Askariyeh, M.H., Vallamsundar, S. and Farzaneh, R., Transportation 

Research Record, Journal of the Transportation Research Board, pp 1-12, DOI: 

10.1177/0361198118796966. Copyright 2018, SAGE. 
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nighttime construction activities result in worse air quality in terms of pollutant 

concentrations. Thus, the relative difference in pollutant concentrations obtained from 

shifting construction activities to nighttime from daytime periods should be assessed based 

on a combination of meteorological and traffic conditions.  

4.1.1. Introduction 

Nighttime construction is being used increasingly by state Departments of 

Transportation (DOTs) and other highway agencies to conduct highway maintenance and 

reconstruction projects mainly to reduce the impacts on congestion and mobility. 

Nighttime construction has both favorable and unfavorable effects on many aspects to 

highway agencies and the public. Favorable aspects relate to reduction in congestion and 

delays during nighttime periods when traffic is at its lowest levels, less air pollution as it 

is believed that lower tailpipe emissions (emitted mass per time) lead to better air quality, 

lower traffic also related to lower fuel consumption and energy conservation, less 

inconvenience to traveling public caused by lane closures at work zones, and lower 

economic impact to the surrounding businesses due to the work being performed at 

nighttime periods. Negative issues associated with nighttime projects include safety issues 

to workers, premium worker wages, material costs, added traffic control costs, reduced 

visibility, noise disturbance to the surrounding communities, and reduced availability of 

materials and equipment parts. While some of these positive and negative effects are well 

known and have been studied in detail, others have not been sufficiently investigated. For 

example, most studies have focused on examining the safety of nighttime work activities 

and concluded that the crash rate on sections of the roadway near work activity was higher 
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than normal nighttime crash rates, and that crash rates were higher when lane closures 

were required compared to those when no lane closures were required (133-136). Studies 

have also examined the noise and vibration effects from construction equipment and traffic 

congestion and found these issues to be detrimental especially if the construction activities 

are located closer to hospitals or schools (137).  

From an air quality perspective, when construction activities are shifted to 

nighttime, congestion will be lower compared to the same project undertaken during the 

daytime. In turn, this is thought to reduce fuel consumption and vehicle emissions 

associated with nighttime versus daytime projects. There are two major factors driving the 

pollutant concentrations in the atmosphere, namely (i) emissions released by the traffic 

and construction activities and (ii) meteorological conditions. While, emissions have a 

direct impact on pollutant concentrations, with higher concentrations being associated 

with higher emissions, the relationship between meteorology and pollutant concentrations 

is much more complicated. Meteorological conditions having an impact on pollutant 

dispersion relates to characteristics of the lower and upper layers of the atmosphere and 

land use conditions. Studies have shown the pollutant concentration levels to be 

significantly higher during pre-sunrise hours than during the daytime. The higher 

concentrations levels are associated with nocturnal surface temperature inversion, low 

wind speeds, and high relative humidity (138). Ginzburg et al. (23) investigated the 

relationship between concentrations and meteorological parameters and found (a) an 

inverse relationship between concentrations and temperatures, (b) concentrations to 

decrease with increase in wind speed, (c) no significant correlation between wind direction 
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and concentrations and (d) higher atmospheric buoyancy to cause lower concentrations. 

In terms of seasonal variation, studies (139) found concentration levels to have a dominant 

peak in fall and winter seasons. Zhao et al. (140) found concentration variation to be 

greater in the summer season when temperature variations are also greater. Although 

meteorological conditions were found to have a dominating impact on pollutant 

concentrations, studies investigating the air quality effects of shifting construction 

activities between time periods examine the effects only from the traffic emissions point 

of view without considering the impact of meteorology (141). This highlights a need to 

better understand how the impact of meteorological conditions affects the expected 

benefits of shifting construction activities from daytime to nighttime periods.  

The overall goal of this study was to evaluate the impact of meteorological 

conditions on the dispersion of emitted pollutants by shifting daytime construction 

activities to nighttime. A series of sensitivity analyses was performed to evaluate the 

impact of meteorological and land use factors (for the same set of emission rates) on 

pollutant concentrations between daytime and nighttime periods. Sensitivity analysis is 

performed using EPA’s approved AERMOD air dispersion model. This study is a part of 

a larger research project conducted to investigate the emissions and air quality impacts of 

nighttime construction through case studies and developed a decision-support framework. 

The study described in this paper aims at gaining a better understanding of air quality 

impacts specifically related to meteorological conditions that can be taken into account by 

public agencies in making informed decisions about whether to undertake nighttime 

construction. The rest of the paper is organized as follows. Section 2 presents the 
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methodology used to assess the relative differences in pollutant concentrations between 

time periods. Results and findings obtained are presented in Section 3, followed by 

discussion and conclusion in Section 4. 

4.1.2. Methodology 

This section outlines the methodology used to assess the relative difference in 

pollutant concentrations between daytime and nighttime periods. Two major factors that 

affect the dispersion of pollutants into the atmosphere are emission rates (mass per time 

at which the emissions are released from an emission source) and meteorological 

conditions (wind speed, wind direction, atmospheric stability, and surface roughness etc.). 

The modeling approach consisted of performing a series of sensitivity analysis that varied 

key input parameters (for same set of emission rates) to represent differences in nighttime 

and daytime conditions that may influence pollutant dispersion. Figure 22 illustrates the 

conceptual overview approach used for this study. The approach consists of the following 

major elements:  

• Case study set-up

• Assess key input parameters for sensitivity analysis

• Perform air dispersion modeling and obtaining results
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Figure 22- Conceptual methodology 

4.1.2.1. Case-study Set-up 

Sensitivity analysis was performed on a simplified representation of a roadway 

segment to isolate the impact of complicated roadway geometry, and emission rates. 

Figure 23 displays the source and receptor set-up of a hypothetical roadway line source 

with generic assumptions made for emission rates and source parameters. 
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Figure 23- Source and receptor characterization 

The emission source consisted of a two-lane, at-grade highway segment extending 

to a length of 1600 m (1 mile) and a width of 7.3 m (24 feet). Inputs of highway 

configuration data (except for emission rates) were defined according to the EPA project-

level hot-spot analysis. The highway segment was characterized using AERMOD area 

source with a source elevation of 0 m, a release height of 1.3m, and an initial vertical 

dispersion parameter of 1.2 m. A unit emission rate was used for all modeling runs. 

Receptors were placed along the roadway from start of the roadway at 0 m and end of the 

roadway at 1600 m at a spacing of 100 m. At each of these locations along the roadway, 

receptors were placed at 2.5 m, 5 m, 10 m, 15 m, 25 m, 50 m, 100 m, 250 m, 500 m, 750 

m, 1000 m, and 1500 m from the edge of the road.  AERMOD, being a Gaussian-based 

dispersion model is capable of predicting the dispersion patterns of any primary non-
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reactive pollutant with no chemical transformation. Accordingly, the dispersion patterns 

predicted by AERMOD applies to any primary non-reactive pollutant (such as carbon-

monoxide (CO), primary particulate matter (PM2.5 and PM10), and primary nitrogen oxides 

(NOx)). 

4.1.2.2. Key Input Parameters for Sensitivity Analysis 

The impact of meteorological conditions on pollutant concentrations between 

daytime and nighttime time periods were assessed for different input parameter settings 

as listed in Table 10.  

Table 10- Key input parameters assessed for sensitivity analysis 

Parameters Evaluated Values 

1. Case Study Location • Dallas

• Houston

• El Paso

2. Zone of influence • Near-road (0 – 250 m) from roadway edge

• Far-road (> 250 m)

3. Time period of construction • TxDOT Specification Handbook

• Practical time period information from

contractors

4. Land Use • Rural

• Urban

5. Atmospheric Stability • Stable, Unstable and Neutral stability classes

are classified based on Monin-Obukhov

length

6. AERMET • Regulatory default option

• Beta option (LOWWIND, ADJ_U*)

Description about key input parameters and their parameter values considered for 

sensitivity analysis is provided below: 
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4.1.2.3. Case Study Location 

As it is difficult to generalize the meteorological conditions between different case 

study sites, sensitivity analyses were performed based on local parameters for three urban 

areas in Texas, namely Dallas, Houston, and El Paso. Raw meteorological (surface and 

upper air) data specific to each case study location was processed using AERMINUTE, 

AERMET and AERSURFACE preprocessors to produce data in a compatible format for 

AERMOD. The prevailing wind rose diagrams for daytime and nighttime periods (on an 

annual averaging basis) are shown in Figure 24. The predominant wind direction was the 

same for both daytime and nighttime periods for Dallas and Houston. However, for El 

Paso, the predominant wind direction changed drastically from blowing from south-west 

(daytime period) to north-east (nighttime period). 
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Figure 24- Wind rose diagram for case study areas 



89 

4.1.2.4. Time Period of Daytime and Nighttime Construction 

Designation of time periods during which construction activities are performed 

during daytime and nighttime periods were obtained from two sources, namely (a) the 

TxDOT Standard Specification Handbook and (b) input obtained from construction 

contractors performing the activities. According to the TxDOT Standard Specification 

Book (142), “nighttime work is defined as work performed from 30 minutes after sunset 

to 30 minutes before sunrise.” Table 11 lists the designations of daytime and nighttime 

periods according to the seasonal sunrise and sunset times in Texas and based on the 

construction contractor’s information.  

Table 11- Daytime and nighttime construction time period 

(A) Construction time period according to TxDOT specification handbook

Season Sunrise/Sunset Daytime 

Construction 

Period 

Nighttime 

Construction 

Period 

Winter (Dec., Jan., 

Feb.) 

Sunrise 7:30 a.m., 

Sunset 5:30 p.m. 

7 a.m.–6 p.m. 6 p.m.–7 a.m. 

Spring (Mar., Apr., 

May) 

Sunrise 7 a.m., 

Sunset 8 p.m. 

6:30 a.m.–8:30 

p.m.

8:30 p.m.–6:30 

a.m.

Summer (June, July, 

Aug.) 

Sunrise 6:30 a.m., 

Sunset 8:30 p.m. 

6 a.m.–9 p.m. 9 p.m.–6 a.m. 

Fall (Sep., Oct., Nov.) Sunrise 7:30 a.m., 

Sunset 7 p.m. 

7 a.m.–7:30 p.m. 7:30 p.m.–7 a.m. 

(B) Construction time period according to construction contractors

Season Practical Daytime 

Construction Period 

Practical Nighttime 

Construction Period 

Winter (Dec., Jan., Feb.) 6 a.m.–9 p.m. 9 p.m.-6 a.m. 

Spring (Mar., Apr., May) 6 a.m.–9 p.m. 9 p.m.-6 a.m. 

Summer (June, July, Aug.) 6 a.m.–9 p.m. 9 p.m.-6 a.m. 

Fall (Sep., Oct., Nov.) 6 a.m.–9 p.m. 9 p.m.-6 a.m. 
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4.1.2.5. Land Use 

The urban/rural land use representativeness of a case study site is found to have 

impact on the dispersed pollutant concentrations. Urban areas are generally hotter than 

nearby rural areas, especially at night, mainly because of heat retention by urban materials. 

Because of this heat retention, the vertical motion of the air is increased through 

convection, thereby leading to increased dispersion of pollutants (143). This phenomenon 

is referred to as the urban heat island effect. The purpose of evaluating this key parameter 

was to assess the impact of land use on the relative difference in concentration estimates 

between daytime and nighttime periods, given the same traffic characteristics and site 

configuration. 

4.1.2.6. Atmospheric Stability 

Among the different meteorological parameters, atmospheric stability, responsible 

for mixing and dilution, is found to have a significant impact on pollutant concentration 

between different time periods. Hence, the variation of atmospheric stability was studied 

in detail. To evaluate the variation of pollutant concentration with atmospheric stability, 

pollutant concentrations were estimated at an hourly averaging period for four seasons 

(Spring, Summer, Fall, Winter) for El Paso. 

4.1.2.7. AERMET Meteorological Data Processing 

The EPA noted, in 2007, issues with high concentrations due to the treatment of 

light winds in AERMOD. AERMOD exaggerates the nighttime concentration estimates 

due to the way it handles low winds (low wind speeds <1 m/s) (144). To overcome this 
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over prediction, the EPA, in 2012, developed non-default BETA options were developed 

for meteorological data processing in AERMET to improve AERMOD performance under 

low wind conditions (144). This included the LOWWIND BETA options on the 

MODELOPT keyword in AERMOD, and the ADJ_U* option included in stage 3 of the 

AERMET meteorological processor. The LOWWIND option increases the minimum 

value of sigma-v, and replicates the centerline concentration accounting for horizontal 

meander, but utilizes an effective sigma-y and eliminates upwind dispersion. The ADJ_U* 

option adjusts the surface friction velocity (U*) to improve the performance of the model 

for low wind speed and stable conditions (51). These non-default options are not approved 

for regulatory purposes but can be used for research purposes with the approval of 

appropriate reviewing authority. Meteorological data was processed using these non-

default options to assess the impact on pollutant concentrations between different time 

periods.  

4.1.2.8. Performing Air Dispersion Modeling and Obtaining Results 

Among the different air dispersion models, the EPA approves AERMOD for a 

wide range of regulatory applications including roadways and off-road networks (i.e. 

construction sites) in all types of terrain. AERMOD is a steady-state Gaussian plume 

model and uses an advanced method to characterize stability compared to its processor 

models. AERMOD uses a continuous function called Monin-Obukhov length to 

characterize atmospheric stability. The two regulatory components of AERMOD include 

the meteorological preprocessor (AERMET) and the terrain data preprocessor 

(AERMAP). AERMET processes the meteorological data from the National Weather 
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Station (NWS) and onsite data. AERMET produces output files containing the surface 

scalar parameters and the vertical profile of meteorological data. AERMAP preprocesses 

complex terrain data and generates receptor grids, using USGS digital elevation data 

(145). AERMOD model requires emission factors to be specified for all hours of the day. 

As such, AERMOD model was set to run for the daytime and nighttime time periods as 

follows: 

• Daytime model runs: emission rates were assigned a value of 1 for the daytime period

hours and were given a value of 0 for nighttime period hours

• Nighttime model runs: emission rates were assigned a value of 0 for the daytime period

hours and were given a value of 1 for nighttime period hours

Whenever a given hour is specified a value of 0, AERMOD does not compute 

concentration estimates for that hour. For example, in a daytime model run AERMOD 

concentration estimates were based only on emissions occurring during daytime period 

and a nighttime model run AERMOD concentration estimates were based only on 

nighttime period emissions. The resulting pollutant concentrations obtained were 

normalized by the corresponding time periods.  

4.1.3. Results and Discussion 

To evaluate and compare the effects of different time periods, time period 

designations, land use, areas, and zones of influence from the roadway edge on pollutant 

concentrations, different combinations of these factors were defined to model pollutant 

dispersion using AERMOD. Figure 25 shows the variation in normalized concentration 
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predictions as a function of time period designation, zone of influence or distance from 

the roadway, and land use. Results shown in Figure 25 are based on the default regulatory 

option in AERMOD. 

Figure 25- Normalized concentrations with distance from roadway edge, land use 

and time period designation for (a) El Paso, (b) Dallas and (c) Houston 
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4.1.3.1. Effect of Distance from Roadways 

As shown in Figure 25, concentration estimates were found to be the highest near 

the roadway link edge and then gradually decreased with distance from roadway links 

edge. The decrease in concentration estimates was found to be steep for a distance of 250 

m and the concentration estimates flattened for distances beyond 250 m. These findings 

were found to be consistent with the literature (29, 146-149). Karner et al. (29) analyzed 

41 roadside monitoring studies between 1978 and 2008 and concluded that almost all 

pollutants decrease to background levels at a distance of 115 m to 570 m from the edge of 

the road and the decrease varies from one pollutant to another. Venkatram et al. (16) 

analyzed data from three near-road pollution measurements and AERMOD dispersion 

model and found the concentration of an inert pollutant to decrease rapidly to less than 

one-fifth of its initial concentration from roadway edge.  

4.1.3.2. Effect of Time Period 

For all the case study areas (El Paso, Dallas, and Houston) concentration estimates 

were found to be higher for nighttime periods compared to daytime and rural land use 

compared to urban land use conditions. The reason for high concentration estimates during 

nighttime compared to daytime periods was because of the stable atmospheric conditions 

during nighttime periods. Sunlight during the daytime helps in the mixing/dispersion of 

pollutants in the atmosphere. When the sunlight strikes the Earth’s surface during the day, 

it heats up more quickly and the heat is transferred to the air immediately above the 

ground, causing the warm air to rise and mix with the cooler air above. When the sun sets 

during the evening and nighttime periods, the Earth’s surface cools down much faster than 
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air, resulting in cooler (heavier) air near the ground and warmer (lighter) air staying on 

top. This fairly stable atmospheric condition during nighttime periods leads to much 

reduced mixing and dispersion of pollutants and thereby higher concentrations. Thus, the 

low atmospheric transport and dispersion characteristics were the reason for higher 

concentration estimates (121) during nighttime periods.  

4.1.3.3. Effect of Land Use 

Lower concentration estimates observed in an urban land use setting compared to 

a rural setting was because of the urban heat island effect. In this regard, buildings, roads, 

and structures in urban areas absorb more radiation and energy compared to almost flat 

terrain conditions in rural areas. Because of this heat retention, the vertical motion of the 

air was increased through convection, yielding better mixing, stronger vertical air flux, 

and eventually better dilution resulting in increased dispersion of pollutants (121).  

4.1.3.4. Effect of Modeling Options in AERMOD 

In addition to the default regulatory option, AERMOD was run with the BETA 

option (meteorological data processed with LOWWIND option in AERMOD and use of 

ADJ_U* in AERMOD). Concentration estimates obtained using BETA option were 

compared with the regulatory option. The regulatory option was found to predict higher 

concentrations compared to BETA option, but the difference was minor in concentration 

levels ranging between two to four percent. A potential reason for the low difference could 

be that the BETA options are more impactful for studies involving tall stacks (150). 
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4.1.3.5. Effect of Atmospheric Stability 

To investigate the variation of pollutant concentration with atmospheric stability, 

pollutant concentrations were estimated at an hourly averaging period for El Paso. Hourly 

concentrations are further classified by seasons and are shown in Figure 26. The higher 

concentration values in Figure 26 are because of the lower averaging period of an hour 

compared to Figure 25, which is based on an annual averaging period 

Figure 26- Pollutant concentrations at an hourly averaging period varied by season 

for El Paso 

Atmospheric stability affects the dispersion of vehicle emissions downwind of the 

highway and is governed by heat and momentum forces in the environment. AERMOD 

provides a continuous measure of atmospheric stability based on an energy balance in the 

planetary boundary layer. The energy balance is represented by the sensible heat flux, 

which depends on net radiation and surface characteristics such as available surface 
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moisture. Atmospheric stability in AERMOD is represented as a function of the Monin-

Obukhov length [L(m)] (151). The atmospheric stability is obtained from the surface and 

upper air data processed by AERMET. Unstable atmospheric conditions refer to 

convective conditions when the atmosphere is not stable leading to increased dispersion 

and lower pollutant concentration estimates. Stable atmospheric conditions, typically 

observed during nighttime periods, have low atmospheric transport and dispersion leading 

to higher pollutant concentration estimates and neutral conditions are in the middle 

between stable and unstable conditions.  

The hourly distribution of atmospheric stability conditions, based on AERMET 

provided Monin-Obukhov length, for all seasons specific to El Paso is shown in Figure 

27. The, Monin-Obukhov length ranging from 0 to -105 is classified as Unstable, followed

by 0 to 105 m classified as Stable and values greater than 105 m is classified as Neutral 

stability class (152). Comparing Figure 26 with Figure 27, the variation of concentration 

estimates closely followed the variation in atmospheric stability conditions. Concentration 

levels were lower between hours 08:00 to 17:00, coinciding with the unstable atmospheric 

conditions. Concentration levels were higher between hours 01:00 to 08:00 and 17:00 to 

24:00 due to the presence of predominantly stable conditions and limited neutral 

conditions. The concentration levels were higher during winter and fall seasons compared 

to summer and spring seasons. This was because of the higher prevalence of stable 

atmospheric conditions (less sunlight time compared to summer and spring) leading to 

reduced levels of mixing and pollutant dispersion during fall and winter season. 

Considering seasonal atmospheric conditions, concentration estimates were found to be 
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higher for winter and fall nighttime periods, followed by summer and spring nighttime 

periods, winter and fall daytime periods, and summer and spring daytime periods.  

Figure 27- Distribution of atmospheric stability conditions for El Paso 

The relative difference (expressed as a percentage) in average concentration levels 

between nighttime and daytime periods is summarized in Table 12. The relative difference 

expresses how much the concentration estimates are higher in nighttime periods compared 

to daytime periods for the same traffic activity, and source characterization. The relative 

difference was found to increase with distance from roadway edge because of the very 

low concentration values obtained at distances greater than 250 m. A higher relative 

difference was observed for rural land use conditions with time periods defined by the 

TxDOT specification handbook. The difference in concentration estimates between case 

study regions (i.e. El Paso, Dallas, and Houston) was due to their different meteorological 

conditions. 
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Table 12- Relative difference in average pollutant concentrations between nighttime 

and daytime periods 

Relative Difference5 in Average Concentration Levels (expressed as a percent) 

S: TxDOT specification handbook, P: Construction contractors information 

El Paso 

Distance from 

roadway 
0–15 m 

15–250 m 
250–750 m 

750–1500 m 

Urban – S 110% 176% 269% 267% 

Rural – S 151% 254% 370% 367% 

Urban – P 81% 119% 166% 164% 

Rural – P 109% 167% 226% 228% 

Dallas 

0–15 m 15–250 m 250–750 m 750–1500 m 

Urban – S 88% 172% 326% 366% 

Rural – S 109% 237% 496% 589% 

Urban – P 67% 117% 189% 197% 

Rural – P 80% 154% 275% 296% 

Houston 

0–15 m 15–250 m 250–750 m 750–1500 m 

Urban – S 106% 174% 302% 333% 

Rural – S 159% 300% 495% 536% 

Urban – P 80% 121% 183% 191% 

Rural – P 118% 194% 274% 281% 

Combining all estimates from Table 12, on average for any urban area, annual 

average pollutant concentrations dispersed during nighttime conditions were higher by 

100 to 120 percent compared to daytime periods. This relative difference increased to 150 

to 200 percent for rural land use conditions. This finding was found to be consistent with 

other near-road studies examining the difference between daytime and nighttime air 

pollutant impact. Ultrafine particle (UFP) concentrations at night were reported by Zhu et 

5 Relative difference is expressed as (Nighttime Concentration – Daytime Concentration)/Daytime 

Concentration 



100 

al. (138), who conducted measurements upwind (300 m) and downwind (500 m) of a 

freeway from 22:30 to 04:00. Although traffic volumes were much lower at night (about 

25 percent of peak) particle number concentrations were about 80 percent of the daytime 

peak concentrations along a major freeway in Los Angeles. Hu et al. (153) measured air 

pollutant concentrations along the I-10 freeway in west Los Angeles, one-two hours before 

sunrise in the winter and summer months using an electric vehicle mobile platform 

equipped with fast-response instruments. Although traffic volumes during the pre-sunrise 

hours were lower than during the day, the UFP concentrations were significantly higher 

in the pre-sunrise period due to strong atmospheric stability, low wind speeds, low 

temperatures and high humidity values. They found the combination of sufficient traffic 

flow with meteorological conditions during pre-sunrise hours to result in elevated 

concentrations of UFP, nitrogen-oxides and polycyclic aromatic hydrocarbons during pre-

sunrise hours.  

4.1.4. Conclusion 

Key findings from the series of sensitivity analyses performed to evaluate the 

impact of meteorological conditions on pollutant concentrations between daytime and 

nighttime periods include the following: 

• Peaking effects in pollutant concentrations were observed near-road and

concentrations declined with distance from roadway edge. The decrease was

dependent on meteorological conditions and varied by season.
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• Concentrations were higher in rural areas when compared to urban land use conditions

due to the retention of heat by urban materials that increased the vertical motion of air,

leading to increased pollutant dispersion in urban conditions.

• Concentrations were higher during nighttime compared to daytime (when emissions

levels from the source are held equal) due to stable atmospheric conditions, lower

mixing heights, and lower wind speeds leading to higher concentrations of pollutants

at the near-ground level during nighttime periods.

• Considering all combinations of input parameters, concentration estimates were found

to be higher for the rural-night time period, followed by urban-night, rural-night and

rural-day.

• The Higher relative difference in concentrations between daytime and nighttime

periods were observed in far-road areas (i.e. farther than 250 m from the roadway)

because of extremely low values when the concentrations fall back to background

levels.

• On average, for any urban area, annual average pollutant concentrations dispersed

during nighttime conditions were higher by 100 to 120 percent compared to daytime

periods. This relative difference increased to 150 to 200 percent for rural land use

conditions.

In summary, from a pollutant dispersion perspective, the assessment of the impact 

of meteorological conditions indicated that for the same amount of emissions (i.e., if traffic 

volumes were held equal between daytime and nighttime) higher pollutant concentration 

levels are expected overnight. However, given that traffic congestion and overall traffic 
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volumes are generally substantially lower during the nighttime period, the findings do not 

imply a net increase in pollutant concentrations in the region due to nighttime construction. 

Thus, the relative difference in pollutant concentrations obtained from shifting 

construction activities to nighttime from daytime periods should be assessed based on a 

combination of meteorological and traffic conditions.  

Authors acknowledge the limitations of the results, as they were based on 

hypothetical case study settings evaluating the impact of meteorological conditions with 

no change in traffic activities. However, a review of the literature shows the conclusions 

and findings of this study, with regards to the difference in dispersion patterns between 

daytime and nighttime periods, and land use, were consistent with other studies. For future 

work, the authors recommend a methodology based on actual traffic data and near-road 

ambient air monitoring observations collected for daytime and nighttime to validate the 

findings obtained from the sensitivity analysis. 
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4.2. The Effect of Re-suspended Dust Emissions on Near-Road Traffic-Related Air 

Pollution 

In recent years, there has been a focus on adverse health effects of near-road long- and 

short-term exposure to traffic-related fine particulate matter (PM2.5). Traffic-related PM2.5 

emissions can be attributed to tailpipe exhaust, brake wear, tire wear, and re-suspended 

road dust. Previous field and modeling studies have shown the considerable contribution 

of re-suspended PM2.5 emissions from traffic-related activity. The U.S. EPA provides 

guidelines to predict traffic-related PM2.5 concentrations. While tailpipe exhaust, brake 

and tire wear are estimated using EPA’s MOVES modeling tool, re-suspended dust 

calculations utilize AP-42 factors which have gone through limited updates. There are 

limited studies that explore the sensitivity of EPA quantitative analysis results to re-

suspended PM2.5. In addition, the nonlinear relationship between emissions and 

concentrations due to the effect of meteorological variables and network geometry was 

under-investigated in prior studies. In this study, the effect of including re-suspended road 

dust due to near-road traffic-related PM2.5 on near-road traffic-related concentrations was 

investigated based on EPA’s guidelines. The results showed that the inclusion of re-

suspended dust increased traffic-related PM2.5 emissions by 139-208% on arterials and 16-

19% on highways, and increased near-road PM2.5 concentrations by 49-74% for different 

time periods in the four seasons evaluated. These estimated increases emphasize on the 

importance of re-suspended dust in long- and short-term traffic-related exposure studies, 

particularly in areas surrounded by arterials. These areas are where human exposure can 
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be more important than near highways as people tend to live, work and congregate near 

many arterials. 

4.2.1. Introduction 

In recent years, there has been a focus on the adverse health effects of near-road 

long- and short-term exposure to traffic-related air pollutants (154, 155). Fine particulate 

matter (PM2.5) is an EPA regulated criteria air pollutant (156). PM2.5 is emitted from 

different emission sources including the transportation sector and studies demonstrated 

the elevated PM2.5 concentrations in near-road environments (17, 24). A growing body of 

literature shows associations between higher exposures to PM2.5 due to proximity of 

residential areas to major roadways and adverse health effects (8-10). Approximately 11-

19% of the U.S. population lives within a few hundred meters of major roads (10, 11, 157) 

which can effect more than 40 million people exposed to high levels of PM2.5 in the U.S. 

The global population exposed to elevated levels of PM2.5 is even higher. Hence, 

monitoring and modeling PM2.5 emissions from the transportation sector and subsequently 

the dispersion in ambient air is highly important for exposure studies. In addition, the 

emission and dispersion modeling of PM2.5 is a requirement of a regulatory quantitative 

analyses for federally supported new transportation projects in nonattainment and 

maintenance areas (67). The PM2.5 emissions from the transportation sector result from 

tailpipe exhaust, brake wear, tire wear, and re-suspended dust and are explained in the 

U.S. EPA developed MOtor Vehicle Emission Simulator (MOVES) guidance and 

transportation conformity guidance for PM2.5 quantitative hotspot analyses (67, 158). 
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The tailpipe PM2.5 exhaust emissions have decreased considerably as different 

exhaust emission control measures have been deployed. However, current non-exhaust 

emissions from road vehicles are unabated making the contribution of re-suspended road 

dust to traffic-related particulate matters even more significant (159, 160). An intensive 

mass and chemical measurement included study showed that the PM2.5 emission rate from 

re-suspended dust is significant and can exceed the tailpipe contribution in Reno, Nevada 

(161). Kundu et al. compared composition of PM2.5 in rural and urban areas and concluded 

that unpaved roads can contribute to a significantly higher level of PM2.5 at five sampling 

sites in Iowa (162). Amato et al. performed an extensive field measurement study and 

showed that a poor state of pavement can double the road dust loading (159). While these 

studies show the importance of including  re-suspended PM2.5 in air pollution studies, other 

studies did not conclude that re-suspended dust is a significant source of PM2.5 rather on-

road emission sources were more significant (163). 

In emission and dispersion modeling for regulatory purposes, a procedure 

including specific guidelines to estimate PM2.5 emission from transportation and perform 

dispersion modeling should be followed (67). In this procedure the PM2.5 emissions from 

tailpipe exhaust, brake wear, tire wear, and re-suspended dust emissions should also be 

modeled. EPA’s MOVES2014a on-road model and current AP-42 paved road re-

suspended dust model are recommended to estimate PM2.5 emission rates (PM2.5 mass per 

time) as per the hotspot guidance (67, 164, 165). While tailpipe exhaust (running, idling, 

and start), brake, and tire wear are estimated using EPA’s MOVES modeling tool (158), 

re-suspended dust calculations utilizes AP-42 factors which has gone through limited 
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updates. MOVES is a microscopic emissions model that uses a fine-scale modal-based 

approach to generate emission and energy consumption factors at different temporal 

geographical scales (national, county, and project) (158). 

The emission factors obtained from the MOVES can be used with transportation 

activity to estimate total emissions from all roadway links. For project level emissions 

assessment, MOVES requires inputs from two broad categories: a) Site-specific traffic 

information, including traffic volumes, fleet composition, and vehicle activity at the 

roadway link level, and b) Local-specific inputs, including regional-level vehicle age 

distribution, meteorological variables, fuel characteristics, and parameters related to the 

inspection/maintenance (I/M) program. The modeled emission rates can then be used for 

dispersion modeling to consider the effect of meteorological variables and predict near-

road PM2.5 concentrations. Air pollutant dispersion for regulatory purposes needs to be 

modeled using the American Meteorological Society- United States Environmental 

Protection Agency Regulatory Model (AERMOD) (41, 67). AERMOD is a Gaussian 

steady-state dispersion model that predicts concentration of air pollutants emitted from 

characterized emission sources.  

Many different studies around the world have shown the effect of re-suspended 

road dust on traffic-related PM2.5 emissions. However, sensitivity of regulatory 

quantitative analyses to re-suspended PM2.5 has not been investigated. The effect of using 

a network with and without road-dust on the dispersion models’ predictions of near-road 

PM2.5 concentrations is a less investigated area. Also, previous show a nonlinear 

relationship between emission rates and near-road air pollutant concentrations due to the 
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effect of meteorological variables on dispersion mechanisms (23, 138, 140). A constant 

emission rate yields different concentrations under different meteorological conditions 

over time (24). However, the effects of a certain change in PM2.5 emissions due to 

inclusion of re-suspended road dust on near-road PM2.5 concentrations over different time 

periods have not been evaluated. 

In this study, the increase in PM2.5 emission rates that includes of re-suspended 

road dust in Fort Worth, Texas was investigated, following regulatory guidelines. 

Additionally, the dispersion modeling was performed using a 2016 dataset of monitored 

meteorological variables to evaluate the sensitivity of predicted traffic-related PM2.5 

concentrations in a near-road environment at different seasonal day time periods. As such, 

this study quantifies the sensitivity of dispersion modeling to a significant increase in 

PM2.5 emission rates in a network by including re-suspended PM2.5. In addition, this study 

evaluates the results using regulatory guidelines for traffic-related PM2.5 emission and 

near-road dispersion modeling. 

4.2.2. Materials and Methods 

4.2.2.1. Theoretical Premise 

The road dust PM2.5 emission rate is a function of vehicle weight, road type (paved 

vs unpaved), and meteorological variables (precipitation) which will be multiplied by 

traffic volume for re-suspended dust emissions estimation. The PM2.5 emissions from tail 

pipe exhaust, brake wear and tire wear (exhaust and other) are functions of traffic speed, 

road type, fleet characteristics and mix, fuel quality, and meteorological variables in the 

respective county which will be multiplied by traffic volume for vehicular (exhaust, brake, 
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and tire wear) emissions estimation. Adding the re-suspended PM2.5 emissions to the 

vehicular (exhaust, brake, and tire wear) PM2.5 emissions will be influenced by 

meteorological variables as a function of time when dispersion mechanisms occur. Also, 

adding the re-suspended PM2.5 emission rate to various segments of a network with 

associated PM2.5 emission rate (due to vehicular sources with different characteristics and 

speeds) cannot be interpreted as a linear increase of the total PM2.5 emission rate in a 

network. Hence, it can be concluded that there is a nonlinear relationship between traffic-

related emission rates and near-road traffic-related air pollutant concentrations over 

different time periods. Changes in emission rates will not necessarily result in the same 

changes in concentrations. In this study, the traffic-related PM2.5 emissions (mass per time 

per area of roadway) and near-road traffic-related concentrations (mass per area), were 

estimated for different time periods of four seasons of the year 2016 for two types of 

roadways (highways and arterials). Finally, the emission rates and predicted near-road 

concentrations were averaged over daily time periods for each season to compare the 

effects including or not including re-suspended PM2.5 emissions. Through this procedure, 

the increment of near-road traffic-related PM2.5 concentrations including re-suspended 

PM2.5 in traffic-related emissions was investigated. 

4.2.2.2. Area of Study 

In response to recent EPA requirements for near-road air pollution monitoring, the 

Texas Commission on Environmental Quality (TCEQ) determined six locations near 

major highways to monitor air quality using Federal Reference Method (FRM) in Texas 

(166). One of these six locations is in Fort Worth, Texas, and this was selected for 
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emission, meteorological, and dispersion modeling in this study (167). The near-road 

continuous air monitoring station (CAMS) 1053 is located 15 meters away from the edge 

of I-20 in Tarrant County (EPA Site Number: 484391053, 1198 California North, TX 

76115), as shown in Figure 28. The highway and arterial segments within a 600 m radius 

(24) of this near-road point (roadways segments are shown by navy links and the near-

road environment by red dot in Figure 28) were considered for dispersion modeling. The 

hourly wind speed, wind direction, and temperature monitored at this point (CAMS 1053) 

were used as the onsite meteorological data for data processing in the meteorological 

modeling. 

The Dallas -Fort Worth (DFW) regional travel demand model (TDM) results were 

obtained from the North Central Texas Council of Governments and post-processed to 

estimate hourly traffic activity on each link for the target area. The modeled hourly traffic 

volume and speed were mapped into different daily time periods such as Morning Peak 

(6:00- 9:00 am), Midday (9:00 am- 4:00 pm), Evening Peak (4:00- 7:00 pm), and 

Overnight (8:00 pm- 6:00 am) periods. The hour that corresponds to the maximum volume 

in each period was selected for the analysis. Traffic volume and speed were not adjusted 

for different seasons.  
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Figure 28- Study area (I-20: Ronald Reagan Memorial Highway shown by navy 

lines), near-road environment (shown by red mark) and corresponding wind rose 

based on monitored values in Fort Worth, Texas 

4.2.2.3. Emission Modeling using MOVES 

The PM2.5 emission factors due to all traffic-related sources other than re-

suspended dust (exhaust, brake and tire wear) were modeled using MOVES for 2016 

Tarrant County. MOVES requires information for vehicle types, ages, fuel types and the 

emission parameters to estimate emission factors. To estimate composite emission factors 
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for each link in the target network, the vehicle miles traveled (VMT) mix was obtained 

for two road types: highways and arterials. 

The VMT mix indicates contribution of each vehicle type to the total VMT. The 

VMT mixes were estimated using a previously developed method and expanded to 

produce the four-daily time period estimates for four months (168, 169). The four daily 

time periods included morning peak, midday, evening peak, and overnight. The four 

months were January, April, July, and October and represent emissions in Winter, Spring, 

Summer, and Fall, respectively. Composite emission factors were estimated using 

MOVES emission factors for different vehicle types and VMT mix for two road types 

(arterials and highways) based on Equation 6 (168), in which i represents vehicle types.  

Composite Emission Factor

= ∑ Emission Factors × VMT mix 

i Equation (6) 

4.2.2.4. Re-Suspended Dust Emission Estimation 

No unpaved road emissions factor analyses were performed because there were no 

unpaved roads in the target network. Re-suspended dust emission factors from paved roads 

(i.e., TDM and intra-zonal links) were developed according to Equation 7 from the AP-42 

section 13.2.1 (165). 

E = k (sL0.91)(W1.02)(1 −
P

4N
) Equation (7) 

where: 
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k = Particulate Size Multiplier (g/VMT) 

sL = Road Surface Silt Loading (g/m2) 

W = Average Vehicle Weight (tons) 

P = Number of wet days (>= 0.01" of rain) (days) 

N = Number of days in the period (days) 

The input parameters to estimate re-suspended PM2.5 emission are PM2.5 

multiplier, a factor indicating road surface silt loading, the average weight of fleet, days 

with 0.01 inches precipitation and more (wet days) for the seasonal period, and number of 

days in the seasonal averaging period. The number of wet days for the seasonal periods of 

Tarrant County was obtained from Community Collaborative Rain, Hail and Snow 

Network database (170). The PM2.5 particle size multiplier from the referenced EPA AP-

42 guidance was used (165). The average vehicle weight values were estimated using the 

current Tarrant County VMT mix and respective MOVES vehicle types weights. Because 

control programs (i.e., street sweeping) affect the road surface silt loading and controlled 

silt loading values are not available, no control programs were included in the 

development of the re-suspended PM2.5 emissions factors for this analysis.  
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4.2.2.5. Dispersion Modeling using AERMOD 

Dispersion modeling requires an input set including meteorological variables and 

emission source characteristics. The meteorological inputs were obtained from running a 

meteorological module developed by EPA for regulatory dispersion modeling, AERMET 

(171). The onsite data including wind speed, wind direction, and temperature obtained 

from hourly near-road monitoring (CAMS 1053) was incorporated with upper air data and 

surface air data for 2016. Surface characteristics including Albedo, Bowen ratio, and also 

surface air and upper air representative station name for Tarrant County were obtained 

from TCEQ meteorological database for air dispersion modeling (172). The surface air 

data of Dallas Fort Worth Airport (Station ID: 3927) was obtained from National Oceanic 

Atmospheric Administration (NOAA) surface air database (173) and upper air data of Fort 

Worth (Station ID: 3990) was obtained from NOAA Radiosonde Database (174). 

AERMET was run including these raw input sets to model meteorological variables in 

hourly time resolution for target near-road environment in 2016. 

To model the target network as the emission source in AERMOD, the network 

highways and arterials were split into smaller segments (to represent the roads curvature) 

and were defined as the area sources of PM2.5 emissions. The PM2.5 quantitative hotspot 

analyses was used to define the details of area sources of emissions (67). The release 

height and initial vertical dispersion coefficient were estimated based on EPA’s guidance 

for each of the four daily time periods for arterial and highway segments (approximately 

1.4 m, and 1.3 m, respectively). The PM2.5 concentrations were modeled for one receptor 
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located at 15 meters from the edge of the highway (32.66⁰ N, -97.34⁰ W, elevation: 214.9 

m) representing the near-road environment.

4.2.3. Results and Discussion 

4.2.3.1. Traffic-Related PM2.5 Emission Rates on Highways and Arterials 

The PM2.5 emission rates due to re-suspended dust and also exhaust emissions as 

averaged over four time periods of the day are shown for highways and arterials for four 

seasons in Figure 29. The predicted PM2.5 re-suspended emissions are greater than exhaust, 

brake, and tire wear combined at arterials emphasizing the need to include re-suspended 

dust in emission modeling when in close proximity to arterials. However, the re-suspended 

PM2.5 emissions are significantly lower than exhaust, brake, and tire wear combined at 

highways which can be explained by the higher quality of highway pavement leading to 

smaller factors used in highway re-suspended PM2.5 emission estimation. Results do not 

show significant changes in emission rates between morning peak, midday, and evening 

peak, but considerable decrease during nighttime due the lower traffic activity. 
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Figure 29- Predicted PM2.5 emission rates 

To investigate the PM2.5 emission rate increment due to inclusion of re-suspended 

emissions in different seasonal and daily time periods, the ratio of re-suspended PM2.5 to 

the tail pipe exhaust, brake wear, and tire wear emissions for highways and arterials was 

calculated (Table 13). The percentages are consistently higher than 100% for arterials. For 

arterials, results also show that the percentage is highest during evening peak followed by 

midday, morning peak, and overnight, respectively, which shows the importance of 

considering re-suspended dust in PM2.5 emission estimation in the same order. Among 

different daily time periods for highway emissions, re-suspended to exhaust, brake, and tire 

wear PM2.5 emissions percentage is highest for midday, followed by morning peak, evening 

peak, and overnight, respectively. As far as seasonal variation, this percentage is highest for 



summer, followed by fall, winter, and spring, respectively. The overall evaluation 

of modeled emission rates show that the increase in average PM2.5, due to the inclusion 

of re-suspended dust emissions, will vary from 15.7% to 18.7%, and 138.9% 

to 207.6% for highways and arterials in Fort Worth, Texas. 

Table 13- Predicted PM2.5 emission increment due to inclusion of re-suspended 

dust (Ratio of re-suspended PM2.5 to exhaust and other PM2.5 emission rates) 

Highway Arterial 

Time Period Spring Summer Fall Winter Spring Summer Fall Winter 

17.4% 18.4% 18.1% 17.5% 172.7% 181.3% 178.4% 175.6% 

18.1% 18.7% 18.6% 18.6% 187.4% 193.0% 192.2% 193.1% 

17.3% 17.8% 17.8% 17.8% 202.1% 207.6% 206.8% 207.3% 

Morning Peak 

Midday 

Evening Peak 

Overnight 15.7% 16.4% 16.2% 16.2% 138.9% 144.1% 142.9% 144.8% 

4.2.3.2. Traffic-Related PM2.5 Concentrations from Highways and Arterials 

The PM2.5 emission rates were applied to the study network with focus on 

highways and arterials to predict the average PM2.5 concentrations in four daily time 

periods of each season during 2016, as shown in Figure 30. In line with the emission 

results discussed above, comparison of modeled concentrations shows a lower 

contribution of re-suspended dust from highways and higher contribution from arterials 

when compared with exhaust, brake, and tire wear emissions. However, modeled 

PM2.5 concentrations resulting from traffic activity in highways and arterials show 

significant variation across the different daily time periods and the four seasons. 

This variation in PM2.5 concentrations is a result of various meteorological 

variables in different time periods caused by nonlinearity between traffic-related 

emissions and near-road concentrations over time, which cannot be detected by 

investigating  daily and seasonal  emission  rates  (Figure 29).   The overnight traffic-related 
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PM2.5 concentrations are typically highest, followed by morning peak, evening peak, and 

midday, respectively (Figure 32). The higher overnight near-road traffic-related PM2.5 

consistent with previous literature based on field (138) and modeling studies (24). 

Figure 30- Predicted PM2.5 concentrations 

4.2.3.3. Overall Traffic-Related PM2.5 Concentrations 

The near-road environment is located at different distances from various segments 

(highway and arterial with corresponding traffic count and speed) which comprise the whole 

target network and influence associated near-road traffic-related air pollution. The influence 

of different segments of the network on the target near-road environment depends on the 

geometry of the network and near-road environment, which will be combined with 

meteorological variables’ effect on emissions. This effect is the other source of nonlinearity 
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between traffic-related emissions and near-road concentrations in dispersion modeling. 

Table 14 shows the increase in average near-road PM2.5 concentrations due to inclusion of 

re-suspended dust emissions and dispersion modeling in different time periods and 

seasons. The results show that adding re-suspended PM2.5 emissions to the whole network 

(highways and arterials) yields significant increases (between 49% and 74.3%) in near-

road traffic-related PM2.5 concentrations. The variation between different seasons is 

minimal. However, the increases is highest for midday and evening peak, followed by 

morning peak and overnight periods, respectively. The increments shown in Table 14 are 

different to those presented in Table 13 due to the nonlinearity of near-road traffic-related 

emission and concentration relationship due to the effect of meteorological variables and 

network geometry.    

Table 14- Overall percent of hourly average PM2.5 concentrations increment due to 

considering re-suspended dust compared with those of a network without re-

suspended dust 

Season Morning Peak Midday Evening Peak Overnight 

Spring 58.5% 73.1% 72.2% 49.6% 

Summer 60.2% 73.8% 74.4% 49.4% 

Fall 57.8% 74.3% 71.1% 49.5% 

Winter 58.3% 73.3% 70.2% 49.8% 
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4.2.4. Conclusions and Recommendations 

Using EPA regulatory guidelines and tools, the PM2.5 emission rates due to re-

suspended dust and exhaust, brake, and tire-wear were modeled for two road types 

(highway and arterial), four time periods of the day, and four seasons in year 2016. The 

increase in traffic-related PM2.5 emission and near-road concentrations due to inclusion of 

re-suspended dust in estimations was evaluated and compared in different daily and 

seasonal time periods for a near-road environment in Tarrant County, Fort Worth, Texas. 

The estimated increase in traffic-related PM2.5 emissions was not proportional to the 

estimated near-road traffic-related PM2.5 concentrations at the different time periods. The 

nonlinearity between emission rates and concentrations due to the effect of meteorological 

variables and geometry of the network with unevenly scattered traffic-related emission 

rates (due to different link traffic speeds) was evident.  

Increases in PM2.5 emission rates due to re-suspended dust inclusion was 

considerably higher than the sum of tail pipe exhaust, brake wear, and tire-wear emissions 

on arterials and its relative percentage ranged between 139% and 208%, while it was lower 

on highways and ranged between 16% and 19%. The comparison of emission rates showed 

the importance of the inclusion of re-suspended PM2.5 particularly when dealing with 

traffic-related PM2.5 in a near-road environment surrounded by arterials. These are areas 

where human exposure can be more important than near highways as people tend to live, 

work and congregate near many arterials. All PM2.5 emission rates overnight were lower 

than those modeled for other three daily periods during the year (which is expected due to 

the lower traffic counts), while modeled PM2.5 concentrations were highest overnight. The 
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overall increase in near-road traffic-related PM2.5 concentrations for the whole network 

varied between 49% and 74%, an important percentage from an exposure and health point 

of view. A similar study using monitored hourly vehicle classification, traffic counts and 

speeds and also near-road speciation data would be more reliable and useful for evaluation 

of regulatory guidelines in re-suspended dust emission estimation and the exposure and 

health effect scenarios. In addition, the explained nonlinearity can be quantified using a 

monitored dataset and would be helpful to have a better understanding of influential 

variables and parameters in dispersion modeling. The study utilized AP-42 re-suspended 

dust PM2.5 factors which has a rating of D (165) for application, this shows further studies 

are required to corroborate or update the existing AP-42 re-suspended dust PM2.5 factors. 
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4.3. AERMOD for Near-Road Pollutant Dispersion: Sensitivity to Source and 

Dispersion Related Parameters 

Near-road traffic-related air pollutant dispersion modeling is important for regulatory 

purposes and exposure assessment studies. The sensitivity of the EPA regulatory 

dispersion model, AERMOD, was evaluated for the dispersion parameters. Model 

predictions were obtained for dispersion parameters at different vertical and horizontal 

distances from the edge of the road and for different wind speeds. Statistical measures 

were used to perform a quantitative evaluation of the model’s predictions using 

observations obtained from a tracer study and assessed potential improvement of the 

model’s performance due to changes in the regulatory suggested parameters. Results of 

sensitivity analysis showed an increase in release height, initial vertical dispersion 

coefficient (σzo), and minimum standard deviation of horizontal concentration distribution 

(σv,min), decreases predicted concentrations at the near-ground level and increases at 9.5 m 

from ground level located at downwind. Near-road dispersion modeling under low-speed 

winds is sensitive to dispersion parameters. Using alternative parameters yields negligible 

improvement in quantitative performance measures in different classes of wind speed and 

wind direction suggests that different input sets can be used to model dispersion under 

different wind cases.  
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4.3.1. Introduction 

The transportation sector accounts for a major emission source of air pollutants in 

urban areas (94). Numerous studies have shown that the level of air pollutants are elevated 

at near-roadways (95-97). A higher level of air pollutants dictates a higher level of 

exposure to the transportation-related air pollutants for near-roadway populations (141). 

Long-term exposure to air pollution is proven to cause various adverse health problems 

(175, 176). Epidemiological and toxicological studies identify adverse respiratory (177, 

178), premature mortality (179, 180) and cardiovascular effects (98-100) for near-roadway 

populations are interpretable as the consequences of long-term exposure to the 

transportation-related air pollutants. Understanding the temporal and spatial distribution of 

near-roadway air pollutants has an instrumental role in the assessment of exposure to 

transportation-related air pollutants. Air dispersion models are generally being used to 

estimate the temporal and spatial variation of transportation-related air pollutants under 

near-roadway conditions for research and regulatory purposes (34). Several air dispersion 

models are available to estimate temporal and spatial dispersion of air pollutants (35-38). 

The American Meteorological Society –EPA Regulatory MODel (AERMOD) is the 

current regulatory dispersion model by the EPA for estimating the spatial and temporal 

distribution of pollutants in stable and convective boundary layers for both simple and 

complex terrains (39-41).  

Considering increasing interest in transportation-related air pollutant exposure, the 

performance of air dispersion models in predicting near-roadway air pollutants has been 

evaluated using different field studies (for example (141)) and tracer studies (for example 
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(26, 28)). Comprehensive studies on influential factors on near-roadway air pollutants 

show the significant role of wind direction in dispersion modeling using the Gaussian 

distribution equation (16), which was also observed in field studies (18). Evaluation of 

AERMOD showed the determinant effect of wind direction (28) and speed on model 

performance and revealed overprediction of concentrations under low-wind conditions 

(51, 52). Limitation of surface layer similarity theory in explaining dispersion mechanism 

in low-wind speed (34, 53), and a lack of reasonable vehicles induced turbulence (VIT) 

(54-59) can be the main reasons for issues with dispersion models. VIT has shown a 

determinant role in dispersion mechanism under low-wind conditions (56, 59, 60).  

Different dispersion mechanisms and turbulences including VIT are usually 

considered in air dispersion models using parameterized forms (61). In particular, 

AERMOD estimates a meander component, vertical and horizontal wind velocity 

fluctuation due to turbulence (σw and σv (m/s)), and standard deviations of the vertical and 

lateral concentration distributions (σz and σy) (62). It also uses release height, the initial 

vertical dispersion coefficient (σzo), and the initial lateral dispersion coefficient (σyo) while 

modeling transportation-related emission sources as volume sources (62).  

AERMOD allows for arbitrary low-wind speed in the input data and can use a 

meander component on top of a coherent plume to account for the additional effective 

lateral pollutant dispersion caused by random wind direction shifts. In such cases, the 

overall concentration is calculated as the weighted average of the meander and coherent 

plume as shown in Equation 8 (181).  

CTotal = (1 − f) ∗ CCoherent Plume + f ∗ CRandom Equation (8)
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In Equation 8, C stands for concentration and f is the plume state weighting factor 

which is determined by the ratio of the random component of the horizontal turbulent 

energy to the total wind energy and varies between 0.5 and 1 (181). The pollutant 

concentration due to the meander component in the stable boundary layer (SBL) or 

convective boundary layer (CBL) is computed using the same governing equations for the 

coherent plume but a different form of the horizontal distribution function is used in these 

equations.  

The AERMOD model calculates vertical profiles of vertical and horizontal wind 

velocity fluctuation due to turbulence (σw and σv (m/s)) using EPA meteorological 

processor, AERMET, provided information including u* (62), aiming at considering the 

effect of variation in turbulent intensity with height to model the turbulent dispersion of 

near-surface air pollutants (51, 182). It also applies a minimal σv (σv,min) to increase lateral 

dispersion in very light winds under stable conditions. By default, the σv,min is taken as 0.2 

m/s. Three additional user-selectable low-wind (LW) options are included in the current 

version of AERMOD, each with different choices for the σv,min values and treatment of the 

meander component (183). In summary, LW-1 disables the horizontal meander 

component and increase σv,min to 0.5 m/s; LW-2 keeps the horizontal meander component 

and slightly increases σv,min to 0.3 m/s; LW-3 eliminate upwind dispersion but uses the 

σv,min to 0.3 m/s as in LW-2. In addition, LW-3 introduces an additional “effective” lateral 

standard deviation of concentrations (σy) to account for the enhanced horizontal dispersion 

in other directions due to meander. Moreover, LW-2 and LW-3 set an upper limit of 0.95 
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on the plume state weighting factor which is called FRANmax in the model description 

(40). The σv,min and FRANmax can also be set for values other than the default ones within 

corresponding ranges.  

Standard deviations of vertical and lateral concentration distributions (σz and σy 

(m)) were used in AERMOD to calculate spatial distribution of air pollutants. AERMOD 

calculates these parameters as the combined effect of ambient and plume buoyancy 

turbulence. Considering the variation of ambient turbulence induced vertical dispersion 

and its near-surface strength, the main assumption in the estimation of vertical and lateral 

dispersion parameters, due to ambient and plume buoyancy turbulence, is that the effects 

are independent of each other. The AERMOD uses specific parameters to characterize a 

volume emission source in addition to the emission rate. These parameters include release 

height, the initial vertical dispersion coefficient (σzo), and the initial lateral dispersion 

coefficient (σyo). The final dispersion coefficient including initial standard deviation of 

vertical and lateral concentration distribution is calculated using Equation 9, where σ𝑜 is 

initial standard deviation, σ𝑙 is standard deviation before accounting for initial dispersion, 

and σ is the total vertical or lateral concentration distribution (dispersion coefficient). 

σ2 = σ𝑙
2 + σ𝑜

2 Equation (9)

General Motors (GM) conducted an experiment in 1975 to study the near-road 

dispersion of pollutants emitted specifically by on-road vehicles under different 

meteorological conditions (13). This unique dataset was previously used to evaluate 

AERMOD’s performance using different main options for near-road dispersion modeling 

at three different levels (28). Results showed the dramatically better performance of 
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volume sources to represent vehicular emission sources compared with area sources. 

AERMOD also showed better performance to model transportation-related air pollutants 

dispersion using LW-3 option. Results also indicated the reasonable performance of the 

model to predict concentrations at ground level (0.5 m), but relatively weak performance 

at higher levels (3.5, and 9.5 m) downwind. A general over prediction occurs using volume 

sources at upwind was another finding of this study (28).  

In the present study, the GM near-road pollutant concentration and meteorological 

data were used to evaluate the sensitivity of AERMOD to the vehicular emission source’s 

characteristics and dispersion coefficients using volume sources representation. The 

objectives of this study determined the sensitivity of AERMOD to the release height and 

initial vertical dispersion coefficient (σzo) (as the vehicular source characteristics) and 

determined the minimum value of lateral wind velocity fluctuation due to turbulence 

(σv,min), and FRANmax (characteristics of dispersion treatment) in predicting 

concentrations at different heights (from ground level), different distance from the 

vehicular emission source, and different wind speeds. In this study, the effect of these 

parameters and possible improvement of AERMOD performance to account for different 

influential parameters on near-road transportation-related dispersion modeling are being 

studied.  The results of this study will assist researchers and model practitioners by 

providing a better understanding of model performance to account for ambient and 

vehicular emission source’s characteristics and dispersion treatments. The results will also 

help researchers to use dispersion parameters accounting for near-road transportation-
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related air pollutant distribution and eventually dispersion models more effectively in 

exposure studies.  

4.3.2. Methodology 

4.3.2.1. General Motors Dispersion Study 

In 1975, GM conducted an experiment with the participation of the EPA and other 

government agencies to critically assess the validity of dispersion models in predicting 

near-road transportation-related air pollutants (13). This comprehensive experiment 

included measurements of a gas tracer (SF6) dispersion and meteorological variables. The 

experiment was conducted at GM Proving Ground in Milford, Michigan, in the morning 

hours (between 7:00 and 11:00 am) of 17 selected days in October and September 1975. 

The time period of the experiment was chosen based on the meteorological variables 

recorded in the previous year (Fall of 1974) to include the most records with low-wind 

speed blowing from west direction. The GM Proving Ground test track has two five-km 

long tracks and each track includes two lanes. To simulate the transportation-related air 

pollutant from a highway, a fleet consists of 32 packs of 11 (352) passenger cars were 

driven at the speed of 80 km/h. The tracer was released from cylinders of Matheson CP 

grade SF6 (sulfur hexafluoride) mounted vertically on the back of eight (or seven) pickup 

trucks each day of the experiment. The SF6 concentrations, wind speed, wind direction, 

and temperature were measured at three different heights from ground level (0.5, 3.5, and 

9.5 m) on six towers (T1-T6) and also at one height from ground level (0.5 m) on two 

stands (S1 and S2). Figure 31 shows the relative location of test track and measurement 

points (perpendicular distance of measuring points from the edge of the road and also 
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ground level) in GM Proving Ground. During this experiment, 50 sets of 30-min average 

concentrations of SF6, wind speed, wind direction, and temperature were collected for 20 

measuring points (total of 1000 data points).  

Figure 31- Locations of the tracks, towers, and stands where SF6 and local 

meteorological conditions were measured during the GM Sulfate Dispersion 

Experiment. 
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4.3.2.2. Dispersion Model Set-Up 

AERMOD, using its LW-3 option with different dispersion parameters, was used 

to evaluate the effect of release height, initial vertical dispersion coefficient (σzo), 

minimum value of lateral wind velocity fluctuation due to turbulence (σv,min), and 

FRANmax on the dispersion of near-road transportation-related SF6 in GM study. The test 

track was modeled as a series of volume sources, based on the better performance of 

volume sources compared with area sources in our previous study (184). The SF6 emission 

rate was calculated based on the total recorded emission rates from SF6 cylinders mounted 

on trucks for each day of the experiment and assumed to remain constant and continuous 

(13). The average emission rate was 7.90 ± 0.51 µg m-2 s-1.  

For simulating vehicular emission sources as the volume sources in this study, 

emission sources are being considered to be cubes with a base dimension of 6 m. The EPA 

guidance for hot-spot analysis (185) recommends estimating the fleet release height using 

a weighted average of light-duty (1.3 m) and heavy-duty vehicles (3 m) while using 

volume sources. In this study, the variation of SF6 release height between 0.3 and three 

for GM experiment fleet (13) is being taken into consideration. The initial vertical 

dispersion coefficient (σzo) also was assumed to vary between one m and 3.5 m above the 

dispersion height, based on weighted average of light-duty (1.2 m) and heavy-duty 

vehicles (3.2 m) recommended by the EPA guidance for hot-spot analysis (185). Based on 

this guidance, the initial horizontal dispersion coefficient (σyo) was assumed to be 2.79 m 

(volume source width divided by 2.15). 
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To model meteorological conditions, the off-site raw data obtained from Bishop 

International Airport Station (AWS: 726370) - the nearest regional weather station - as 

well as the on-site meteorological data, measured during GM study, formed input set of 

AERMET (meteorological processor) to obtain processed meteorological inputs of the 

dispersion model (AERMOD). The on-site meteorological data included reading of wind 

speed, wind direction, and temperature, and included a total number of 20 measurement 

points (three heights (0.5, 3.5, and 9.5 m) of six towers and one height (0.5 m) of two 

stands). The location-dependent surface parameters including surface albedo and Bowen 

ratio were taken as 0.18, and 0.92 based on consulting with experts in the Michigan 

Department of Transportation for fall of 1975. To evaluate the AERMOD performance, 

dispersion modeling results were obtained at the total number of 20 measurement points 

for each hour (50 hours) of the experiment (1000 observation and modeling records).  

To evaluate the model performance at different wind directions, the dataset was 

classified either as parallel wind or perpendicular wind direction. The cases with a wind 

direction of 337.5° to 22.5° and 157.5° to 202.5° (from the north) were classified as cases 

with parallel and the rest as perpendicular wind direction (Figure 31). The perpendicular 

wind cases were grouped into upwind and downwind cases based on westerly or easterly 

wind direction. Therefore, data corresponding to Towers 1 and 2 (T1 and T2) were 

considered as upwind for westerly perpendicular wind cases and Towers 4 to 6 (T4-T6) 

as well as both Stands (S1 and S2) as upwind for easterly wind cases. Hence, the results 

were evaluated in three categories of upwind, downwind, and parallel wind cases, to 

consider the effect of wind direction on dispersion modeling using different parameters.  
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4.3.2.3. Model Performance Measures 

To evaluate model performance using different parameters, all parameters were 

kept constant and equal to the default values unless the parameters desired to focus on. In 

this regard, the whole dataset or some representative cases were selected to evaluate the 

specific effect of the focus parameter, and corresponding two-dimensional figures were 

used to illustrate the results and identify any systematic patterns. Moreover, the model 

predicted and on-site observed concentrations were paired in time and space and the 

statistical measures were used to quantify model performance with variation of desired 

parameters. 

The quantitative measures of comparison include the fractional bias (FB), the 

fraction of predicted values within a factor of two of observed values (FAC2), normalized 

mean error (NME), the normalized mean square error (NMSE), and the correlation 

coefficient (R). The definitions of the above-mentioned measures are shown in Equations 

10 to 14: 

FB = 2
(CO
̅̅̅̅  − CP

̅̅ ̅ )

(CO
̅̅̅̅ + CP

̅̅ ̅ )

Equation (10) 

FAC2 = fraction of points within 0.5 ≤
CP

CO
≤ 2.0 Equation (11) 

NME =
∑ |CO − CP|n

1

∑ CO
n
1

Equation (12) 
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NMSE =
(CO − CP)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

COCP
̅̅ ̅̅ ̅̅ ̅

Equation (13) 

R =
(CO − CO

̅̅̅̅ )(CP − CP
̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

σCO
σCP

Equation (14) 

In the above equations, C indicates concentrations, while subscripts O and P denote 

observed and predicted concentrations, respectively. The overbar represents the arithmetic 

mean and sigma (𝜎) represents the standard deviation. FB represents the normalized value 

of model bias and therefore indicates if the model results are systematically biased. Ideally 

equal to zero, FB varies between -2 and +2. NME is also the conventional statistics 

measure which shows how the overall normalized model’s predictions are biased and 

scattered relative to the observation. NME varies between 0 and +∞ and ideally equals 

zero. NMSE measures the mean scatter of the model relative to the observations and 

provides an estimation of deviations between model predictions and observations. R is the 

linear correlation coefficient between model results and observations. This would equal 

one when observations and predictions are positively correlated perfectly and it typically 

varies between -1 and +1. 
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4.3.3. Results and Discussion 

4.3.3.1. Sensitivity to Dispersion Parameters in a Low-Wind Speed Case 

To evaluate the sensitivity of near-road transportation-related air pollutants to the 

variation of σv,min, σzo, and release height, a representative low-wind case perpendicular to 

the roadway was selected. In this specific case, wind speed is 0.7 m/s and the wind 

direction is 273° (from the north). The predicted concentrations at twenty receptors located 

at different distances from the edge of the road and different heights can be seen in Figure 

32. An increase of σv,min from 0.1 to 0.4 m/s does not change the prediction, while the

increase of σv,min from 0.4 to 0.7 m/s decreases predicted concentrations at 0.5 and 3.5 m 

heights and increase those of 9.5 m at downwind. The same pattern in the reduction of 

predicted concentrations at 0.5 and 3.5 m and increase at 9.5 m heights at downwind due 

to increase in σzo (1.5 to 3.5) and release height (1 to 3).  

It should be noted that least changes can be seen upwind due to changes in σv,min 

and σzo, while increase in release height yields an increase at immediate upwind points. 

The consequence of increase in all three parameters of σv,min, σzo, and release height is a 

decrease in predicted concentrations at 0.5 and 3.5 m and increase at 9.5 m from ground 

level, located at downwind. The higher level of mixing of transportation-related air 

pollutants at near-road sources leads to dilution (lower concentrations) at the near-ground 

level and more mass transport to higher levels (higher concentrations). 
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Figure 32- Sensitivity of AERMOD using volume sources and LW-3 option to σv,min, 

σzo, and release height in a representative perpendicular low-wind case (wind speed: 

0.7 m/s, wind direction: 273°) 
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4.3.3.2. Sensitivity to Dispersion Parameters in Different Wind Speeds 

To better understand of the sensitivity of near-road transportation-related air 

pollutants to dispersion parameters, the effect on the modeling results of variations in these 

parameters at different wind speeds was evaluated. Figure 33 illustrates the difference 

between predicted concentrations using maximum and minimum values of σv,min, σzo, and 

release height used in previous part, at three heights located at Tower 4 (immediate 

downwind tower) under different wind speeds.  
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Figure 33- Sensitivity of AERMOD prediction at downwind near-roadway using 

volume sources and LW-3 option to σv,min, σzo, and release height (RH) in a 

representative perpendicular wind direction and different wind speeds 

An increase in wind speed generally decreases the difference between predicted 

concentrations using maximum and minimum used parameters of σv,min, σzo, and release 

height. Moreover, this difference decreases the further away from ground level. Obtained 

results show a relatively higher effect of σv,min, particularly at wind speeds about 0.4. It 
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should be noted that the shift in concentration difference, corresponding to wind speeds 

lower than 0.3 m/s, is related to AERMOD treatment for cases with wind speeds below 

the minimum that does not consider advection due to meteorological condition and do not 

use meteorological inputs. 

4.3.3.3. Statistical Analysis 

Previously described quantitative measures (FB, FAC2, NME, NMSE, and R) 

were used to evaluate the model performance using a variety of dispersion parameters 

through comparison of predicted against observed concentrations in different categories 

of wind directions and the results are shown in Figure 34 and Figure 35. Figure 34 

illustrates changes in quantitative measures, based on dispersion modeling using a set of 

σzo, and release height (as the vehicular source characteristics), for four categories 

including all cases and cases at upwind, downwind, and parallel wind cases. The model 

provides a better quantitative measure set for downwind cases, which is indicated by lower 

FB, NME, and NMSE as well as higher FAC2 and R.  
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Figure 34- Statistic measures of model performance (each column) with a variation of σzo and release height at different 

wind categories (each row), red and black signs show default and alternative values  
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Figure 36 shows that the release height has more effect on quantitative measures 

compared with σzo. It should be noted that the five provided quantitative measures do not 

necessarily suggest a pair of σzo and release height value that yields the best model 

performance. For instance, three measures (FB, NME, and NMSE) indicate that an 

increase in σzo improves model’s performance, while R shows vice versa for total cases. 

However, considering small changes in R and FAC2, and considerable changes in FB, 

NME, and NMSE for total cases, it can be concluded that higher values of σzo and release 

height may enhance overall model performance (shown by black sign) compared with 

EPA guidance default ones (shown by red sign in Figure 34). 

The same analysis was performed to evaluate the effect of σv,min and FRANmax 

(characteristics of dispersion treatment) on model performance (sensitivity of AERMOD 

to σv,min and FRANmax) and corresponding results are shown in Figure 35. It illustrates a 

relatively better model performance in predicting concentrations at downwind compared 

with other categories. Results show the higher sensitivity of model prediction to σv,min 

rather than FRANmax and a higher effect of change in σv,min at values greater than 0.5 m/s 

on model results. It can be seen variation of σv,min and FRANmax has the least effect on 

model performance in parallel winds.  
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Figure 35- Statistic measures of model performance (each column) with variation of σv,min and FRANmax at different 

wind categories (each row), red and black signs show default and alternative values  
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4.3.3.4. Model Performance with Alternative Parameters 

To investigate potential improvement in model’s performance with a specific set 

of σzo and release height (as the alternative) in comparison with default ones, the model’s 

results obtained using two sets (of σzo and release height) were compared together. Model 

predictions using alternative σzo and release height (the highest values of σzo and release 

height that perceived to be able to generate a better result set based on Figure 34) were 

compared with those of EPA guidance default values. Figure 36 shows model predictions 

using the alternative values of σzo and release height (3.5 and 3 m) versus EPA guidance 

default ones (2.8 and 1.5 m) under different wind directions, wind speeds, and at different 

heights. Using these alternative values instead of default values yields an increase in 

upwind predictions at all three heights. It also increases high-level (9.5 m) and decreases 

near-ground level (0.5 m) predictions at downwind and parallel winds. Results show 

changes for some of the low-wind speed cases at upwind, but not systematic difference 

between low- and high wind speed cases at downwind and parallel wind cases. 
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Figure 36- Performance of model with alternative values of σzo and release height 

versus default values at three wind direction categories, two wind speed classes (low- 

and high wind speeds), and three heights. 

Considering improvement of model performance at higher σv,min based on FB, 

NME, and NMSE, model performance at σv,min=0.707 m/s (as an alternative) was 

compared with that of default value (σv,min=0.3 m/s using LW-3 option). Figure 37 shows 

model predicted values using σv,min=0.707 m/s compare with those of σv,min=0.3 m/s in 

different categories. As it can be seen in Figure 37, increase in σv,min (from 0.3 to 0.707 

m/s) leads an increment in predictions at upwind which is mainly related to high-wind 

speed cases. The alternative value for σv,min decrease near-ground level (0.5 m) predictions 

and clusters predicted values at 9.5 m in low-wind speeds around 1 µg/m3. Using 

alternative σv,min yields some slight changes in parallel wind cases results those are not 

systematic.  
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Figure 37- Performance of model with alternative values of σv,min versus default 

values at three wind direction categories, two wind speed classes (low- and high wind 

speeds), and three heights. 

The same quantitative measures were used to get a better understanding of model 

performance using alternative σzo and release height versus default ones which are 

provided in Table 15 for different categories of wind directions and wind speeds. 

Alternative σzo and release height significantly improve FB but have negligible 

improvement on NME and NMSE and worsen FACT2 and R considering the whole 

dataset. The detailed factors for model’s performance at different categories show 

improvement in some of the measures related to downwind and parallel wind cases due to 

use of alternative σzo and release height instead of default ones.  
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Table 15- Quantitative measures to evaluate model performance using Alternative σzo and release height versus 

Default ones 

Stats 

Total 

Def 

Total 

Alt 

HW LW 

Upwind Downwind Parallel 

High WS Low WS High WS Low WS High WS 

Def Alt Def Alt Def Alt Def Alt Def Alt Def Alt Def Alt 

FB -0.27 -0.19 -0.27 -0.19 -0.25 -0.18 -0.19 -0.33 -0.44 -0.57 -0.23 -0.15 -0.23 -0.14 -0.32 -0.21

FAC2 0.58 0.55 0.56 0.55 0.65 0.58 0.23 0.18 0.30 0.19 0.76 0.75 0.88 0.83 0.56 0.57 

NME 0.52 0.51 0.55 0.54 0.42 0.37 1.48 1.53 1.57 1.60 0.40 0.40 0.32 0.27 0.61 0.59 

NMSE 0.45 0.44 0.51 0.62 0.57 0.60 8.24 12.74 9.54 9.43 0.25 0.37 0.19 0.23 0.46 0.40 

R 0.80 0.76 0.76 0.72 0.92 0.91 0.24 0.30 0.35 0.43 0.82 0.75 0.91 0.89 0.65 0.59 

Table 16- Quantitative measures to evaluate model performance using Alternative σv,min and FRANmax versus 

Default ones 

Stats 

Total 

Def 

Total 

Alt 

HW LW 

Upwind Downwind Parallel 

High WS Low WS High WS Low WS High WS 

Def Alt Def Alt Def Alt Def Alt Def Alt Def Alt Def Alt 

FB -0.27 -0.22 -0.27 -0.26 -0.25 -0.05 -0.19 -0.53 -0.42 -0.26 -0.23 -0.18 -0.23 -0.03 -0.32 -0.31

FAC2 0.58 0.55 0.56 0.55 0.65 0.58 0.23 0.14 0.29 0.20 0.76 0.78 0.88 0.83 0.56 0.56 

NME 0.52 0.50 0.55 0.53 0.41 0.36 1.48 1.74 1.53 1.35 0.40 0.35 0.32 0.28 0.61 0.60 

NMSE 0.45 0.42 0.51 0.57 0.57 0.73 8.24 10.30 9.78 13.00 0.25 0.34 0.19 0.26 0.47 0.37 

R 0.80 0.79 0.76 0.77 0.92 0.87 0.24 0.35 0.36 0.39 0.82 0.84 0.92 0.82 0.65 0.65 
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However, none of the categories have all five quantitative measures improved or 

worsened. Quantitative measures to evaluate the effect of using alternative σv,min for 

different categories (Table 16) show improvement of FB, NME, and NMSE and negligible 

impact on FAC2 and R considering the whole dataset. Some considerable improvement 

in FB can be seen but they are not associated with the improvement of other measures in 

the same category. 

4.3.4. Conclusion 

In this study, the sensitivity of AERMOD to vehicular source characteristics 

(initial vertical dispersion coefficient (σzo) and release height) and dispersion treatment 

characteristics (minimum value of lateral wind velocity fluctuation due to turbulence 

(σv,min), and FRANmax) were investigated. The sensitivity of the model’s prediction was 

evaluated at different vertical and horizontal distances from the road, as well as different 

wind speeds. Results showed an increase in σv,min (0.4 to 0.7 m/s), σzo (1.5 to 3.5 m) and 

release height (1 to 3 m) and a decrease in predicted concentrations at 0.5 and 3.5 m and 

an increase at 9.5 m from ground level located at downwind. This can be explained by a 

higher level of mass transfer from the vehicular emission source to the surrounding 

environment. The fewest changes were seen at upwind due to changes in σv,min and σzo, 

while an increase in release height yields an increase in immediate upwind points near-

ground level.  

Results showed that the parameters of focus have a significant effect at near-

ground level (0.5 m) and near-road predictions under low-speed wind, while their effects 
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dramatically decrease with increased distance from the roadway and as wind speed 

increases. Results put an emphasis on the high level of dispersion modeling sensitivity to 

both vehicular source and dispersion treatment characteristics when predicting near-road 

concentrations, which is a requirement for both regulatory purposes and exposure 

assessment studies. 

Considering quantitative measures of FB, FAC2, NME, NMSE, and R, the model 

generally performs better at downwind, varying four input parameters of focus. Model 

performance using alternative parameters was compared with the one using regulatory 

guidance suggested parameters in different wind speed and wind direction categories. 

Using alternative parameters improved some, but not all, of the quantitative measures and 

yielded negligible overall model improvement. Obtained results showed that variation of 

some of the investigated parameters to improve one measure may not be followed by 

improvement in other statistical measures. Hence, using different input sets of source and 

dispersion treatment characteristics might be required to be able to predict different classes 

of wind direction and speed. 
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5. EVALUATION OF DISPERSION MODEL PERFORMANCE

5.1. AERMOD for Near-Road Pollutant Dispersion: Evaluation of Model 

Performance with Different Emission Source Representations and Low Wind 

Options6 

The performance of the regulatory dispersion model AERMOD in simulating 

vehicle-emitted pollutant concentrations near-roadway using area or volume source 

representation of emissions and with different low wind options was assessed using the 

SF6 tracer data from the General Motors (GM) Sulfur Dispersion Experiment. At 

downwind receptor locations, AERMOD, using either area or volume source emissions, 

can reasonably predict the tracer concentrations near the surface (0.5 m) but the model 

performance decreases at higher elevations (3.5m and 9.5m above the surface). For 

upwind receptors, using an area source representation leads to significant under- 

predictions due to AERMOD’s lack of treatment of lateral plume meander, but using 

volume source representation leads to over-predictions of upwind concentrations 

regardless of the low wind options for plume meander. Among the three low wind options 

currently available in AERMOD, best model performance is obtained with low wind 

option 3, which treats plume meander with a higher minimal standard deviation of the 

horizontal crosswind component (σv,min = 0.3 m s−1), eliminates upwind component of 

dispersion and uses an effective lateral dispersion parameter (σy) to replicate centerline 

concentration. The optional adjustment of the surface friction velocity in the 

6 Reproduced with permission from: Askariyeh, M.H., Kota, S., Vallamsundar, S., Zietsman, J. and Ying, Q., 

Transportation Research Part D, Vol. 57, pp 392-402. Copyright 2017, Elsevier. 



148 

meteorological preprocessor AERMET does not lead to obvious improvements in 

predicted near-road concentrations for this application. 

5.1.1. Introduction 

Near-road air pollution could potentially affect 11% of the population in the United 

States, which lives within a 100-m radius of highways (157). To evaluate population 

exposure to traffic-related emissions as a function of time and distance to roadways under 

various meteorological and geographical conditions, several widely used near-road 

dispersion models have been developed, including CALINE3 (42), CALINE4 (15), 

ADMS (43, 44), RLINE (45), and the American Meteorological Society– United States 

Environmental Protection Agency (US EPA) Regulatory Model (AERMOD) (41). 

The capability of these models needs to be evaluated so that their predictions can 

be used with confidence in exposure and health effects analyses. Heist et al. (2013) (26) 

conducted a model inter-comparison study to assess the abilities of different near-road 

dispersion models using surface level on-site data from the Caltrans Highway 99 tracer 

experiment and the Idaho Falls tracer study. Heist et al.  found that all models have similar 

overall performance statistics except CALINE3, which produces a larger degree of 

scattering in concentration estimates. AERMOD appeared to have the best performance 

among all the dispersion models, especially for the highest concentrations. AERMOD 

results using volume sources were slightly better than the models using area sources. 

Based in part on the findings of Heist study, the US EPA proposed replacing CALINE3 

with AERMOD for all future transportation-related air quality analysis (46). 
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In contrast, some other model validation studies show that AERMOD might not 

give as good model performance as expected. For example, Chen et al. (2009) (47) found 

that CALINE4 and CAL3QHC predictions of airborne particulate matter (PM) matched 

well with observations while AERMOD led to under-predictions at a near-road site. 

Claggett and Bai (2012) (48) found that both CAL3QHCR and AERMOD under-predicted 

the observed PM2.5 concentration at a signalized intersection, but CAL3QHCR had more 

data points within a factor of two of observations than AERMOD. The performance of 

AERMOD might be sensitive to the representation of vehicle emissions (i.e., volume vs. 

a resource). Claggett and Bai (2012) (48) and Claggett (2014) (49) found that higher 

concentrations of PM were predicted by AERMOD when emission sources were 

characterized as area sources as opposed to volume sources. In contrast, Schewe (2011) 

(50) reported 1.8 to 3.8 times higher concentration predictions from AERMOD for

highways configured as volume sources compared with those configured as area sources. 

More studies are needed to further evaluate the performance of AERMOD for near-road 

predictions using different model configurations. 

The main objective of this study was to evaluate the performance of various source 

representation options in AERMOD for near-road inert tracer concentrations. Data 

collected by General Motors (GM) during the GM Sulfate Dispersion Experiments in 1975 

(13, 186, 187) were used for the modeling analyses. Emissions of the inert tracer (SF6) 

and the vehicle fleet volume and speed were well characterized and meteorological 

parameters (wind speed, wind direction, and temperature) were well determined in the 

GM study. In addition, concentrations were determined not only as a function of distance 
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to the roadway near ground level but also at two additional higher elevations, making this 

unique data set useful for evaluating the performance of dispersion models in near-road 

applications (35, 38, 188). The model performance with different source representations 

is statistically characterized for different wind directions, wind speed groups, and 

elevations. The results of this study provide researchers with an improved understanding 

of the capability and limitation of AERMOD to model near-roadway pollutant 

concentrations in future applications. The GM dataset in electronic format and input files 

for the simulations described in the study are available upon request. 

5.1.2. Observation Data and Model Setup 

5.1.2.1. The General Motors (GM) Dispersion Study 

In 1975, General Motors (GM) conducted a study to evaluate the dispersion of 

vehicle emissions in a near-road environment, using SF6 emitted from its own designed 

on-road fleet at the GM Proving Ground in Milford, Michigan (13). The test track 

consisted of a long straightway loop, which included two 5-km long tracks with vehicles 

running in opposite directions. The vehicles were running in two lanes on each track. The 

fleet was comprised of 352 passenger cars, 32 packs of 11 cars each, and pickup trucks 

evenly spaced around the track in both traffic directions. SF6 was released from eight 

pickup trucks equipped with cylinders and mounted nozzles on the back of their cabs. The 

trucks were evenly distributed in the passenger cars fleet which means they were spaced 

4 packs apart. Wind speed, wind direction, ambient temperature and SF6 concentrations 

were measured at three levels (9.5 m, 3.5 m, and 0.5 m from ground level) on six towers 

(T1-T6), as well as at one level (0.5 m from ground) on two stands (S1 and S2) in 30-min 
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intervals. The various locations of the towers and stands, as well as their perpendicular 

distances to the nearest track edge, are illustrated in Figure 38. The alignment of the towers 

and stands was purposefully designed to reduce the possible influence of the small hills 

and trees located in the test track’s vicinity on pollutant dispersion (13). The experiments 

were conducted by driving the vehicles at a constant speed of 80 km/h. Thus, in each 30-

min experiment, the 11 packs of cars were separated by a 29-s internal, leading to a traffic 

density of 5462 cars per hour. All experiments were conducted during the morning hours 

(between 7:00 and 11:00 am) of 17 selected days in September and October 1975. The 

aim in selecting this time period was to collect a dataset that would include the most 

diverse wind directions and lowest wind speeds, based on the recorded meteorological 

data for the previous Fall of 1974. A total of 50 sets of 30-min average SF6 concentrations, 

wind speed, wind direction and temperature data (each parameter in one data set has 20 

data points) were collected, which gives a total of 1000 data points. 

5.1.2.2. AERMOD Setup to Simulate the GM Experiment 

In this study, the most recent version of AERMOD (version 16216) was used to 

simulate the concentrations of SF6 near the tracks. The test track was modeled as two 

rectangular area sources or a series of volume sources. It was assumed that the rate of SF6 

emissions from the lanes remained constant and continuous during each experiment. The 

emission rates were calculated based on the recorded emission rate from each truck and 

for each day of the experiment (13). The average emission rate was 7.90 ± 0.51 µg m−2 

s−1. 
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Figure 38- Locations of the tracks, towers and stands where SF6 and local 

meteorological conditions were measured during the General Motor (GM) Sulfate 

Dispersion Experiment. 

Four volume sources and their exclusion zones (width of volume source + 0.99 m 

from the center of volume sources) are shown by red and green colors, respectively. 

Considering the width of volume sources for this study (6 m), T2 is located within the 

exclusion zone and T3 and T4 are very close to the exclusion zone. The exclusion zone 

concept is used in regulatory guidance (67, 189) to insure that receptors are spaced 

properly while using the volume source representation to avoid overestimation of 

concentrations in areas extremely close to the emission sources (190, 191). While is not 

recommended to place receptors within the exclusion zone for regulatory applications 

(67), observation and model results from these towers are included for research purpose. 
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To compare the predicted concentrations with observations, 20 receptors were 

placed at the exact locations where SF6 concentrations were measured. As the SF6 

emissions were released from storage tanks on the trucks (13), a tracer release height of 

1.5 m from ground level was considered. The initial vertical dispersion was assumed to be 

1.4 m above the dispersion height, based on US EPA guidance for hot-spot analysis (67). 

On-site wind speed, wind direction and temperature readings based on data from all towers 

and stands, as well as off-site data obtained from Bishop International Airport Station 

(AWS: 726370) - the nearest regional weather station - were then processed by AERMET 

to generate meteorological inputs for AERMOD. Based on recommendations provided by 

experts in the Michigan Department of Transportation (MIDOT) familiar with the 

experiment's location, surface albedo, and Bowen ratio were taken as 0.18 and 0.92, 

respectively, for the October 1975 timeframe. Roughness length as a function of 12 

direction categories was also provided by MIDOT. In most directions, it was between 

0.023 – 0.047 m. In 180–210 and 240–270 degrees from north, the roughness length was 

approximately 0.10–0.11 m. The maximum roughness length of 0.228 m occurred in 210–

240 degrees from north. 

To visualize the AERMOD's predicted vertical distribution of pollutants, a mesh 

consisting of 20,000 additional receptors was placed on a vertical plane perpendicular to 

the tracks in the middle of the model domain. The horizontal and vertical distances 

between the equally spaced receptors were 1 m and 0.1 m, respectively. The receptors 

were placed from the track's edge to 100 m away to cover both upwind and downwind 

fields. Note that these receptors were only used to capture the vertical distributions of SF6. 
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For statistical model performance evaluation, only predictions at those 20 receptor sites 

where observations were made were ultimately used. 

AERMOD simulations were conducted to acquire base case concentrations for 

each experiment. Moreover, a Monte Carlo simulation technique was applied to evaluate 

the AERMOD's sensitivity to input wind data. For each experiment, 1500 simulations 

were conducted by randomly varying wind speed and wind direction from those original 

values derived by AERMET. In this study, the randomly generated wind speeds and 

directions were assumed to follow a normal distribution, with a standard deviation of 0.3 

m s−1 and 30°, respectively, which represent the average daily standard deviation of the 

two parameters throughout the entire experiment period. As more simulations did not 

change the mean and standard deviation of the predicted concentrations, it was determined 

that 1500 simulations were sufficient for the Monte Carlo uncertainty analysis. 

To compare model performance for different wind directions, the dataset was 

classified into 4 categories based on mean wind directions: Category A (225° to 315° from 

north), category B (315° to 337.5° and 202.5° to 225°), category C (22.5° to 157.5°) and 

category D (337.5° to 22.5° and 157.5° to 202.5°) (see Figure 38). Considering the 

prevailing westerly wind in Milford, Category A represents perpendicular wind to the 

roadway, while category B and D represent oblique and parallel wind to the roadway, 

respectively. Category C specifies wind direction opposite to the prevailing wind. It 

generally contains more records with low wind speed. 
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Table 17- List of Base case and sensitivty runs 

Case # Emission a Options b ADJ_U* c Purpose 

1 Volume Default No Base case 

2–1 Volume LW-1 Yes 
Evaluate the effect of LW options 2–2 Volume LW-2 Yes 

2–3 Volume LW-3 

Default

Yes 

3 Area Default Yes Evaluate the effect of emission 

representation4–1 Volume Default Yes Evaluate the effect of ADJ_U* 

4–2 Volume LW-3 No 

a) Based on the EPA guidance, pollutants emitted from vehicular sources can be
modeled as either area or volume sources in AERMOD. In practice, the area source
option is usually preferred, given the relative ease of defining the dimensions and 
parameters of emission sources. However, the differences in the capability of 
AERMOD in predicting near-road pollutant concentrations with different emission 
representations have not been well tested, given that the current version of 
AERMOD does not yet include a meander component for area source emissions and 
does not treatment plume rise. 

b) The AERMOD model also applies a minimal standard deviation of the crosswind
velocity fluctuation (σv) to increase lateral dispersion in very light winds under
stable conditions. By default, the minimal σv is taken as 0.2 m/s. Three additional
user-selectable low wind (LW) options are included in the current version of
AERMOD, each with different choices for the σv values and treatment of the
meander component (183). In summary, LW-1 disables the horizontal meander
component and increase minimal σv to 0.5 m/s; LW-2 keeps the horizontal meander
component and slightly increases minimal σv to 0.3 m/s; LW-3 also eliminate
upwind dispersion but uses the minimal σv to 0.3 m/s as in LW-2. In addition, LW-
3 introduces an additional “effective” lateral spread (σy) to account for the enhanced
horizontal dispersion in other directions due to meander. The fact that two lanes of
vehicles are passing each other in different directions at 80 km/hr could lead to
unique turbulence characteristics that the model does not know about. This unique
turbulence provides additional justification for the additional minimum turbulence
level in the low wind options.

c) The surface friction velocity (u*) is essential in determining many other parameters
in the planetary boundary layer (PBL) and thus affects the calculation of pollutant
dispersion. However, it was discovered that u* could be underestimated in 
AERMET under low wind stable conditions, which could lead to an under- 
estimation of mixing-height and horizontal and lateral turbulence levels and, thus, 
an overestimation of pollutant concentrations under stable conditions (51). It was 
determined that the meander weight could also be underestimated due to the under-
estimation of u*, which could also lead to overestimation of pollutant concentrations 
under low wind conditions (51). To rectify this, recent versions of the AERMET 
model was amended to include a correction for u* (ADJ_U*), which is based on the 
modified equation for u* suggested by Qian and Venkatram (2011). 



156 

In this study, base case simulations were conducted using the default volume-

source option, while meteorological data was processed using the default options of 

AERMET without the ADJ_U∗ option (footnote of Table 17). In three sensitivity 

simulations, three different low wind (LW) options were tested. In these LW option 

simulations, the AERMET option ADJ_U∗ was used to process the meteorological data. 

Two additional sensitivity simulations were conducted to investigate the effect of ADJ_U∗ 

on the predicted concentrations. In another sensitivity simulation, AERMOD simulations 

were conducted by representing vehicle emissions from roadways as area sources, and the 

ADJ_U∗ option is enabled for meteorology processing. The results from these sensitivity 

simulations were compared with those from the base case. Table 17 summarizes the 

simulations conducted in this study. A brief description of the different emission and low 

wind options as well as ADJ_U∗ is included as footnotes of Table 17. Other factors that 

could affected the model performance, such as the initial vertical dispersion, will be 

investigated in a follow-up study. 

5.1.2.3. Model Performance Measures 

The predicted concentrations from dispersion modeling were compared with the 

concentrations observed on-site, both quantitatively and qualitatively. Quantitative 

evaluations of model performance were conducted using the statistical measures described 

below. Moreover, scatter plots were used for qualitative visual evaluation to recognize any 

systematic patterns in modeled estimation versus observed concentrations. The 

quantitative measures of comparison include the normalized mean square error (NMSE), 
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the correlation coefficient (R), the fractional bias (FB), and the fraction of predicted values 

within a factor of two of observed values (FAC2). The definitions of the above-mentioned 

measures are shown in Equations 15 to 18: 

𝑁𝑀𝑆𝐸 =
(𝐶𝑂 − 𝐶𝑃)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐶𝑂𝐶𝑃
̅̅ ̅̅ ̅̅ ̅

Equation (15) 

𝑅 =
(𝐶𝑂 − 𝐶𝑂

̅̅ ̅)(𝐶𝑃 − 𝐶𝑃
̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜎𝐶𝑂
𝜎𝐶𝑃

Equation (16) 

𝐹𝐵 = 2
(𝐶𝑂
̅̅ ̅  − 𝐶𝑃

̅̅ ̅ )

(𝐶𝑂
̅̅ ̅ + 𝐶𝑃

̅̅ ̅ )

Equation (17) 

FAC2 = fraction of points within 0.5 ≤
𝐶𝑃

𝐶𝑂
≤ 2.0 Equation (18) 

In the above equations, C indicates concentrations, while subscripts O and P denote 

observed and predicted concentrations, respectively. The overbar represents arithmetic 

mean and sigma (σ) represents standard deviation. NMSE measures the mean scatter of 

the model relative to the observations and provides an estimation of deviations between 

model predictions and observations. R is the linear correlation coefficient between model 

results and observations. This would equal one when observations and predictions are 

positively correlated perfectly, and it varies between −1 and + 1. FB represents the 

normalized value of model bias and therefore indicates if the model results are 

systematically biased. Ideally equal to zero, FB varies between −2 and +2. 
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5.1.3. Results and Discussion 

5.1.3.1. Overall Model Performance 

Paired comparisons of observations and AERMOD predictions using volume 

sources with default options and meteorological inputs with default AERMET options for 

each of the four wind-direction categories, is shown in Figure 39. The data points in 

categories A- C are further divided into upwind and downwind, as displayed in the 

respective left and right columns. For categories A and B, towers T1 and T2 are considered 

as upwind sites and the rest of the towers and stands are considered as downwind sites. 

For category C, towers T4-T6 and stands S1 and S2 are considered as upwind sites and 

towers T1-T3 are considered as downwind sites. Just one panel was used for wind category 

D since it represents wind direction parallel to the road.  

The default volume source option can predict downwind concentrations under both 

low and high wind speed conditions at all three elevations in general. However, it over 

predicts the upwind concentrations for all cases, regardless of wind direction and speed. 

All the low wind cases occur when the wind is from east to west (category C) and the 

upwind concentrations are generally over predicted. There are also significant over 

predictions in category D, although it is hard to clearly define upwind or downwind 

locations for category D, due to uncertainty in the wind directions. Moreover, AERMOD 

using volume sources seems to be biased in dealing with cases above the ground level (9.5 

m) as the modeled concentrations are clustered around 1 µg m−3 while the observations

show variations span as much as two orders of magnitude. As no background 
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concentrations were specified in the simulations, this suggests that vertical dispersion 

might be overestimated using volume source to represent vehicle emissions. 

5.1.3.2. Vertical Distribution and Uncertainty Analysis 

Vertical distributions of the predicted concentrations based on volume sources 

with default options for four representative cases (perpendicular, oblique, opposite and 

parallel wind directions) with corresponding measured wind speed and directions are 

shown in Figure 40. AERMOD can generate smooth concentration fields in the vertical 

cross-section in all wind directions regardless of wind speed. Overestimation is evident at 

upwind monitors (e.g. T1 and T2 for wind categories A and B) as shown in the “Monte 

Carlo Simulation Column” (right panel) of Figure 40.  

The polar plots demonstrate that there is a vertical gradient of wind, with slower 

wind speeds closer to the surface. Wind directions also display large variations, especially 

for the measurements at the towers in the exclusion zone located either very close to the 

tracks' edge or in the middle of the two tracks (see Figure 38). These changes clearly show 

the impact of vehicle flow on wind speed and direction. Since the base case runs are 

conducted using average wind speed and direction, it is both desirable and necessary to 

evaluate the uncertainty in the predicted concentrations caused by corresponding 

uncertainty in both wind speed and direction.  
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Figure 39- Predicted (using volume sources with default option) and observed 

concentrations of SF6 (µg m−3) for all experiments grouped by wind-direction 

categories (A–D). 
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The scatter plots in cases 1, 2, and 3 (Figure 40) also show that there is a higher 

level of uncertainty when predicting upwind concentrations and the concentrations at the 

height of 9.5 m within the exclusion zone, as indicated by the longer error bars. In contrast, 

lower prediction variations can be observed in case 4, where wind directions are parallel 

to the road (and thus without clear upwind/ downwind trends). Moreover, the uncertainty 

caused by wind speed and wind direction is lower for the high concentration data points, 

which are usually near the surface and close to the roadway in downwind directions. 

5.1.3.3. Performance measures of different low wind options 

Statistical model performance analysis of the base case model, as well as from the 

three sensitivity simulations for different low wind options are summarized in Figure 41. 

By replacing the default setup with different low wind options, considerable changes in 

model performance can be observed. As displayed in panel A, the correlations between 

predictions and observations are improved when low wind options are used. The overall 

correlation coefficients are 0.73, 0.82, 0.75, and 0.80 for the base case model, and models 

using LW-1, LW-2, and LW-3, respectively. Higher NMSE values at 9.5 m suggest 

weaker performance of the model at heights compared with the one at the ground level, 

which is significantly improved by using the LW-3 option. The overall NMSE values 

(1.22, 0.89, 0.82, and 0.45 for the base case, LW-1, LW-2, and LW-3, respectively) also 

indicate that better performance could be obtained with low wind options and the best 

performance could be achieved using the LW-3 option. 
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Figure 40- Cross-section of the concentration fields in the perpendicular direction of 

the road 
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Figure 41- Performance measures for the base case and sensitivity cases with 

different low wind options at different heights 

FB and FAC2 values are shown in panel B. Negative FB values suggest that the 

overall predicted concentrations are higher than those observed at nearly all locations. As 

the data shows, the default and LW-2 options have the same performance, with FAC2 < 

0.6 and FB < −0.6 for most points. LW-1 performs better in terms of FB (−0.7 < FB) and 

LW-3 provides more scattered points around the FB = 0 line. When considering FAC2, 

both the default and LW-2 options show weaker performance than the LW-1 and LW-3 

options. Considering all statistical measures in Figure 41, LW-3 shows the best 

performance among all the options tested.  

Considering the relatively better performance of LW-3 based on the statistical 

measures, model results for individual cases were further investigated. Paired comparisons 

of AERMOD predictions versus observations for each of the four wind-direction 

categories, is shown in Figure 42. Comparing Figure 42 and 41 reveals considerable 

improvement in the predicted upwind concentrations using LW-3 for both high- and low 

A) B) 
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wind cases, as it shows prediction closer to the 1:1 line compared with base case 

simulation. The improvement is more evident in predicting low concentrations (< 1 µg 

m−3) as LW-3 predicts them to be less than 2 µg m−3 while base case simulation over-

predicts them to be between 2 and 50 µg m−3. 

Figure 43 shows the vertical distribution and the scatter plot as well as Monte Carlo 

simulation results for four sets of the model results using LW-3 for the same setting as the 

one in Figure 40 for the base case simulation. In this figure, the cross-section of field 

concentrations shows lower modeled concentrations at upwind. Based on what was shown 

and concluded from Figure 41 and Figure 42, the cross-sections provided in Figure 43 are 

closer to the reality. Figure 43 also shows shorter error bars indicating lower standard 

deviation and more points between the factor-of-two line and closer to 1:1 line than those 

of Figure 40, which suggests a better performance and more stability of model when LW-

3 is used. 
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Figure 42- Predicted (using volume sources and low wind option 3) and observed 

concentrations of SF6 (µg m−3) for all experiments grouped by wind-direction 

categories (A–D), and 1:1, 1:2 and 2:1 lines. 
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Figure 43- Predicted vertical distributions (left column) and uncertainty of the 

predicted concentrations by AERMOD volume and low wind option 3 at the 

receptors on the towers and stands (right column) for four selected cases. 
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5.1.3.4. Model performance with and without ADJ_U∗ option 

To investigate the effect of using ADJ_U∗ option in running AERMET on 

AERMOD performance, model results using AERMET outputs obtained with and without 

ADJ_U∗ option were compared for the base case and LW-3. Since using ADJ_U∗ 

decreases vertical gradient for low wind cases, it is anticipated to obtain results with 

changes in predicted concentration at lower wind speed cases. The results show slight 

changes for low wind speed cases but did not show considerable changes for wind speed 

cases greater than 1 m/s (high wind speed cases). AERMOD using ADJ_U∗ option leads 

to smaller difference between predicted concentrations at ground level and 9.5 m height, 

compared with the model without ADJ_U∗ option. Figure 44 shows the comparisons of 

predicted SF6 concentrations at low wind speed cases (wind speed < 1 m/s) using 

meteorological inputs processed with and without ADJ_U∗. Using ADJ_U∗ does not 

change the results dramatically compared with the same setting without ADJ_U∗ for both 

the base case and the LW-3 case. 

5.1.3.5. Model performance using area sources 

Comparisons of observations and AERMOD predictions using area sources and 

default AERMET for each of the four wind direction categories are shown in Figure 45. 

While the predicted concentrations in the downwind areas show reasonable overall 

correlations with observations (FB, NMSE, R, and FAC2 are −0.649, 0.800, 0.829 and 

0.439, respectively, similar to those obtained for the default volume source simulations 

but worse than those from the LW-3 case), predicted concentrations in the upwind 
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direction by the area sources are essentially zero due to lack of the treatment of meander 

component. The figure reveals that AERMOD is not sufficiently capable of dealing with 

upwind cases when using area sources, which put emphasis on the importance of taking 

meandering into consideration in dispersion modeling. 

Figure 44- Predicted concentrations for low wind cases (< 1 m/s) using volume 

sources for Base Case and low wind option 3 with and without ADJ_U* 

In addition to the problem in predicting upwind concentrations, in area source 

representation cannot correctly predict vertical distribution of pollutants under parallel 

wind condition. Figure 46 shows the effect of using area and volume sources on the 

predicted vertical distribution of SF6 concentrations for two parallel wind cases using a 

hypothetical emission rate of 10 µg m−2s−1. The winds parallel to the road (0⁰ or 180⁰) are 

supposed to generate symmetrical cross-sections of concentration field using different 

sources. However, this is not the case when area sources are used. As Figure 46 illustrates, 
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symmetric cross-section concentrations are generated using volume sources in parallel 

winds but not with area sources.  

When the average wind direction is parallel to the road, the predicted vertical 

concentration fields using area sources show irregular bands of concentrations, or con- 

centration ripples, in higher elevations (above approximately 3 meters and above). Since 

the AERMOD predictions represent steady- state concentrations, these concentration 

ripples appear unrealistic. The simulation results shown in Figure 46 are based on stable 

atmospheric conditions. Another set of simulations are conducted for convective 

conditions but similar problems show up for areas sources. A closer examination of the 

model formulation and coding is needed to locate the cause of this problem. 
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Figure 45- Predicted (using default area source option) and observed concentrations 

of SF6 (µg m−3) for all experiments grouped by wind direction categories (A–D).  
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Figure 46- Comparison of predicted vertical cross section of the concentration fields 

with volume source (right column) and area source (left column) in AERMOD, for 

parallel wind cases. 

5.1.4. Conclusion 

The capability of the steady-state dispersion model AERMOD in predicting 

concentrations of non-reactive tracers near roadways at different evaluations above surface 

up to 9.5 m was evaluated using the SF6 data collected during the GM Sulfate Dispersion 

Experiments. In general, AERMOD with area or volume source representations of the 

emission sources can predict SF6 concentrations at both surface (0.5 m above ground) and 

higher elevations (3.5 and 9.5 m) at downwind locations. Representing vehicle emissions 

as volume sources leads to better predictions of the concentrations at both upwind and 

downwind locations than those with area source emissions. Based on Monte Carlo 

uncertainty analyses, using volume sources also yielded lower uncertainties in modeled 

concentrations due to wind speed and direction than those using area sources. A general 
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overestimation of low concentrations at upwind locations was observed using volume 

sources regardless of the low wind options tested in this study. However, the model 

performance under low wind conditions improved by enabling the low wind options in 

AERMOD. Using volume sources representation and LW-3 yields the best model 

performance statistically, and improve the general over-estimation problem with default 

options at upwind. While the volume sources show acceptable performance and stable 

modeling results within the exclusion zone at 0.5 m and 3.5 m, considerable variation was 

observed at 9.5 m height. Moreover, vertical concentration fields using area sources show 

abnormal bands of high concentrations at higher elevations, which might indicate potential 

problems in the model formulation. 
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6. CONCLUSION

6.1. Summary 

The overall objectives of this study are to investigate near-road traffic-related air 

pollution data and dispersion modeling. Section 2 focuses on near-road PM2.5 increment 

using long-term monitoring data. Section 3 discusses regulatory and research applications 

of dispersion modeling for transportation air quality analysis. Section 4 explores the 

sensitivity of dispersion modeling to its three main input sets. Section 5 involves a holistic 

evaluation of dispersion modeling using a comprehensive tracer study dataset.  

In Section 2, PM2.5 data collected at a near-road monitoring station were compared 

with those of other NAAQS monitors during 2016 in Houston, Texas. The near-road PM2.5 

increment was determined based on EPA guidance for quantitative hot-spot analyses of 

PM to represent background concentration. The near-road PM2.5 increment was 

statistically significant, even when the monitor was located upwind of the roadway. The 

traffic contribution to 24-hour PM2.5 increment in the near-road environment was 

estimated to be about 27% of background concentration, which is close to estimates given 

by previous studies (22%) and is greater than a recent estimate based on a national-scale 

data analysis (15%), emphasizing the importance of background monitor selection criteria. 

A multiple linear regression model explains 85% of the variability of 24-hour PM2.5 

concentrations in the near-road environment and shows improvement in near-road 

concentration predictions when accounting for wind speed and wind direction.  

Section 3 presents an investigation of the application of dispersion modeling for 

regulatory and research purposes. In the first step, a worst-case scenario (WCS) analysis 
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was performed for PM hot-spots specific to El Paso, Texas. The WCS analysis consisted 

of dispersion modeling with all possible combinations of worst-case input parameters that 

would maximize traffic-related air pollution at a minimum distance from roadways. WCS 

is based on the premise that if the design value obtained is less than the NAAQS, then one 

can logically conclude that the WCS does not cause violations of the NAAQS and no 

future analyses are needed for lesser cases, which was the case for El Paso. In the second 

step, traffic-related air pollution exposure was investigated using dispersion modeling at 

the individual level. As such, a methodology was developed for assessing traffic-related 

emissions exposure by integrating mobility patterns tracked by GPS devices with 

dynamics of pollutant concentration predicted by regulatory dispersion model. The 

obtained PM2.5 exposure levels exhibit considerable variation between time periods within 

a day, with higher levels modeled during peak commuting periods and lower levels during 

midday periods. The results exhibit a significant variation of emissions exposure across 

time periods and spatial locations, which cannot be captured by simpler metrics such as 

traffic density and near-road distance. The study evaluated measures of static exposure 

based on residential location. Results show an increase of 7% in overall exposure levels 

from static to dynamic assessment. 

Section 4 presents a three-step investigation of the sensitivity of traffic-related air 

pollution dispersion modeling to a variety of input sets. In the first step, the effect of 

meteorological variables was investigated using parameters like atmospheric stability in 

various time periods, land use, and modeling options on modeled concentrations. As such, 

traffic-related concentrations were modeled at different distances from the road with unit 
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emission rate for various scenarios. Results show that near-road traffic-related 

concentration decline with distance from the road depends on meteorological conditions 

and varies by season. Concentrations were measured higher in rural areas when compared 

to urban land-use conditions due to the retention of heat by urban materials that increase 

the vertical motion of air, leading to increased pollutant dispersion in urban conditions. 

Concentrations were predicted higher during nighttime compared to daytime (when 

emission levels from the source are held equal) because of the stable atmospheric 

conditions, lower mixing heights, and lower wind speeds, leading to higher concentrations 

of pollutants at the near-ground level during nighttime periods. 

In the second step for Section 4, the sensitivity of traffic-related dispersion 

modeling to different emission rates was investigated. As such, the PM2.5 emission rates 

from two major sources of exhaust (exhaust, brake, and tire-wear) and resuspended road 

dust were modeled based on EPA guidelines for two road types (highway and arterial), 

four time periods of the day (morning peak [6:00 to 9:00 a.m.], midday [9:00 a.m. to 4:00 

p.m.], evening peak [4:00 to 7:00 p.m.], and overnight [8:00 p.m. to 6:00 a.m.]), and four

seasons. In addition, the increase in traffic-related PM2.5 emission and near-road 

concentrations due to inclusion of resuspended dust in estimations was evaluated and 

compared in different daily and seasonal time periods for a near-road environment in 

Tarrant County, Fort Worth, Texas. The estimated increase in traffic-related PM2.5 

emissions was not shown to be proportional to the increment of estimated near-road 

traffic-related PM2.5 concentrations at the different time periods. Nonlinearity was evident 

between emission rates and concentrations due to the effect of meteorological variables 
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and geometry of the network with unevenly scattered traffic-related emission rates (due to 

different link traffic speeds). Results also show the increase in PM2.5 emission rates due to 

resuspended dust inclusion to be considerably higher than the sum of exhaust, brake, and 

tire-wear emissions on arterials, as well as show the relative ratio to range between 139% 

and 208% (between 16% and 19% for highways). The comparison of emission rates shows 

the importance of the inclusion of resuspended PM2.5, particularly when dealing with 

traffic-related PM2.5 in a near-road environment surrounded by arterials.  

In the third step shown in Section 4, the sensitivity of near-road traffic-related 

dispersion modeling to source- and dispersion-related parameters was investigated. Model 

predictions were obtained for dispersion parameters in different vertical and horizontal 

distances from the edge of the road and at different wind speeds. Statistical measures were 

used to perform a quantitative evaluation of the model’s predictions using observations 

obtained from a tracer study and to assess potential improvement of the model’s 

performance due to changes in the regulatory suggested parameters. Results show an 

increase in release height, initial vertical dispersion coefficient (σzo), and minimum 

standard deviation of horizontal concentration distribution (σv,min), decreases predicted 

concentrations at the near-ground level and increases at 9.5 m from ground level located 

at downwind. Obtained results also show how near-road dispersion modeling under low-

speed winds is sensitive to dispersion parameters. Using alternative parameters yielded 

negligible improvement in quantitative performance measures in different classes of wind 

speed and wind direction, which may suggest that different input sets can be used to model 

dispersion under different wind cases.  
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In Section 5, a holistic evaluation of traffic-related dispersion modeling is 

presented with different heights from ground level for the first time using General Motors 

tracer study results. In general, AERMOD with area or volume source representations of 

the emission sources were shown to predict SF6 concentrations at both surface (0.5 m 

above ground) and higher elevations (3.5 and 9.5 m) at downwind locations. Representing 

vehicle emissions as a volume source was shown to lead to better predictions of the 

concentrations at both upwind and downwind locations than those with area source 

emissions. Based on Monte Carlo uncertainty analyses, using volume sources also yielded 

lower uncertainties in modeled concentrations due to wind speed and direction than those 

using area sources. A general overestimation of low concentrations at upwind locations 

was observed using volume sources regardless of the low-wind options tested in this study. 

However, the model performance under low-wind conditions was still improved by 

enabling the low-wind options in AERMOD. Using volume sources representation and 

LW-3 yields the best model performance statistically and improves the general 

overestimation problem with default options at the upwind location. 

6.2. Recommendations for Future Research 

Section 2 shows how the guideline for defining background air pollution 

concentration is determinant in traffic-related air pollution estimation. It also places 

emphasis on the effect of meteorological variables, including wind speed and wind 

direction, on near-road traffic-related air pollution. In this study, traffic contribution to 

near-road air pollution was estimated with the most recent near-road PM2.5 data, which 

were available in 24-hour resolution. An identical study with hourly concentrations would 
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clarify the traffic contribution to and the meteorological variables’ effect on near-road air 

quality. 

Section 3 shows the application of traffic-related air pollution dispersion modeling 

from both regulatory and research points of view. This part of the study indicates that 

background concentrations are typically much larger than the modeled concentrations, 

thereby dominating the design value. Additional details in determining background 

concentrations and the way they are reflected in design value compared with NAAQS 

might be required for PM hot-spot analysis. From a research point of view, the study on 

pregnant women showcased a novel application of dispersion modeling for exposure 

assessment. However, the limited monitoring dataset did not provide a clear image of the 

effect of mobility on exposure of the target community to air pollution. Using a 

comprehensive mobility dataset, such as cell phone data in a metropolitan area, can help 

obtain a better understanding of the effect of mobility on exposure to air pollution from 

various emission sources including the transportation sector. 

Section 4 focuses on the effect of different input sets on dispersion modeling 

results. Evaluation of the effect of meteorological variables and emission rates using 

constant and modeled emission rates shows their dramatic effect on near-road traffic-

related air quality modeling. However, real-time traffic and site-specific meteorological-

variable monitoring data with hourly resolution definitely can help decrease the 

uncertainty level in analysis. A new tracer study with real-time traffic count and mix also 

will help obtain a better understanding of the dispersion process, vehicular emission 

characteristics, and source-specific parametrization.  
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Section 5 illustrates a comprehensive evaluation of dispersion modeling using 

tracer study results. Although area and volume representations of vehicular emission 

sources are treated equally in regulatory guidelines, obtained results show significantly 

better performance of dispersion modeling using volume representation of emission 

sources. Hence, another evaluation of regulatory guidelines might be required from this 

point of view. Moreover, vertical concentration fields using area sources show abnormal 

bands of high concentrations at higher elevations, which might indicate potential problems 

in the model formulation. 
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