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ABSTRACT

The emergence of distributed energy resources has led to new challenges in the operation and

planning of power networks. Of particular significance is the introduction of a new layer of com-

plexity that manifests in the form of new uncertainties that could severely limit the resiliency and

reliability of modern power networks. Some of the new uncertainties that emerge as a direct conse-

quence of the integration of distributed energy resources include generation uncertainties typical of

solar and wind power, uncertain consumer demand patterns due to the increasing adoption of un-

conventional loads such as Plug-in Hybrid Electric Vehicles, topological uncertainties that include

outages of one or many components of a power system. To facilitate the widespread adoption of

distributed energy resources, it is thus essential to develop robust methodologies that would ade-

quately capture and quantify the uncertainties associated with using them. Such decision-making

problems that involve uncertainties embedded in the input data naturally lend themselves to be

addressed by statistical decision-theoretic methods.

A natural advantage of using statistical decision theory in addressing power system uncertain-

ties is using sample information to make inferences about the unknown quantities. Thus, using

computational methods like Bayesian statistics and Markov Chain Monte Carlo is natural within

the context of decision-making under uncertainty in energy systems. This research proposes the

use of computational methods such as scenario generation techniques, probabilistic mixture mod-

els, Bayesian analysis, and Markov Chain Monte Carlo to model the complex stochastic processes

such as solar generation, power system load, and various topological uncertainties like acceler-

ated aging and the premature failing of components such as On-load Tap Changers and switched

capacitor banks.

Furthermore, this research work is also concerned with investigating the impact of modern

reactive power compensation in the form of a solid-state-based capacitor-less power quality com-

pensator to further the integration of distributed resources, particularly distributed roof-top solar

generation in low voltage distribution networks. To that end, a stochastic cost-benefit equation is

ii



developed, considering the uncertainties associated with distributed energy resources. The cost-

benefit study investigates the economic viability of deploying such power electronics-based reac-

tive power compensation devices in low-voltage distribution networks.
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NOMENCLATURE

GGD Generalized Gaussian Distribution

GGMM Generalized Gaussian Mixture Model

DERs Distributed Energy Resources

EVs Electric Vehicles

NEV (t) Number of EV arrivals in [0, t]

ΩN Sample Space on which the Counting Process is defined

Sk kth Arrival Epoch of Homogeneous Poisson Process

λ (t) Time Varying Intensity Function

∧(t) Mean Value Function

Xk kth Inter-arrival time

F(.) CDF Function

λ+ Constant Rate Intensity Function

SNHPP
k kth Arrival Epoch of Nonhomogeneous Poisson Process

SoCArrival State of Charge of electric vehicle battery at Arrival

Ereq Energy Required to charge electric vehicle battery

Tch Time required to charge electric vehicle battery

P L-2 Charging Rate of electric vehicle

fY (.) Probability Density Function

π j Weight assigned to jth component density function

Ψ Vector of Model Parameters

Z Vector of Hidden Variables

Y Vector of Load Measurements
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β Shape Parameter of Generalized Gaussian Distribution

s Scale Parameter of Generalized Gaussian Distribution

µ Location Parameter of Generalized Gaussian Distribution

ε Tolerance level

S Vector of arrival epochs

dm Daily Driven Miles

Econs Electricity consumption in kWh/100 miles

Cb EV Battery Capacity in kWh

d Number of dimensions

Σ d×d Positive definite Symmetric Covariance Matrix

ζ Multidimensional Shape Parameter Analogue

γ2(Y) Multidimensional kurtosis coefficient of d- dimensional vec-
tor Y

kt Clearness Index

ARMA(p,q) Autoregressive moving average model with orders p and q

Gi
PV Stochastic Process representing power generated at bus i

MBCA Marginal Benefit of Carbon Abatement

CT Total operational cost in $/year

ct Carbon Tax rate in $/MT

LCOE Levelized cost of energy

{Ti|i = 1,2, ...,r} Random sample of observed failures

{S j| j = r+1, ...,N} Random set of in service assets

Kβ ,r Normalization constant of Shape Parameter

Kθ ,r Normalization constant of Scale Parameter

Kα,r Normalization constant of Stress Parameter

π∗ Invariant Distribution
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1. INTRODUCTION AND LITERATURE REVIEW

The electric grid is currently in the midst of a radical transformation. In particular, three on-

going trends are well posed to cause significant disruptions in how the electric grid functions. The

first disruptive trend is the trend of electrification. Electrification refers to more things powered by

electricity. The transportation sector is the biggest beneficiary of the rapid growth in electrification.

One of the major reasons is the progressively declining battery costs from $1000 per kilowatt-hour

(kWh) to less than $200 per kilowatt-hour (kWh) in 2021. This has enabled lower-cost models

such as Nissan Leaf and Tesla Model 3 to increase production. The advances in the electric vehi-

cle (EV) technology have further environmental benefits by shifting many end users of electricity

away from fossil fuels and thus playing an important role in lowering the transportation sector’s

carbon footprint. In the United States, the transportation sector accounted for roughly 27% of the

total greenhouse emissions in 2020 [6]. Light-duty vehicles accounted for more than half of the

emissions from the transportation sector, thus making it a critical area for decarbonization.

The second trend with the potential to disrupt the power industry is the trend of decentraliza-

tion. Decentralization is an umbrella term used to describe technologies that enable the shift from

centralized to distributed generation. These include distributed generation from renewable sources

such as solar and wind. Distributed storage helps alleviate the local peak demand by collecting the

excess electrical energy from renewable sources and flattening the sharp peaks in electrical energy

consumption. Demand response is another disruptive technology that enables energy control dur-

ing peak hours and allows customers to respond to high pricing periods. The deployment of solar

photovoltaic panels has been extremely effective in many parts of the world. In 2020, the global

installed capacity of solar photovoltaics amounted to roughly 773 gigawatts. The average cost of a

residential solar panel system in the United States is $2.94 per watt [1]. New technologies in this

area, like solar photovoltaic tiles and buildings, integrated with solar photovoltaic, further broaden

the potential of distributed generation.
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Figure 1.1: Trends in the grid-edge technologies[1]

The third important trend that is reshaping the power industry is digitization. Digitization refers

to the increased use of smart devices that enable communication across the grid and provide crucial

data for grid management. Smart meters, new IoT sensors, network remote control, and automated

systems that focus heavily on grid optimization and aggregation facilitate the real-time operation

of the grid while improving situational awareness and utility services. Such real-time data from

smart devices is critical for integrating distributed generation. A good example that illustrates the

importance of smart devices is the phasor measurement data captured by the phasor measurement

units (PMUs). The real-time phasor data consists of voltage and current phasors at the loading

location in the grid, which can be converted to give a quick estimate of the stability margin. This

procedure bypasses the complex computation of the system dynamics and is a good alternative

in situations that require the deployment of fast and emergency controls[7]. Though the market

penetration of smart devices and IoT sensors is low, current projections predict a dramatic increase

in the use of such devices.

The overarching objective of the grid-edge technologies is to create a decentralized grid with

a renewed focus on reliability and environmental sustainability. By creating a more efficient and
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resilient electrical grid, grid-edge technologies can unlock a significant economic value for the

utilities and the customers. A recent survey by the world economic forum proposed a $2 trillion

valuation of the transformation of the electric grid over the next decade [1]. Figure 1.2 shows

the adoption rates of key technologies such as telephone and radio and compares them with the

adoption rate of the grid-edge technologies. The adoption rate of the grid-edge technologies will

likely follow the typical S-curve as seen with previous technologies.

Figure 1.2: Adoption rate of grid-edge technologies [1]

The transition of the electric grid, however, faces major challenges that range from technical

to regulatory issues. This dissertation addresses the technical issues associated with integrating

distributed energy resources (DERs). A major technical challenge with the use of DERs is the

problem of intermittency which adds a new layer of uncertainty to the operation and planning of

the power grid. Most engineering problems are subject to uncertainty due to the inherent random-

ness of natural phenomena and/or the lack of perfect knowledge about a physical process. In any

case, to achieve a cost-effective solution that improves the system’s reliability, it is imperative to

tackle such uncertainties via computational models that are immune or less sensitive to environ-

mental influences or lack of expert knowledge. In energy systems, the ever-increasing penetration

of distributed energy resources (DERs) has introduced new uncertainties that significantly impact

the operation and planning of modern power systems. Uncertainty characterization in the context
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of DER-rich power systems is crucial for the system’s increased reliability and for facilitating the

widespread adoption of such distributed energy resources. The power system uncertainties are

usually grouped into two categories: a) Technical uncertainties and b)Economic uncertainties [8].

The technical uncertainties are further grouped into topological uncertainties related to network

topologies like forced outages or failures of lines, generators, transformers, etc., and operational

uncertainties tied to operational parameters like demand and generation. The economic uncertain-

ties include the cost of fuel, pool prices of electricity, business taxes, cost of emissions etc.

1.1 Demand Uncertainty

One of the most noticeable operational parameters in a power system is the demand or load.

The load on a power system is highly time-dependent, usually peaking in the evening and is usually

lowest during the last quarter of the night. Traditionally, load uncertainty arises due to environ-

mental factors, appliance variations, and consumer behavior. However, the embedded generation

uncertainties associated with using DERs further accentuate the randomness in the system de-

mand. For example, the intermittent nature of renewable energy introduces random fluctuations

in the load, resulting in a voltage profile subject to higher variability. Similarly, the charging of

Plug-In Hybrid Electric Vehicles (PHEVs) and fully Electric Vehicles (EVs) disrupts the normal

load profiles, which, if left accounted for, could lead to undesirable peaks in the electric energy

consumption. Even in the absence of DER-induced uncertainties, power system demand patterns

show a lot of variabilities when measured at different buses across the network. This is especially

true for distribution systems where different load types follow dissimilar patterns of use and, as

such, cannot be represented by a single probability function.

4



0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

Load Power (kW)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
D

F

Figure 1.3: Residential Load Distribution
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Figure 1.4: Commercial Load Distribution
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Figure 1.5: Large Industrial Load Distribution
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Figure 1.6: Small Industrial Load Distribution

An example of variability in the probability distribution of the different types of loads is pre-

sented in Figures 1.3-1.6. If uncertainty characterization is done by fitting a univariate or a multi-

variate probability distribution, then it is clear that no single density function can accurately quan-

tify the stochasticity embedded in the different load types. In the classical literature, the Gaussian

distribution has often been used to model loads. However, recent experimental and theoretical re-

search has shown that Gaussian distribution is not justified for all the loads. This time-dependent

variable behavior of the load is further complicated by the addition of renewable energy to the

existing generation pool. An example of such complexity is the concept of net load. Tradition-

ally, the system load profile has been extensively used for power system management applications.

However, the accelerating expansion of renewables has rendered the system load profile less infor-

mative and thus inadequate for most operation and planning applications. Instead, system net load,

defined as the demand that must be met by dispatchable (non-intermittent) sources, has gained

popularity. Since the renewable output is subject to changes in the weather conditions, which can

take place over a relatively faster time scale, the system net load as seen from a secondary of the
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substation, also referred to as diversified demand, or at the point of common coupling experiences

a greater degree of variability. The increased variability results in a load profile with a higher de-

gree of "peakiness" than the traditional load. The increased peak behavior of system net load can

be attributed to an overall increase in the uncertainty due to the addition of intermittent generation

to the existing energy mix. In addition to an increase in the demand uncertainty, higher penetration

of renewable output can also lead to negative demand or "back-feeding" to the grid. This happens

when the energy produced by the distributed resources exceeds the demand and is a consequence

of a mismatch between the peak solar output that usually happens sometime around noon and the

peak demand that is frequently observed in the evening. The "back-feeding" to the grid disrupts

the protection schemes usually designed to work in one direction downstream from the substation

transformer.
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Figure 1.7: Net Residential Load Distribution
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Figure 1.8: Net Commercial Load Distribution
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Figure 1.9: Net Large Industrial Load Distribu-
tion
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Figure 1.10: Net Small Industrial Load Distribu-
tion
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Figures 1.7-1.9 show the variations in different load types when distributed solar generation

is added to the existing generation mix. The net load at a load bus is obtained by subtracting

the solar output from the load. As discussed, introducing solar generation results in a histogram

plot with a pronounced "peaky" behavior. A quick visual comparison between Figures 1.3-1.6 and

Figures 1.7-1.9 reveals the impact that distributed solar generation, in this example, has on the con-

sumer demand patterns. Clearly, a Gaussian assumption is not justified for modeling uncertainty

in consumer demand patterns.

The most common method for characterizing load uncertainty is the probabilistic approach.

The probabilistic method is predicated on finding the best fit for the empirical load distribution.

The most commonly used distribution in the literature is the Gaussian distribution [9]. However,

as discussed, the Gaussian distribution is not a good model for characterizing the load uncertainty

since the power system load, especially in distribution systems, does not follow any particular

probability distribution [10]. Despite this critical observation, several attempts have been made

to model the loads using unimodal distributions [11],[12],[13],[14],[15]. The limitations of the

unimodal distributions to model multimodal load data prompted research into the applicability of

probability mixture models for load modeling. Early work on using mixture models for the statis-

tical load representation is presented in [16]. The study uses a Gaussian mixture model (GMM) to

represent the probability density function of all the loads in a distribution system. The study uses

the Expectation-Maximization algorithm to evaluate the parameters of the mixture model. The

study, however, ignores the impact of distributed energy resources, for example, distributed gener-

ation and plug-in electric vehicles, on the density function of different load types in a distribution

system. The study [17] uses a Gaussian Mixture Model (GMM) to approximate non-Gaussian

density functions such as correlated wind power output and aggregated load in the presence of

non-Gaussian correlated random input variables. The study [18] evaluates the performance of the

GMM and Mixture of Factor Analyzers (MFA) method in modeling residential loads, and the re-

sults are compared with the existing load models. The study concludes that GMM and MFA offer

superior performance characteristics compared to the existing British load model. The study [19]
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uses probability density functions based on GMM to statistically quantify key charging metrics of

electric vehicles. The study uses real data from 221 electric vehicles as part of the largest trial

in the UK and Europe. A key constraint in the application of GMM is that the area under the

curve of each component density must equal unity over the entire sample space. The study in [20]

develops a generalized model based on GMM to fit the density functions of wind power ramping.

The generalized model differs from the conventional GMM in that the integral of each component

density over the entire sample space is not required to be unity. Also, the associated weights of

each component density can be negative as opposed to a conventional GMM, where each compo-

nent’s weight must be nonnegative. However, the component density functions used in the model

are Gaussian functions. The nonlinear least squares method with a trust-region algorithm is used

to obtain the mixture components. The optimal number of components is obtained by minimizing

the euclidean distance between model fit and actual histogram distribution. The study in [21] uses

a GMM to fit the multimodal empirical probability density function of wind power generation. In

[22], GMM is used to model the density function of the error in the wind power forecast. How-

ever, the model parameters are obtained by an optimization algorithm based on the Riemannian

manifold. The proposed L-BFGS optimization method requires fewer iterations considering mul-

tivariate data. The study in [23] provides analytical solutions to the load flow problem for low

voltage network planning, considering a GMM for the load as an input. The study in [24] uses a

GMM to model the joint distribution of the measured wind power and the forecasts, and the results

are compared with Gaussian, Beta, and t-Location distributions. The study uses Root Mean Square

Error (RMSE) metric to assess the fitting performance. It is shown that the GMM has the lowest

RMSE. The mixture models based on Gaussian distribution have also been applied to quantify the

uncertainty in renewable generation for use in market clearing mechanisms. In [25], a peer-to-peer

(P2P) joint energy and reserve market is proposed where agents can negotiate with neighboring

agents. The uncertainty of all the renewable energy agents is modeled using a GMM.
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1.2 Generation Uncertainty

Outside the atmosphere, the incident solar radiation on any arbitrarily-sloped surface can be

predicted exactly. However, due to the irregular and random movement of the clouds in the atmo-

sphere, such an exact prediction of the incident solar radiation on any arbitrarily-sloped plane on

the earth’s surface is impossible. The impact of the cloud movement on the net irradiance incident

on the solar panel can be quantified in terms of the clearness index. The clearness index is defined

as the ratio of the global horizontal irradiance on the earth’s surface and the irradiance calculated

for cloudless conditions, often referred to as clear sky irradiance. The clearness index cannot be

predicted with complete confidence and hence must be treated as a random variable [26]. The

probability model of the clearness index can be constructed by utilizing the statistical distributions

of past occurrences. Such a probability model can be used to predict the value of the clearness

index for some future event with some probability and within specified limits. The model can fur-

ther synthesize changes in the clearness index to model the cloud movement at shorter time scales

(sub-hourly). Such a synthesis, however, must be done by utilizing a large measured historical

data set of the changes in the clearness index to offset the effect of one bad day or bad week [27].

In the past several researchers have studied the statistical distributions of the clearness index by

measuring the irradiance data at hourly and even sub-hourly time scales [28],[29]. While the den-

sity function appears unimodal when measured at hourly time steps, the sub-hourly measurements

(5-minutes) have revealed the density function of the clearness index to have a bi-modal structure.

An example is provided in Figure 1.11 and Figure 1.12.
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Figure 1.11: Hourly Clearness Index
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Figure 1.12: 1-Minute Clearness Index
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Since the energy generated by a photovoltaic system is a function of the incident irradiance on

the photovoltaic panel, the total power produced by a photovoltaic system can also be treated as a

random variable. The resulting uncertainty in the photovoltaic generation can be quantified using

scenario generation. An example of how the changes in the clearness index impact the electrical

power generated by a photovoltaic system is shown in Figure 1.13. The dotted red curve refers

to the power generation corresponding to clear sky conditions. The visualization is done based

on one-minute values of the clearness index and the photovoltaic generation for a period of seven

days. The impact of the cloud movement on the power generated is evident. When the clearness

index is at or near unity, the power generation equals the generation for clear sky conditions. For

all other values of the clearness index, the power generated (blue curve) is less than the clear sky

conditions (red dotted curve). The random behavior of the clearness index results in an uncertain

generation that needs to be rigorously modeled to study the impact of such variable generation on

the electric grid.
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Figure 1.13: 1-Minute Clearness Index and PV Generation

1.3 Topological Uncertainties

Topological uncertainties refer to the network element outages or failures that can happen either

due to external factors or gradual aging of the network infrastructure. Furthermore, the increased
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adoption of distributed energy resources, particularly solar and wind generation, has led to the phe-

nomenon of accelerated aging of certain mechanically-operated equipment like transformers fitted

with on-load tap changers. In today’s context, where a substantial amount of renewable generation

is being added to the generation pool, topological uncertainties, particularly the accelerated aging

and premature failure of equipment, play an important role in the planning and operation of future

power grids and thus cannot be ignored.

The increasing penetration of DERs in the distribution networks particularly has led to new

challenges not only in the area of operation and planning of distribution grids but also in the re-

liability of the grid infrastructure. Certain mechanically-operated voltage control devices such as

transformers equipped with on-load tap changers and switched capacitor banks are particularly

more vulnerable to the rapid changes in solar and/or wind generation. The tap-changing trans-

formers also referred to as voltage regulators, use a line drop compensation circuit to measure the

voltage at the load center. Only the forward power flow settings are provided and the voltage reg-

ulators are expected to provide regulation at the load center, which is usually the secondary of the

transformer, in the range specified by the voltage set point and the bandwidth. Figure 1.14 shows

the finer details of a line drop compensation circuit.

Figure 1.14: Line Drop Compensation Circuit
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The parameters R’ and X’ represent the equivalent impedance from the regulator to the load

center. The LDC settings include the potential and current transformer ratios and the parameters

R’ and X.’ These parameters depend on the line impedance between the voltage regulator and load

center, and the CT and PT ratio. The transformers with a line drop compensation are circuits that

are usually modeled as autotransformers with a nominal voltage regulation capability of ±10%.

This allows 32 taps with a minimum tap ratio of 0.9 and a maximum tap ratio of 1.1.

The act of changing the transformer taps to maintain the secondary voltage within the specified

bandwidth is purely a mechanical operation. The oil-type load tap changers generally require

maintenance interventions between 50,000 and 100,000 operations. Due to the mechanical nature

of such devices, a continuous control of the secondary voltage is not possible. While such devices

can effectively mitigate the slow variations in the voltage (caused primarily by the change in system

demand), the stochastic nature of the renewable generation could stretch these devices to the limits

of their operation. The rapid excursions in the voltage due to the highly variable output of the

solar and/or wind systems cannot be mitigated by legacy voltage regulators utilizing line drop

compensation and switched capacitors. The mechanical design of these devices simply renders

them inadequate for regulating voltages at shorter time scales of minutes and/or seconds.
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Figure 1.15: Bus Voltage
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Figure 1.16: Tap Position of Nearest Regulator

An example of device degradation or accelerated aging is shown in Figure 1.15 and Figure

1.16. The red dotted curve in Figure 1.15 represents the voltage under high penetration of solar

generation, and the corresponding dotted red curve in Figure 1.16 shows the movement of the tap

of the nearest transformer fitted with a load tap changer. It is clear that the transformer changes
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tap much more frequently (to control a highly variable voltage) when the distribution network has

a high penetration of solar generation. This operational irregularity, a direct consequence of high-

capacity renewable generation, can lead to premature failures of such voltage control devices. The

tap failure can happen either due to the asynchronous operation of the switches, usually caused by a

broken axis, or due to the carbon formation and oxidation of contacts. While a broken axis may be

a sudden event, the carbon formation on the contacts represents gradual aging, one that is exacer-

bated by the intermittent non-scheduled generation [30]. In [31], the impact of PV penetration on a

distribution system with a 20 MVA, 69 kV/12,47 kV, delta-wye connected transformer serving two

residential feeders was demonstrated. It is shown that a 20% PV penetration amounting to 4 MWs

can increase the number of tap-changing operations four times compared with 0% PV penetration.

However, the study was performed on global horizontal irradiance data at 1-minute intervals for

three days in the summer. The study ignores the effect of the solar PV panel’s tilt and azimuth

angles on the PV output. Furthermore, the study assumes a lumped load model at the transformer

secondary bus, thus ignoring the voltage drop along the feeder. In [32], a yearlong PV data of 1-

minute interval was used on a model of a residential network consisting of 60 houses. A 33 kV/11

kV transformer is used to step down the upstream voltage, further decreasing to 415V. The PV data

used for modeling has a resolution of 1 minute and accounts for 1.22 MWp in a system with a 12.5

MW base load and 22 MW peak load with an assumed average nominal load of each household

to be 3 kW, implying a 10% or less PV penetration. It is shown that with increased variability of

the PV output, the number of tap changing operations also increases and the operations saturate

at a PV penetration of more than 90%. However, the solar irradiance’s dependence on the solar

panel’s tilt angle and the azimuth is not specified. In [33], the high-frequency solar variability is

characterized based on the ramp rate distributions at ten locations across the United States. Weekly

simulations with a time resolution of 1 s are carried out on a 12 kV agricultural feeder, and the im-

pact on the voltage regulator operations is studied. Global horizontal irradiance is used to compute

the power output of a 3 MW single-axis tracking PV power plant. However, the study is carried out

every week and hence is inadequate for capturing the seasonal shifts of the PV output. Moreover,
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the study ignores the impact of scattered PV installations across the feeder. In [34], the study tries

to assess the variability in the load and solar irradiance from a frequency domain perspective. The

study outlines the impact of solar irradiance on the feeder load and the modifications caused to the

net load as seen by the utility. Several methods have also been proposed to mitigate the effect of

solar variability on the operation of voltage-regulating equipment. The use of on-site battery stor-

age is presented in [35]. In [36], an optimization problem is formulated to minimize the operation

of voltage-regulating equipment by dispatching an optimal reactive power control strategy based

on the load and the irradiance forecast. The method is tested on an 11kV network with 95 buses

equipped with two PV plants with a combined output of 2 MW, operating at 0.95 lead/lag power

factor.

In reliability literature, the degradation of equipment, particularly by the device’s aging, is

consistent with the Weibull distribution [37]. The density and the hazard function of the Weibull

distribution have many interesting properties. In particular, the hazard function can assume a

variety of shapes. For most aging-related failures, the hazard increases with time, thus increasing

the probability of failure given that the device has survived until the present time instant. In a

recent survey of the 6057 utility-owned power transformers operating in mainland Australia and

Tasmania, the mean life of three transformer populations was determined by applying the Weibull

distribution [38]. Previous research in this area has shown that the power transformers’ aging

strongly depends on the aging of the on-load tap changers. Several surveys over the years suggest

that the mechanical failures due to damage in the on-load tap changers account for nearly 55%

of the total failures, followed by the dielectric and thermal failures. This is especially true of

distribution transformers installed in the substations where it has been shown by empirical data

that the majority of outages were a direct result of the tap-changer initiated failures [39] [40].

Further, given the scarcity of the failure data available, especially in the case of devices such

as power transformers, several research teams have justified the use of Weibull distribution to

fit the relatively small sample sizes of the available data [41], [42],[43]. This is not surprising

given that Weibull survival and hazard functions have a lot of interesting properties and offer a lot
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of flexibility, unlike other probability distributions such as Lognormal, Gamma, and Exponential

distributions. To overcome the challenges of small sample sizes, researchers in [38] analyzed

the reliability data from 97% of the 6057-owned utility-owned power transformers in Australia

and Tasmania. The researchers use the Weibull distribution to understand failure statistics and

conclude that in distribution transformers, aging-related failures dominate after 20 years while the

winding-related random failures are more likely to occur before 20 years of age. This is indicated

by the shape parameter values of 1.6 before 20 years of age and 3.6 after 20 years of service. Other

important works in this area make use of two-parameter Weibull [44], exponential [45] and Perks’

distribution [5] to model equipment lifetimes. However, an important limitation of these failure

models is their inability to account for failures resulting from the accelerated aging of the devices.

1.4 Contributions

The main contribution of this work lies in the formulation of a stochastic analytical frame-

work that can be used as a tool to assess the profitability of investing in renewable generation at a

utility-scale level and power electronics-based solid state devices at a distribution level. For elec-

tric utilities, the profitability estimation in renewable generation such as solar and wind farms is a

hard problem that is further complicated by economic policies such as carbon tax based on carbon

emissions. The methodology presented in this work considers the uncertainties in solar generation

and the aggregated system load while accounting for the impact that a certain economic policy

may have on the overall cost incurred to the electric utility. Similarly, the proposed stochastic

framework can be used to address several operational problems in distribution systems. For exam-

ple, the economic viability of power electronics-based solutions to challenges such as voltage and

harmonic control can be assessed in greater detail and with much higher accuracy.

The other significant contribution of this work lies in developing several computational algo-

rithms based on unsupervised learning and Bayesian statistics to answer some of the most challeng-

ing problems in distribution systems. Reliability challenges in power systems have been gaining

much traction in recent years. This is mostly a result of the rapid growth of distributed energy

resources, particularly solar generation. This work studies the reliability issues related to the me-
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chanical devices in the distribution networks, such as voltage regulators and switched capacitor

banks. A major contribution in this area is developing a predictive failure model that incorporates

the impact of the distributed generation. The electric utilities can use the failure model as a tool

to assess the reliability of the distribution system infrastructure and make predictions about either

imminent or long-term failures.

1.5 Outline of the Dissertation

The dissertation is organized as follows

Chapter 2 This chapter deals with the problem of statistical load modeling. The applicability of

several probability mixture models based on the generalized density functions is investigated. In

addition, the chapter also contains a detailed description of the mathematical modeling of Plug-in

Hybrid electric vehicle charging.

Chapter 3 This chapter focuses on the uncertainty characterization of distributed generation in

the form of solar generation. Two different models for uncertainty characterization are presented.

The first model is based on the Markov Chain Monte Carlo method, while the second is a time

series auto-regressive moving average model. Both models can generate synthetic scenarios with

the same statistical properties as the empirical data.

Chapter 4 This chapter leverages the computational models of the earlier chapters and presents a

case study on the profitability of investing in utility-scale solar generation.

Chapter 5 This chapter contains a comprehensive description of topological uncertainties in power

systems. A failure model based on Bayesian statistics is presented. Furthermore, a detailed math-

ematical analysis of the parameter estimation problem is provided.

Chapter 6 This chapter leverages the computational models of the earlier chapters to develop the

cost-benefit model of a power electronics-based solid state device for use in distribution systems.

Chapter 7 The final chapter provides a summary of the work done and offers several conclusions

as well as possible future directions for this work.
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2. STATISTICAL MODELING OF LOAD

The emergence of distributed energy resources has led to new challenges in the operation and

planning of power networks. Of particular significance is the introduction of a new layer of com-

plexity that manifests in the form of new uncertainties that could severely limit the resiliency and

reliability of modern power networks. For example, the increasing adoption of unconventional

loads, such as Plug-in Hybrid Electric Vehicles, can result in uncertain consumer demand patterns,

often characterized by random undesirable peaks in energy consumption. Traditionally, load uncer-

tainty arises due to environmental factors, appliance variations, and consumer behavior. However,

the embedded uncertainties associated with using EVs/PHEVs further accentuate the randomness

in the electric demand profiles. Even in the absence of DER-induced uncertainties, it has been

shown that power system demand patterns show a lot of variabilities when measured at different

buses across the network. This is especially true for distribution systems where different load

types follow dissimilar patterns of use and, as such, cannot be modeled by any specific probability

distribution function.

The use of unconventional loads such as PHEVs and/or EVs impacts feeder load profiles. It

presents considerable security and reliability challenges to the normal operation of a power dis-

tribution grid. The charging of EVs, for instance, disrupts the normal feeder load profiles, which,

if left unaccounted for, could lead to undesirable peaks in electrical energy consumption. From

the distribution system operator’s point of view, some of the various factors of concern with the

EV integration, in addition to demand patterns with a pronounced ’peaky’ behavior, include feeder

power losses, feeder voltage profile, voltage unbalance, injection of harmonics into the grid, vio-

lation of thermal line and transformer limits, load forecasting challenges due to the introduction

of new customer demand patterns, impact on the tap changing under load transformers and other

mechanical switched devices in distribution grids, etc. The system is most vulnerable to severe

impacts, component overloading, and excessive voltage drops during charging periods that coin-

cide with the normal peak electrical energy consumption. In several studies examining the most
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damaging effects of EV charging, it has been concluded that existing distribution grids should ac-

commodate substantial EV penetration, provided that a major chunk of EV charging is restricted

to low charging rates at off-peak times. Furthermore, uncoordinated charging, particularly fast

three-phase charging, can increase the instances of thermal violations in cables and transformers.

The impact could exacerbate if it coincides with the peak energy consumption [46][47].

In this chapter, we will explore the applicability of generalized mixture models for statistical

modeling of aggregated load in distribution systems enhanced with high capacity renewable energy

systems in the form of distributed solar generation and unconventional load types such as uncoor-

dinated charging of several plug-in electric vehicles. To my knowledge, the generalized mixture

models have not been considered for statistical load modeling of aggregated load. The gener-

alized mixture models considered in this work include the generalized Gaussian mixture model

(GGMM), which is based on generalized Gaussian distribution (GGD), and the generalized Beta

mixture model, which is based on generalized Beta Prime distribution (GB2). We also consider

the multivariate version of the GGMM to study the correlation among adjacent loads. The GGMM

has been used in the literature to address various issues in pattern recognition. For example, the

study in [Image thresholding based on EM algorithm and GGD] proposes the use of a GGMM for

global image thresholding based on the assumption that the statistical parameters of “object” and

“background” can be modeled by a Generalized Gaussian distribution (GGD). The parameters of

the resulting mixture model are obtained using the E-M algorithm. The study [48] considers the

parameter estimation problem of a multivariate generalized Gaussian distribution using the fixed

point (FP) method [49]. The paper establishes some properties related to the FP equation and an

algorithm based on an iterative procedure like Newton-Raphson is used to compute the maximum

likelihood estimate of the real scatter matrix of the multivariate GGD. The contributions of this

chapter are as follows

• This paper explores the properties of generalized mixture models such as the generalized

Gaussian mixture model (GGMM) and generalized Beta mixture model (GBMM) for statis-

tical modeling of aggregated load in systems with high capacity distributed energy resources
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(DERs) such as distributed solar generation and unconventional loads such electric vehicles

(EVs).

• The electric vehicle charging load is estimated by modeling the EV connection with the elec-

tric grid as a stochastic counting process based on a nonhomogeneous Poisson process. The

EV arrival times are simulated by implementing a version of the acceptance-rejection-based

algorithm called "thinning".

• The mixture components of the generalized models are obtained using the Expectation-

Maximization algorithm. The performance assessment of the generalized mixture models

considered in this work is done through various goodness-of-fit measures such as Mean

Square Error (MSE), Root Mean Square Error (RMSE), and Normalized Root Mean Square

Error (NRMSE), and Kullback-Lielber divergence (K-L).

• A procedure for random sampling from the proposed mixture models is presented. The

sampling is based on the idea of rejection sampling which involves the use of a proposal

density function to calculate the acceptance probability of the sampled values.

2.1 Aggregate Load Behavior*

1 The distribution system considered in this work is the IEEE-123 bus test feeder. Based on

the peak loading data of the test system [50], the following consumer classes are identified for

load profile calculations. These are a) Residential loads (R), b) commercial loads (C), and c)

industrial loads (I). The base residential load profile data is obtained from [51], which is based on

the 2009 residential energy consumption survey (RECS) data set. The hourly base load profiles for

1Part of the data reported in this chapter is reprinted with permission from "On Statistical Modeling of Load in
Systems with High Capacity Distributed Energy Resources" by Aaqib Peerzada, Miroslav Begovic, Wesam Rohouma,
Robert Balog,arXiv preprint arXiv:2207.11355,2022
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commercial and industrial loads are obtained from [OpenEI] and normalized with respect to the

peak values. The power factors considered for the three classes of consumers are 0.99, 0.98, and

0.9 lagging, respectively.

The presence of DERs, such as renewable energy in the form of solar generation and EV

charging, significantly impacts the aggregate load. To observe the impact on the aggregate load, it

is important to have reliable forecasts of EV energy consumption and renewable energy generation.

The EV energy consumption further depends on the frequency with which the EVs connect to the

grid at a charging location. In the literature on EV load modeling, the queuing theory has often been

used to model the EV connection. The study in [] performed a null hypothesis test on vehicle travel

patterns based on the National Household Travel Survey (NHTS) data. It is shown that the electric

vehicle arrivals for charging can be modeled as a constant-rate Poisson process in short intervals

of time (30 minutes). To the best of our knowledge, the methods proposed in the literature to

forecast the EV demand do not provide any information on the generation of the nonhomogeneous

Poisson process used to estimate the arrival times of the EVs. This chapter presents a procedure

to generate a nonhomogeneous Poisson process with the desired intensity function. The simulated

nonhomogeneous Poisson process is used to estimate the arrival times of the EVs.

2.1.1 EV Connection as an Arrival Process

We consider a stochastic counting process {NEV (t); t ≥ 0} defined on a sample space Ω. The

random variable NEV (t) is the realization of the number of EV arrivals in the interval [0, t]. For any

τ ≥ t, the counting process {NEV (t); t ≥ 0} has the property NEV (τ) ≥ NEV (t). This means that

NEV (τ)−NEV (t) is a nonnegative random variable. By definition, the stochastic counting process

{NEV (t); t > 0} is integer-valued, non-decreasing, and right continuous. The counting process

{NEV (t); t > 0} can be characterized either by the sequence of the interarrival times X1,X2,X3, ...

or by the number of arrivals NEV (t) in the interval [0, t]. The kth arrival epoch (time) can be

specified in terms of the interarrival times

Sk =
k

∑
i=1

Xi (2.1)
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In a similar way, the interarrival times can be specified by the arrival epochs (times) with Xk =

Sk−Sk−1. For a given kth arrival such that k ≥ 1 and time t > 0, the kth arrival epoch Sk is related

to the counting random variable NEV (t)

{Sk ≤ t}= {NEV (t)≥ k} (2.2)

This relationship can be easily verified by considering that the number of arrivals by time t must

be at least k if the kth arrival epoch (time) Sk happens before or at time t. Conversely, it is also true

that

{Sk > t}= {NEV (t)< k} (2.3)

Equation (4.7) holds because if the kth arrival epoch occurs at τ > t then the number of arrivals up

to and including t must be less than k.The counting process {NEV (t); t > 0} is a non-homogeneous

Poisson process with a time-varying arrival rate of λ (t). In addition, ∀t ≥ 0 and δ > 0, {NEV (t); t >

0} satisfies [52]

Pr{ÑEV (t, t +δ ) = 0}= 1−λ (t)δ +o(δ 2)

Pr{ÑEV (t, t +δ ) = 1}= λ (t)δ +o(δ 2)

Pr{ÑEV (t, t +δ )≥ 2}= o(δ 2)

(2.4)

In (4.8), ÑEV (t, t + δ ) = NEV (t + δ )−NEV (t). The non-homogeneous Poisson process (NHPP)

defined in (4.8) has the independent increment property but does not have the stationary increment

property. λ (t) is also called the rate function of the NHPP. The NHPP (4.8) is characterized by the

mean value function ∧(t)≡ E[NEV (t)]. The mean value function in terms of the intensity function

λ (t) is

∧ (t) =
∫ t

0
λ (y)dy < ∞ (2.5)

For a NHPP, the probability of having k arrivals in the interval [0, t] is given by [reference]

Pr{NEV (t)−NEV (0) = k}= [∧(t)−∧(0)]k

k!
exp(− [∧(t)−∧(0)]) (2.6)
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2.1.2 Simulating Arrival times of an NHPP

The interarrival times of an NHPP are not independent and are not exponentially distributed.

The distribution of the interarrival times can be obtained by using the independent increment prop-

erty of an NHPP. More specifically, the independent increment property states that the number

of EV arrivals NEV (s) is independent of NEV (s+ t)−NEV (s)∀s, t ≥ 0. In other words, we con-

sider the random variables {NEV (In);1 ≤ n ≤ k} to be independent where {In}1≤n≤k are piece-

wise disjoint intervals. The CDF of Xk = Sk+1 − Sk conditional on the first k arrival epochs

S1 = s1,S2 = s2, ...,Sk = sk is

FXk(x) = Pr{Xk ≤ x|Si = si, i = 1,2, ...,k}

FXk(x) = Pr{N(Sk + x)−N(Sk)≥ 1|Sk =
k

∑
i=1

Xi}
(2.7)

The independent increment property of the NHPP implies that NEV (Sk + x)−NEV (Sk) is indepen-

dent of NEV (Sk). Using this property we get

FXk(x) = 1−Pr{N(Sk + x)−N(Sk) = 0} (2.8)

The probability of having 0 arrivals in the interval Sk,Sk + x is exp−[∧(Sk + x)−∧(Sk)]. The cdf

of the interarrival times is

FXk(x) = 1− exp(−∧ (Sk + x)+∧(Sk)) (2.9)

Furthermore, the interarrival times X1,X2, ...,Xk are conditionally increasing if and only if the in-

tensity function of the NHPP is decreasing. The proof is given in [Subash C Kochar Some results

on interarrival times of NHPP].

An NHPP can be generated from a homogeneous Poisson process by considering a constant

intensity function λ+ that dominates the time-varying intensity function λ (t); t ≥ 0 of the desired

NHPP such that λ+ ≥ λ (t) ∀t ∈ [0,T ]. A variation of the acceptance-rejection called "thinning" is

22



used to sample from the generated events of a homogeneous Poisson process such that the desired

intensity function λ (t) is achieved [53]. The thinning algorithm is based on the following theorem

Theorem 1 (Lewis and Shedler, 1979) [54] Consider a non-homogeneous Poisson process with

intensity function λv(t), t ≥ 0. Suppose that S∗1,S
∗
2, ...,S

∗
k are random variables representing event

times from the non-homogeneous Poisson process with intensity function λ (t) and lying in the

fixed interval (0, t]. Let λ (t) be a intensity function such that 0≤ λ (t)≤ λv(t)∀t ∈ [0, t]. If the ith

events is independently deleted with probability 1−λ (t)/λv(t), the remaining event times form a

nonhomogeneous Poisson process with intensity function λ (t) in the interval (0, t]. The proof is

given in [55]

The thinning algorithm used in the paper to simulate a nonhomogeneous Poisson process is

implemented as follows. We consider λ (t) to be the intensity function of the NHPP over a fixed

interval [0,T ].

• Simulate a homogeneous Poisson process (HPP) with constant intensity function λ+ ≥

λ (t)∀t ∈ [0,T ] by drawing uniform random numbers {uk;k = 1,2, ...,k∗} ∼U(0,1). Since

the inter-arrival times are exponentially distributed in a HPP, the inter-arrival times are ob-

tained by setting Xk =− 1
λ+ loguk.

• The arrival times of an HPP are obtained by setting Sk = Sk−1− 1
λ+ loguk. The total number

of uniform random numbers drawn is k∗ = max{k;∑
k
n=1 Sn < T}.

• Independently generate uniform random numbers {w j; j = 1,2, ...,k∗} ∼U(0,1) and calcu-

late the indicator function

I j =


1;w j ≤

λ (S j)
λ+

0;w j >
λ (S j)

λ+

(2.10)

• Form the set J = {I j; j = 1} and the arrival times of the NHPP are SNHPP
j = {S j; j ∈ J}

In this work, we consider a piecewise constant intensity function for intervals lasting 30 minutes.

The piecewise constant intensity function depends on customer convenience and is based on real-
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Algorithm 1: Acceptance Rejection based Thinning of HPP
Input:NHPP Intensity function λ (t), HPP Constant-rate Intensity function λ+, Interval length
[0,T ])
Set λ+ = max{λ (t)}
Set the counting process NEV = aλ+T,a > 1
while i≤ NEV do

Draw u∼U(0,1)
Set Sk =− 1

λ+ loguk
end while
Set S = S(S < NEV )
Set k∗ = max{k;∑

k
n=1 Sn < T}

for all i=1,..,k do
Draw w∼U(0,1)
Calculate acceptance probability, r( j) = λ (S j)

λ+

if w j ≤ r( j) then
I j = 1

else
I j = 0

end if
end for
J = {I j; j = 1}
SNHPP

j = {S j; j ∈ J}
Output: Arrival Times of NHPP
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world data given in [3]. For a typical day, the piecewise constant arrival rate is given in Table ??

Table 2.1: Arrival Rate of EV Connection [3]

Time (Mins) % of Vehicles on Road EVs/hour

0≤ t < 360 ≤ 4 [1,2,3,4]

360≤ t < 480 >4 and ≤ 7 [5,6,7,8,9,10,11]

480≤ t < 780 ≤ 4 [1,2,3,4]

780≤ t < 1080 ≥ 7 [12,13,14,15,16,17]

1080≤ t < 1200 > 4 and ≤ 7 [5,6,7,8,9,10,11]

1200≤ t ≤ 1440 ≤ 4 [1,2,3,4]

To generate an NHPP with the desired intensity function λ (t) as given in Table 2.1 we con-

sider a homogeneous Poisson process (HPP) with a constant rate intensity function λ+ such that

λ+ = maxλ (t)∀t ∈ [0,T ]. The EV arrival times corresponding to the intensity function λ (t) are

then obtained by applying the thinning algorithm to the HPP with the intensity function λ+. The

number of arrivals NEV (t) as a function of the arrival epochs Sk and the piecewise constant intensity

function of Table ?? are shown in Fig 2.1 and Fig 2.2 respectively.
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Figure 2.1: NHPP Count Trajectory
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Figure 2.2: Time-varying Arrival Rate

2.1.3 EV Consumption Profile

The EV charging load can be calculated based on the expected number of arrivals in a fixed

interval [0,T ]. The expected number of arrivals can be estimated using the information about the

time-varying intensity function of the counting process assumed to model the EV arrivals and the

arrival times. As a first approximation, we consider a commercial building with an EV charging
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facility. The EVs arrive at this charging facility with an intensity function consistent with that of

an NHPP to receive charging service. We also consider homogeneous EVs and use the battery

parameters of the Tesla Model 3 which is often regarded as the most popular EV in North America

[56].

The daily driven miles can be modeled by a log-normal distribution with a mean of 3.37 and a

standard deviation of 0.5 [46]. The battery state of charge (SoC) can be estimated from the daily

driven miles (d), electricity consumption in kWh/100 miles (Econs), and battery capacity (Cb) in

kWh.

SoCarrival = 1− Econsd
Cb

×100 (2.11)

The energy required to charge the battery to the desired SoC which in this case is 100% is given

by

Ereq =
SoC f inal−SoCarrival

η×100
Cb (2.12)

η in (2.12) is the charging efficiency assumed to be 95%. The total charging time is given by

Tch = Ereq/P (2.13)

P in (2.13) is the charging rate. In this case we assume 3-φ L-2 charging. Table 2.2 gives the

battery-related parameters of Tesla Model 3 considered in this work.

Table 2.2: EV Battery Characteristics

Parameter Value

Cb(kWhRated) 75 kWh

P(kWRated) 11.5 kW ; 48 Amps (3-φ )

Efficiency η 95%

% Charging 100% of kWRated

Econs 27 kWh/100 miles

The total EV demand is calculated based on the EV arrival rate as shown in Fig 2.3, the expected
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number of events of the EV counting process NEV (t) in the interval (0, t), the energy required to

charge the EVs (2.12) and the total charging time given by (2.13). Based on the arrival rate shown

in Fig 2.2, the total EV electric demand for one day is shown in Fig 2.3
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Figure 2.3: EV Aggregate Demand

2.1.4 Aggregate Load with EV charging and Distributed Generation

The stochastic nature of EV charging and distributed generation significantly impact the over-

all electric demand profile. In the case of EV charging, the demand profile of the charging facility

will exhibit a pronounced peaky behavior with peaks in demand occurring at random times, which

depend on the arrival times of the EVs. Combined charging could alter the diversified electric de-

mand seen from the secondary distribution substation transformer if enough EV charging facilities

are considered. Similarly, distributed generation in the form of distributed roof-top PV systems

can lower the diversified demand when the PV systems are generating peak power, followed by

the subsequent ramping up of the load as the output of the PV systems dwindles. However, the PV

system output can experience significant variability depending on the weather conditions, leading

to a highly variable demand profile at the point of common coupling. Suppose the PV systems

are dispersed geographically over sufficiently long distances. In that case, the variability in the

combined output and hence the variability in the diversified demand may be less than the outputs
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of the individual PV systems. However, this mitigation of the PV variability will depend on the

measure of similarity in the generation patterns, which further depends on the spatial spread of the

distributed PV systems.

In this work, we assume that the distribution test feeder has enough capacity to support the EV

charging and that all the physical power system constraints are satisfied. The histogram plot of

the one-day aggregated load of a commercial building considering EV charging is shown in Fig

2.4 . Also, Fig 2.5 shows the histogram plot of the weekly diversified demand as seen from the

secondary substation transformer in the IEEE 123 feeder with and without distributed generation.

Figure 2.4: PDF of one day aggregated load with and without EV charging
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Figure 2.5: PDF of Diversified Demand with and without Distributed Generation

It is clear from Fig 2.4 and Fig 2.5 that EV charging and distributed generation significantly

impact electric demand. While EV charging disrupts the pattern of energy consumption by intro-

ducing random peaks that correspond to the times when an EV either connects or disconnects with

the grid, high-capacity distributed generators can lead to reverse power flow along the feeder, as

indicated by the negative values of the electric demand in Fig 2.5. In this case, we consider a high

penetration scenario of distributed solar generation that amounts to approximately 90% of the total

peak demand of the IEEE 123 test feeder.

2.2 Generalized Mixture Models for Load Modeling*

2 A generalized probability mixture model is based on the generalized version of any spe-

cific density function. For example, a generalized Gaussian mixture model (GGMM) comprises a

weighted convex combination of a finite number of generalized Gaussian density functions. Gen-

eralized distributions often employ more parameters to achieve a greater degree of flexibility. For

instance, a generalized Gaussian density requires estimating one additional parameter than a Gaus-

sian distribution. This parameter, called the shape parameter, controls the shape of the distribution

with larger values resulting in a distribution with smaller tails and vice versa. Similarly, the gen-

2Part of the data reported in this chapter is reprinted with permission from "On Statistical Modeling of Load in
Systems with High Capacity Distributed Energy Resources" by Aaqib Peerzada, Miroslav Begovic, Wesam Rohouma,
Robert Balog,arXiv preprint arXiv:2207.11355,2022
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eralized beta prime distribution, also referred to as the generalized beta distribution of the second

kind has two additional parameters that control the shape and the scale of the distribution. Consid-

ering the impact of DERs such as EVs and distributed generation in the context of load modeling,

a generalized mixture model, owing to its greater flexibility, can result in a better fit of the em-

pirical load data. In the next section, we will consider two generalized mixture models based on

generalized Gaussian and generalized beta prime distributions, respectively. To account for the

load correlation at buses close to each other, we also present a multivariate version of the GGMM.

2.2.1 Parameter Estimation of Mixture Models

A probability mixture model, in general, is a convex combination of a finite number of density

functions. It is characterized by the total number of components considered in the mixture, the

weight of each component, and a parameter vector that consists of parameters of the component

densities. In general, a mixture model that is a sum of a finite number of density functions has the

following form

fY (yi;Ψ) =
M

∑
j=1

π j p j,Y (yi,C = j,Θ j) (2.14)

In the context of load modeling, Y = yi is the measured load data, M is the number of mixture

components and π j = p(yi ∈C j) is the weight of the jth component density. The weights assigned

to the component densities are subject to following constraints.

π j > 0 ∀ j ∈ {1,2, ...,M}
M

∑
j=1

π j = 1
(2.15)

Each component density function p j,Y is characterized by the parameter vector Θ j and Ψ =

{π j,Θ j; j = [1,2, ...,M]} is the overall parameter vector. If {yi}N
i=1 is the measured data vector,

then the likelihood function of the model in (4.3) has the form

L(Ψ|yi) =
N

∏
i=1

M

∑
j=1

π j p j,Y (yi,C = j,Θ j) (2.16)
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If we take the logarithm on both the sides of (2.16) we will get the log-likelihood function of the

mixture model.

logL(Ψ|yi) =
N

∑
i=1

log
M

∑
j=1

π j p j,Y (yi|C = j,Θ j) (2.17)

The overall parameter vector Ψ that characterizes the mixture model (4.3) can be obtained by

maximizing (2.17).

Ψ
∗ = argmax

Ψ

N

∑
i=1

log
M

∑
j=1

π j p j,Y (yi|C = j,Θ j) (2.18)

The optimization problem (2.18) is ill-posed and a solution can be obtained by using Expectation-

Maximization (E-M) algorithm. The E-M algorithm find a solution by reinterpreting the mea-

sured data Y as incomplete data and positing the existence of a M− dimensional binary variable

Z = {z ji}i=N, j=M
i= j=1 for each sample yi such that the jth component z ji is 1 if and only if yi belongs

to the jth component. That is

z ji =


1,yi ∈C j

0;yi /∈C j

(2.19)

Let X = [YT ,ZT ]T be the complete data vector. The complete data log-likelihood is given by

logL(Ψ|Y,Z) = logP(Y,Z|Ψ) (2.20)

Using the chain rule we get

P(Y,Z|Ψ) = P(Y|Ψ)P(Z|Y,Ψ) (2.21)

Substituting (2.21) in (2.20) and using (4.3), the complete data log-likelihood has the following

form

logL(Ψ|Y,Z) =
N

∑
i=1

M

∑
j=1

z ji{logπ j + log(p j,Y (yi|C = j,Θ j))} (2.22)

A challenge in estimating (2.22) is that the assumed binary variable Z is an unknown. Further

progress can be made if Z is assumed to be a random vector. In that case, we can derive an

expression for the distribution of the unobserved data Z. Suppose Ψ(g) is the appropriate parameter
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vector for the mixture density. Given Ψ(g), the component density functions p j(yi|Ψ(g)) can be

evaluated ∀ j, i. The weights π j’s can be considered prior probabilities of each mixture component.

The posterior distribution of the unobserved data Z conditional on the observed data Y and the

current parameter estimates Ψ(g) can be obtained using Bayes’ rule.

P(z ji|yi,Ψ
(g)) =

P(yi|z ji,Ψ
(g))π j

P(yi|Ψ(g))
(2.23)

The term in the denominator of (2.23) is the total probability of observing the measured data and

is equal to the density function of the mixture model i.e, P(yi|Ψ(g)) = ∑
M
j=1 p j(yi|Ψ(g)). The joint

probability of Z is

P(Z|Y,Ψ(g)) =
N

∏
i=1

p(z ji|yi,Ψ
(g)) (2.24)

The E-M algorithm is an iterative procedure and consists of two steps. In the E-step (first step) of

the algorithm, we determine the missing information (Z) by computing the conditional expectation

of Z based on the current parameter estimate Ψ(g) and the observed data Y.

E-Step

The conditional expectation of the unobserved binary valued data Z

E[z ji|Y,Ψ(g)] = P(z ji|yi,Ψ
(g)) =

P(yi|z ji,Ψ
(g))π j

∑
M
j=1 p j(yi|Ψ(g))

(2.25)

Equation (2.25) can be used to calculate the conditional expectation of the complete date log-

likelihood function.

Q
(

Ψ
(g+1),Ψ(g)

)
= E

[
logL(Ψ|Y,Z)|Y,Ψ(g)

]
(2.26)

To solve this further, we get the conditional expectation of the complete data log-likelihood func-

tion

Q
(

Ψ
(g+1),Ψ(g)

)
=

N

∑
i=1

M

∑
j=1

E[z ji|Y,Ψ(g)][logπ j + log(p j,Y (yi|C = j,Θ j))] (2.27)
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M-Step

In the M-step the conditional expectation obtained in the E-step is maximized by varying the

value of Ψ. The sub-problem is

maximize
N

∑
i=1

M

∑
j=1

E[z ji|Y,Ψ(g)][logπ j + log(p j,Y (yi|C = j,Θ j))]

subject to
M

∑
g=1

πg = 1

π j ≥ 0 j ∈ [1,2, ...,M]

(2.28)

The optimization problem in (4.4) is solved using the method of Lagrange multipliers.

∂

∂πk

N

∑
i=1

M

∑
j=1

E[z ji|Y,Ψ(g)][logπ j + log(p j,Y (yi|C = j,Θ j))]+λ

(
M

∑
j=1

π j−1

)
= 0 (2.29)

This above expression yields

πk =
1
N

N

∑
i=1

E[z ji|Y,Ψ(g)] (2.30)

Maximizing with respect to Θ j

0 =
N

∑
i=1

E[z ji|Y,Ψ(g)]
∂

∂Θk
log pk(yi|C = k,Θk) (2.31)

2.2.2 Univariate Generalized Mixture Models

We consider the univariate mixture models to model the load distribution at a single bus. How-

ever, this loses any information about the correlation of loads in close proximity. At the same time,

univariate models require less computational effort and can be used when the information about

load correlation is not sought or important. We consider two univariate mixture models based on

generalized Gaussian and beta prime distributions.
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2.2.2.1 Generalized Gaussian Mixture Model

A generalized Gaussian mixture density is a weighted sum of a finite number of generalized

Gaussian density functions. Due to an additional parameter, the generalized Gaussian density

offers more flexibility in modeling a large variety of statistical behaviors. Also, the generalized

Gaussian density function can approximate a large class of continuous density functions. The

generalized Gaussian density adopted in this paper has the following form

pY (y; µ,s, p) =
β

2sΓ

(
1
β

) exp

[
−|y−µ|β

sβ

]
(2.32)

In 4.2, β ∈R+ is the shape parameter,s∈R+ is the scale parameter, µ ∈R is the location parameter

and Γ(.) is the gamma function. It is worth noting that β = 1 gives a Laplace distribution, and β = 2

gives a Gaussian distribution. A generalized Gaussian mixture density is characterized by the total

number of mixture components, weight, location, scale, and shape of each component density.

The conditional expectation of the complete data log-likelihood function for the GGMM can

be obtained by substituting (4.2) in (2.27). This results in

Q
(

Ψ
(g+1),Ψ(g)

)
=

N

∑
i=1

M

∑
j=1

E
[
z ji|Y,Ψk

]
logπ j +

N

∑
i=1

M

∑
j=1(

logβ j− log2− logs j− logΓ

(
1
β j

)
− s−β j

j |yi−µ j|β j

)
(2.33)

The application of (4.4)-(2.31) yields the following update equations for the model parameters

Ψ(g+1) = {π j,µ j,s j,β j; j = [1,2, ...,M]} of a GGMM given the current estimate Ψ(g) and the mea-

sured load data Y

π
(g+1)
j =

1
N

N

∑
i=1

E
[
z ji|Y,Ψ(g)

]
(2.34)

N

∑
i=1

E
[
z ji|Y,Ψ(g)

]
β
(g)
j |µ

(g+1)
j − yi|β

(g)
j = 0 (2.35)
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s(g+1)
j =

 ∑
N
i=1E

[
z ji|Y,Ψ(g)

]
∑

N
i=1E

[
z ji|Y,Ψ(g)

]
β
(g)
j |µ

(g)
j − yi|β

(g)
j

−
1

β
(g)
j

(2.36)

N

∑
i=1

E
[
z ji|Y,Ψ(g)

]
κ = 0 (2.37)

In (5.34), κ equals

κ =
1

β
(g+1)
j

+
ψ

(
1/β

(g+1)
j

)
(

β
(g+1)
j

)2 −

 |yi−µ
(g)
j |

s(g)j

β
(g+1)
j (

log |yi−µ
(g)
j |− logs(g)j

)
(2.38)

In (5.38) ψ(.) is the digamma function defined as Γ
′
(g)/Γ(g). The update equations for the loca-

tion and the shape parameter are nonlinear and we use an iterative solver like the Newton-Raphson

to obtain a numerical solution. The update equation for the shape parameter (5.34) is highly non-

linear and computationally very expensive. The shape parameter can also be obtained using the

variance and the scale parameter information. In terms of the variance and the scale parameter, the

update equation of the shape parameter has the following form

N

∑
i=1

E
[
z ji|Y,Ψ(g)

](
yi−µ

(g)
j

)2
Γ

 1

β
(g+1)
j

=
N

∑
i=1

E
[
z ji|Y,Ψ(g)

](
s(g)j

)2
Γ

 3

β
(g+1)
j

 (2.39)

2.2.2.2 Generalized Beta Prime Mixture Model

The generalized beta prime mixture model is based on the density function of the generalized

Beta prime distribution. Also known as the generalized beta of the second kind (GB2), the general-

ized beta prime distribution includes many important distributions as limiting cases. These include

generalized gamma, Burr types 3 and 12, lognormal, Weibull, gamma, Rayleigh and exponential

distributions. The generalized beta prime density used in this paper has the following form

pY (y;a,b,γ,q) =
γ

(
y
q

)aγ−1 [
1+
(

y
q

)γ]−(a+b)

qB(a,b)
(2.40)
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The support of pY (y;a,b, p,q) does not encompass R but a smaller interval of (0,∞). In (2.40)

gamma∈R+ is the shape parameter, q∈R+ is the scale parameter and B(a,b) is the beta function.

It is worth noting that if p = q = 1, the generalized beta prime yields the standard beta prime

distribution.

The conditional expectation of the complete data log-likelihood function of the generalized

beta prime mixture model can be obtained by substituting (2.40) in (2.27). This substitution yields

Q
(

Ψ
(g+1),Ψ(g)

)
=

N

∑
i=1

M

∑
j=1

E
[
z ji|Y,Ψk

]
logπ j +

N

∑
i=1

M

∑
j=1(

logγ j +(a jγ j−1)[logyi− logq j]− (a j +b j) log
[

1+
(

yi

q j

)γ j
]
− logq j− logB(a j,b j)

)
(2.41)

The application of (4.4)-(2.31) yields the following update equations for the model parameters

Ψ(g+1) = {π j,a j,b j, p j,q j; j = [1,2, ...,M]} of a generalized beta prime mixture model given the

current estimate Ψ(g) and the measured load data Y

π
(g+1)
j =

1
N

N

∑
i=1

E
[
z ji|Y,Ψ(g)

]
(2.42)

N

∑
i=1

E
[
z ji|Y,Ψ(g)

]γ
(g)
j (logyi− logq(g)j )− log

1+
yi

q(g)j

γ
(g)
j

−ψ

(
a(g+1)

j

)
+ψ

(
a(g+1)

j +b(g)j

)= 0

(2.43)

N

∑
i=1

E
[
z ji|Y,Ψ(g)

][
ψ

(
a(g)j +b(g+1)

j

)
−ψ

(
b(g+1)

j

)]
−

N

∑
i=1

E
[
z ji|Y,Ψ(g)

]
log

1+

 yi

q(g)j

γ
(g)
j

= 0

(2.44)
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N

∑
i=1

E
[
z ji|Y,Ψ(g)

] 1

γ
(g+1)
j

−

(
a(g)j +b(g)j

)
y

γ
(g+1)
j

i

(
q(g)j

)−γ
(g+1)
j

(
logyi− logq(g)j

)
y

γ
(g+1)
j

i q
−γ

(g+1)
j

j +1

+
a(g)j

N

∑
i=1

E
[
z ji|Y,Ψ(g)

]
log

yi

q(g)j

= 0 (2.45)

N

∑
i=1

E
[
z ji|Y,Ψ(g)

]a(g)j γ
(g)
j

q(g+1)
j

− 1

q(g+1)
j

+
N

∑
i=1

E
[
z ji|Y,Ψ(g)

]
 1

q(g+1)
j

+

(
a(g)j +b(g)j

)
y

γ
(g)
j

i

(
q(g+1)

j

)−γ
(g)
j

q(g+1)
j

(
1+ y

γ
(g)
j

i

(
q(g+1)

j

)−γ
(g)
j

)
= 0

(2.46)

2.2.3 Multivariate Generalized Gaussian Mixture Model

Consider a d− dimensional random vector Y = [Y1,Y2, ...,Yd]
T with d ≥ 1. Y has a multivari-

ate generalized Gaussian distribution with parameters µ,Σ,ζ where µ ∈Rd,Σ is a (d×d) definite

positive symmetric matrix and ζ ∈ (0,∞) if it can modeled with a density function of the form [57]

pY(Y ; µ,Σ,ζ ) = α |Σ|−
1
2 exp

(
−1

2
[
(Y −µ)T

Σ
−1(Y −µ)

]ζ)
(2.47)

where

α =
dΓ
(d

2

)
π

d
2 Γ

(
1+ d

2ζ

)
2
(

1+ d
2ζ

) (2.48)

Equation (2.47) is a multivariate generalized Gaussian distribution with scale parameter replaced

by the scatter matrix Σ. It is worth noting that ζ = 1,d = 2 in (2.47) gives the bivariate Gaussian

distribution. The notation is PEd(µ,Σ,ζ ) [57]. The parameter ζ controls the sharpness of the dis-

tribution and the sharpness diminishes as ζ increases. In that sense ζ is the multivariate analogue

of the shape parameter β in the univariate generalized Gaussian distribution.
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2.2.3.1 Stochastic Representation

If Y is a d- dimensional random vector and is distributed as PEd(µ,Σ,ζ ) then Gómez et al [57]

have shown that Y admits the following equality in distribution.

Y d
=µ +RA′u(d) (2.49)

In (2.49) u(d) is a random vector uniformly distributed on the unit sphere in Rd , R is a continuous

non negative random variable and A is a square matrix with d order such that A′A = Σ. The density

function of R is

hR(r) =
d

Γ

(
1+ d

2ζ

)
2

d
2ζ

exp
[
−1

2
r2ζ

]
I(0,∞)(r) (2.50)

2.2.3.2 Parameter Estimation

The multivariate generalized Gaussian mixture model is characterized by the weight, location

parameter, scatter matrix, and shape parameter of each component. The conditional expectation of

the log-likelihood function of the multivariate generalized Gaussian mixture model can be obtained

by substituting (2.47) in (2.27.

Q
(

Ψ
(g+1),Ψ(g)

)
=

N

∑
i=1

M

∑
j=1

E
[
z ji|Y,Ψk

]
[logw j + logd + logΓ

(
d
2

)
− d

2
logπ−

logΓ

(
1+

d
2ζ

)
−
(

1+
d

2ζ

)
log2− 1

2
log |Σ j|−

1
2

[
(Yi−µ j)

T
Σ
−1
j (Yi−µ j)

]ζ j
] (2.51)

In (2.51) w j is the weight of the jth component multivariate density. The application of (4.4)-

(2.31) yield the following update equations for the model parameters Ψ(g+1) = {w j,µ j,Σ j,ζ j; j =

[1,2, ...,M]} of the multivariate generalized Gaussian mixture model given the current estimate

Ψ(g) and the measured load data Y

N

∑
i=1

E
[
z ji|Y,Ψ(g)

]
ζ
(g)
j

[(
Yi−µ

(g+1)
j

)T (
Σ
(g)
j

)−1 (
Yi−µ j

)]ζ
(g)
j

= 0 (2.52)
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Σ
(g+1)
j =


ζ
(g)
j ∑

N
i=1E

[
z ji|Y,Ψ(g)

][(
Yi−µ

(g)
j

)(
Yi−µ

(g)
j

)T
]ζ

(g)
j

∑
N
i=1E

[
z ji|Y,Ψ(g)

]


1

ζ
(g)
j

(2.53)

N

∑
i=1

E
[
z ji|Y,Ψ(g)

] d log2

2
(

ζ
(g+1)
j

)2 +
d

2
(

ζ
(g+1)
j

)2 ψ

1+
d

2ζ
(g+1)
j


−

1
2

N

∑
i=1

E
[
z ji|Y,Ψ(g)

][
(Yi−µ

(g)
j )T

(
Σ
(g)
j

)−1
(Yi−µ

(g)
j )

]ζ
(g+1)
j

log
[
(Yi−µ

(g)
j )T

(
Σ
(g)
j

)−1
(Yi−µ

(g)
j )

]
= 0

(2.54)

It is worth noting that for ζ = 1 in (2.53), the update equation for the scatter matrix of the multivari-

ate generalized Gaussian reduces to the update equation of the covariance matrix of the multivariate

Gaussian distribution [ref]. An alternate expression for the update equation of ζ can be obtained

from the relationship between the multidimensional kurtosis coefficient γ2(Y) and ζ .

(
γ

j
2

)(g+1)
(Y)Γ2

 d +2

2ζ
(g+1)
j

+d(d +2)−d2
Γ

 d

2ζ
(g+1)
j

Γ

 d +4

2ζ
(g+1)
j

= 0 (2.55)

The kurtosis coefficient
(

γ
j

2

)(g+1)
(Y) of the jth component density at the current iteration is esti-

mated from the variance. The update equation for the jth multidimensional kurtosis coefficient has

the form (
γ

j
2

)(g+1)
(Y) = E

[((
Y −µ

(g)
j

)T
Var(Y )−1

(
Y −µ

(g)
j

))2
]

(2.56)

2.3 Initialization Procedures

The E-M algorithm has the property that the expected value of the log-likelihood function in-

creases at each iteration. This means that the EM sequence of observed log-likelihood {log L̂}Ψ|Y,Z

will converge to the stationary point of logL(Γ|Y,Z). This stationary point is guaranteed to be the
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local maximizer of the log-likelihood function of the model. In some cases, the EM sequence con-

verges to a saddle point [58], but such instances are rare. One disadvantage of the E-M algorithm

is the sensitivity of the final solution to the initial parameter values. The first iteration of the E-M

algorithm requires the initialization of the mixture model’s overall parameter Γ. Since mixture

models tend to have many parameters, the initialization problem is very difficult.

In the literature on E-M initialization, several methods have been proposed. One possible

initialization approach involves doing short E-M runs starting with random initial guesses followed

by a long E-M run. Also known as iteratively constrained E-M, the idea rests on the assumption

that the initial guess that maximizes the observed log-likelihood function will cause the algorithm

to reach convergence more quickly than random initialization that changes the log-likelihood less

rapidly. Once the initial guess that maximizes the log-likelihood is identified through short E-M

runs, the long E-M run commences using the final solution of the short E-M as the initial guess.

A disadvantage with iteratively constrained E-M is the number of iterations for short E-M runs

must be specified. A second major disadvantage is deciding on the number of random starts. A

second possible initialization strategy is the k-means algorithm which is the initialization procedure

adopted in this paper. k-means is a clustering algorithm that can partition the data into distinct

non-overlapping subgroups based on a specific similarity measure. The objective function of the

k-means algorithm is

J =
N

∑
i=1

K

∑
k=1

wik‖xi−µik‖2 (2.57)

In (2.57), wik = 1 if the data point xi belong to cluster k and zero otherwise. The k-means algorithm

works on the Expectation-Maximization principle but with hard assignments. The study [59] has

shown that k-means algorithm provides reasonably good parameter estimates when used as initial

values for the E-M algorithm.

2.3.1 Univariate generalized Gaussian Mixture Model

The k-means algorithm outputs the total number of clusters, centroid locations of each cluster,

and a label for each data point which indicates the membership of the data point with respect to
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the clusters. The univariate generalized Gaussian mixture parameters are initialized by setting up

the number of clusters from the k-means equal to the number of the component densities M in the

mixture model. The location parameter of each mixture component is set equal to the centroid

locations of the respective clusters. The scale parameter of each mixture component is initialized

as

s(0)j =
1
N

N

∑
i=1

(
yi−µ

(0)
j

)(
yi−µ

(0)
j

)T
(2.58)

The initial value of the shape parameter β j of the jth component density is estimated from the first

and second statistical moments. With the location parameter µ
(0)
j of the jth component density

initially set to the location of the jth centroid, β j is estimated as

β
(0)
j =

m1, j√m2, j
(2.59)

In (2.59) m1, j and m2, j are the first and the second statistical moment of the jth cluster respectively.

The initialization of β provides an alternate initialization strategy for the scale parameter s. More

specifically, s can be also be initialized as

s(0)j =

β
(0)
j

N

N

∑
i=1

∣∣∣yi−µ
(0)
j

∣∣∣β (0)
j

 1

β
(0)
j

(2.60)

2.3.2 Multivariate generalized Gaussian Mixture Model

The application of the k-means algorithm in the multivariate case results in a M×d matrix for

the centroid locations. The centroid locations are used to initialize the location parameter vector

for each component density of the mixture model. The initialization of the scatter matrix is based

on the covariance of the d- dimensional measured data vector Y. The multivariate scale parameter

ζ is initialized in the same way as the univariate scale parameter β .
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2.4 Sampling from Mixture Distributions

The mixture models discussed in the previous sections can be used to fit the empirical multi-

modal load distribution with high accuracy. The fitting process involves using the empirical load

data to estimate the parameters of the mixture model. A random number generator function can

draw repeated samples from the fitted model. The new load profile thus created will be statisti-

cally similar to the measured data. For the generalized Gaussian mixture model, a random number

generator function can be obtained by taking the inverse of the CDF of the model.

FY (y|Ψ) =

∫ y

−∞

M

∑
j=1

π j
β j

2s jΓ
(

1
β j

) exp

[
−
|t−µ j|β j

s j

]
dt (2.61)

In the case of mixture models with component densities based on generalized probability distri-

butions, a closed form solution to ŷ = F−1
Y (y|Ψ) however, does not exist, and hence numerical

techniques such as Newton-Raphson must be used to generate random samples from the fitted

model. For a univariate mixture model, rejection sampling offers an alternate solution to the ran-

dom number generation problem. Rejection sampling can be used to draw samples from distribu-

tion when the inverse CDF transform method is either computationally too expensive or intractable.

However, the efficiency of rejection sampling depends heavily on the choice of the proposal dis-

tribution. More specifically, if X f is the support of the target distribution and Xg is the support of

the proposal distribution, then X f ⊂Xg. In other words g(x)> 0 whenever f (x)> 0. The second

important requirement concerns the scaling of the proposal distribution. The proposal distribution

must be scaled by a factor C such that

C = sup
x∈X f

f (x)
g(x)

< ∞ (2.62)

The scaling factor C is the appropriate bound on f (x)
g(x) that satisfies f (x)<Cg(x)∀x ∈ § f . Rejection

sampling efficient in low dimensional spaces (<10 dimensions) due to inverse relationship between

the acceptance probability and the scaling factor. The acceptance probability in rejection sampling
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is

Pr
{

u≤ f (x)
Cg(x)

}
=

1
C

;u∼U(0,1) (2.63)

2.5 Mixture model fitting of Load Data

This section will study the mixture models’ applications in the power system load modeling.

Two types of loads are considered. A residential load representative of a medium household with

the infrastructure to support level- 1 (L-1) residential electric vehicle charging. The second load

is a commercial building model augmented with high-level (L-2) electric vehicle charging infras-

tructure. In both cases, the base load data (load without EV charging) is obtained from the OpenEI

website [60]. The web page was established by the Department of Energy (DoE) in 2009 and is

a part of DoE mission to disseminate data in the public domain. The annual aggregate load dis-

tribution of a residential household with and without EV charging is shown in Figures 2.6 and 2.7

Figure 2.6: Annual Residential Load Distribution
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Figure 2.7: Annual Residential Load Distribution with EV charging

Residential EV charging has the overall effect of transforming a quasi-unimodal load distribu-

tion into a distribution characterized by multiple high-density regions. This is because the aggre-

gate effect of smoothening of variations is absent in the case of residential EV charging, which

mostly consists of just one vehicle connected to the grid. The annual aggregate load distribution of

a commercial facility with and without commercial EV charging is shown in Figures 2.8 and 2.9

Figure 2.8: Annual Commercial Load Distribution
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Figure 2.9: Annual Commercial Load Distribution with EV charging

The E-M algorithm used to obtain the parameters of the various mixture models as described in

the previous sections was coded in MATLAB [61] and initialized using K−means. The algorithm

was run on an Intel Xeon processor with 32 GB of RAM. At each iteration of the algorithm, the

log-likelihood function is calculated, and the difference between two consecutive values of the log-

likelihood is compared with the tolerance. If the difference is less than tolerance, the algorithm is

terminated. ∣∣∣∣ lk− lk−1

lk−1

∣∣∣∣≤ ε (2.64)

A threshold value of ε = 1e− 07 was used to terminate the E-M algorithm. The GGMM fit of

the residential and the commercial load distributions considering EV charging is shown in Figures

2.10 and 2.9. The GGMM model can capture the multi-modal characteristics of the overall load

distribution. It is possible that a certain value of the load may be completely characterized by a

single component of the GGMM in which that component may need to be identified and isolated

from the rest. Most load values are generally best represented by some weighted combination of

the mixture components.
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Figure 2.10: GGMM Fitting of Residential Load Distribution with EV Charging

Figure 2.11: GGMM Fitting of Commercial Load Distribution with EV Charging

Figure 2.12 shows the log-likelihood function (2.21) of the GGMM fitted to the commercial

load with EV charging shown in figure 2.10 plotted for a different number of mixture components

as a function of the iteration number. It is clear that the log-likelihood is nondecreasing at each

iteration step, and it can be seen from Fig 2.13 that as the number of mixture components of the

GGMM increases, the computational time to solve the model also increases. This can be inferred

from Fig 2.12 since the log-likelihood takes more time to converge for a higher number of mixture

components.
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Figure 2.12: Log-likelihood function
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Figure 2.13: Performance characteristics of GGMM Fitting

The number of iterations required to estimate the parameters of the GGMM and the compu-

tational time in seconds is plotted as a function of the number of components. The results are

shown in Fig 2.13 . On closer look, the results shown in Fig 2.13 corroborate the changes in the

log-likelihood function as shown in Fig 2.12 The iteration count and the computational time share

a nonlinear relationship with the number of mixture components. If we increase the component

densities for more accuracy, the algorithm requires more iterations and hence more computational
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time to achieve convergence. There is no general rule for determining the optimal number of com-

ponents in mixture models. Our application uses the mean square error metric to determine the

optimal number of component densities. The mean square error as a function of several compo-

nents is plotted in Fig 2.14. It is clear that there is no significant improvement in the fitting accuracy

for M > 4. For this reason, we chose M = 4 to generate the GGMM fit for the load distribution of

Figure 2.14.
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Figure 2.14: Mean Square Error of GGMM Fits

2.6 Conclusions

The work presented in this chapter explores the applications of mixture models for load mod-

eling, considering the impact of distributed energy resources. In particular, the impact of EV

charging, residential and commercial, is considered. The EV charging profile is obtained by mod-

eling the EV arrival process at a charging facility as a nonhomogeneous Poisson process. The

NHPP model is used to estimate the arrival times of EVs. The charging time for each arriving EV

is calculated from the daily driven miles and the state of charge of the EV at the time of arrival.

The daily driven miles are assumed to be log-normally distributed, and the battery SoC at arrival is

estimated considering the battery performance and parameters of Tesla Model 3. The EV charging

profile thus obtained is added to the baseload profile of the commercial charging facility to obtain
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the overall demand pattern. The planning horizon considered is one day (24 hours).

The statistical properties of the total electric demand with EV charging are modeled using

mixture modals with generalized component densities. The parameters of the mixture models are

obtained using the E-M algorithm. The results shown in the paper demonstrate the applicability of

a GGMM in representing load distribution with a pronounced peaky behavior. Since the proposed

mixture model is parametric and hence “generative”. The model can generate synthetic load data

with similar statistical properties as the measured data. Since the proposed model considers the EV

charging load, the GGMM proposed has far-reaching applications such as probabilistic load flow

with EV charging and distribution system state estimation (DSSE), where many pseudo measure-

ments are used to run the state estimation algorithms. The GGMM can model the non-gaussian

distributed measurements, especially scenarios involving heavy EV penetration and distributed

generation.

Another important application of the proposed GGMM model is designing Monte Carlo simu-

lations where the inputs are sampled from some underlying distributions. The GGMM model can

be used to create different realizations of the electric demand curve and used as an input to run

stochastic optimization algorithms.
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3. UNCERTAINTY CHARACTERIZATION OF DISTRIBUTED GENERATION

The output of a solar photovoltaic system appears to be more stable when viewed at hourly

intervals. However, due to the transient cloudy conditions and random weather disturbances, the

generation output of a typical photovoltaic system usually suffers rapid variations. To estimate the

impact of adding solar energy to the existing generation pool, it is thus crucial that the intermit-

tency of the incident radiation, when viewed in sub-hourly time scales, be appropriately accounted

for. Since the availability of high-resolution solar data adequately captures the sub-hourly vari-

ations in the solar insolation incident on the solar panel, it becomes imperative to use stochastic

techniques to synthesize data with a very high temporal resolution. In this study, we utilize the

hourly averaged Typical Meteorological Data (TMY3) [62] to generate the high resolution minute-

by-minute solar irradiance profile. The Markov weather model used to generate changes in the

solar insolation with a temporal resolution of one minute from the given averaged hourly values is

described in Figure 1. The model is initialized by calculating the average hourly clearness index

kt . The clearness index kt is defined as the ratio of measured irradiance Em at the earth’s surface

and the irradiance corresponding to cloudless conditions at the same location. This is referred to

as clear sky irradiance Eclear

kt =
Em

Eclear
(3.1)

3.1 Markov Chain Monte Carlo Simulation Method*

1 The accurate estimation of the clear sky irradiance Eclear is very important and significantly

influences the clearness index. The clear sky irradiance is estimated based on the procedure given

in [9]. The model works by using the hourly kt values as input. The sub-hourly transitions of the

clearness index are determined by utilizing the transition probabilities extracted from the clearness

index, although at a higher temporal resolution as opposed to the hourly kt values. This information

1Part of the data reported in this chapter is reprinted with permission from "On the Environmental and Economic
Impact of Utility-Scale Solar Deployment" by Aaqib Peerzada, Miroslav Begovic, Dejan Ostojic, Proceedings of the
55th Hawaiian International Conference on System Sciences|2022
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is passed on to a first-order Markov process which estimates the next state of the clearness index

(sub-hourly) based on the current state (hourly). Assuming that the clearness index can assume a

total of n states, the transition probability of the first order Markov process can be described by the

following equation

Pr{kt(n+1) = j|kt(n) = i}= pi j (3.2)

These transition probabilities are determined based on changes in the kt values that are generated

at a higher temporal resolution which is the same as the desired resolution of the model output.

The transition probabilities thus calculated are grouped together in a transition probability matrix

and n×n matrix with n representing the total number of states of the form.

P =


p11 · · · p1n

... . . . ...

pn1 · · · pnn


The transition probability matrix is a stochastic matrix since the cumulative probabilities of each

row sum to one.
n

∑
j=1

pi j = 1; i = 1,2, ...,n (3.3)

The final step of the model is executed by running a Monte Carlo simulation of the Markov process.

This is accomplished by sampling a uniformly random u ∼ U(0,1) and comparing it with the

cumulative probability of each row in the transition probability matrix. For instance, if the current

state of the clearness index is i, the cumulative probability of state i can be determined by summing

the transition probabilities of the ith row in the transition probability matrix. If j and m are two

consecutive states and kt(n) = i, the clearness index at the next time step kt(n+1) = m if

Fi j ≤ u≤ Fim (3.4)
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The cumulative probability Fim of state i is

Fim =
m

∑
k=1

pik (3.5)

An example of a transition probability matrix extracted from the sub-hourly clearness index values

is shown in Figure 3.1. The sub-hourly clearness index values are calculated based on the measured

global irradiance and the estimated clear sky irradiance of the Milford area in Utah. The raw data

used to extract the transition probabilities has a temporal resolution of one minute and was retrieved

from the NREL solar database [62]. The diagonal dominance of the transition probability matrix

is evident with some outliers that indicate rapid changes in the clearness index. The vertical axis

represents the current state of the clearness index, and the horizontal axis is the next state. The

clearness index takes values in the interval [0,1]. The colored boxes in Figure 3.1 represent the

corresponding transition probabilities which are color-coded and can be read off the color bar.

From Figure 3.1 it can be inferred that the highest transition probabilities correspond to the clear

sky index to stay the same or change very slightly. The same is true for a cloudy day with kt = 0,

thus giving the transition matrix a diagonal structure where the largest probabilities occur on the

diagonal.
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Figure 3.1: Representation of TPM indicating changes in kt

The transition probability matrices thus obtained are used as an input to initiate the Markov

Chain Monte Carlo simulations. The MCMC simulation algorithm combines the transition prob-
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abilities generated at sub-hourly time scales with the hourly average TMY3 [62] meteorological

weather data to generate high-resolution irradiance profiles. We use the hourly averaged TMY3

weather data of the state of Arizona. The roof-top photovoltaic (PV) systems are oriented at an az-

imuth of 180◦ (south-facing) with a panel tilt of 30◦. The capacity of each PV system is chosen to

be proportional to the peak load. Figure 3.2 shows the total power generated from all the roof-top

PV systems in the IEEE-123 bus system for one day with transient cloud conditions.
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Figure 3.2: Combined output of all PV systems in IEEE-123 Bus System

3.2 Time series modeling of Solar Data

The Markov weather model discussed in the previous section can generate high-resolution

solar irradiance data with high enough fidelity to reproduce the rapid excursions in the output

of a solitary PV system. The estimation of the clearness index, which is defined as the ratio of

measured irradiance at the earth’s surface at a location and the cloudless sky irradiance at the same

location, is central to the Markov weather model. The Markov weather model works by combining

the low-resolution clearness index based on the hourly averaged TMY3 [62] data with transition

probabilities generated at sub-hourly time scales from measured high-resolution data. This results

in an output with a high temporal resolution, 1-minute in this case, and seasonal variation.

The solar output of a PV system can be modeled as a continuous stochastic process. Since op-

timization of continuous stochastic processes is complicated and even impossible in many cases, a
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discrete-time approximation is often used in formulating optimization problems. The continuous

stochastic process Gi
PV representing power generated at bus i in a network can be well approxi-

mated by a discrete process Ĝi
PV such that

Ĝi
PV = {Ĝi

PV (t,ω) = [gi
PV (1,ω),gi

PV (2,ω), ...,gi
PV (T,ω)],ω = 1,2, ...,H} (3.6)

In (3.6) T is the length of the time horizon, ω is the scenario index, and H is the number of pos-

sible scenarios, which is also equal to the number of Monte Carlo runs. The stochastic process

Ĝi
PV is completely determined by the joint distribution of the random variables {gi

PV (t,ω); t =

1,2, ...,T,ω = 1,2, ...,H}. The joint distribution can also be used to evaluate the marginal dis-

tribution of the random variable gPV (t,ω) and the statistical dependencies that exist among these

random variables. The estimation of the joint distribution, however, is challenging and is simplified

by assuming that the joint distribution is a multivariate Gaussian and the stochastic process Ĝi
PV

is stationary. The assumption of a multivariate Gaussian implies that the marginal distributions

are all univariate Gaussian. The assumption of stationarity implies that the mean, variance, and

covariance of the stochastic process Ĝi
PV are time-invariant. .

With these assumptions the joint distribution of the stochastic process Ĝi
PV can be determined

by ARMA modeling of the time series data. The time series data used to train the ARMA model

is obtained from the Markov weather model. Mathematically, an ARMA (p,q) model with p

auto-regressive parameters and q moving average parameters has the form

gi
PV (t,ω) = ∑

p
i=1 φigPV (t− i,ω)+ ε(t)+∑

q
j=1 θ jε(t− j) (3.7)

In (3.7) the term ε(t) is an uncorrelated stochastic process with zero mean and variance σ2
ε . The

stochastic process ε(t) is called white noise or innovation term. Before realizing the ARMA (p,q)

model, i.e., estimating the model orders and coefficients, it is important to test whether the sta-

tionarity assumption holds for the time series data used to train the ARMA model in (3.7). The

annual 1-minute time series data from the Markov weather model is tested for stationarity using

the Augmented Dickey-Fuller (ADF) test [63]. The ADF test contains the null hypothesis that the
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time series is non-stationary. The test result rejects the null hypothesis, implying that the series

may be stationary and that the use of the ARMA model may be justified.

The ARMA model orders p,q and the model coefficients φ1, ...,φp and θ1, ...,θq are estimated

by implementing the model in the System Identification Toolbox (SIM) in MATLAB [64]. Using

the high-resolution time series solar generation data from the Markov weather model, the SIM con-

structs mathematical models with different combinations of model orders. The order combination

with the least Bayesian Information Criterion (BIC) value is selected. Conversely, the order com-

bination with the largest log-likelihood value is chosen since large log-likelihood values represent

better fits.

The scenarios for solar generation are generated using the Monte Carlo sampling of the fitted

time series ARMA model. We assume a three-phase PV system in the IEEE 34 bus test system

with a peak power rating of 450 kW proportional to the peak active load. The voltage rating of the

PV system is 4.16 kV. The PV system is oriented at an azimuth of 180 °(south-facing) and a tilt

angle of 30 °. Since the IEEE-34 bus test feeder is based on an existing distribution system located

in the state of Arizona (AZ), the hourly average TMY3[62] data of AZ is used to synthesize a

high resolution (1-minute) irradiance profile. The solar output in 1-minute intervals is estimated

using the PV system model in OpenDSS[65]. The high-resolution solar output data is used to fit

the ARMA model. The fully realized ARMA model is used to generate solar forecasts. Figure 3.3

shows one hundred 1-minute ahead solar output scenarios for a typical spring day in AZ along with

the mean forecast and 95% confidence interval. The parameters of the realized ARMA model aregiven in Table 3.1An important challenge in time series forecasting is the errors accumulated as the size of the

forecasting window increases. A smaller forecasting window (usually 1 minute) is characterized

by a small forecasting error but, at the same time, is computationally expensive. A larger fore-

casting window reduces the computational burden while the associated forecasting error increases.

The optimal choice of the forecasting window ultimately depends on the application and the com-

putational resource available. Figure 3.4 plots the ahead solar forecasts for different choices of

forecasting window. Clearly, as the model attempts to forecast much ahead into the future, the

forecasting error increases.

56



Figure 3.3: 1-minute ahead solar forecasts from ARMA model from Table 3.1

Table 3.1: The Realized ARMA (p,q) Model

p q φi θ j

3 3

φ1 = 0.376
φ2 =−0.3722
φ3 = 0.9848

θ1 = 0.6151
θ2 = 0.9845
θ3 =−0.005
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Figure 3.4: Ahead forecasts of Solar Generation
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Figure 3.5 shows the root mean square error and the mean square error for different choices of

the forecasting window. Both the metrics report a signiificant increase with increasing forecasting

window.
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Figure 3.5: Ahead forecasts of Solar Generation
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4. UTILITY SCALE SOLAR DEPLOYMENT: A CASE STUDY

The latest inventory report of the U.S Energy Information Administration states that renewable

energy, most notably solar and wind, will account for nearly 70% of approximately 40 gigawatts

of new generating capacity in 2021. Utility-scale solar is set to make significant strides in 2021,

with 15.4 gigawatts of new capacity addition surpassing the 12 gigawatts increase in 2020. The

rapid increase in the use of renewable energy is expected to have a significant impact on green-

house emissions while at the same time altering the conventional generation resource pool. This

chapter presents a case study investigating the impact of utility-scale solar capacity addition and

the implementation of carbon tax policy on the overall profitability of adding renewable generation

to the existing energy mix. The investigation is carried out on the generation resource pool of the

southeast region of the U.S augmented by a substantial amount of utility-scale solar generation.

4.1 Background

Over the past decade, the deployment of renewable energy, especially solar and wind, has dom-

inated the addition of new generation capacity in the United States [66]. Even though renewable

energy appears to be the most popular new addition to the existing energy mix across many states in

the U.S, the intermittent nature of such generation adds a new layer of complexity to the operation

and planning of the power grid. One example of such complexity is the concept of system net load.

Traditionally the system load profile has been extensively used for power system management

applications. However, the accelerating expansion of renewables has rendered the system load

profile less informative and thus inadequate for most operation and planning applications. Instead,

system net load has gained popularity, defined as the demand that dispatchable (non-intermittent)

sources must meet. An interesting recent work to estimate the system net load is presented in [67].

The system net load exhibits much faster changes than the traditional load profile when viewed in

sub-hourly time scales. The changes are more pronounced when viewed at a very high temporal

resolution. This is because renewables like solar and wind output are intermittent, thus imposing
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a variable generation pattern on the system. This has an important consequence on the resource

allocation of the dispatchable sources, the output of which needs to be regulated at much shorter

timescales to meet the rapid changes in the system net load. Responding to such rapid changes may

even incentivize the utilization of generation ramping rates beyond traditional elastic limits [68].

To meet the changes in the system net load, the system operator can re-dispatch fast response units

like gas turbines while maximizing using cheap base load units like nuclear and coal. An example

of such an economic dispatch model while considering ramping rates in the fuel cost function is

given in [69]. While adding renewable generation to the resource pool will significantly affect the

total generation cost, as has been reported in previous works [70], it also offers opportunities for

utilities to lower their carbon footprint. This directly translates into monetary savings that could be

achieved by policies controlling carbon pricing, such as carbon tax. However, the frequent ramping

up or down of the dispatchable thermal power plants to meet the system net load may also lead to

increased emissions, thus exposing electric utilities to additional losses due to carbon emissions.

Some early work investigating the impact of gas turbine ramping on carbon emissions is presented

in [71], [72]. These studies utilize wind or solar photovoltaic at one-minute and five-minute res-

olutions, respectively, and heat data from natural gas generators to assess the impact on emission

reduction. Both studies have found evidence for an overall reduction of carbon emissions due to

the addition of solar generation. The previous work on this topic does not consider the marginal

cost of carbon and the changes in the total generation cost with different penetration levels of

utility-scale renewable energy deployment. Whether or not to invest in renewable energy to offset

the cost incurred due to the increased emissions is a techno-economic decision and should be ad-

dressed by considering various technical and economic aspects of the power system operation and

planning. In this work, we aim to investigate the impact of utility-scale solar energy deployment on

the total generation costs and the emissions profile and to propose a framework for assessment of

the profitability of investing in renewable energy, especially utility-scale solar generation, to meet

carbon footprint targets.
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4.2 Problem Description*

1 The objectives of this chapter are a) to study the impact of geographically dispersed utility-

scale solar generation on resource allocation and b) to investigate the changes in the carbon foot-

print of the existing resource pool by adding solar generation to the mix, and c) to investigate the

profitability of investing in geographically dispersed utility-scale solar generation to offset the in-

creased emission costs incurred due to the use of fossil-fuel based energy resources like coal and

gas. This investigation hinges on calculating a metric referred to as the annualized marginal benefit

of carbon abatement (MBCA), defined as the net percentage change in the overall operational cost.

More specifically

MBCA =
CT −CT (PV,ct)

CT
×100 (4.1)

In (4.1) CT is the total annual cost incurred when the overall system demand is met only with the

non-intermittent sources such as coal-fired plants and natural gas plants, assuming no carbon tax

policies exist. CT (PV,ct) is the overall cost considering renewable energy such as utility-scale

solar generation in the energy mix and assuming a carbon tax policy. The overall cost would then

be the sum of annual generation and emission costs. The units for both are $/year. The costs

associated with the carbon emissions and the electric energy generation are estimated by running

optimal dispatch on the coal-fired plants and gas turbines while considering gas ramping costs in

the optimization process. The output of the solar generation plants is estimated by running Markov

Chain Monte Carlo Simulations (MCMC) since the output of a photovoltaic system (PV) has been

shown to have a Markovian dependence [73]. The emissions are estimated based on the generation

profile of the non-renewable sources. This is accomplished by running optimal dispatch on the

coal-fired plants and gas turbines while considering the ramping costs in the optimization process.

The optimal dispatch is run to meet the system net demand, which is obtained by subtracting the net

solar generation output of the geographically dispersed utility-scale plants from the actual system

1Part of the data reported in this chapter is reprinted with permission from "On the Environmental and Economic
Impact of Utility-Scale Solar Deployment" by Aaqib Peerzada, Miroslav Begovic, Dejan Ostojic, Proceedings of the
55th Hawaiian International Conference on System Sciences|2022
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load.

4.3 Modeling of High-Resolution Solar Data*

2 The generation of transition probability matrices (TPMs) is central to synthesizing high-

resolution solar data (irradiance). The procedure to generate the TPMs is outlined in chapter 3.

The MCMC simulation algorithm combines the transition probabilities generated at sub-hourly

time scales with the hourly average TMY3 meteorological weather data to generate high-resolution

irradiance profiles. We use the hourly averaged TMY3 weather data of the seven representative

sites in the southeast region of the United States. The PV systems at each representative site are

oriented at an azimuth of 180°(south-facing) with a panel tilt of 30°. The capacity of each solar

farm is chosen to be proportional to the population of each site in 2019. The solar generation output

corresponding to high-resolution solar irradiance of the seven representative sites in the southeast

region of the United States is shown in Figure 4.1 The solar output of each representative site
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Figure 4.1: Generation output of seven sites in the Southeast region of the U.S

shows significant variability. When the generation outputs are averaged over several solar farms

that are dispersed geographically, the variability in the production will decrease. The reduced

variability in the aggregated output, however, will depend on the measure of similarity in the

2Part of the data reported in this chapter is reprinted with permission from "On the Environmental and Economic
Impact of Utility-Scale Solar Deployment" by Aaqib Peerzada, Miroslav Begovic, Dejan Ostojic, Proceedings of the
55th Hawaiian International Conference on System Sciences|2022
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production patterns, which in turn depends on the spatial spread of the cluster. For the seven

representative sites shown in 4.1 the aggregated output on the same day in shown in Figure 4.2.

The red curve represents the aggregated output for clear sky conditions, while the blue curve

is the aggregated generation output that accounts for the cloud movement. Figure 4.2 shows a

significantly smaller variation in the generation output than any of the individual solar farms in

Figure 4.1 on a transient cloudy day.
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Figure 4.2: Generation output of seven sites in the Southeast region of the U.S

4.4 Framework for Optimal Dispatch*

3 The optimal dispatch is run for coal-fired and gas turbines to meet the system net load. To

account for the ramping of gas turbines the fuel cost model is modified by adding a ramping cost

term to the quadratic cost function. The following cost functions for coal-fired and gas turbines are

used

Cg,Coal = α +βPg,Coal + γP2
g,Coal (4.2)

Cg,Gas = α +βPg,Gas + γP2
g,Gas + τ

dPg,Gas

dt
(4.3)

3Part of the data reported in this chapter is reprinted with permission from "On the Environmental and Economic
Impact of Utility-Scale Solar Deployment" by Aaqib Peerzada, Miroslav Begovic, Dejan Ostojic, Proceedings of the
55th Hawaiian International Conference on System Sciences|2022
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Load following is achieved by regulating the output of gas turbines due to their fast ramping ca-

pability. The cost coefficients in (4.2) and (4.3) are estimated by least squares method applied to

real data. The cost coefficients are given in [69]. The value of the ramp rate coefficient τ depends

on the change in the gas turbine output. The formulation is such that a heavy penalty is levied for

an increasing ramp rate as opposed to a decreasing ramp rate. The optimal dispatch problem for

resource allocation is formulated as

minimize
κ

∑
k=1

S

∑
s=1

Cs(Pgs)+
κ

∑
k=1

R

∑
r=1

Cr(Pgr)

subject to
S

∑
s=1

Pgs +
R

∑
r=1

Pgr−PD = 0

Pmin
gs ≤ Pgs ≤ Pmax

gs

Pmin
gr ≤ Pgr ≤ Pmax

gr

(4.4)

In 4.4 S and R refer to the total number of coal and gas plants, κ is the optimization period, PD is

the net load,Pgs and Pgr are the outputs of sth and rth coal and gas plant respectively.

4.5 Impact on conventional dispatch and carbon emission*

4 To assess the impact of utility-scale solar deployment on the generation costs and emissions,

the study assumes that solar plants are installed across the southeast region of the U.S. The study

uses the energy mix of the southeast region as an input for running the economic dispatch. Table

4.1 lists the energy mix of the SE region as reported by EIA for the year 2020. The data pertains to

the fuel type, percentage of the mix, and generation operating costs specific to fuel type in $/MWh.

The study uses the unsubsidized average Levelized cost of energy of solar generation.

4Part of the data reported in this chapter is reprinted with permission from "On the Environmental and Economic
Impact of Utility-Scale Solar Deployment" by Aaqib Peerzada, Miroslav Begovic, Dejan Ostojic, Proceedings of the
55th Hawaiian International Conference on System Sciences|2022
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Table 4.1: Energy Mix of SE Region, 2020 [4]

Type Generation (TWh) Fuel % Mix $/MWh

Base 47.719 Nuclear 18.89 10.63

Intermediate 57.225 Coal 22.64 90

12.982 Hydro 5.14 6.86

Peak 129.54 Gas 51.03 59

Solar 2 40.96

The sites chosen for installing the solar plants are given in [70]. It is assumed that all solar

plants are geographically dispersed across the SE region. The solar generation is simulated in

capacities ranging from 5% to 30% of the annual peak demand. This translates to a total solar

capacity of 2.25 GW, corresponding to 5% penetration and 13.5 GW for 30% penetration. The

individual PV modules are oriented at an azimuth of 180 degrees (south facing) and a tilt angle of

30 degrees. To simulate the solar generation, the study collects the hourly TMY3 solar insolation

data of the representative sites and estimates the hourly clearness index values. The National Solar

Radiation Database [62] contains high-resolution data for the state of Georgia and Alabama. Hence

the study uses high-resolution data from seven test sites from 2010-2012 [73]. The transition prob-

ability matrix from the Milford area in Utah is chosen to synthesize the high-resolution clearness

index for the representative sites across the SE region since the annual output of Utah most closely

resembles that of Georgia. The solar output in minute intervals is estimated using PV_LIB][74].

The study assumes Canadian Solar CS5P-220M solar modules and Siemens SINVERT PVS 1401

UL inverters. The study utilizes annual simulations of the net generation and generation by source

and net system demand of the SE region for 2020. The results of the generation allocation when

flexible sources like gas generation are dispatched to meet the net load are shown in Figures 4.3,

4.4 and 4.5. The generation profiles shown represent the day with some transient cloud activity

corresponding to the aggregate generation output shown in Figure 4.2.
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Figure 4.3: Generation Profile with 10% Solar
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Figure 4.4: Generation Profile with 20% Solar
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Figure 4.5: Generation Profile with 30% Solar

Since nuclear is the base unit with little or no impact on the emissions, resource allocation

results are shown only for coal, gas, and solar generation. When the generation pool is assumed

to consist of solar energy, the output of the gas turbine exhibits ramping characteristics, and the

magnitude of the ramping increases with the increase in the penetration of solar generation. The

results shown in Figures 4.3, 4.4 and 4.5 do not consider ramping constraints on coal since the

load-following by coal is very expensive and large units may undergo significant damage due to

fast ramping. The gas turbine follows the load and is assumed to have a fast ramping capability.

The gas output increases when the solar production drops to compensate for the deficit. Similarly,
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when the solar generation increases, the gas output ramps down to balance the load. The frequent

ramping up and down of the more expensive gas along with the cost of solar generation has the

impact of increasing the total cost of generation. As the share of solar continues to grow, at one

point, solar will start pushing nuclear out. At that point, the system will need more coal and gas

to balance solar, and the total CO2 emissions will start rising. Such a “renewable paradox” (i.e.,

increasing emissions as more RE is added to the system) is already noticed in Ukraine, where

nuclear accounts for about 50% of power generation.

The annual cost of coal, gas and PV generation when no constraints are applied to the coal

output is shown in Figure 4.6. The generation cost increases with penetration level since utility-

scale photovoltaic is still the most expensive generation source compared to coal and gas. However,

since the ramping constraints on coal are ignored, and coal is the least expensive resource in terms

of the Levelized cost of energy, the presence of additional solar generation leads to an overall

decrease in the more expensive gas generation to balance the load. Overall, the cost of generation
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Figure 4.6: Generation cost without coal retirement

increases with the addition of solar to the mix. Figure 10 shows the annual generation costs when

coal output is constrained and the amount of coal retired is equal to the peak solar generation at each

penetration level [75]. The generation costs, in this case, are observed to increase faster than in the

case where no ramping constraints were applied to the coal generation. Since coal is progressively

retired, the amount of gas generation required to support the solar increases at each penetration

level. As reported earlier, the overall generation costs do not exhibit an exorbitant rise. This can

be attributed to the significant decline in the generation costs of utility-scale solar plants. As a
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Figure 4.7: Generation cost with coal retirement

result, the relevance of the solar generation costs to act as a deterrent to the widespread adoption of

solar generation is rapidly wearing down. What is concerning, however, is the economic impact of

frequent ramping up and/or down of the gas turbines to compensate for the variability of the solar

generation.

To make up for the rapid changes in the solar output, the gas spinning reserve is set equal to the

maximum change in the solar generation for a given day. The spinning reserve is thus scheduled

every minute to offset the changes in the solar output. This, however, results in increased emissions

and ramping costs of the gas turbine. The relative ramping costs of gas at different penetration

levels of solar can be visualized in the bar graph in Figure 11. Although the cost of gas ramping is

small compared to the total fuel operating cost, it increases with additional solar deployment. This

is expected since higher capacity solar will result in higher changes in the system load. From the

emissions perspective, deploying additional solar capacity reduces the number of pollutants and

greenhouse gases by reducing the dependency on fossil fuels. To estimate the amount of carbon

emitted in the form of carbon dioxide in metric tons, this study used the emission data as reported

by EIA [73]. The amount of emission is estimated based on the emission coefficients of each fuel

type. Figures 4.9 and 4.10 show the amount of carbon emitted in metric tons for one day with

and without coal retirement. When the ramping constraint on coal is ignored, the gas generation’s

carbon footprint decreases with the peak solar capacity increase (Figure 4.9). On the other hand,

when coal is retired, as additional solar capacity is added to the system, the generation and carbon

emissions of gas-fired plants increase with the increasing solar capacity (Figure 4.10). To estimate

the costs related to carbon emissions and investigate the impact of the carbon tax policies, we

estimate the emission costs for a range of carbon tax values in the interval [1 100]$/MT. The

resulting range of emission costs as a function of solar penetration is shown in Figure 4.11 and
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Figure 4.8: Annual Ramping cost of Gas Turbines
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Figure 4.9: Carbon dioxide emitted in metric tonnes/year without coal retirement

4.12. The minimum value in the box plots of Figure 4.11 and Figure 4.12 for each penetration

level corresponds to the carbon tax of $1/MT, and the maximum value corresponds to the carbon

tax of $100/MT. When the output of coal-fired plants is held constant as the penetration of solar

is progressively increased, the range of cost emissions narrows as the solar penetration increases.

However, the constriction of the range of cost emissions is much more pronounced when the coal

is progressively retired as opposed to not retiring the coat. This is mainly because the emission
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Figure 4.10: Carbon dioxide emitted in metric tonnes/year with coal retirement

coefficient of coal-fired generation is 2.21 pounds per kWh coal which compares to 0.91 pounds

per kWh from gas-fired power generation. With subsequent retirement of coal (Figure 4.12) the

Figure 4.11: Range of cost emissions ($/yr) without coal retirement

cost of carbon emissions incurred to the utility decreases by more than 50% as the solar penetration

level increases from 0% to 30% of the annual peak demand.
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Figure 4.12: Range of cost emissions ($/yr) without coal retirement

4.6 Marginal Benefit of Carbon Abatement*

5 This section presents a stochastic framework to estimate the profitability of investing in geo-

graphically dispersed utility-scale solar generation to offset the increased emission costs incurred

due to the use of fossil-fuel-based energy resources like coal and gas. This investigation hinges on

calculating a metric referred to as the annualized marginal benefit of carbon abatement (MBCA),

defined as the net percentage change in the overall operational cost. More specifically

MBCA =
CT −CT (PV,ct)

CT
×100 (4.5)

In (??) CT is the total annual cost incurred when the overall system demand is met only with the

non-intermittent sources such as coal-fired plants and natural gas plants and assuming no carbon

tax policies exist. CT (PV,ct) is the overall cost considering renewable energy such as utility-scale

solar generation in the energy mix and assuming a carbon tax policy in effect. The overall cost

would then be the sum of annual generation and annual emission cost. The units for both are

$/year. The costs associated with the carbon emissions and the electric energy generation are

5Reprinted with permission from A. Peerzada, M. Begovic and D. Ostojic, "Carbon Tax and Utility-scale
Solar Deployment," 2022 IEEE Power & Energy Society General Meeting (PESGM), 2022, pp. 01-05, doi:
10.1109/PESGM48719.2022.9917021
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estimated by running optimal dispatch on the coal-fired plants and gas turbines while considering

gas ramping costs in the optimization process.

4.6.1 Design of Uncertainty

To study the relationship defined in (4.5), we propose the use of Monte Carlo sampling of the

input variables. For a fixed percentage of solar generation added to the existing energy pool, the

input variables of the proposed computational model are the annual system demand profile and the

carbon tax rate. Including a carbon tax rate is important to estimate the cost of carbon emissions

and the overall generation cost since the Levelized cost of energy (LCOE) for coal-fired plants and

gas turbines has a strong dependence on the carbon tax rate [76] . The use of Monte Carlo sampling

entails that the output MBCA as defined in (4.1) be a function of the random variable CT (PV,ct)

that can assume a range of values. The first step involves identifying the underlying distributions

of the input variables.

4.6.1.1 Annualized Load Profiles

To model the uncertainty in consumer demand, we propose using a probability mixture model

in the form of a convex combination of a finite number of Generalized Gaussian distributions. The

advantages of using a probability mixture model are twofold. First, the measured load data density

functions usually have multi-modal characteristics, which can be better fitted with a mixture model

rather than any specific distribution. Also, each demand category, whether residential, commercial,

or industrial, has a unique parametrization that cannot be represented fairly by a single probability

density function [16]. In the light of these observations, a general probability mixture model takes

the following form.

fY (yi;Ψ) =
M

∑
j=1

π j f j,Y (yi,C = j,Θ j) (4.6)

In (4.6), Y = yi is the measured load data, M is the number of mixture components, π j is the

weight of the jth mixture component subject to π j > 0 ∀ j ∈ {1,2, ...,M} and ∑
M
j=1 π j = 1 and

each f j,Y is a density function parameterized by Θ j. Ψ = {π j,Θ j; j = [1,2, ...,M]} is the overall

parameter vector. For a univariate Generalized Gaussian mixture model (GGMM), the parameter
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vector Ψ consists of weight, mean, scale and shape parameters of each mixture component. The

log-likelihood function of the density fY (yi;Ψ) in the mixture model in (4.6) is

logL(Ψ|Y ) =
N

∑
i=1

log
M

∑
j=1

π j f j,Y (yi|C = j,Θ j) (4.7)

The overall parameter vector Ψ can be estimated by maximizing the log-likelihood function and is

given by the solution of

Ψ
∗ = argmax

Ψ

N

∑
i=1

log
M

∑
j=1

π j f j,Y (yi|C = j,Θ j) (4.8)

Unfortunately, the optimization of (4.8) is difficult because of the log (∑) term and the usual

method of maximum likelihood estimation (MLE) cannot be used. The parameter vector can how-

ever be estimated via Expectation-Maximization (EM) algorithm by considering the log-likelihood

function (4.7) to be a random variable. This can be achieved by introducing binary-valued hidden

variables Z = {z ji}i=N, j=M
i= j=1 that carry the information about which component density "generated"

each data item Y = {yi}N
i=1. Thus we assume that z ji = 1 if the data sample yi was generated by

the jth mixture component and z ji = 0, otherwise. More details on the EM algorithm can be found

in [16].

We propose using a Generalized Gaussian distribution to model the measured load data instead

of a Gaussian distribution. A random variable Y is said to have a Generalized Gaussian distribution

(GGD) if the density function of Y has the form

fY (y; µ,s, p) =
p

2sΓ

(
1
p

) exp
[
−|y−µ|p

sp

]
(4.9)

In (5.23) p ∈ R+ is the shape parameter and controls the shape of the distribution, s ∈ R+ is the

scale parameter, µ ∈R is the location parameter and Γ(.) is the gamma function. The GGD has an

advantage over the Gaussian distribution (GD) in representing the statistical uncertainty of electric

demand because of the extra shape parameter. The presence of the shape parameter makes a GGD
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more flexible which in the context of load modelling means that it can approximate the peak load

behavior better than a GD. For a GGMM the application of E-M algorithm to the measured load

data yields the following update equations for the model parameters Ψ(n+1) = {π j,µ j,s j, p j; j =

[1,2, ...,M]} given the current estimate Ψn and the measured load data Y

π
(n+1)
j =

1
N

N

∑
i=1

E
[
z ji|Y,Ψ(n)

]
(4.10)

N

∑
i=1

E
[
z ji|Y,Ψ(n)

]
p(n)j |µ

(n+1)
j − yi|p

(n)
j = 0 (4.11)

s(n+1)
j =

 ∑
N
i=1 E

[
z ji|Y,Ψ(n)

]
∑

N
i=1 E

[
z ji|Y,Ψ(n)

]
p(n)j |µ

(n+1)
j − yi|p

(n)
j

−
1

p(n)j

(4.12)

N

∑
i=1

E
[
z ji|Y,Ψ(n)

]
κ = 0 (4.13)

In (5.34), κ equals

κ =
1

p(n+1)
j

+
ψ

(
1/p(n+1)

j

)
(

p(n+1)
j

)2 −

 |yi−µ
(n)
j |

s(n)j

p(n+1)
j (

log |yi−µ
(n)
j |− logs(n)j

)
(4.14)

In (5.38) ψ(.) is the digamma function defined as Γ
′
(g)/Γ(g). The update equations for the µ and

p are nonlinear and we use the Newton-Raphson method to obtain a numerical solution.

4.6.1.2 Carbon Tax Rates

The LCOE for coal-fired plants and gas turbines depends on the carbon tax rate among other

factors. If ′t ′ is the year in which the production takes place then the LCOE can be calculated using

the following formula [76]

LCOE =
∑t(It +Mt + ct +Dt +Ft)(1+ r)−t

∑t Et(1+ r)−t
(4.15)
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In (A.9) It refers to the capital cost in year t, Mt is the operation and maintenance cost in year t, ct is

the carbon cost in year t, Dt is the decommissioning and waste management cost in year t, Ft is the

fuel cost in year t, (1+r)−t is the real discount rate corresponding to the cost of capital and Et is the

amount of electric energy produced annually in MWh. In this work, we compute the LCOE of coal

and gas plants as a function of the carbon tax rates while making standard assumptions for other

factors. The carbon tax rates are sampled from a uniform distribution ct ∼ [1−100] ($ per Metric

Ton), which ensures that each value of the carbon tax rate has the same probability of occurrence.

The uniform distribution is a good approximation in situations where the prior information about

a parameter is unavailable. The LCOE of coal-fired and gas plants as a function of carbon tax is

shown in Figure 4.13
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Figure 4.13: LCOE of coal-fired and gas turbines as a function of Carbon Tax

4.6.1.3 Solar Generation Modeling

The output of a solar photovoltaic system is subject to rapid changes when viewed at sub-hourly

or sub-minute time scales. Thus, the solar generation model must be able to faithfully reproduce

such rapid excursions in the power output. In this work, we use the Markov weather model, as

described in chapter 3, to generate synthetic weather profiles with a temporal resolution of one

minute. A key component of the model is the estimation of the clearness index, which is defined
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as the ratio of measured irradiance at the earth’s surface and the irradiance that corresponds to

cloudless conditions. The hourly-averaged Typical Meteorological Data (TMY3)[62] is used as an

input to the Markov weather model, which, when combined with transition probabilities that are

generated at sub-hourly time scales, results in high-resolution solar irradiance profiles that show

seasonal variation.

4.7 Results of Monte Carlo Simulations*

6 The southeast region (SE) of the United States, which comprises the states Georgia, Alabama,

and parts of Mississippi, is chosen as a case study to investigate the impact of carbon tax rates and

installed solar capacity on the marginal benefit derived from adding renewables to the existing

generation pool. We consider two operational scenarios. In the first scenario, the output of the

coal-fired plants is assumed constant for all possible carbon tax rates and installed solar capacity.

In the second scenario, the output of the coal-fired plants is adjusted based on the peak solar

generation. This effectively entails retiring certain coal plants as the percentage of solar generation

in the overall energy mix increases. The coal retirement strategy is based on the findings presented

in [75]. The study uses the unsubsidized average LCOE for coal, gas, and solar generation. The

energy consumption and generation profile data for the SE region was obtained from the EIA grid

monitor website [4]. In 2020, the annual energy consumption in the SE region was 243,140 GWh

with a peak load of 46 GW, while the combined annual generation from all the sources listed in

Table 2.2 was 252,490 GWh. The solar plants in the SE region are geographically dispersed across

seven representative sites as given in [77]. A range of installed solar capacity from 5% of the peak

annual load to 30% in steps of 5% is considered. More specifically, a 5% penetration represents

approximately 2.25 GW of solar capacity, whereas a 30% equals approximately 13.5 GW of solar

capacity. The transition probabilities necessary for the Markov weather model are extracted from

high-resolution irradiance data from National Solar Radiation Database (NSRD) [62]. The solar

output at sub-hourly time scales is calculated using PV_LIB [74] assuming Canadian Solar CS5P-

6Reprinted with permission from A. Peerzada, M. Begovic and D. Ostojic, "Carbon Tax and Utility-scale
Solar Deployment," 2022 IEEE Power & Energy Society General Meeting (PESGM), 2022, pp. 01-05, doi:
10.1109/PESGM48719.2022.9917021

76



220M solar modules and Siemens SINVERT PVS 1401 UL inverters.

The Monte Carlo simulation is initiated by repeatedly sampling the input parameters from the

underlying distributions. To generate a synthetic annualized random load profile, the GGMM is

fitted to the base-load profile data of the SE region as described in chapter 2. The generation output

of coal-fired and gas plants is calculated by feeding the random samples of the input parameters

to the optimal dispatch model. The overall cost of generation is calculated using the data listed

in Table 4.1. The LCOE of coal-fired and gas plants is calculated as a function of a carbon tax,

assuming a real discount rate of 7%, a standard capacity factor of 85%, a 30-year lifetime for gas

plants, and a 40-year lifetime for coal-fired plants. A complete description of the individual costs

used in (A.9) is given in [76].The emission costs are calculated by assuming an emission cost-

coefficient of 2.21 pounds per kWh for coal-fired plants and 0.91 pounds per kWh for gas turbines

[66]. Since the time horizon for the Monte Carlo simulation is one year, the overall operational

costs are expressed in $/year.

4.7.1 MBCA manifolds

The marginal benefit of carbon abatement represents the net profit or loss incurred by the utility

due to adding renewable energy, such as geographically dispersed utility-scale solar as considered

in this work, to the existing generation pool. To calculate the percentage change in the overall

cost of operation, we define a base case where the generation resource pool consists only of non-

intermittent sources such as nuclear, coal, gas, etc., and a carbon tax rate of $0/MT . The Monte

Carlo simulations are run for six levels of solar penetration, and for each penetration level, carbon

tax values in the range [1− 100]$/MT are considered. A total of 100 Monte Carlo runs are sim-

ulated, generating 10000 output samples of MBCA for each solar penetration level. For a single

MC run, the dependence of MBCA on the installed solar capacity and the carbon tax rate for both

scenarios is shown in Figure 4.14 and Figure 4.15 When viewed as a function of carbon tax alone

the MBCA decreases with the increase in carbon tax. This is true for every solar penetration level.

The important difference between the two scenarios is that while in the case of no coal retirement,

the rate of decrease in the MBCA is the same for each solar penetration level, it is different for
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Figure 4.14: MBCA manifold without Coal Retirement

Figure 4.15: MBCA manifold with Coal Retirement

different solar penetration levels in the case when coal plants are retired. The manifold’s shape in

Figure 2.2 suggests that the MBCA decreases faster for low solar penetration levels than it does

for higher solar penetration levels. As a function of solar penetration level alone, the MBCA de-

creases as solar penetration increases for a low carbon tax and exhibits a reverse trend for higher

carbon tax values in the first scenario. However, in the second scenario, the MBCA increases with

the increase in solar penetration for all carbon tax values reaching a maximum at about 25% solar

penetration and decreasing slightly afterward. Furthermore, the rate of increase as a function of

solar penetration is faster at high carbon tax values than at lower carbon tax values. It is important

to note that an increase in the MBCA when MBCA > 0 means increasing profit, and a decrease in

MBCA when MBCA < 0 means increasing loss.

4.7.2 MBCA distributions

The distributions of MBCA for each solar penetration level is shown in Figure 4.16 for the

scenario where coal is not retired and Figure 4.17 when coal is subsequently retired.
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Figure 4.16: MBCA Distributions without Coal Retirement for 100 Monte Carlo Runs

Each MBCA distribution as shown in Figure 4.16 and Figure 4.17 corresponds to a certain

solar penetration level and carbon tax rates in the range [1-100]$/MT. For both the scenarios, the

distributions appear to be shifting to the right as the installed solar capacity changes from 5% to

30% of the peak annual demand. This suggests that increasing the solar generation capacity is

more likely to increase the profits (or decrease the losses depending on whether MBCA > 0 or

MBCA < 0 respectively) and lower the overall operational cost regardless of the carbon tax value.

A positive increasing value of the MBCA means increasing profits and decreasing operational costs,

while a negative decreasing value means increasing losses with increasing operational costs. It is

important to note that adding utility-scale solar to the energy mix does not guarantee an overall

increase in profits, which also depends on the carbon tax value.
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Figure 4.17: MBCA Distributions with Coal Retirement for 100 Monte Carlo Runs
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Figure 4.18: Distribution of Critical Carbon Tax with No Coal Retirement
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Figure 4.19: Distribution of Critical Carbon Tax Rate with Coal Retirement
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Figure 4.18 and Figure 4.19 show the distribution of critical carbon tax rates for different solar

penetration levels with and without coal retirement. A critical carbon tax rate is defined as the

carbon tax rate at which the MBCA <= 0. This means that a carbon tax rate greater than the

critical carbon tax rate will increase the overall cost of operation, leading to a utility facing higher

economic losses. The value of the critical carbon tax rate is vital from the policy-making point of

view. Interestingly, the expected value of the critical carbon tax changes with the solar penetration

level in both scenarios. This suggests using a dynamic policy that adjusts the carbon tax policy

depending on the installed solar capacity in the network. More specifically, the expected value of

the critical carbon tax decreases as the installed solar capacity increases in the scenario when coal

is not retired and vice versa when coal is retired. Table 4.2 lists the data pertaining to the Figures

4.16,4.17,4.18 and 4.19.

The acronyms “CNR” and “CR” in Table 4.2 refer to the two scenarios of no coal retirement

and coal retirement respectively. The E[MBCA] is the expected value of the marginal benefit for

each solar penetration level. Table 4.2 shows that coal retirement is essential for avoiding losses

due to carbon tax, as E(MBCA) changes from -76.5% to -73.1% in the CNR case, irrespective of a

significant increase of solar penetration. On the other hand, in the case of coal retirement (CR), it is

necessary to increase solar penetration above [20%] to avoid losses and make E(MBCA) positive.

In both scenarios, the critical carbon tax value plays an important role in deciding the profitability

of investing in utility-scale solar generation.

Table 4.2: Profit and Loss Probability
Solar P{MBCA≤ 0} P{MBCA > 0} E[MBCA]

CNR CR CNR CR CNR CR

5% 0.9125 0.8764 0.0875 0.1236 -76.54% -59.53%

10% 0.9126 0.7890 0.0874 0.211 -75.86% -42.56%

15% 0.9249 0.6987 0.0751 0.3013 -75.17% -25.50%

20% 0.9250 0.5741 0.075 0.4259 -74.50% -8.72%

25% 0.9250 0.4175 0.075 0.5825 -73.82% +6.77%

30% 0.9250 0.4006 0.075 0.5994 -73.14% +8.47%
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4.8 Conclusions

The results presented here demonstrate a complex interplay between several factors and thus

call for a more nuanced approach toward policy-making and regulation. A major implication of this

work is that the targets set for a specific technology to decarbonize the power grid cannot be applied

as a “one size fits all” across different adoption levels of the same technology and different power

utilities. The economic equation that governs the profitability and hence the adoption of renewable

energy such as utility-scale solar generation is heavily impacted by regional specific factors such

as the energy mix, LCOE, system load, and proposed carbon tax value, and hence each utility is

faced with a specific task of finding the optimum penetration of the renewable energy that would

maximize the benefits with no adverse impact on system reliability.

Interesting future work in this direction involves using energy storage devices to facilitate the

integration of utility-scale solar generation instead of natural gas turbines. Notably, carbon emis-

sions are associated with energy storage devices, especially battery energy storage systems (BESS).

It would be an interesting study to compare the performance characteristics of BESS versus gas

turbines in terms of total generation cost and emission savings.

82



5. TOPOLOGICAL UNCERTAINTIES IN POWER SYSTEMS

The emergence of distributed generation in the low voltage distribution networks has led to

new challenges in regulating feeder voltages. Of particular significance is the variability associ-

ated with the photovoltaic power and its impact on the operation of some mechanically switching

voltage regulating equipment such as On-load Tap Changers (OLTCs) and switchable capacitor

banks. This chapter describes the effects of increased penetration of distributed generation, in

particular, photovoltaic power and a sustained load buildup on the operational activity of legacy

voltage control frameworks such as on-load tap changers (OLTCs) and switched capacitor banks.

Actual feeder load profile and high-frequency solar irradiance data have been used with varying

levels of PV penetration during the time period, which spans an entire year. With the inclusion of

some justifiable assumptions, it is concluded that the increased penetration of photo voltaic power

adversely affects the operational lifetime of voltage-regulating equipment. In particular, there is a

great need for a thorough analysis on the mechanism of accelerated wear and tear of devices like

on-load tap changers and capacitor banks under conditions of rapid voltage fluctuations. Such an

analysis necessitates the development of lifetime models of such devices to study the impact of

increased stress, whether electrical or mechanical, on the shortening of device lifetime.

5.1 Background*

1 The recent expansion of distributed energy resources, particularly photovoltaic power, in the

distribution networks has resulted in several voltage regulation issues. With penetration projected

to only increase in the future, network operators will have to contend with an increasing surge

in the range of problems concerned with regulating voltage and power on distribution feeders.

For example, in San Diego Gas and Electric distribution territory, PV installations accounted for

617 MW of peak load from 93000 installations at the end of June 2016. In August 2013, these

1Part of the data reported in this chapter is reprinted with permission from Peerzada, Aaqib, et al. "Impact of
large distributed solar PV generation on distribution voltage control ." Proceedings of the 52nd Hawaiian International
Conference on System Sciences | 2019 .
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numbers were 175 MW from 24000 PV installations. This represents a substantial increase in the

PV penetration over the course of roughly three years. The high penetration of PV can be attributed

in large measure to the policies pursued by the federal as well as many of state governments with

an increasing concern for climate change and declining PV system costs, among other factors.

The fundamental concern about photovoltaic generation is the intermittency involved which,

when combined with other factors such as a fluctuating load profile, can induce irregularities not

only in the voltage on the distribution feeder but also in the operational activity of several electro-

mechanical devices which are designed and placed on the feeder for the purpose of voltage reg-

ulation. This places pressure on the distribution utilities, which are obligated under the ANSI

standards to provide voltage within a dead band of ± 5V from the nominal distribution voltage.

While the impact of such distribution generation in general and photovoltaic penetration, in par-

ticular on the voltage profile in the low voltage networks, has been documented in several studies,

the impact of such solar intermittency on the operational life cycle of voltage regulating equipment

has not been thoroughly investigated [78],[79]. These devices are mechanical in nature and rely on

local signals to perform the necessary action. For example, the control setting of voltage regula-

tors includes the time delay (TD), voltage set-point, and bandwidth. Similarly, for capacitor banks,

discrete control of the reactive power output is implemented to improve the substation power fac-

tor. Furthermore, the voltage regulators in most practical implementations make use of line drop

compensation to regulate the secondary bus voltage. In any case, the operation of these devices

involves the movement of a mechanical switch to output the desired voltage value and the power

factor.

5.2 Failure Statistics of On-Load Tap Changers*

2 The transformer reliability working group, founded in 1975, launched a survey in 1978 aimed

at studying the lifetimes of transformers and reactors. The survey is representative of the countries

in CIGRE SC 12 [80]. The survey compiled data from more than 1000 failures between 1968-1978.

2Part of the data reported in this chapter is reprinted with permission from Peerzada, Aaqib, et al. "On Accelerated
Aging of Mechanical Assets in Distribution Systems with Renewable Generation." Proceedings of the 53rd Hawaiian
International Conference on System Sciences | 2020 .
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Various distinctions were made to arrive at the failure rates of transformer populations. Some of

them include the operating voltage, transformer type, age, and the presence of OLTC. Also, a dis-

tinction was made between forced outages and scheduled outages. Forced outages necessitate the

transformer disconnection, while the required maintenance could be planned later for scheduled

outages. The survey concluded that the failure rate of a transformer generally increased with the

voltage due to the reduced reliability of the winding paper insulation. When the failure rates were

estimated in terms of device components, it was found that OLTCs contributed to the transformer

failure more than any other component for distribution transformers. In fact, out of the 702 failures

in the substation transformers, 691 occurred in transformers equipped with OLTCs. The data in

[80] suggests that more than 40 % of substation transformers failed due to failure of OLTC, 19%

failed due to windings, and roughly about 12% failures resulted from the tank and dielectric fluid.

In terms of the original failure mechanisms, mechanical failures account for roughly 55% of the to-

tal failures, followed by dielectric and thermal failures. Mechanical failures also resulted in forced

outages much more than thermal and dielectric-based failures. The survey concluded that the fail-

ure in substation transformers occurred mostly due to the failure in the OLTCs. [81] presents the

failure statistic of the 11 commonwealth independent nations. The data set includes failure modes

of 5000 large power transformers with a power rating of 100 MVA and above. The primary cause

of transformer failure for large power transformers was weak construction. Inadequate mainte-

nance and low-quality repair were also determined to be the leading causes contributing to the

failure rate of power transformers. In [82], the failure statistics of the Eskom network in South

Africa are presented. The voltages from 88 kV to 765 kV and the transformers with power ratings

between 20 MVA and 800 MVA were considered. These voltage and power ranges include distri-

bution substation transformers and transmission power transformers. In the Eskom network, the

study in [82] identified six failure modes of transformers. These include lightning, core problems,

and tap-changer failures. General aging, short circuit problems, and others. The study concludes

that most distribution substation transformers’ failures resulted from tap changer-initiated failures.

In large power transformers, lightning and insulation problems at higher voltages contributed to
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most failures. The survey results in [82] are given in Figure 5.1 . As of now, it seems that tap

Figure 5.1: Eskom Network Failure Transformer Statistics

changer-enabled transformers will continue to play a major role in voltage regulation for long ra-

dial distribution feeders. As such, it is essential to study the reliability of a load tap-changer under

adverse operating conditions. In recent years, many advances have been made in vacuum-type

load tap-changers. However, most of the substation transformers are equipped with oil-type load

tap changers. Oil-type load tap-changers are negatively impacted by a higher frequency of oper-

ation due to the formation of a carbon layer on the contacts of a tap-changer. As the frequency

of operation increases, it is more likely to encounter asynchronous operation between the diverter

switch and the tap selector. The oil-type load tap changers generally require maintenance interven-

tions between 50,000 and 100,000 operations. Given a transformer lifespan of 40 years, roughly

five maintenance intervals are required for oil-type OLTCs. The vacuum-type OLTCs on the other

hand, require fewer maintenance interventions. In [30], a statistical model for the tap-changer

degradation is presented. The Weibull parameters αand β for the tap-changer are 109 years and

2.4. The mean time to failure (MTTF) is reported as 97 years.
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5.3 Impact of High Capacity Solar Generation on OLTCs*

3 To quantify the effects of high PV penetration on distribution feeders, IEEE 34 node feeder

was chosen in this study owing to its large radial length and high voltage imbalance. It represents

a typical rural distribution network with single and three-phase laterals which can incorporate dis-

tributed generation. Voltage compensation is provided by three-phase online capacitor banks and

two voltage regulators. The total feeder length is 94 kilometers, and a 69/24.9 kV transformer

is used to step down the primary voltage. Actual phase impedance values are used to model the

three-phase and the single-phase overhead lines. The substation is rated at 2500 kVA and the

system base active load is 1769 kW. This includes a combination of the spot loads and the dis-

tributed loads. The spot loads make up 1077 kW of active load and 677 kVAr of reactive load on

the system, while the distributed loads comprise of 722 kW of base active load and 367 kVAr of

base reactive load. In addition to the main substation transformer, there is an in-line step-down

transformer connected between buses 832 and 888. The secondary voltage of this transformer is

4.16 kV. The test system comprises two three-phase capacitor banks connected to buses 844 and

848. The reactive injection from capacitors is used for power factor correction of the source. The

one-line diagram of the test system is given in Figure 5.2 Voltage Regular 1 is located between

buses 814 and 850 and provides voltage regulation on the secondary side with a dead band of 2.0

V. In contrast, the second regulator connects buses 832 and 852 with the exact specifications for

the dead band. Three-phase capacitor banks rated at 300 kVAr and 450 kVAr are connected at

buses 844 and 848 and operate at a line-to-line voltage of 24.9 kV. The ratings of the capacitors

are decided by the amount of reactive power delivered by the substation transformer. The lines in

the system are three-phase overhead and single-phase overhead with varying degrees of imbalance.

Loads on the feeder are modeled as three-phase (balanced or unbalanced), spot or distributed (sin-

gle phase or three phases). Three-phase loads can be connected in wye or delta, while single-phase

loads are connected line to ground or line to line. Various models are used for modeling loads,

3Part of the data reported in this chapter is reprinted with permission from Peerzada, Aaqib, et al. "Impact of
large distributed solar PV generation on distribution voltage control ." Proceedings of the 52nd Hawaiian International
Conference on System Sciences | 2019 .
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Figure 5.2: IEEE 34 Bus Test Feeder with Shunt Connected D-STATCOM

including constant P, constant PQ, constant Z, constant I, and exponential loads. The various com-

ponents of the test system are modeled in OpenDSS, and the data processing is done in MATLAB.

OpenDSS models an electrical component of a circuit by creating a primitive admittance matrix of

the element, and the system admittance is obtained by combining all the elemental Y matrices.

The substation transformer is modeled as a three-phase, two-winding transformer with the op-

erating primary voltage of 69 kV. There are 32 tap positions with uniform leakage impedance on

the LV and HV sides. The tap positions need to take care of the daily fluctuations in the voltage.

They allow the ratio to vary in the range of ±10 % with each tap change resulting in a 0.00625

p.u change in voltage. The two voltage regulators were modeled as single-phase autotransformers.

One possible restriction in OpenDSS is that all conductors at a circuit element terminal must be

connected to the same bus. This restriction, however, does not apply to nodes in a bus. OpenDSS

allows a regulator control device that monitors the tap positions on the winding of the autotrans-

former. The two regulators are connected in wye configuration with the tap position of winding

two controlled by the regulator control element. The PT ratio is set as 120, and the CT ratio is

set as 100. The desired voltage is set as 122 V, and a band of 2V is selected. OpenDSS utilizes

a combined model for the PV array and the inverter. The model is valid for a step size of greater

than 1 second. The model consists of a PV array, the output of which is fed to an inverter with
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a pre-defined efficiency curve. The inverter’s efficiency will depend on theVMPP, which refers to

the voltage at the maximum power point. However, OpenDSS accepts only one efficiency curve

among a family of possible curves. As seen from the rest of the circuit, a PV system appears as

a power conversion element, similar to a generator or a load, which generates or consumes power

according to some function. The PV active power output depends on the value of irradiance speci-

fied, the temperature and rated peak power PMPP, at the maximum power point. PMPP, specified by

the user, is defined at standard test conditions: an irradiance of 1kW/m2 and a temperature of 25

C. The reactive power is specified separately, either as a fixed power factor or fixed kVAr values.

Unity power factor control is implemented in the simulation. The panel output is calculated using

the following equation

PkW (t) = PMPP(STC)IrrbaseIrr(t)Tf (t) (5.1)

Where PkW (t) is the output from the PV panel at a given time, PMPP(STC) is the power at the

maximum power point defined under standard test conditions ( 1kW/m2 irradiance and 25 C tem-

perature), Irrbase is the base value of irradiance usually taken to be 1kw/m2, Irr(t) is the current

irradiance, and Tf (t)is the current temperature factor which is interpolated from the temperature

curve defined by the user. The panel output is multiplied by the inverter’s efficiency to yield the

PV output power, which is fed to the feeder.

PPV (t) = ηinvPkW (t) (5.2)

5.3.1 Snap Shot Simulation Results

The test feeder was simulated using a snapshot simulation and a quasi-time series simulation.

The snapshot simulations are important to assess some feeder properties and look for voltage viola-

tions along the length of the feeder. For the snapshot simulation, three different system conditions

were studied. In the first case, the feeder was stripped of any voltage compensation. In the second

case, capacitor compensation was provided to improve the voltage profile and the source power

factor. It was seen that the reactive power injection by the capacitor banks corrected the voltage at
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some of the buses on the feeder, and the source power factor was also improved. In the third case

of snapshot simulation, voltage regulators were connected at locations that exhibited depressed

voltages even with capacitor compensation. In the final case of snapshot simulations, an annual

load growth of 3% was assumed on the feeder, and the feeder voltage and the voltage regular tap

positions were simulated at the end of the tenth year. For the lack of space, the results for the

final two cases are presented here since the main focus of this study is the operational irregularities

observed in the tap changing devices due to fluctuations in the system load and the variable gener-

ation induced by PV penetration. To correct the low voltage problems, voltage regulators modeled

as single-phase autotransformers are installed along the feeder. Since the minimum acceptable

voltage on the feeder is 0.95 p.u, the voltage profile of the buses is scanned, and the first bus, as

measured from the substation, where the voltage violation is observed, is chosen for the placement

of the voltage regulator. This correction is be made by installing a voltage regulator at Bus 814.

With the regulator installed and the tap settings determined by the Regulator Control device, the

voltage profile is greatly improved. The voltages at Bus 814r seem to satisfy the voltage constraint.

However, the voltage at bus 890 still violates the first constraint. To raise the voltage in the 888-

890 lateral, it is necessary to boost the primary voltage of the inline transformer 24.9/4.16 kV. To

accomplish this, the compensator settings are made R = 2.5 and X = 1.5, and the desired voltage is

set at 122 V on a 120 V scale. This installation should boost the primary side voltage of the inline

transformer by causing the regulator to adjust taps, thereby increasing the depressed voltages along

the downstream feeder. With capacitors and voltage regulators on the feeder, the overall system

losses, including the line and transformer losses, have been substantially reduced from the initial

value of 20.15% in the uncompensated case and 16.8% in the case where only capacitors were

deployed on the feeder. As a final case for the snapshot simulation study, the IEEE-34 bus feeder

is simulated with loads projected to grow at a 3% annual rate for the next ten years. It was found

that given no additional compensation for the next ten years, the feeder experiences severely de-

pressed voltages at several locations. It is also found that most of the regulators hit their maximum

positions at the end of year 10. This suggests that the feeder will need more voltage correction in
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Table 5.1: IEEE-34 Bus System Case Summary at Peak Load

Active Source Power 2.039 MW
Reactive Source Power 281 kVAr
Source Power Factor 0.9906
Line Losses 262.2 kW
Transformer Losses 10 kW
Total Losses 272.3 kW
Total Load Power 1767.6 kW
Percentage Losses 15.4%

Table 5.2: IEEE-34 Bus System Regulator Tap Positions with Peak Load

Name Tap Minimum Maximum Position
Regulator 1A 1.0875 0.9 1.1 14
Regulator 1B 1.025 0.9 1.1 4
Regulator 1C 1.03125 0.9 1.1 5
Regulator 2A 1.08125 0.9 1.1 13
Regulator 2B 1.08125 0.9 1.1 13
Regulator 2C 1.075 0.9 1.1 12

the future. Some of it could be overcome by adding new reactive support along the feeder length

as the loads continue to grow, while some could be mitigated by updating the control mechanism

and settings of the voltage regulators. Table 5.3 lists the regulator tap position at the year 10 with

a projected 3% annual load growth on the feeder load. Table 5.4 lists additional feeder results at

the end of 10 years with a sustained annual load buildup of 3%. It can be concluded that the feeder

performance deteriorates under increased load and no additional compensation. The line losses at

the end of year 10 equal 574.3 kW. Of course, it is because the feeder has to satisfy a higher load

demand which means higher flows across the feeders and the laterals. The total load power met at

the end of year 10 is 2341.1 kW, much higher than the base caseload with full compensation. The

substation power factor also falls down to 0.955 because the source’s reactive power requirement
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has surged to 906 kVAr. The most troubling consequence of the load increase is the deteriorating

voltage profile. The minimum voltage in the feeder drops down to 0.8 p.u, which is unacceptable.

Hence with no new voltage compensation and an average load growth of 3% for the next ten years,

the feeder does not meet the necessary requirements of a solved case.

Table 5.3: IEEE-34 Bus System Case Summary with 3% Load Growth for Ten years

Active Source Power 2.932 MW

Reactive Source Power 906 kVAr

Source Power Factor 0.955

Line Losses 574.3 kW

Transformer Losses 23.8 kW

Total Losses 598.1 kW

Total Load Power 2341.1 kW

Percentage Losses 25.5%

5.3.2 Quasi-static Time Series Simulation

To evaluate the impact on the voltage regulation equipment under the presence of a time-

varying PV output and system loading, QSTS simulation tests are performed on the IEEE 34 node

test feeder in OpenDSS. Since the feeder is located in Arizona, real residential load profile data is

used with a time resolution of 1 hour. Residential load profiles of more than 1 hour are difficult to

obtain and are not always made public by the utilities. Furthermore, it is assumed that all the loads

on the feeder experience the same load profile. The time period selected for the load profile is one

year, from January 1, 2012, to December 31, 2012. This takes into account the seasonal variations

in the load, with the summer season experiencing heavy loads, most of which can be attributed to

the air conditioning load. Figure 5.3 plots the feeder load for the first week of January 2012. Since

the collected data is quite large, the load profile for one week is shown here to make visual sense.
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The feeder load varies as the season’s change, with peaks occurring mid-summer. The peak feeder

load occurred on July 30, 2012, and is equal to 7800 kW. Throughout the year, the load varies from

approximately 700 kW to more than 7500 kW.

Figure 5.3: One Week Load Profile of IEEE-34 Bus Feeder

Figure 5.4 and Figure 5.5 show the active power flowing through Regulator 1 and the cor-

responding changes in the tap position. The plots indicate feeder conditions from January 1 to

January 16, 2012. As the day begins on January 1, 2012, the PV output begins to ramp up which

is reflected as a drop in active power flowing through the regulator is proportional to the degree of

PV penetration on the feeder. Since the variability in power through the regulator are at a mini-

mum, thus indicating a smooth ramp of the PV output, changes in tap positions are insignificant.

However, as the week progresses, the stochastic nature of the PV generation introduces random

fluctuations in the active power through the regulator. This leads to more tap operations to maintain

the voltage in a defined band. It is also clear that at low PV penetration, the transformer tap does

not vary much compared to high PV penetration. A small variation in the PV generation at high

penetration can cause the transformer tap to rapidly change its position. It can also be observed

that at high PV penetrations, reverse power flow can also take place across the regulator terminals.
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Figure 5.4: Active power through Voltage Regulator

Figure 5.5: Changes in Tap Position

From Figure 7, a PV penetration of 50% reverse power flow happens roughly on January 3,

2012, for a brief period of time. On this day, the tilted irradiance hits the peak of approximately

1kW/m2, which explains the high PV output during this particular time of the year. The feeder

at this point is relatively lightly loaded with a total system load of roughly 1400 kW, which is

less than the base active power load of the system. Both the regulators exhibit similar behavior

under high PV penetration, although the number of tap change operations differs. The location of

regulator 2 makes it vulnerable to severely depressed voltages under peak load conditions. That

explains the higher number of tap change operations in regulator two compared to regulator 1.
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To quantify the annual tap changes with a load profile given in Figure 4 and the tilted irradiance

profile shown in Figure 6, the IEEE 34 node feeder is subjected to time series simulations with

varying degrees of PV penetration. The maximum increase in annual tap operations was found to

occur in regulator 2A, with 33580 tap operations recorded under a PV penetration of 50%. In the

absence of any PV generation, the number of annual tap operations in regulator 2A was found to be

9855. This represents an approximate increase of 3.5 times in the number of annual tap operations.

Given a rough estimate of the average life of a load tap changer to be 500,000 operations, a 50%

PV penetration on the feeder can shorten the life of the voltage regulator from 50 years to roughly

about 15 years. Figure 5.6 shows the annual tap operations of the individual phases of the two

regulators in the IEEE 34 node feeder as a function of PV penetration.

Figure 5.6: Cumulative Operations and Installed Solar Capacity

The voltage profile of Bus 890 is shown in Figure 5.7. This bus is located approximately

55 miles from the substation transformer and often exhibits depressed voltages, even with the

compensation provided by the capacitors and the voltage regulators. The power to this bus is fed

from the secondary of the in-line transformer, which steps down the line voltage from 24.9 kV

to 4.16 kV. The rapid fluctuations in the voltage are a result of erratic power flow through the

transformer. The percentage change in the voltage rise and drop increases with the increase in the

PV penetration on the feeder. For a 50% PV penetration, the maximum rise and drop in the voltage

exceed 1.5% during times when the intermittency of the tilt irradiance increases. On average, the

changes in the voltage are in the order of 0.5%-1%. Such rapid change in the voltage can induce

95



flicker problems, especially in conditions of high PV penetration and increased solar irradiance

variability. Given the upper threshold for the visibility of flicker to be 0.7% for the 1-minute

interval, it can be concluded that flicker could be an issue under high penetration of photovoltaic

power.

Figure 5.7: Bus Voltage Profile

5.4 Mathematical Modeling of Device Aging

This section presents a new statistical parametric model to predict the times-to-failure of broad

classes of identical devices such as on-load tap changers, switched capacitors, breakers, etc. A

two-parameter Weibull distribution with a scale parameter given by the inverse power law is em-

ployed to model the survivor functions and hazard rates of on-load tap changers. The resulting

three-parameter distribution, called IPL-Weibull, is flexible enough to assume right, left, and sym-

metrical modal distribution. In this work, we propose an inferential method based on Bayes’ rule

to derive the point estimates of model parameters from the past right-censored failure data. It is

possible to obtain such parameter estimates with high accuracy using the Monte Carlo integration

technique.

For electric utilities, the problems of accurately identifying the service times of equipment and

scheduling preventive maintenance are of critical importance as answers to these questions rep-
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resent substantial savings to the utility [83],[84]. The service life of power equipment is affected

by several factors that include but are not limited to insulation strength, thermal and non-thermal

stress, moisture, etc. Many factors that impact the lifetime of a device are not practical for mon-

itoring since failure databases with a complete list of all the failure-inducing factors rarely exist.

This is further exacerbated by the impact of several failure-causing factors that are neither well

documented nor the failure mechanism well understood. Given the limitations of the accurate log-

ging of equipment failure, a probabilistic aging model that captures the most salient features of the

aging process is the most practical for predicting the time to failure. Previous work in this area

focused either on failure models derived from simple distributions or entirely ignored the impact of

external stress on device aging. For example, in [45], an exponential failure model characterized

by a single parameter is presented. The authors use Bayesian learning to estimate failure times

based on historical data. The exponential distribution solves the problem of analytical tractability

since it permits using a conjugate prior distribution for the parameter of interest. However, the

exponential model lacks the flexibility that a Weibull distribution offers, making it less suitable

to model device lifetimes. In [5], a distribution based on the Perks Hazard function is presented.

The model, however, does not incorporate the impact of external stress on equipment aging. This

chapter describes a failure model that combines the inverse power law and the Weibull distribu-

tion. This enables accurate modeling of non-thermal stress-related failures in devices like on-load

tap changers, given a high penetration of intermittent non-scheduled generation. Since the failure

database is often only partially available, we assume that the failure data contains only the follow-

ing information: year of installation, the total number of assets, censoring number, and retirement

history without replacement. An inferential technique based on Bayes’ rule is developed to obtain

the point estimates of model parameters. This enables us to predict the future performance of the

assets that have survived based on the past failure history of similar devices, given similar failure

mechanisms.
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5.4.1 Cumulative Device Operations

We consider the problem of accelerated aging of devices like distribution transformers equipped

with load tap-changers and switchable capacitor banks, given a high penetration of intermittent

non-scheduled generation. The variable generation interferes with the regular operation of the tap-

changers, causing them to operate much more frequently, usually outside the design limits. Due

to the mechanical nature of the tap-changing devices, the increased frequency of operation leads

to accelerated degradation of the device, which often results in premature failure of the equip-

ment. Consider a substation transformer or a voltage regulator with λ(ti) as the tap-ratio at the time

instant,ti. Let us consider a planning horizon, τ with K number of discrete time instants. If h is a

fixed time step, the number of tap operations in a discrete interval, [ti, t(i−h)] with4V as the step

change in voltage per unit is

δ j =
|λ (ti)−λ (ti−h)|

4V
; i = 1,2, ...,K (5.3)

The cumulative tap operations over the planning period, τ is then given by

ζ =
K−1

∑
j=0

δ j (5.4)

The interaction of the intermittent non-scheduled generation with the on-load tap changers results

in heavy operational stresses imposed on the tap-changing devices. Since direct measurement of

such time-dependent stress is difficult, if not entirely impossible, the change in the number of

cumulative operations is a highly reliable indicator of such operational stress. We formulate a

relationship between the mechanical stress imposed on tap-changing equipment and the resultant

change in the number of cumulative operations. We use this relationship to develop an inverse

power law-Weibull failure probability model of on-load tap-changers (OLTCs) and switchable ca-

pacitor banks. The parametric failure model can be used to forecast the remaining useful life and

probability of failure of equipment given a high penetration of non-scheduled generation. It is im-
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portant to note that in this work, we only consider the mechanical stresses imposed on the OLTCs

and switched capacitors. If p(t) is the probability density function of the time to failure, t of a

device, then the probability of that device failing before time t is given by

FT (t) = Pr{T ≤ t}=
∫ t

0
f (u)du (5.5)

In the succeeding sections, we will examine the form of the function, f(u). In general, a parametric

failure model takes the form [85]

F = { f (t;θ);θ ∈Θ;Θ⊂Rk} (5.6)

In 5.6, θ is the vector of model parameters that can take values in the parameter space, Θ The

problem then reduces to one of estimating the parameters that characterize the failure model.

5.4.2 Characterization of Operational Stress

The development of the stress ratio factor is predicated on the understanding that an OLTC

changes tap under the application of a force and hence stress on the contacts. Tap failure can either

happen due to the asynchronous operation of the switches, usually caused by a broken axis, or due

to the carbon formation and oxidation of contacts. While a broken axis may be a sudden event,

the carbon formation on the contacts represents gradual aging, exacerbated by the intermittent

non-scheduled generation [30]. The carbon formation and oxidation of contacts directly result

from operational stresses imposed by the varying power flow conditions. It is possible to encode

the information about the stresses and hence the gradual wear and tear of OLTCs in terms of the

number of cumulative tap operations over the planning period. If m is the force (=stress) imposed

on the contacts of the tap mechanism per tap operation, we can write for the total stress over the

device lifetime, assuming ζ cumulative operations

M0 = ζ m (5.7)
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M0 represents the total baseline mechanical stress over the device lifetime. The baseline stress

indicates the device’s wear and tear under normal conditions when accelerated aging of the device

can be ignored. If ζPV is the cumulative operations of the tap-changer in the presence of solar

generation, then

MPV = ζPV m (5.8)

The stress ratio factor as a function of time t is

γ(t) =
ζPV (t)
ζPV (t)

(5.9)

where, ζPV (t) is the cumulative tap operations till time instant, t given a high penetration of solar

generation and ζ (t)is the cumulative number of operations till the time, t in the absence of solar

generation.

5.4.3 Proposed Failure Model and Failure Data

The reliability of a power distribution transformer essentially depends on the reliability of four

components. These include 1) the reliability of paper winding insulation, 2) the reliability of the

transformer tank, 3) the reliability of transformer bushes, and 4) the reliability of the load-tap

changing mechanism. Among these, the reliability of load tap changers is a major concern and

often makes up for a significant percentage of the transformer failure statistics. Several surveys

[30],[39] focused on identifying the causes of distribution transformers’ failures that OLTCs ac-

count for close to 50% of all the failed components. Given the growth in the installed capacity of

renewable energy, in particular solar energy (solar farms and roof-top photovoltaic systems) over

the past decade, and the fact that transformers equipped with OLTCs play a vital role in regulat-

ing feeder voltages and hence the flow of power in distribution systems, it becomes imperative

to study the accelerated aging of such devices when exposed to the uncontrolled and fluctuating

energy generation.
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5.4.3.1 Failure Model

When accelerated aging is primarily driven by the excessive number of tap operations, whether

in OLTCs or switched capacitor banks, the proposed failure model must be able to quantify and

incorporate that information in the failure estimation process. Moreover, since the failure time of

a device that is newly installed or of the one that has survived till the present moment is not com-

pletely known, any assessment of the remaining service life can only be a prediction. The error

in such a prediction about the failure time of the device can be minimized, however, if historical

failure data of a similar population is considered. Also, the information about the past failures can

be used to fine-tune the parameters of the model or, in other words, to arrive at the best guess of

the true parameter values. Needless to say, this will significantly improve the accuracy of failure

predictions and result in a hazard rate consistent with the observed survival rate of such devices. In

the light of these observations, it is natural to formulate the problem in a Bayesian setting, one that

would allow for the incorporation of the failure data in ways that can lead to more accurate fore-

casting of the imminent and long-term failures. In this work, we restrict ourselves to nonthermal

stress, also referred to as operational stress, resulting from frequent taps switching, usually outside

the design parameters. We do not consider random failures due to external influences. Although

the methods we present in this work have been applied to the lifetime estimation of mechanical

assets, like distribution transformers equipped with a load tap-changer mechanism and switched

capacitors, the theory’s generality is preserved. As such, the parametric models developed here can

be used to conduct failure estimation studies in any setting, where the gradual or accelerated aging

due to mechanical stress is the main cause of equipment failure. In the case of distribution system

transformers, aging-related failures contribute over 70% of the total failures, while random failures

account for roughly 30% of the total failures [86]. Among the aging-related failures, the wearing

out of On-load tap changers (OLTCs), has been singled out as a significant cause of transformer

failure [87]. To address the problem, we consider the lifetime estimation of OLTCs and switched

capacitor banks in a way that will help formulate replacement strategies.

In the literature, the lifetime of a device under nonthermal stress has been shown to follow the
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Figure 5.8: Typical Hazard Patterns

inverse-power law (IPL). If L(M) is a lifetime of the device as a function of nonthermal stress M,

the inverse-power law states that

L(M) =

[
M
M0

]−η

L0 (5.10)

L0 refers to the device lifetime as a function of baseline stress M0 below which accelerated de-

vice aging can be ignored. In (5.10), η is the stress endurance coefficient. To model equipment

lifetimes, the Weibull hazard is consistent with the observed failures of broad classes of identical

devices. The hazard function of the Weibull distribution is also very flexible and can model any of

the hazard patterns shown in Fig. 5.8. The wear-out failures that result from the materials’ decreas-

ing mechanical strength are characterized by an increasing hazard, as shown on the far right of Fig.

5.8. The Weibull density function is also very flexible and can assume left, right, and symmetrical

modal distribution.If we let T be the random variable that represents the unobserved failure time

and supposing T follows a Weibull distribution, the density function of T includes three parameters

as follow [88]

fT (t|a,b,β ) =
β

b

[
t−a

b

]β−1

exp

[
−
(

t−a
b

)β
]

(5.11)

In (5.11) a is the delay or minimum life of a device and hence the support of fT (t|a,b,c) is t ≥ a.

The domain of a is the interal [0,∞) ⊂ R. The parameter b is the scale parameter in the domain

(0,∞) and is measured in the same units as T . The third paramter β is the Weibull slope or

102



shape parameter. It is dimensionless with domain (0,∞). Our proposed failure model combines

the inverse power law (5.10) with the density function (5.11) in a way that the three parameter

Weibull, with a = 0 since devices begin to fail at age of t = 0, governs at each stress level and the

scale parameter b varies inversely with the power of stress level. Combining (5.10) and (5.11) and

setting a = 0 and b = L(M) results in the density function of the form

fT (t|β ,L0,η) =


β

Lβ

0

[
M0
M

]−βη

tβ−1 exp
[
−
(

M0
M

)−βη
tβ

Lβ

0

]
0; t < 0

(5.12)

The information about the non thermal stress imposed on a tap-changing device is encoded in the

cumulative operations the device registers over a specified planning horizon [89]. Letting γ = M
M0

,

θ = L−β

0 and α = βη results in a re-parameterized model of the form

fT (t|β ,θ ,α) =


βθ tβ−1γα exp

[
−γαθ tβ

]
; t ≥ 0.

0; t < 0.
(5.13)

5.4.3.2 Description of Failure Data

The observed failure data with utilities usually includes two sets. For instance, the actual

observed data of transformer lifetimes in PJM includes transformers installed and subsequently

removed from service after failing and transformers that are in service until the present moment[5].

This type of data set is called censored or suspended data. In a censored data set, if a fixed number

of failures, say r out of the total number of N assets, controls the test duration, the data is referred

to as Type-II censored. This data type usually arises when the unit prices dominate, and failing is

destructive. If we ignore replacement, the test duration, in this case, is the failure time of the rth

unit in a sample of N items

C = tr:N (5.14)
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In (5.14), tr:N is the failure time of rth unit. The sample size is N number of units. With Type-II cen-

sored data, the actual observed failure data set of N number of units is {(Y1,41),(Y2,42), ...,(YN ,4N)}

where

Yi = min{ti,C};4i =


1, ti ≤C (Unit Failed)

0, ti >C (Unit Censored)
(5.15)

For a known number of failed/retired assets r, the Type-II failure data set with N−r survived/censored

units is

D = {(t1:N ,1)< (t2:N ,1)< ... < (tr:N ,1)≤ (sr+1:N ,0)≤ ...≤ (sN ,0)|tr:N =C} (5.16)

In (5.16) sr+1:N , ...,sN are survival times of units that have not failed throughout the test duration.

In the next section, we will develop an inferential scheme based on Bayes’ rule to estimate the

parameters of (5.13) with a failure data set of the form as given in (5.16).

5.4.4 Bayesian Inference Applied to Failure Estimation

The re-parameterized failure model (5.13) includes three unknown parameters, the shape β ,

scale θ and stress α . The parameter γ encodes information about the applied non-thermal stress.

It is given by the ratio of the cumulative number of operations a device registers under stressed

conditions, such as high penetration of distributed solar generation on the feeder and a baseline

scenario (load injection only). It is possible to use the Bayesian method to evaluate the posterior

probabilities of the unknown parameters in (5.13). Since the Bayesian method allows for incor-

porating subjective knowledge, it is a preferred estimation tool, especially when available data

is insufficient. Besides, the Bayesian inference method allows for a more intuitive interpretation

of parameter uncertainty in terms of probabilities that satisfy the likelihood principle. Once the

posterior probabilities of unknown parameters are determined, point estimates such as conditional

expectations or maximum a posteriori (MAP) estimates can also be obtained.

A fundamental difference between Bayesian inference and other statistical inference techniques

such as maximum likelihood estimation (MLE) is that the unknown parameters are treated as
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random variables in the Bayesian formulation. This is useful since we get a distribution of values

of the unknown parameter instead of just one estimate. Hence various data interpretation ideas

like credible intervals make more intuitive sense in a Bayesian paradigm. The principles of the

Bayesian statistics allow us to infer the properties of the model parameters X = [β ,θ ,α]T based

on the potential failure data of the form given in (5.16). Assuming some prior distribution p(X)on

X based on the subjective knowledge of an expert, the posterior of X is derived by using Bayes’s

theorem.

g(X|D) =
f (D |X)p(X)

f (D)
=

f (D |X)p(X)∫
Ω

f (D |X)p(X)dX
(5.17)

The marginal distribution f (D) is independent of the parameter vector and acts as a normalization

constant. Since the posterior probability depends on the assumed prior distribution, the Bayesian

method offers the flexibility of interjecting expert knowledge into the estimation process. This

is a desirable feature in reliability studies since the failure data of power equipment in general

and OLTCs, in particular, are not readily available. In such situations, a strong prior based on

experience can support the weak evidence that comes from insufficient data.

When the failure and the survival times are known, the failure model is represented using the

likelihood function. For the proposed multi-parameter failure model given in (5.13), Appendix

B describes the likelihood function considering Type-II censored data set. In (5.17) g(X|D) is

the joint conditional posterior of the unknown parameters of (5.13). It is possible to obtain the

marginal posterior of a parameter from the joint posterior by integrating out all parameters except

the parameter of interest. The marginal posterior distribution of a parameter forms the basis for

inferring a parameter’s properties in the Bayesian paradigm.

5.4.4.1 Point Estimates of Model Parameters

One way to summarize the marginal posterior of an unknown parameter is to obtain the point

estimates of the parameter. Point estimates represent the single best guess of the true parameter

value, and based on the definition of the loss function considered, various point estimates can be

derived. Some common ones include posterior mean, posterior mode, and posterior median [85].
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In the Bayesian context, point estimates are also called Bayes estimators. Consider a failure model,

f (t|X) parameterized by X in the parameter space, Ω. In deriving a point estimate of the parameter,

X referred to as X̂ the discrepancy between X and X̂is measured by the loss function, L(X, X̂). A

loss function is a mapping from the parameter space to real space. To measure the risk associated

with the point estimator, we consider a quadratic loss function

L(X, X̂) = (X− X̂)2 (5.18)

The posterior risk of the estimator, X̂is given by

R(X̂|D) =
∫

L(X, X̂) f (X|D)dX (5.19)

Where f (X|D) is the marginal conditional posterior distribution of the parameter, X given the data

in D . With a squared loss function, the point estimate or the Bayes estimator, X̂ of the parameter,

X is the expectation of X.

X̂(D) =
∫

X f (X|D)dX = E[X|D ] (5.20)

5.4.4.2 Point Estimates with Uninformative Priors

If the prior information about the shape paramter β and the scale paramter θ is not available,

Jefferey’s vague prior is a good choice to model the prior lack of knowledge of the model parame-

ters. Jeffrey’s prior is an uninformative prior and is invariant to parameter transformation.

p(β ) = 1/β ; p(θ) = 1/θ (5.21)

For the stress parameter, we assume a uniform prior.

p(α|A,B) = 1
B−A

;A≤ α ≤ B;A,B > 0 (5.22)
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With this choice of priors, we can write for the joint posterior distribution of the model parameters

g(β ,θ ,α|t1, ..., tr,sr+1, ...,sN ,C,N,r) ∝
1

B−A
β

r−1
θ

r−1
r

∏
i=1

tβ−1
i:N γ

rα exp[−γ
α

θP] (5.23)

More information on how to obtain the likelihood function of the failure model and the joint dis-

tribution of the model parameters is given in Appendix A. To get the point estimates of the pa-

rameters, we integrate out all the parameters in (5.23) except the parameter of interest. With

noninformative priors and the censored failure data, the Bayes Estimators of the shape parameter

in is [?]

E(β |t1, ..., tr,sr+1, ...,sN ,N,C,r) = β̂ = Kβ ,r

∫
∞

0
β

r
r

∏
i

tβ−1
i:N P(−r)dβ (5.24)

K−1
β ,r =

1
B−A

∫
∞

0

∫ B

A
β

r−1
r

∏
i

tβ−1
i:N P(−r)dβ (5.25)

The conditional expectation of the scale parameter,θ with noninformative prior and Type-II cen-

sored data is

E(θ |D ,sr+1, ...,sN ,N,C,r) = θ̂ =
1

B−A
γA− γB

γA+B lnγ

Iθ ,1

Iθ ,2
(5.26)

Where

Iθ ,1 =
∫

∞

0
β

r−1
r

∏
i=1

tβ−1
i:N P−(r+1)dβ (5.27)

Iθ ,2 =
∫

∞

0
β

r−1
r

∏
i=1

tβ−1
i:N P−(r)dβ (5.28)

The Bayes Estimator for the stress coefficient α in (4.6) with noninformative priors and Type-II

censored data is

E(α|t1, ..., tr,sr+1, ...,sN ,N,C,r) = α̂ =
Kα,r

B−A

∫
∞

0

∫
∞

0
β

r−1
r

∏
i

tβ−1
i:N P(−r)dαdβ (5.29)

K−1
α,r =

∫
∞

0
β

r−1
r

∏
i

tβ−1
i:N P(−r)dβ (5.30)
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5.4.4.3 Point Estimates with Informative Priors

For the proposed IPL-Weibull model, there does not exist any family of continuous conju-

gate prior distributions for the random shape, scale, and stress parameters that are closed under-

sampling. In the case of the random scale parameter and a known shape parameter, the gamma

prior for the scale parameter is closed under-sampling. We assume a gamma prior for the scale and

shape parameter [90] and a uniform prior for the stress coefficient in the closed interval [A,B].

p(β )∼ Gamma(λ1,δ1); p(θ)∼ Gamma(λ2,δ2) (5.31)

With hyperparameters λ1 > 0,δ1 > 0,λ2 > 0 and δ2 > 0. The joint conditional posterior of β ,θ ,

and α with gamma prior on β and θ and a uniform prior on α is

g(β ,θ ,α|t1, ..., tr,sr+1, ...,sN ,C,N,r) ∝
1

B−A
λ

δ1
1 λ

δ2
2

Γ(δ1)Γ(δs)
β

r+δ1−1
θ

r+δ2−1
γ

rα

r

∏
i=1

tβ−1
i:N exp[−(γα

θP+λ1β +λ2θ)] (5.32)

The joint conditional posterior (5.32) can be used to obtain the marginal posterior and the con-

ditional expectations of the parameters. The conditional expectation of β with priors defined in

(5.31) and censored data defined in (2.6) is

E(β |D ,s j,N,C,r)= β̂ =
∫

β

β f (β |D ,s j,N,C,r)dβ =

∫
β

β r+δ1 exp(−βλ1)∏
r
i=1 tβ−1

i:N P−(r+δ2+1)dβ∫
β

β r+δ1−1 exp(−βλ1)∏
r
i=1 tβ−1

i:N P−(r+δ2+1)dβ

(5.33)

The conditional expectation of θ with informative priors and censored data is

E(θ |D ,s j,N,C,r) = θ̂ =
∫

θ

θ f (β |D ,s j,N,C,r)dθ = Kθ ,r
PW1− (r+δ2)λ2W2

PW3− (r+δ2)λ2W4
(5.34)

Where

Kθ ,r =

∫
β

β r+δ1−1 exp(−βλ1)∏
r
i=1 tβ−1

i:N P−(r+δ2+2)dβ∫
β

β r+δ1−1 exp(−βλ1)∏
r
i=1 tβ−1

i:N P−(r+δ2+1)dβ

(5.35)
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W1 =
γ−A(δ2+1)− γ−B(δ2+1)

(δ2 +1) lnγ
;W2 =W4 (5.36)

W3 =
γBδ2− γAδ2

δ2γδ2(A+B) lnγ
;W4 =

γ−A(δ2+2)− γ−B(δ2+2)

(δ2 +2) lnγ
(5.37)

Finally, the conditional expectation of the stress coefficient parameter with informative priors on

β and θ and Type-II right censored data is

E(α|D ,s j,N,C,r) = α̂ =
∫

α

β f (α|D ,s j,N,C,r)dα =

∫
α

αγ−α(δ2+1)(γαP− (r+δ2)λ2)dα∫
α

γ−α(δ2+1)(γαP− (r+δ2)λ2)dα

(5.38)

In (5.33),(5.34) and (5.38), s j = [sr+1, ...,sN ] is the vector of survival times of N − r censored

units. The mathematical derivation of the point estimates of the model parameters with informative

priors is given in Appendix A. It is important to note that the point estimates given by 5.24, 5.26,

5.29,5.33, 5.34 and 5.38 do not have closed form solutions and must be solved using a numerical

technique. The Bayesian methodology for failure estimation is presented in Fig. 5.9. It is important

Algorithm 2: Point Estimates of Model Parameters
Input: Joint Posterior of parameters g(X|D)
for all i=1,..,d do

Get marginal conditional posterior of parameter of interest from joint posterior
f (xi|D) =

∫
X−xi

g(X|D)dX−xi

X−xi = [x1,x2, ...,xi−1,xi+1, ...,xd]
T

Evaluate conditional expectation of parameter from marginal conditional posterior
E(xi|D) =

∫
xi

f (xi|D)dxi
end for
Output: Point Estimates of Parameters E(xi|D)

to mention that in a Bayesian paradigm, information present in the failure data is combined with

subjective knowledge to better forecast the in-service population. Subjective knowledge can either

be informative, as is in the case of shape and scale parameters with gamma priors, or can even

model ignorance, as in for stress coefficient where we do not have a clear prior knowledge. In
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Figure 5.9: Failure Estimation via Bayesian Inference

many ways, Bayesian inference is a balancing act that works best when the choice of prior does

not undermine the evidence in the data, nor does the evidence overwhelm the prior belief.

5.4.5 Simulation Technique Applied to Failure Estimation

The point estimates of the model parameters represent the single best guess of the actual pa-

rameter values. However, the point estimates of the parameters cannot account for the uncer-

tainty in the estimation process. The uncertainty can, however, be quantified by obtaining the

full posterior of the model parameters. Since the proposed failure model does not allow for any

closed-form solutions of the posterior distribution of parameters, simulation procedures such as

Metropolis-Hastings (M-H) algorithm draws samples from the target posterior. M-H algorithm is

one of many Markov Chain Monte Carlo (MCMC) methods that enables sampling from a target

posterior that cannot be obtained analytically. The MCMC methods circumvent the problem of

analytical tractability by simulating a Markov chain on a continuous state space under conditions

that guarantee convergence such that the stationary distribution of the simulated chain is the target

posterior distribution.
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5.4.5.1 Evaluation of Full Posterior

Our implementation of the M-H algorithm simulates a d-dimensional discrete-time Markov

process {Xn}n∈N on a continuous state space such that at each time step, the proposed state vector

Xn+1 is generated conditional on the current state vector. The proposed state vector is accepted or

rejected according to an appropriately defined acceptance probability. The proposed state vector is

sampled from a suitably defined proposal distribution q(Xn+1|Xn), and the algorithm is initiated by

choosing a starting state vector X0 in the domain of the posterior of the parameter. An important

assumption is that the target posterior is strictly positive in the entire state space. Our implemen-

tation of the M-H algorithm is described in Appendix C. To initiate the sampling procedure we

let the point estimates of the model parameters be the starting state vector X0 = [β̂ , θ̂ , α̂]T and

the prior distributions of the parameters as the proposal distribution q(Xn+1|Xn) = p(Xn+1). This

leads to a new definition of the acceptance probability and (B.4) in Appendix C becomes

a(Xn,X∗) = min

{
1,
(β ∗)r(θ ∗)rγα∗

∏
r
i=1 tβ ∗−1

i:N exp
[
−γα∗θ ∗P∗

]
β r

nθ r
nγαn ∏

r
i=1 tβn−1

i:N exp [−γαnθnPn]

}
(5.39)

The definition of the acceptance probability ensures that proposed state values of a parameter with

a higher probability of being observed are accepted while the others are rejected. Although the

optimal choice of a proposal distribution is still an open problem in MCMC methods, in a Bayesian

setting, setting the proposal distribution equal to the prior distribution is a reasonable strategy since

it makes the resulting numerical calculations tractable.

5.4.5.2 Component wise Sampling

The proposed failure model is a multi-parameter model, and since parameters of interest are

treated as random variables, we are essentially performing the multidimensional sampling. This is

achieved by utilizing the component-wise sampling procedure, which involves looping the algo-

rithm over the d dimensions of the parameter vector X. Each dimension of the parameter vector

X is sampled independently of the others. Component-wise sampling requires that the proposal

distribution be univariate, and the sampling should occur in only one dimension: the dimension in
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which the algorithm works.

Algorithm 3: Component wise Metropolis Hastings
Input:Time Index n, Starting State Vector X0, Proposal Density q(I∗|In−1), Chain Length K
Set n = 0
Set initial state vector X0 = [β̂ , θ̂ , α̂]T

while n≤ K do
Set n = n+1
for all i=1,..,d do

Generate a proposal state x(∗)i = q(xi|x(n−1)
i )

Calculate acceptance probability, a(Xn,X∗)
Draw u∼ Uniform(0,1)
if u≤ a then

x(n)i = x(∗)i
else

x(n)i = x(n−1)
i

end if
end for

end while
Output: Posterior Distribution of Model Parameters

5.4.5.3 Burn-in and Autocorrelation

Since Markov chains are stochastic processes, the starting state’s specification impacts the

randomness of the process. Burn-in refers to the loss of memory of the initial conditions. In our

implementation of the M-H algorithm, burn-in is achieved by discarding the first five hundred

iterations of the algorithm. There is no definite answer to the problem of the optimal number of

iterations that would signal burn-in occurrence. However, our results indicate that after the first

five hundred iterations, the impact of specifying a starting state vector is mitigated considerably.

Moreover, since the Markov process that we simulate is guaranteed to be irreducible, aperiodic,

and positive recurrent, the basic limit theorem holds. This means that if the process is run long

enough, the starting point is irrelevant.

Autocorrelation is cause for concern in MCMC methods and even more so for the M-H algo-
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rithm that generates highly correlated draws. For a Markov process {Xn : n≥ 0} the autocorrelation

at times n1 and n2 is defined as

V (n1,n2) = Cov[Xn1,Xn2] = E[(Xn1− µ̄n1)− (Xn2− µ̄n2)] (5.40)

For a well-mixing chain, the autocorrelation must decrease and become negligible as n2− n1 in-

creases. The progressive decrease in autocorrelation with time indicates convergence of the M-H

algorithm. A poorly-mixed chain with high autocorrelation or in which the autocorrelation does

not reach zero after a substantial amount of lag may fail to explore the new areas of the posterior.

5.5 Failure Prediction of Mechanically-operated Devices

The proposed Bayesian method is applied to a model of the IEEE-34 Bus test system to esti-

mate the lifetimes of voltage regulators with different penetration levels of solar generation. The

test system has a nominal voltage of 24.9 kV. The feeder is characterized by long lines and light

loads and requires two voltage regulators to keep the voltage within ANSI limits. Both the voltage

regulators use line drop compensation (LDC) to measure the drop in voltage between the regula-

tor and load center. To study the impact of solar generation on tap-changers, a full three-phase

model of the circuit consisting of all circuit lines (single-phase and three-phase lines), regulators,

customer loads, capacitor banks, substation, and in-line transformers, control elements of capac-

itors, and voltage regulators are developed in OpenDSS. For solar generation, a proportionally

distributed configuration is chosen with the rated power of the PV systems proportional to the

loads. Each PV system is interfaced with an inverter with a rating 1% higher than the PV panel.

An increase in the solar capacity is expected to negatively impact the device lifetime due to a

corresponding increase in the device wear and tear.

5.5.1 Model Validation

The analysis in the previous section assumes that the censored failure data is a sample from the

Weibull distribution in which the scale parameter shares an inverse relationship with the applied

stress. To check the validity of the assumption, we compute the Kolmogorov-Smirnov (KS) dis-

113



tance between the empirical distribution function and the fitted distribution function. KS test is a

nonparametric test used to test the hypothesis that the sample (failure data) comes from a particular

distribution. In our case, we hypothesize that the times to failure come from an IPL-Weibull distri-

bution. The sample failure data is given in Table 5.4. The failure data assumes 40 assets installed

ten years ago with a retirement history, as shown in Table 5.4.

Table 5.4: Censored Transformer Failure Data [5]

Year Age Retirements Survivors Survivor Rate
2009 0 0 40 100%
2010 1 1 39 98 %
2011 2 0 39 98 %
2012 3 0 39 98 %
2013 4 0 39 98 %
2014 5 1 38 95 %
2015 6 2 36 90 %
2016 7 1 35 88 %
2017 8 5 30 75 %
2018 9 4 26 65%
2019 10 6 20 50%

Figure 5.10: Empirical CDF and Model Predicted CDF
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Figure 5.11 shows the result of the KS test. It is clear that the fitted IPL-Weibull provides

an excellent fit to the failure data. Note that the fitted IPL-Weibull CDF uses point estimates of

the parameters given by 5.24,5.26 and 5.29. Figure 5.11 confirms that the KS test accepts the

hypothesis that the failure data of Table 1 is a sample from the Weibull distribution with a scale

parameter given by the inverse power law.

To observe the impact of non-thermal stress or equivalently solar generation on the OLTC life-

times, we designed annualized experiments over a 10-year planning horizon. The results of the

tests are categorized into three scenarios which are 1) Load growth over the next ten years with

no solar generation, 2) Load growth with low penetration of solar generation (30%), and 3) Load

growth with high penetration of solar generation (90%). Note that the photovoltaic (PV) penetra-

tion level is defined as the ratio of the aggregate peak capacity of all PV systems and the total peak

active load of the feeder. We consider a load growth of 3% for the first four years, followed by 5%

and a 7% growth distributed equally for the remaining six years. This is within the conservative

estimate of 3%-7% growth in feeder loads at the distribution level. We consider two different pen-

etration levels for solar generation over the ten-year planning horizon. The accumulated stress on

the OLTCs is proportional to the cumulative number of tap operations over the planning horizon.

5.5.2 Lifetime estimation results with Uninformative Priors

Since the failure data is censored on the right, we have two sets of observed lifetimes. One set

contains the failed/retirement times {ti ≤C; i = 1,2, ...,r} and the second set includes the survival

times of the OLTCs not failed or retired by the present time instant. The Bayesian method enables

us to make an inference on the second set of OLTCs based on the data in the first set since the

failure/retirement time of the second set is unknown at the present time instant. The inference is

valid because the OLTCs in both sets experience similar failure mechanisms. Figures 5.14 and

5.15 show the failure density function, hazard rate, and the survival function of the two voltage

regulators of IEEE 34 bus system under different scenarios.
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Figure 5.11: PDF, Hazard Rate and Survivor Function of Voltage Regulator-1

The regulators are assumed to have survived until the present instant and are not censored.

From Figures 5.14 and 5.15 it is clear that while a low PV penetration may not significantly reduce

the lifetimes of voltage regulators, sustained high PV penetration has a significant impact on the

device’s lifetime. This is further evinced by the hazard rates of both the regulators, which show a

marked increase towards the end of the device lifetime with high PV penetration.

Figure 5.12: PDF, Hazard Rate and Survivor Function of Voltage Regulator-2

It is interesting to note how the failure density changes after acquiring new data. Figure 5

shows the impact of censoring number on the failure density function. The transition of failure
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density from the poor initial estimate (blue curve) to the final estimate (green curve) is remarkably

fast. The mean time to failure in the initial estimate with r = 1 is 114200 years, considering no

PV penetration. With r = 20, the mean time to failure is 10.255 years. This suggests the method

is very robust. Since the inference on the surviving assets is drawn from the set of failed/retired

assets, the proposed method will perform better with a large amount of censored failure data.

Table 5.5 lists the point estimates of the model parameters as a function of the censoring number.

As more failure data are acquired, the failure prediction improves. The most likely (β̂ , θ̂ , α̂ with

r = 20 is 3.52,9.16,0.1108 for voltage regulator-1 in the No PV scenario. Tables 5.6 and 5.7 list

some statistical properties of the failure density function shown in Figure 5.11 and Figure 5.14.

The impact of heavy PV penetration on device lifetime is quite apparent. This can be realized

by observing the mean time to failure (MTTF) of the two voltage regulators under low PV and

high PV penetration and comparing that with the No PV scenario. With a high PV penetration,

the MTTF of voltage regulator 1 is 7.33 years; for voltage regulator 2, the MTTF with high PV

penetration is 7.09 years.

Table 5.5: Impact of censoring information on Parameter Estimates

Parameter r = 1 r = 5 r = 10 r = 15 r = 20
β̂ 0.43 1.11 1.83 2.65 3.5217
θ̂ 7655 30.7 13.09 10.06 9.1617
η̂ 0.88 0.34 0.21 0.14 0.1108

Table 5.6: Statistical Properties of Figure 5.11

Statistical Property No PV 30%PV 90% PV
Mean Time to Failure 10.25 9.58 7.33
Median 10.238 9.59 7.34
Mode 10.33 9.68 7.41
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Table 5.7: Statistical Properties of Figure 5.14

Statistical Property No PV 30%PV 90% PV

Mean Time to Failure 10.25 9.06 7.09

Median 10.238 9.07 7.1

Mode 10.33 9.15 7.17

5.5.3 Lifetime estimation results with Informative Priors

To predict the unobserved failure times, we compute the Bayes Estimators of the unknown

parameters of the failure model using informative priors. A comparison between the performance

of the estimators is made by computing the Mean Square Error (MSE) over 1000 Monte Carlo

replications. The OLTCs of IEEE-34 feeder are assumed to be newly installed or have survived

till the present moment, and thus their survival times are the same as the censoring time . We

compute the stress ratio factor γ to complete the model identification by observing the cumulative

tap operations registered by the OLTCs with and without PV generation over a planning horizon

representing typical OLTC lifetimes. Since using informative priors involves assigning values to

the hyperparameters, we consider two sets of values for the gamma hyperparameters. The high

PV scenario-I corresponds to hyperparameters λ1 = λ2 = δ1 = δ2 = 1 and the high PV scenario-II

refers to hyperparameter values λ1 = 3,λ2 = δ1 = δ2 = 1. The uniform interval considered for

the stress parameter α is [0,1]. The Bayes estimators of model parameters and stress ratio factor

are substituted in (5.13) to compute the statistical properties of the in-service OLTC units. An

example is shown in Fig. 5.13, where the failure density, hazard rates, and survival probability of

one of the in-service OLTCs in the IEEE-34 Bus test system are plotted. It is clear from Fig. 5.13

that a heavy PV penetration significantly impacts the OLTC lifetime. Compared to the baseline

case, the reduction in a lifetime with a 90% PV penetration is anywhere from 6− 10 years while

the probability of surviving beyond 20 years drops from the baseline value of 61.31% to just 3%
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in High PV scenario-I and 27.25% in High PV scenario-II. This underscores the importance of

expert knowledge in choosing the prior distributions. Since the gamma priors are a function of

hyperparameters, informative priors offer more flexibility in incorporating expert knowledge with

the inference process. This can lead to a better forecast of the in-service OLTC units’ survivability

given the past failure history of the units that failed/retired by the present time. Table 5.8 lists the

statistical properties of Fig. 5.13.
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Figure 5.13: Failure Density, Hazard Rate and Survival Probability with N=30 and r=20

Table 5.8: Estimates of In-service OLTC Population

Statistical Property Baseline Scenario High PV ( 90%)

Scenario-I Scenario-II

MTTF (Years) 22.31 12.42 16.08

Variance 24.85 13.86 18.105

Median (Years) 22.29 12.43 15.74

Mode (Years) 22.38 12.48 15.09

P[T > 10|β̂ , θ̂ , α̂] 95.45% 70.8% 81.06%

P[T > 20|β̂ , θ̂ , α̂] 61.31% 3% 27.25%
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we also consider the impact of censoring on the inference process and the MSE of the estima-

tors. From the experiments, we find that for fixed N and γ as the censoring number r increases, the

failure probability curves result from using two different sets of hyperparameter values; thus re-

flecting two different prior beliefs, tend to converge. Note that an increase in the censoring number

means an increase in the amount of information available to the failure model. This means that as

more failure data are acquired, the posterior distributions of the parameters are more influenced by

the data than the prior beliefs. This explains the convergence of the failure probability curves given

different prior beliefs as we approach a complete dataset with N = r. This is a common theme in

Bayesian analysis where the sample size of the data mitigates the impact of the prior belief. It is

interesting to observe the changes in the failure density as r changes. Fig. 5.14 shows the impact

of r with fixed N on the failure density.
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Figure 5.14: Impact of Censoring Information on Failure Prediction

The transition of failure density from a poor initial estimate (black curve) to the final estimate

(green curve) is remarkably fast. The Bayes estimators of unknown parameters of the failure model

and mean time to failures (MTTF) as a function of the censoring number r and fixed N = 30 are

given in Table 5.9, 5.10.
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Table 5.9: Impact of Censoring Number: High PV Scenario-I

Estimator r=1 r=5 r=10 r=15 r=20

β̂ 0.61 1.11 1.78 2.54 3.36

θ̂ 0.0212 0.0225 0.0241 0.025 0.0236

b̂ 1521.58 141.735 47.19 25.07 13.86

α̂ 0.533 0.59 0.691 0.927 1.90

η̂ 0.9 0.532 0.38 0.364 0.560

MTTF (Years) 2221.4 135.92 41.99 22.18 12.44

Table 5.10: Impact of Censoring Number: High PV Scenario-II

Estimator r=1 r=5 r=10 r=15 r=20

β̂ 0.38 0.825 1.37 1.97 2.6

θ̂ 0.0211 0.022 0.0235 0.0242 0.0231

b̂ 32187.56 372.09 77.215 35.1994 18.1015

α̂ 0.533 0.59 0.684 0.88 1.59

η̂ 1.449 0.72 0.38 0.449 0.60

MTTF (Years) 121285.59 412.508 70.6 31.20 16.08

The process of acquiring more failure data improves the accuracy of the estimation process

and reduces the dependency of the inference scheme on the prior information. In [89], the authors

present a case study on the impact of censoring on the MSE using noninformative priors. In

this work, we draw a comparison between noninformative and informative priors. The results

of the experiments, as shown in Fig. 5.15 seem to suggest that the Bayes estimators and hence

the marginal posteriors are affected by observed data and the expert knowledge when informative

priors are used, which is a desirable outcome. In Fig. 5.15, it is clear that larger sample sizes of

observed failures have the effect of reducing the MSE of the estimators. Further, the MSE is less
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when informative priors are used than noninformative priors. This underscores the importance and

impact of prior knowledge available to the distribution system engineer.
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Figure 5.15: Mean Square with Censoring Number

5.5.4 Uncertainty Characterization of Model Parameters

To generate samples from the marginal posterior of parameters that characterize the failure

model, we consider informative priors (gamma prior)on the shape and scale parameter of (5.13)

and uninformative prior (uniform prior) on the stress parameter of (5.13). The proposal density for

generating new states is equal to the parameters’ prior density. With this choice of the proposal

density, the probability that the proposed state vector will be accepted or rejected is given by

(5.39). Since the point estimates of the parameters are in the domain of the parameter posteriors,

the starting state vector is set equal to the vector of the point estimates. To calculate the likelihood

ratio in (5.39), the failure data is normalized to make the numerical approximations tractable.

The results of the MCMC simulations that include the trace plots, marginal posteriors and the

autocorrelation plots of the model parameters are shown in Figure 5.16, Figure 5.17, Figure 5.18

and Figure 5.19.
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Figure 5.16: Trace Plot Marginal Posterior of β with N = 30,r = 20
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Figure 5.17: Trace Plot and Marginal Posterior of θ with N = 30,r = 20
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Figure 5.18: Trace Plot and Marginal Posterior of α with N = 30,r = 20
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Figure 5.19: MCMC Autocorrelation with N = 30,r = 20

5.5.4.1 Convergence Diagnostics

Since the marginal posterior of a parameter forms the basis for inferring the statistical prop-

erties of the unknown parameter, it is important to ensure that the inference based on the MCMC

sample is valid. The inference process’s validity depends on the Markov chain’s convergence.

Trace and autocorrelation plots are the two most accessible convergence diagnostics techniques

that can be visually inspected. The trace plots of the model parameters as shown in Fig. 5.16,

Fig. 5.17, Fig.5.18 have well mixing chains. The shape parameter β is invariant to changes in

the operational stress, whereas the scale parameter θ and the stress parameter α are affected as

the operational stress changes. At a higher stress level corresponding to high penetration of dis-

tributed solar, the Markov chain that traces the sample path of the parameter θ experiences some

difficulty converging to the steady-state distribution. Also, the marginal posterior of θ is shifted

to the left under conditions of high PV penetration, thus suggesting a decrease in the equipment

life at a higher stress level. The marginal posterior of the parameter α resembles a quasi-uniform

distribution, and the Markov chain in both scenarios shows good mixing. The acceptance rate of

the Markov chains for all the model parameters is listed in Table 5.11. The convergence of the

Markov chains can also be assessed from the autocorrelation plot shown in Fig. 5.19. The shape
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parameter β autocorrelation becomes negligible very quickly after about eight lags. The same is

Table 5.11: Convergence Diagnostics
Model Parameter Acceptance Rate

Baseline Scenario Scenario-I Scenario-II
Shape β 33.72% 33.72% 33.88%
Scale θ 22.76% 18.92% 18.54%
Stress α 90.02% 36.86% 37.50%

true for the scale parameter θ where the autocorrelation gets fairly close to zero after about ten

lags in the baseline scenario. However, the autocorrelation becomes negligible at a higher stress

level after about fifty lags. This results from relatively poor mixing of the chain compared to the

baseline scenario. It is important to mention that even though the autocorrelation takes longer to

become negligible in a high PV scenario, it does so after approximately fifty lags, suggesting that

the Markov chain has converged to a steady-state distribution. For the stress parameter α , the

autocorrelation is essentially negligible for all positive lags for the baseline case, but at a higher

stress level, the Markov chain experiences similar convergence issues as that of scale parameter

θ . However, as was true for the scale parameter, the autocorrelation becomes negligible after

approximately sixty-four lags.

5.5.4.2 Credible Intervals

The idea of credible intervals or credible region for a vector-valued parameter space has a

very intuitive understanding in a Bayesian paradigm. For a one-dimensional parameter Θ ∈ Ω or

a vector-valued Θ̂ ∈ Ω ⊂ Rd , and a confidence level z ∈ (0,1), the interval Iz ⊂ Ω or the region

Iz ⊂ Ω that contains the proportion of 1− z of the probability mass of the posterior is called a

credible interval or a credible region respectively.

Pr(Θ̂ ∈ Iz|T = t) = 1− z (5.41)
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Equation (5.41) is a general expression and does not determine a unique credible interval. It is

possible to impose some additional conditions for choosing credible intervals or regions. For

example, an equal-tailed interval of confidence level z is an interval

Iz = [qz/2,q(1−z)/2] (5.42)

In (5.42) qz is z− quantile of the posterior distribution. In this work we utilize 95% equal-tailed

interval defined as

I0.05 = [q0.025,q0.975] (5.43)

where q0.025 and q0.075 are quantiles of marginal posterior of the parameters. The quantile functions
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Figure 5.20: Marginal Inverse CDFs of Model Parameters, N = 30,r = 20

of the model parameters are shown in Fig. 5.20 and Table 5.12 lists the 95% equal-tailed credible

intervals of the parameters.
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Table 5.12: Credible Intervals

Model Parameter Credible Intervals

Baseline Scenario Scenario-I Scenario-II

Shape β [2.05,4.83] [1.996,4.94] [2.29, 5.16]

Scale θ [0.0563,0.138] [0.0184,0.106] [0.0182,0.106]

Stress α [0.0031,0.97] [0.0045,0.985] [0.004,0.99]

5.6 Conclusions

This chapter proposes a statistical parametric model to accurately assess the impact of non-

thermal stress on mechanically operated voltage control assets such as OLTCs and switched ca-

pacitor banks. High penetration of distributed proportional roof-top PV generation is used to model

the non-thermal stress. The non-thermal or operational stress is quantified in terms of the number

of cumulative operations over a defined planning horizon. The failure model is a combination of

the inverse power law, typically used to model the device lifetimes under non-thermal stress, and a

two-parameter Weibull distribution, the hazard function of which is consistent with the degradation

induced by the gradual aging. We consider Type-II censored survival data and propose an infer-

ential scheme based on Bayes’s rule to estimate the parameters of the proposed failure model. In

this work, we develop point estimates of the model parameters based on a quadratic loss function

using informative prior beliefs. The resulting point estimates are shown not to possess closed-form

solutions and thus evaluated using numerical integration techniques. A simulation procedure based

on the MCMC sampling technique is also proposed to evaluate the full posterior of the parameters

using informative priors and censored failure data set.

The proposed methods are applied to a model of the IEEE-34 test feeder assumed to have either

newly installed OLTCs or have survived till the present moment. Based on the simulation results

obtained, some of the conclusion that can be drawn are as follows

• A high penetration of distributed solar PV negatively impacts the service life of devices such
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as OLTCs. The simulation results indicate a shortening of the device lifetime by as much as

27%−44%, depending on the choice of the prior belief.

• In the proposed inferential scheme, the properties of the model parameters are inferred by

combining the prior beliefs with the survival data. It has been shown that different prior

beliefs can lead to different predictions. However, as the sample size grows, the model pre-

dictions from different prior beliefs begin to converge. This is consistent with the Bayesian

paradigm, in which a large sample size dominates prior beliefs.

• A comparison between the performance of noninformative priors and informative priors is

made by numerically computing the MSE of the estimators. It is shown that for larger

sample sizes, the prior choice does not significantly impact the MSE. For small sample sizes,

however, informative priors are associated with lower MSE than noninformative priors.

• The full posterior of the parameters is evaluated using the MCMC sampling procedure. The

Markov chains constructed show good convergence characteristics for baseline and high PV

scenarios. While the shape and the stress parameters are largely unaffected by changes in

the operational stress, the scale parameter experiences a shift in the posterior distribution at

higher stress levels. This shift is indicative of a shorter lifespan at increased stress levels.
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6. POWER QUALITY IMPROVEMENT WITH DISTRIBUTION STATIC COMPENSATOR

The increasing adoption of distributed energy resources (DERs), particularly solar generation

and the use of unconventional loads such as plug-in electric vehicles (PHEVs), has a profound im-

pact on the planning and operation of electric distribution systems. In particular, PHEV charging

introduces stochastic peaks in energy consumption, while solar generation is fraught with vari-

ability during intermittent clouds. The stochastic nature of such DERs renders the operation of

mechanical assets such as on-load tap changers and switched capacitor banks ineffective. A pos-

sible solution to mitigate the undesirable effects of DERs is using solid-state-based devices such

as a distribution static synchronous compensator (D-STATCOM). This chapter focuses on the op-

eration and the impact of a solid-state-based device called capacitor-less Distribution Static Com-

pensator (D-STATCOM) in electrical distribution systems. Various steady-state models of the

D-STATCOM in different operating modes are presented. An important problem is the capacity

usage of a capacitor-less D-STATCOM when integrated with the distribution system. This chapter

formulates the capacity usage problem in probabilistic terms taking into account the uncertainties

of the distributed energy resources. A Monte Carlo simulation framework is proposed to study the

capacity usage problem with DER inputs sampled from the proposed underlying distributions.

In electric distribution systems, reactive power compensation in voltage regulation and power

factor correction is typically realized using electromechanical assets such as on-load tap changers

(OLTCs) and switched capacitor banks (SCBs). However, given the mechanical nature of the op-

eration, such legacy devices are not suitable for providing reactive power compensation at shorter

time scales of minutes or seconds. The output of a PV system is a function of weather primarily

at a given location and can experience rapid changes that necessitate a continuously adjustable re-

active power compensation for precise voltage control. One class of devices capable of providing

dynamic voltage control is the smart PV inverters. However, the PV inverters are limited in pro-

viding continuous reactive support constrained by the inverter’s apparent power sizing [?]. The PV

inverters are also not owned by the utility and, in most situations, do not respond to the dispatch
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commands issued by the network operator [91].

Other examples of power electronics-based solid-state devices that mitigate the adverse impact

of DERs include static var compensators (SVCs) at transmission or sub-transmission voltage levels

and D-STATCOMs based on voltage source converter (VSC) technology. A major disadvantage of

the SVCs is the lack of harmonic control functionality and exorbitant capital costs in low voltage

regimes [2]. Due to these reasons, SVCs are inherently unsuitable for use in low-voltage networks

plagued by power quality issues due to the increased use of nonlinear loads. On the other hand,

the VSC-based D-STATCOMs rely on electrolytic capacitors (E-caps) for energy storage. The

reliance on E-caps adversely affects the reliability of the VSC-based D-STATCOMs, especially

in locations with tropical climate conditions [2]. The literature on the reliability of the power

electronics devices has established that nearly 30% of all the failures in power electronics-based

devices are caused by the E-caps [91].

Table 6.1: Functionality comparison of Capacitor-less D-STATCOM with incumbent technologies
[2]

Functionality OLTC SCB SVC Hybrid VARs
Smart PV
Inverters D-STATCOM

Capacitor-less
D-STATCOM

Dynamic Power
Factor Correction X X X X X X

Dynamic Voltage
Regulation X X X X

Network
Dispatchability X X X X X X

Longer Service
Life X X

Harmonic Filtering X X X

In light of these observations, a capacitor-less D-STATCOM based on a matrix converter (MC)

has been proposed recently to address the dual challenges of fast reactive support and increased

reliability [92]. The newly proposed capacitor-less D-STATCOM uses inductive storage and is con-

trolled using a finite control set model predictive control (MPC). The capacitor-less D-STATCOM

is a multi-functional device that can be used simultaneously for power factor correction, voltage

regulation, and harmonic compensation with local autonomous control or directly controlled by
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the distribution network operator (DSO). A comparison between the capacitor-less MC-based D-

STATCOM and the incumbent technologies is given in [2]

A major significance of this chapter is that it studies the interaction of a power electronics con-

verter in terms of its capacity usage when integrated with an electric distribution system without

neglecting the details. A complete model of the IEEE-34 bus distribution test system [50] is devel-

oped in OpenDSS [65]. The steady-state power system models of the capacitor-less D-STATCOM

in different modes of operation are developed in a MATLAB environment and interfaced with the

OpenDSS solver. It is important to emphasize that while the focus of this paper is to develop a

probabilistic capacity usage model of the capacitor-less D-STATCOM, a rigorous treatment of the

computational methods used for uncertainty quantification of the inputs of the Monte Carlo simu-

lation, which in this case are bus load, PHEV charging, and rooftop solar generation, is crucial to

answering the central question.

6.1 Capacitor-less D-STATCOM

The capacitor-less D-STATCOM performs the same functions as the existing VSC-based D-

STATCOM. A distinction, however, can be drawn in terms of the circuit elements used for energy

storage. The capacitor-less D-STATCOM uses inductors for energy storage as opposed to elec-

trolytic capacitors. This enables the capacitor-less D-STATCOM to achieve a much longer service

life, especially in regions with harsh climatic conditions [91]. The capacitor-less D-STATCOM

is designed to provide reactive power compensation to simultaneously address the multiple chal-

lenges of power factor correction, voltage regulation, and harmonic mitigation. The proposed

converter can work either in a local autonomous mode and determine the amount of reactive power

to be injected, absorbed, or centrally dispatched by the system operator. This multiplicity of op-

eration is a benefit that a utility can derive from the converter, and the resulting monetary savings

can offset the high capital cost of the device for use in low-voltage distribution systems.
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6.2 Converter Topology

The three-phase matrix converter (MC) with nine bidirectional switches, a three-phase input

filter, and output chokes is the fundamental building block of the proposed converter. The bidirec-

tional switches are realized using two anti-parallel IGBT-diode pairs for bidirectional flow. The

shunt-connected MC-based capacitor-less D-STATCOM is shown in Figure 6.1 .

Figure 6.1: Matrix Converter-based capacitor-less D-STATCOM [2]

The converter design uses Model Predictive Control (MPC) strategy to achieve phase current

inversion between the input and output currents. The input and output current relations of the MC

are given in (6.1) 
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IcC

=
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I0C

 (6.1)

The input and output voltages share the same relationship. The switching function Si j can be either

0 or 1, where i∈ [A,B,C] and j ∈ [a,b,c]. The phase reversals are achieved by making good choices

about Si j, which makes inductive energy storage appear capacitive at the input of the MC. More

details on the MC are given in [92].

6.3 Power Factor Correction Operation

In OpenDSS, the capacitor-less D-STATCOM in power factor correction mode is modeled as

an ideal current source. The compensating currents and the reactive powers for each phase of the

load are calculated based on phase admittance and the phase voltage. In general, with a three-phase
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load with phase A admittance YA = GA + jBA, and phase voltage V Athe phase current is

IA =V AYA =VA∠θA(GA + jBA) = IRA + jIXA (6.2)

The capacitor-less D-STATCOM as an ideal current source is shunt connected to compensate for

the phase quadrature component IXA of the phase A load current. If the phase A compensating

current is ICA and ICA =−IXA, the phase A converter rating is

Sp f
CA =V AI∗CA =V A(− jV ABA) = jV 2

ABA (6.3)

Equation (6.3) suggests that only the reactive power demand of phase A of the load is compensated

while the real power demand remains unaffected. Since the reactive power demand of phase A of

the load is QA =−V 2
ABA, the converter rating can be expressed solely in terms of QA.

Sp f
CA =− jQA = jQp f

CA (6.4)

From (6.4) we can conclude that if the compensator, the ideal current source modeling the steady

state behavior of the the capacitor-less D-STATCOM in this case, is desired to provide power factor

correction, the condition for unity power factor operation of phase A of the load is Qp f
CA = −QA.

Partial compensation can be achieved if |Qp f
CA| = α|QA|,0 < α < 1. The phasor compensating

current required to achieve full compensation (unity power factor) of Phase A is

ICA =
Sp f

CA

V ∗A
=
− jQp f

CA

V ∗A
=
− j
(

SA
√

1− cos2 φA

)
V ∗A

(6.5)

In (6.5) Qp f
CA is the reactive power rating of the converter, SA is the apparent power of phase A of

the load, and cosφA is the phase A power factor. The compensatory ideal current source model of

(6.2-6.5) is implemented in MATLAB environment and interfaced with OpenDSS solver engine

via the Component Object Model (COM) interface. The compensating currents for each phase of

the load are updated after successfully converging the power flow and injected into the load. The

total three-phase reactive power rating of the converter in power factor correction mode is the sum
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of reactive power ratings for each phase. That is Qp f
3φ

= Qp f
CA +Qp f

CB +Qp f
CC.

6.4 Voltage Regulation Operation

The power system steady-state model of the capacitor-less D-STATCOM in voltage regulation

mode is based on the reactive power mismatch equations. A proportional-integral controller is used

to minimize the mismatch between the reference voltage (voltage set-point) and the measured bus

voltage. The first two equations model the reactive power exchange between the converter and the

load bus, and the third equation models the control scheme.

0 =


Qvr

3φ
−VLIline sinθVL−θIline

Qvr
3φ

+ |VPCC|2Bl−|V ′|Gl sinδ + |V ′|Bl cosδ

VL−Vsp

 (6.6)

In (6.6) Qvr
3φ

is the total three phase reactive power exchanged between the converter and the load

bus, Bl and Gl are the line susceptance and conductance respectively connecting the converter and

the bus, VL, θVL is the bus voltage magnitude and angle respectively,Iline, θIline are the line current

magnitude and angle respectively, |V ′|= |VL||Vconv|, Vconv is the converter voltage magnitude, δ =

θVL−θVconv , θVconv is the converter voltage angle and Vsp is the voltage set-point of the converter.

6.5 Harmonic Filtering

Under normal operation conditions, the voltage and current waveforms at any node of a power

system are considered to be perfectly sinusoidal at a frequency of 60 or 50 Hz. However, when a

source of electrical power is connected to a nonlinear device, the current drawn by the nonlinear

device is not a perfect sinusoid. The non-sinusoidal current interacts with the system impedance

to create voltage harmonics and in some cases, harmonic resonance. More commonly, voltage or

current harmonics are components at frequencies integer multiples of the fundamental frequency.

It is possible to reconstruct a distorted and periodic waveform by an infinite summation of such

spectral components via Fourier analysis. In power systems, the problem of harmonics dates back

to the 20th century, when the subject was first developed to understand the waveform distortion
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caused by static converters.

Over the last five decades, the nature of the loads in medium and low-voltage industrial and res-

idential distribution feeders has radically changed with rapid advances in semiconductor technol-

ogy. As a result, the distribution systems now experience higher levels of harmonic distortion due

to the higher penetration of power electronic controlled equipment. This problem is exacerbated

by the use of power factor correction capacitor banks in distribution feeders, making phenomena

like harmonic resonance much more likely. The resonance curve of a typical distribution feeder is

often broad-shaped, which renders the feeder sensitive to a range of harmonic orders. Moreover,

it is not uncommon to have multiple capacitor banks installed over the length of the feeder for

power factor and voltage control applications. Hence, computer simulations are required to accu-

rately assess the feeder behavior at frequencies at or near the resonant frequency. The operation

of a distribution feeder close to resonant frequency can amplify the voltage and current distortion

levels. Furthermore, the change in feeder capacitance affects the resonance curve of a distribution

feeder. The optimization of the capacitor banks to regulate the power factor at the substation or

the local level can interfere with the resonant frequency of the feeder. In such a scenario, there is a

need to track the resonant frequency as the feeder loads change to accurately predict the distortion

levels in voltage and current waveforms. The modeling of the harmonic filtering functionality of

the D-STATCOM is based on the computation of harmonic flows and the use of the harmonic load

model in OpenDSS.

6.5.1 Computation of Harmonic Flows

A nonlinear load connected to the power grid, which supplies sinusoidal voltages with no

harmonics, will draw a non-sinusoidal current from a sinusoidal source. Mathematically, the non-

sinusoidal current can be expressed as the sum of infinite sinusoids with different frequencies,

where higher frequencies are integer multiples of some fundamental frequency. At the point of

interconnection, the distorted current and voltage waveform can be expressed in the time domain
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as

i(t) =
∞

∑
k=1

Ik cos(kω1t +φki) (6.7)

v(t) =
∞

∑
k=1

Vk cos(kω1t +φkv) (6.8)

In power systems, the transformers block the flow of DC, and loads do not produce a DC com-

ponent. In (6.7) and (6.8), Ik and Vk are the peak magnitudes of kth harmonic and φkI and φkV

are the associated phase angles, respectively. The distorted current drawn by the load has to be

supplied from the source in the absence of any harmonic filtering equipment. Hence, the harmonic

distortion propagates upstream into the network. The computation of harmonic flows begins with

the conventional power flow solution of the test system under consideration. The snap-shot power

flow solution establishes the fundamental voltage magnitudes and phase angles. The power flow

solution can also be used to look for any irregularities in the test system or in the input data. The

slack bus in the system provides the phase angle reference and is assumed to have no distortion.

Once the fundamental nodal voltages are known, the harmonic components are considered, one at a

time. Calculating the harmonic nodal voltages is the same for all harmonic orders. To summarize,

for each harmonic, k

• The nodal admittance, Yk with appropriate positive, negative, and zero sequence network is

constructed. The admittance matrix is of the form

Yk =


Y11 · · · Y1n

... . . . ...

Yn1 · · · Ynn


where Yi j is the mutual admittance between buses i and j and Yii is the self-admittance of

bus i at kth harmonic order. Furthermore, in a three-phase unbalanced system, the elements
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of the admittance are 3×3 matrices, which consist of self and transfer admittances, i.e.

Yk =


Yaa Yab Yac

Yba Ybb Ybc

Yca Ycb Ycc



• The kth injection current of each nonlinear load is determined from the harmonic spectrum

of the load. The harmonic spectrum of the load is a user-defined object which contains the

percentage contribution of each harmonic with respect to the fundamental. The magnitude

and the angle of kth harmonic current is given by

Ik = I1 ∗ k (6.9)

φk = φk + k(φ1−θ)±180° (6.10)

where, Ik is the magnitude of kth harmonic current, I1 is the magnitude of the fundamental,

K is the corresponding multiplier as defined in the harmonic spectrum of the nonlinear load,

φk is the phase angle of the kth harmonic injection, φ1 is the phase angle of the fundamental

and θ is the phase angle of the slack bus.

• Once Ik and φk are known for each nonlinear load, the system harmonic voltages are deter-

mined by solving

[Ik] = [Y k][V k];k 6= 1 (6.11)

The steady-state harmonic filtering model of the capacitor-less D-STATCOM is developed in

OpenDSS using a component object model (COM) server for writing custom code. To compute

the harmonic flows, the feeder loads are converted into Norton Equivalents, consisting of a current

source and an admittance. Figure 6.2 shows the harmonic load model used in the OpenDSS. The

shunt admittance comprises a series R-L part and a parallel R-L part. The parameters G, B, R, and

L are obtained from the load’s user-specified real and reactive powers at 100% rated voltage.
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Figure 6.2: Harmonic Load Model

The shunt admittance of the load plays an important role in damping out the harmonic com-

ponents of the distorted load current at frequencies near or equal to the resonant frequency. This

is because in the case of parallel resonance, the system impedance seen by the harmonic source

increases dramatically and a significant portion of the harmonic load current is siphoned off in

the shunt admittance of the load model. At frequencies away from the resonant frequency, the

load impedance is much greater than the system equivalent impedance, and very little current is

channeled into the shunt admittance.

Usually, the percentage mix of the series and the parallel R-L part of the load is not known

but in most scenarios, a 50/50 distribution tends to produce more realistic-looking results. A 100%

parallel R-L load provides the highest damping and hence the lowest distortion while a 100% series

R-L load yields high values of harmonic distortion. The series R-L part of the load admittance

can also be used to model a rotating machine load. In this case, the resistance and inductance

parameters are determined by blocked rotor impedance or sub-transient impedances. While it is

true that the load admittance does not impact the resonant frequency in any significant manner, it

does, however, provide damping to the harmonics, the amount of which depends on the type of

admittance model used.
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6.5.2 Harmonic Filtering with D-STATCOM

To achieve harmonic filtering the D-STATCOM is modeled as a variable current source and is

programmed to cancel the harmonic currents drawn by the nonlinear load. These are steady-state

models and the phasor quantities of voltage and current at the PCC are used to define the system

parameters. The task of harmonic mitigation involves measuring the harmonic content of the load

current and injecting the canceling current. An example of harmonic cancellation is given in Table

6.2. The input to the compensator is the measured harmonic currents at the terminals of the non-

linear load. Given the harmonic spectrum of the load and the daily variation, the sequential-time

Table 6.2: Harmonic Filtering with D-STATCOM
Harmonic Order Load Current Cancelling Current

3 10∠30 -10∠-30+180
5 20∠ 60 -20∠ 60+180
7 14∠ -7 -14∠ -7+180
9 2∠ 51 -2∠ -50+180

harmonic simulations are carried out by computing the harmonic flows as described by 6.9, 6.10

and 6.11. The distribution system solver evaluates the power system response at each frequency

taken separately and at each time step. In the next step, the loads on the feeder are updated, and

the process of computing the flows is performed sequentially.

6.6 Capacity Usage Determination of D-STATCOM*

1 The probabilistic capacity usage model of the capacitor-less D-STATCOM is developed by

Monte Carlo sampling of the input variables. For a given penetration level of the solar generation,

the input variables of the Monte Carlo simulation are the bus load profile, PHEV charging profile,

and PV generation profile. The use of Monte Carlo sampling entails that the capacity usage Q

be a random variable that can assume a range of values. When the random variable Q is indexed

by time, it represents a stochastic process {Qt ;0 ≤ t < ∞} defined on the probability space ΩQ.

The stochastic process Qt is continuous and its distribution is described by the probability density

1Reprinted with permission from A. Peerzada, M. Begovic and D. Ostojic, "Carbon Tax and Utility-scale
Solar Deployment," 2022 IEEE Power & Energy Society General Meeting (PESGM), 2022, pp. 01-05, doi:
10.1109/PESGM48719.2022.9917021

139



fQt (q, t). The density function fQt (q, t) describes the joint distribution of the random variables

{Qt ;0 ≤ t < ∞}. The Monte Carlo simulation estimates the expectation of any Borel-measurable

function h : R−→ R of the stochastic process Qt .

E[h(Qt)] =
∫

q∈ΩQ

h(Qt) fQt (q, t)dq (6.12)

The Monte Carlo estimator of (6.12) can be obtained by running Monte Carlo simulations with

inputs sampled from the underlying distributions. The inputs considered for estimating (6.12) are

the PHEV charging, load profile, and solar generation profile.

6.6.1 Generating Load Scenarios

The generalized Gaussian mixture model described in chapter 2 is used to generate load sce-

narios with similar statistical properties as the measured (empirical) load data. Bus 890 of the

test feeder is assumed to be a commercial load. This assumption is based on the peak active and

reactive load ratings provided in the original feeder data developed by the IEEE distribution sub-

committee. The measured historical annual commercial load profile (without PHEV charging) is

obtained from the OpenEI website [60]. The web page is sponsored by the U.S Department of

Energy (DoE) in support of the Open Government Initiative to make energy data transparent and

collaborative. The measured historical annual data set is used to estimate the parameters of the

generalized Gaussian mixture model using the E-M algorithm. The E-M algorithm is coded in

MATLAB and initialized using the K- means algorithm. A random number generator function

generates statistically similar load profile scenarios. The random number generator function can

be evaluated by taking the inverse of the CDF of the mixture model. The CDF of the mixture

model in (3.6) is

FY (y|Ψ) =
∫ y
−∞

∑
M
j=1 π j

β j

2s jΓ

(
1

β j

) exp
[
− |t−µ j|β j

s j

]
dt (6.13)

A closed form solution of ŷ = F−1
Y (y|Ψ) does not exist and hence numerical techniques such as

Newton-Raphson must be used to generate random samples from the fitted model. Figure 6.3
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shows a hundred examples of the load at bus 890 for one day. It is important to note that the load

scenarios shown in Figure 6.3 also account for the PHEV charging.

Figure 6.3: Load Scenarios at Bus 890 including PHEV charging Profiles

6.6.2 Distribution Generation Scenarios

The scenarios for solar generation at bus 890 are generated using the Monte Carlo sampling of

the fitted time series ARMA model. We assume a three-phase PV system at bus 890 with a peak

power rating of 450 kW proportional to the peak active load. The voltage rating of the PV system

is 4.16 kV. The PV system is oriented at an azimuth of 180 °(south-facing) and a tilt angle of 30

°. Since the IEEE-34 bus test feeder is based on an existing distribution system located in the state

of Arizona (AZ), the hourly average TMY3[62] data of AZ is used to synthesize a high resolution

(1-minute) irradiance profile. The solar output in 1-minute intervals is estimated using the PV

system model in OpenDSS[65]. The high-resolution solar output data is used to fit the ARMA

model. The fully realized ARMA model is used to generate solar forecasts. Figure 6.4 shows one

hundred 1-minute ahead solar output scenarios for a typical spring day in AZ along with the mean

forecast and 95% confidence interval. The parameters of the realized ARMA model are given in

Table 6.3
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Figure 6.4: 1-minute ahead solar forecasts from ARMA model from Table 6.3

Table 6.3: The Realized ARMA (p,q) Model

p q φi θ j

3 3

φ1 = 0.376
φ2 =−0.3722
φ3 = 0.9848

θ1 = 0.6151
θ2 = 0.9845
θ3 =−0.005

The generated scenarios of the input variables are used to calculate the Monte Carlo estimator

of (??). This is done by taking the i.i.d sample {qγ(t);γ = [1,2, ...H, ], t = [1,2, ...,T ]}. H is the

total number of Monte Carlo runs and T is the time horizon. The time horizon considered in this

work is one year. The mean of (g(qγ(t))) over the chosen sample is the estimate of E[h(Qt)].

ĥγ

(
qγ(t); t ∈ [1,T ]

)
=

1
γ

γ

∑
v=1

h(qv(t); t =∈ [1,T ]) (6.14)

Assuming the expectation E[h(Qt)] is finite, the weak law of large numbers implies for an arbitrar-

ily small ε

lim
γ→∞

(
Pr{ ĥγ

(
qγ(t); t ∈ [1,T ]

)
−E[h(Qt)]≥ ε}

)
= 0 (6.15)

Equation (6.15) implies that as γ gets large, the Monte Carlo estimator converges in probability to
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the true expectation. The i.i.d sample {qγ(t); t = [1,2, ...,T ]} for fixed γ is obtained by executing

the power flow on the model of IEEE 34 bus test feeder in OpenDSS interfaced with MATLAB via

COM. The capacitor-less D-STATCOM is placed at bus 890 of the test feeder. The power factor

correction and voltage regulation programs are developed in MATLAB. The circuit is solved in

OpenDSS with control actions suspended at first. This is done to sample the quantities of interest,

i.e., bus voltage phasors and load reactive power for D-STATCOM initialization. Based on the

retrieved values of the bus voltages and load, the programs populate the current injection sources

that model D-STATCOM operation in power factor correction mode to compensate for the reactive

power of the load. At the same time, the voltage regulation subroutine uses the reactive power

mismatch equations to calculate the reactive power for maintaining bus voltage at a predefined set

point. The modified circuit with D-STATCOM is solved again in OpenDSS with control actions

enabled. Once the control queue clears, the program steps through the next solution.

The probability distributions of the capacity usage for power factor correction application Qp f
3φ

and voltage regulation Qvr
3φ

application considering the uncertainty in PHEV charging, commercial

reactive demand and the solar generation is shown in Figure 6.5 . The capacity usage, as shown

Figure 6.5: Annual Capacity Usage with unity load power factor and voltage 1 p.u
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in Figure 6.5 represents the unity power factor operation of the load at bus 890 of the feeder with

a voltage set point of 1.0 p.u. The D-STATCOM adjusts its reactive output in accordance with

(6.2-6.5) and (6.6). This ensures that the power factor of the load is unity at all times, and the

voltage is held nearly constant at 1.0 p.u. Figure 6.5 seems to suggest that voltage regulation is a

more capacity intense operation than power factor correction. The expected value of the capacity

usage for power factor correction is 121.95 kVAr, and for voltage regulation, the expected value

of capacity usage is 474.62 kVAr. This is approximately four times higher than the power factor

application. Furthermore, the standard deviation of Qp f
3φ

is 88.6 kVAr while the standard deviation

of Qvr
3φ

is 162.95 kVAr. A higher standard deviation of Qvr
3φ

suggests greater uncertainty in its

estimation. This could be because of the dual impact of intermittent solar generation and PHEV

charging on the bus voltage. Solar power and PHEV charging are both characterized by a higher

variability and hence increased uncertainty which propagates further and results in an output with

a higher variance. Figure 6.6 shows the capacity usage when the power factor of the load is 0.8

lagging and the bus voltage is held constant at 0.95 p.u.

Figure 6.6: Annual Capacity Usage with non-unity load power factor and voltage 0.95 p.u

An interesting application of the capacity usage results in Figure ?? and ?? is the determina-

tion of the energy loss due to the curtailment of the PV output when capacity sizing constraints on
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the converter are considered. The results in Figure ?? are valid for an unrestrained D-STATCOM.

However, a restrained D-STATCOM will be limited in its ability to provide reactive power compen-

sation. The limits placed on the converter capacity could either be due to the high manufacturing

cost or the technology limitations that could preclude scaling the converter capacity. Since voltage

regulation application utilizes more capacity, any limits on the converter capacity would primar-

ily impede the converter’s ability to regulate voltage. In order to maintain the bus voltage within

acceptable limits, especially the upper limit of 1.05p.u, additional measures such as curtailing the

PV system’s output must be put into effect. To observe the impact of the capacity reduction of the

D-STATCOM on the energy loss due to the curtailment of PV output, we use the volt-watt control

functionality in OpenDSS. It provides a flexible mechanism to regulate the active power output

of a PV system based on a user-configured volt-watt control curve. For our application, we use a

volt-watt curve that reduces the PV output whenever the bus voltage exceeds 1.05p.u. If4gi
PV (ω)

is the curtailed PV power at bus i for scenario ω , the energy loss over the planning horizon is

Eloss(ω) =
∫ T

0
4gi

PV (ω)dt (6.16)

Eloss(ω) is a random variable and we are interested in the expectation E[Eloss(ω)] as a function

of the capacity reduction of the D-STATCOM. Figure 6.7 shows the cdf plots of energy loss of a

450 kW PV system at bus 890. The converter is programmed to maintain the bus voltage at 1p.u

and the capacity is reduced in steps of 10% from the baseline capacity of +/− 900 kVAr. It can

be inferred from Figure 6.7 that the energy loss probability increases with the converter capacity

reduction. For capacity reductions up to 20% there is roughly 70% probability of incurring an

annual energy loss of 5% or less. However, the probability of energy loss dramatically increases

as the converter capacity is further reduced.
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Figure 6.7: CDF plots of Eloss(ω) for different converter capacities
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Figure 6.8: Expected value of Annual Energy loss of a 450 kW PV System

Figure 6.8 plots the expectation E[Eloss(ω)] as a function of the capacity reduction of the

proposed converter. A 50% reduction in the converter capacity would result in an annual energy

loss of nearly 30% of the value if the converter was operating at full capacity with a voltage setpoint

of 1.0p.u. On the other hand, a capacity reduction up to 20% could be acceptable as the energy

loss is less than 5%.
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6.7 Conclusions

This chapter studied the capacity usage of the proposed capacitor-less D-STATCOM in a distri-

bution system, considering the uncertainties in PHEV charging, system demand, and solar genera-

tion. Two different modes of operation of the converter are presented. The power factor correction

operation is modeled as an ideal current source shunt connected to the load. The voltage regula-

tion mode of operation is modeled based on the reactive power mismatch equations between the

converter and the load bus. To assess the uncertainty in capacity usage, Monte Carlo simulations

are designed with inputs sampled from their underlying distributions. Various scenario generation

algorithms consistent with the physics and based on real-world measured data are presented to

sample the input parameters. Based on the results of the Monte Carlo runs, it is concluded that

voltage regulation operation utilizes more capacity than power factor correction and is character-

ized by a higher variance. Furthermore, restraining the converter’s capacity increases the energy

loss due to the curtailment of the PV output. More precisely, the expected value of the energy

loss shares a nonlinear relationship with the capacity reduction of the converter. The energy loss

increases with the progressive decrease in the converter’s capacity.

The methodology and the results presented in this paper are important and can be used as a tool

by the manufacturers to improve the design and functionalities of the power electronic converters

for distribution systems. In the future, we plan on extending this work to include more complex

distribution systems with more components, such as the IEEE-123 bus feeder and the 8500 node

test feeder.
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7. SUMMARY AND CONCLUSIONS

Today’s electric utility industry is in the midst of an aggressive expansion and an unprecedented

evolution due to the proliferation of distributed energy resources (DERs) and the implementation of

the smart grid concept. In addition, the growing realization of a reliable and secure electric power

system as a fundamental component of the next industrial revolution has ushered in transformative

changes in the operation and planning of transmission and distribution grids. The changing land-

scape of the energy flow has prompted utilities to invest in critical transmission and distribution

infrastructure to improve the grid “resiliency.” The shift from centralized energy infrastructures to

a distributed one and coupled with the growing capacity of renewable sources of energy, has not

only led to a redefinition of the term “resiliency”, but has also helped shape an obscure theoretical

term from just being a buzzword to a cornerstone of the infrastructure planning. In 2017, the elec-

tric utilities in the United States spent $50 billion dollars in capital expenditures to maintain and

upgrade the distribution grid, followed by annual average spending of $50 billion dollars through

2018 [?].

Every major economy on the planet has witnessed a rapid growth in the penetration of re-

newable sources and, more recently, in energy storage. More importantly, these resources are in-

creasingly being deployed in a distributed manner, thus disrupting the more traditional “top-down”

structure of the electrical grid. Even though the contribution of the distributed resources might not

be significant at present, these are projected to grow at an accelerated rate. The evidence for the

accelerated expansion of such distributed resources is plenty and is indicative of a new beginning

in the power sector-one that will result in major upheavals and restructuring. In light of these facts,

the primary goal of this research is to investigate the operational and planning issues associated

with the adoption of high-capacity distributed energy resources. Integrating DERs, especially high

capacity distributed generation, introduces multiple layers of complexity to the normal operation

of transmission or distribution networks. To ensure the security and reliability of the system, these

complexities need to be rigorously investigated, and solutions must be sought that would facilitate
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increased adoption of DERs while at the same time improving network resiliency.

7.1 Summary

This dissertation focuses primarily on the applications of computational statistics in power

systems. More specifically, a decision-making framework to facilitate the widespread adoption of

distributed energy resources (DERs) is presented. The successful integration of DERs with the

electric grid is a complex problem that nearly impacts every aspect of power system planning,

operation, and reliability. The work presented in this dissertation studies a small subset of the

challenges imposed by DER integration, particularly in load modeling and asset management.

Also, the impact of a power electronics-based solid-state power quality converter on the operation

and planning of distribution systems is studied. In addition, a case study on the impact of a carbon

tax on the profitability of investing in a utility-scale solar generation is presented.

The work presented in chapter 2 has interesting applications. Since the proposed mixture model

is parametric and hence “generative”; the model can generate synthetic load data with similar sta-

tistical properties as the measured data. Since the proposed model considers the EV charging

load, the mixture models proposed have far-reaching applications such as probabilistic load flow

with EV charging and distribution system state estimation (DSSE), where many pseudo measure-

ments are used to run the state estimation algorithms. The mixture models studied can model the

non-Gaussian distributed measurements, especially scenarios involving heavy EV penetration and

distributed generation. Another important application of the proposed mixture models is designing

Monte Carlo simulations where the inputs are sampled from some underlying distributions. The

mixture models can be used to create different realizations of the electric demand curve and as

input to run stochastic optimization algorithms. A multivariate formulation of the mixture model

is presented to address the problem of modeling load correlation. The update equations are ob-

tained using the E-M algorithm. The multivariate model can generate correlated random numbers

and thus can be used to model correlation among loads in close proximity to each other. This is

significant since the information about one load can be used to predict the load at a nearby location

in a power system.
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Chapter 3 of the dissertation focuses on the uncertainty characterization of solar generation.

Two computational models are presented to quantify the uncertainty associated with solar gen-

eration. The Markov Chain Monte Carlo simulation model synthesizes high-resolution solar data

from the low-resolution TMY3 data. This is achieved by extracting the transition probabilities from

the measured high-resolution non-TMY3 data and feeding the probability matrices to a first-order

Markov chain. The second model is based on time-series modeling and uses an auto-regressive

moving average model to develop new scenarios of the solar data. It is essentially a scenario

generation algorithm that exploits the time-series structure of the measured solar data.

In chapter 4, a case study on the profitability of investing in a solar generation is presented,

leveraging the modeling capabilities of chapters 2 and 3. The case study is an investigation of the

impact of carbon tax policy on the total operational cost incurred to the utility when investing in

a large-scale solar generation to offset the carbon emissions from the coal-fired and gas plants.

A Monte Carlo simulation framework is developed to assess the impact of a carbon tax on the

marginal benefit of carbon abatement. The results demonstrate a complex interplay between sev-

eral factors and thus call for a more nuanced approach toward policy-making and regulation. A

major implication of this work is that the targets set for a specific technology to decarbonize the

power grid cannot be applied as a “one size fits all” across different adoption levels of the same

technology and different power utilities.

Chapter 5 of the dissertation focuses on an interesting asset management problem in power sys-

tems. Specifically, the impact of high-capacity solar generation on the equipment lifetimes such as

on-load voltage tap changers and switched capacitor banks is studied in detail. A predictive failure

model that learns from the distribution of past failures and can model the life-shortening effect

of high-capacity solar generation is developed. This is a significant improvement over the simple

failure models in the literature, which largely ignore the problem of accelerated aging. A Bayesian

framework to estimate the parameters of the failure distribution is presented. A computational

algorithm based on Markov chain Monte Carlo sampling of the known function is utilized for the

evaluation of full posteriors. Determining the full posterior distributions of the model parameters is
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important to assess the uncertainty in the parameter estimation process. The failure model is tested

on a real distribution test system to get the failure probabilities of the devices still in operation

based on the past failure data and the future growth of the solar generation. It is shown that the

failure model is quite robust and the convergence is fast as more failure data are acquired.

In chapter 6, the computational models developed in the earlier chapters are utilized to derive

a probabilistic capacity-usage model of a power electronics-based solid state power quality con-

verter when interfaced with a distribution system model. The power quality converter, referred

to as a capacitor-less D-STATCOM is a multi-functional device used for power factor correction,

voltage regulation, and harmonic filtering. Steady-state models of the D-STATCOM are developed

to observe the impact on the distribution grid. A Monte Carlo simulation is designed to assess

the capacity usage of the D-STATCOM operation in different modes with inputs sampled from

the underlying distributions. The energy loss due to the solar curtailment with different capacity

reductions of the D-STATCOM is studied. Estimating the energy loss is important to appropriately

size the power quality converter, given the constraints on the capital cost of the device.

7.2 Conclusions

The research presented in this dissertation explores some of the operational and reliability

challenges associated with integrating DERs with the electric grid. To that end, computational

models are developed to properly assess those challenges and design mitigation measures enabling

large-scale adoption of DERS while satisfying various operational and economic constraints. Some

of the broad conclusions of the research work can be summarized as follows

• The first operational problem addressed in this work is the impact of DERs on the overall

power system load. It is observed that systems with high-capacity DERs have distinct load

profiles with a pronounced “peaky” behavior. The density plots of the load exhibit multi-

modal characteristics with multiple high-density regions. A probability mixture model with

component densities derived from generalized versions of probability distributions such as

Gaussian and beta is formulated to accurately model the multimodal behavior of the load.

Generalized distributions such as a generalized Gaussian or a generalized beta have addi-

151



tional parameters that control the shape of the distribution and are thus better suited to model

the peak load behavior. However, the parameter estimation of the generalized mixture model

is computationally intense due to the nonlinear parameter update equations. This is a major

disadvantage, and the decision to use generalized mixture models to model the pdf of the

DER-impacted load ultimately depends on the desired accuracy, which further depends on

the application.

• The second major problem addressed in this dissertation is the economic viability of large-

scale solar farms considering policies such as carbon tax. A carbon tax rate is an economic

policy that penalizes electric utilities for each unit of carbon dioxide (metric ton) released

into the atmosphere by burning fossil fuels such as coal and gas to produce electric power.

The challenge is addressed by formulating a metric called marginal benefit of carbon abate-

ment that quantifies the percentage change in the total operational cost incurred to the utility.

It is concluded that the overall economic benefit of investing in solar generation depends on

the amount of the solar generation capacity and the carbon tax rate. In the scenario where

coal-fired plants are progressively retired, solar generation capacity greater than 20% of the

peak system load is necessary to return an overall profit on the investment.

• The third problem addressed in this dissertation is related to the accelerated wear and tear of

the mechanically-operated equipment in distribution systems. It is concluded that equipment

such as on-load tap changers and switched capacitor banks placed on the distribution systems

for voltage control and loss reduction can experience a severe derating of the lifetime if

exposed to high-capacity solar generation. The simulation results indicate a shortening of

the device lifetime by as much as 27%−44%, depending on the choice of the prior belief.

• The fourth problem addressed in this dissertation is the investigation of the impact of a

solid-state power quality converter on the distribution system operation. A major conclu-

sion drawn from the Monte Carlo simulations is that the voltage regulation function of the

converter is the most capacity-intense function, followed by power factor correction. The
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expected value of the capacity usage in voltage regulation mode is roughly twice that of the

capacity usage in power factor correction mode. The analysis of expected power loss due to

solar curtailment reveals that in the absence of the D-STATCOM the expected power loss is

roughly 30% higher than with the D0STATCOM running at full capacity. This underscores

the importance of using solid-state-based devices in conjunction with mechanically-switched

devices in distribution systems.
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APPENDIX A

INVERSE POWER LAW-WEIBULL FAILURE MODEL

A.1 Survival Function, Hazard Rate and CDF of IPL-Weibull Failure Model

This appendix describes the survival function and other related formulas of the IPL-Weibull

distribution.

A.1.1 Survival Function of IPL-Weibull

The survival function is the probability of surviving beyond a certain time. A random variable

T that characterizes the failure time of a device, the survival function is given by

ST (t) = Pr(T > t|X) =
∫

∞

t
fT (u)du (A.1)

If T has a Weibull distribution with the scale parameter replaced by the inverse power law, the

failure density function fT (u) in (A.1) is the density of the IPL-Weibull distribution and X is the

vector of parameters. This gives for the survival function of the IPL-Weibull distribution

ST (t) =
∫

∞

t
βθ tβ−1

γ
α exp(−γ

α
θ tβ )dt (A.2)

Consider the integral

I = lim
l→∞

∫ l

t
tβ−1 exp(−γ

α
θ tβ )dt =

1
βγαθ

exp(−γ
α

θ tβ ) (A.3)

Thus the survival function of an IPL-Weibull distributed random variable T is

ST (t) = exp(−γ
α

θ tβ ) = exp

[
−γ

βη tβ

Lβ

0

]
(A.4)

163



A.1.2 Hazard Rate and CDF of IPL-Weibull

The hazard function of a random variable T with IPL-Weibull distribution can be obtained

using the definition of hazard rate

hT (t) = lim
dt→0

Pr(t < T ≤ t +dt|T > t)
dt

(A.5)

With this definition, the hazard function of IPL-Weibull distributed random variable is

hT (t) =
fT (t|X)

ST (t)
= βθ tβ−1

γ
α =

β

Lβ

0

tβ−1
γ

βη (A.6)

The CDF or the failure probability can be easily obtained from the survival function. It is in the

form of the following equation

FT (t) = 1−ST (t) = 1− exp

[
−γ

βη tβ

Lβ

0

]
(A.7)

A.2 Likelihood Function of the IPL-Weibull Failure Model

The observed failure data of OLTCs or switched capacitors includes two sets: the first set

is the set of observed failures and the second set includes devices that have survived until now

and are in-service. Let {Ti|i = 1,2, ...,r} be a random sample of observed failures and {S j| j =

r + 1,r + 2, ...,N} be the random set of transformers in-service. The random samples {Ti} and

{S j} are from T ; the unobserved failure time and the Bayes estimators of the model parameters

are functions of the random samples. If X = [β ,θ ,α]T is the vector of model parameters taking

values in the parameter space Ω⊂ Rd then

X̂ = h(Ti,S j); i = 1,2, ...,r, j = r+1,r+2, ...,N (A.8)
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X̂ is a random vector and after the random samples are taken i.e., the observations of failure and

survival times take numeric values, t1, t2, ..., tr and sr+1,sr+2, ...,sN respectively, X̂ assumes a nu-

meric value. Assuming censored data, the joint density of the random samples of failure times ,

survival times and the vector of model parameters is

pTi,S j(t1, t2, .., tr,sr+1,sr+2, ...,sN ,X) = pTi,S j(t1, t2, ..., tr,sr+1,sr+2, ...,sN |X)p(X) (A.9)

In (A.9), p(X) is the joint prior distribution of the model parameters. Since Ti, i = 1,2, ...,r and

S j, j = r+1,r+2, ...,N are i.i.d sequences of random variables, the likelihood function that char-

acterizes the failure model has the following form

pTi,S j(t1, t2, ..., tr,sr+1,sr+2, ...,sN |X) = fT1(t1|X) fT2(t2|X)... fTr(tr|X) fSr+1(sr+1|X)... fSN (sN |X)

=
r

∏
i=1

fTi(ti|X)
N

∏
j=r+1

[1−FS j(s j|X)] (A.10)

1− FS j(s j|X) is the probability that the jth unit will last at least s j units of time. For the re-

parameterized IPL-likelihood model the likelihood function can be analytically obtained by sub-

stituting the re-parameterized failure density, survival function and the observed failure data in

(A.10).

L (β ,θ ,α|t1, t2, ..., tr,sr+1,sN ,N,C,r) =
r

∏
i=1

βθ tβ−1
i:N γ

α exp
[
−γ

α
θ tβ

i:N

] N

∏
j=r+1

exp
[
−γ

α
θsβ

j:N

]
= β

r
θ

r
r

∏
i=1

tβ−1
i:N γ

α exp

[
−γ

α
θ

r

∑
i=1

tβ

i:N

]
exp

[
γ

α
θ

N

∑
j=r+1

sβ

j:N

]

= β
r
θ

r
γ

α
r

∏
i=1

tβ−1
i:N exp

[
−γ

α
θ

(
r

∑
i=1

tβ

i:N +(N− r)sβ

r:N

)]
(A.11)

Thus we can write the likelihood function of the IPL-Weibull model as

L (β ,θ ,α|t1, t2, ..., tr,sr+1,sN ,N,C,r) = β
r
θ

r
γ

α
r

∏
i=1

tβ−1
i:N exp [−γ

α
θP] (A.12)
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Where P is the re-scaled total test time in which the observed failure times ti:N and the survival

times sr:N are re-scaled by raising to power β . The re-scaled total test time is given by

P :=
r

∑
i=1

tβ

i:N +(N− r)sβ

r:N (A.13)

A.3 Joint Conditional Posterior and Marginal Posterior Distribution of Model Parameters

The joint conditional posterior density of the model parameters can be obtained from the joint

density of the failure data and the model parameters. Applying the law of conditional probability

to (A.9) we get for the joint conditional posterior of model parameters

g(X|t1, t2, ..., tr,s1,s2, ...,sN ,N,C,r =
pTi,S j(t1, t2, .., tr,sr+1,sr+2, ...,sN ,X)

pTi,S j(t1, t2, .., tr,sr+1,sr+2, ...,sN)

=
β rθ rγα

∏
r
i=1 tβ−1

i:N exp [−γαθP] p(X)

pTi,S j(t1, t2, .., tr,sr+1,sr+2, ...,sN)
(A.14)

We assume gamma priors on the shape, the re-parameterized scale parameter, and a uniform prior

in the closed interval [A,B] on the stress coefficient parameter. Since the parameters are indepen-

dent, we assume independent priors. We can write for the joint prior distribution p(X)

p(X) =
1

B−A
λ

δ1
1 λ

δ2
2

Γ(δ1)Γ(δ2)
β

δ1−1
θ

δ2−1 exp[−(λ1β +λ2θ)] (A.15)

Where λ1 > 0,δ1 > 0 are hyperparameters on β and λ2 > 0,δ2 > 0 are hyperparameters on θ . The

joint prior definition of (A.15) when combined with the (A.14) gives the following joint conditional

posterior of X = [β ,θ ,α]T

g(β ,θ ,α|t1, ..., tr,sr+1, ...,sN ,C,N,r) ∝
1

B−A
λ

δ1
1 λ

δ2
2

Γ(δ1)Γ(δ2)
β

r+δ1−1
θ

r+δ2−1
γ

rα

r

∏
i=1

tβ−1
i:N exp[−(γα

θP+λ1β +λ2θ)] (A.16)
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The marginal conditional posterior of model parameters can be obtained from the joint conditional

posterior by integrating out all the parameters except the parameter of interest. For the shape

parameter β the marginal conditional posterior is

f (β |t1, t2, .., tr,sr+1, ...,sN ,C,N,r) =
∫

θ

∫
α

g(β ,θ ,α|t1, ..., tr,sr+1, ...,sN ,C,N,r)dθdα

∝

∫
θ

∫
α

1
B−A

λ
δ1
1 λ

δ2
2

Γ(δ1)Γ(δ2)
β

r+δ1−1
θ

r+δ2−1
γ

rα

r

∏
i=1

tβ−1
i:N exp[−(γα

θP+λ1β +λ2θ)]dθdα

= Kβ ,r
1

B−A
λ δ

1 λ
δ2
2

Γ(δ1)Γ(δ2)

∫
θ

∫
α

β
r+δ1−1

θ
r+δ2−1

γ
rα

r

∏
i=1

tβ−1
i:N exp[−(γα

θP+λ1β +λ2θ)]dθdα (A.17)

Where Kβ ,r is the normalization constant and is equal to

K−1
β ,r =

1
B−A

λ δ
1 λ

δ2
2

Γ(δ1)Γ(δ2)

∫
β

∫
θ

∫
α

β
r+δ1−1

θ
r+δ2−1

γ
rα

r

∏
i=1

tβ−1
i:N exp[−(γα

θP+λ1β +λ2θ)]dβdθdα (A.18)

Since the domain of θ is (0,∞) consider the definite integral

I1 = lim
l→∞

∫ l

0
θ

r+δ2−1 exp[−(γα
θP+λ1β +λ2θ)]dθ =−exp(−βλ1)[Γ(r+δ2, lγαP+ lλ2)−

Γ(r+δ2,0)](γαP+λ2)
−(r+δ2) (A.19)
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Since the total re-scaled test time is much larger than the total number of failures, we have for

γαP >> r,

I = exp(−βλ1)(γ
αP+λ2)

−(r+δ2) (A.20)

= exp(−βλ1)(γ
αP)−(r+δ2)

[
1+

λ2

γαP

]−(r+δ2)

(A.21)

Since γαP >> λ2, and ignoring higher order terms, we have

I = exp(−βλ1)(γ
αP)−(r+δ2)

[
1− (r+δ2)

λ2

γαP

]
(A.22)

= exp(−βλ1)(γ
αP)−(r+δ2+1)[γαP− (r+δ2)λ2] (A.23)

Substituting (A.23) in (A.18) gives the following for the normalization constant, Kβ ,r

K−1
β ,r =

1
B−A

λ δ
1 λ

δ2
2

Γ(δ1)Γ(δ2)

∫
β

β
r+δ1−1 exp(−βλ1)

r

∏
i=1

tβ−1
i:N P−(r+δ2+1)dβ

∫
α

γ
−α(δ2+1)[γαP− (r+δ2)λ2]dα (A.24)

Equations (A.17) and (A.24) together give the marginal conditional posterior of the shape param-

eter β . The marginal conditional posterior of re-parameterized scale parameter θ can be obtained

in a similar manner by integrating out β and α from the joint conditional posterior (A.16).The
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marginal conditional posterior of θ is

f (θ |t1, t2, .., tr,sr+1, ...,sN ,C,N,r) =
∫

β

∫
α

g(β ,θ ,α|t1, ..., tr,sr+1, ...,sN ,C,N,r)dβdα

∝

∫
β

∫
α

1
B−A

λ
δ1
1 λ

δ2
2

Γ(δ1)Γ(δ2)
β

r+δ1−1
θ

r+δ2−1
γ

rα

r

∏
i=1

tβ−1
i:N exp[−(γα

θP+λ1β +λ2θ)]dβdα

= Kθ ,r

∫
β

∫
α

1
B−A

λ
δ1
1 λ

δ2
2

Γ(δ1)Γ(δ2)
β

r+δ1−1
θ

r+δ2−1
γ

rα

r

∏
i=1

tβ−1
i:N exp[−(γα

θP+λ1β +λ2θ)]dβdα (A.25)

Where the normalization constant K−1
θ ,r = K−1

β ,r . In a similar manner we can obtain the marginal

conditional of re-parameterized stress parameter α by integrating out β and θ from (A.16). This

gives for the marginal conditional of α

f (α|t1, t2, .., tr,sr+1, ...,sN ,C,N,r) = Kα,r

∫
β

∫
θ

1
B−A

λ
δ1
1 λ

δ2
2

Γ(δ1)Γ(δ2)
β

r+δ1−1
θ

r+δ2−1
γ

rα

r

∏
i=1

tβ−1
i:N exp[−(γα

θP+λ1β +λ2θ)]dβdθ (A.26)

A.4 Bayes Estimators of Model Paramters

In deriving the Bayes estimators of the model parameters, the discrepancy between the true

value of the parameter vector X and the estimated value X̂ is measured by the loss function L(X, X̂).

We assume a quadratic loss function L(X, X̂) = (X− X̂)2 under which the point estimates that

minimize the posterior risk of the estimator vector X̂ are conditional expectations of the individual

estimators [85].
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The conditional expectation or Bayes estimator of β can be obtained as

β̂ =
∫

β

β f (β |t1, t2, ..., tr,sr+1, ...,sN ,N,C,r)dβ =
∫

β

Kβ ,r
1

B−A
λ δ

1 λ
δ2
2

Γ(δ1)Γ(δ2)

∫
θ

∫
α

β
r+δ1−1

θ
r+δ2−1

γ
rα

r

∏
i=1

tβ−1
i:N exp[−(γα

θP+λ1β +λ2θ)]dθdαdβ

= Kβ ,r
1

B−A
λ

δ1
1 λ

δ2
2

Γ(δ1)Γ(δ2)

∫
β

∫
θ

∫
α

β
r+δ1−1

θ
r+δ2−1

γ
rα

r

∏
i=1

tβ−1
i:N exp[−(γα

θP+λ1β +λ2θ)]dθdαdβ (A.27)

To get the Bayes estimator of β we substitute (A.21) and (A.24) in (A.27). This gives the following

form of the Bayes estimator of β

β̂ = Kβ

∫
β

β
r+δ1 exp(−βλ1)

r

∏
i=1

tβ−1
i:N P−(r+δ2+1)

K−1
β

=
∫

β

β
r+δ1−1 exp(−βλ1)

r

∏
i=1

tβ−1
i:N P−(r+δ2+1) (A.28)

The Bayes estimator of the θ is

θ̂ =
∫

θ

θ f (θ |t1, t2, ..., tr,sr+1, ...,sN ,N,C,r)dθ =Kθ ,r
1

B−A
λ

δ1
1 λ

δ2
2

Γ(δ1)Γ(δ2)

∫
β

∫
α

β
r+δ1−1

γ
rα

r

∏
i=1

tβ−1
i:N dβdα∫

θ

θ
r+δ2 exp[−(γα

θP+λ1β +λ2θ)]dθ (A.29)

Consider the definite integral

I2 = lim
l→∞

∫ l

0
θ

r+δ2 exp[−(γα
θP+λ1β +λ2θ)]dθ = exp(−βλ1)γ

−α(r+δ2+2)P−(r+δ2+2)

(γαP− (r+δ2 +1)λ2) (A.30)
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Substituting the value of Kθ ,r and (A.30) in (A.29) we have for the conditional expectation of θ

θ̂ = Kθ

∫
α

γ−α(δ2+2)(γαP− (r+δ2)λ2)dα∫
α

γ−α(δ2+1)(γαP− (r+δ2)λ2)dα
(A.31)

Where

Kθ =

∫
β

β r+δ1−1 exp(−βλ1)∏
r
i=1 tβ−1

i:N P−(r+δ2+2)dβ∫
β

β r+δ1−1 exp(−βλ1)∏
r
i=1 tβ−1

i:N P−(r+δ2+1)dβ

(A.32)

The integrals in the numerator and denominator of (A.31) can be further simplified and thus we

have for the Bayes estimator of θ

θ̂ = Kθ

PI
θ̂ ,1− (r+δ2)λ2I

θ̂ ,2

PI
θ̂ ,3− (r+δ2)λ2I

θ̂ ,4
(A.33)

I
θ̂ ,4 = I

θ̂ ,2; I
θ̂ ,1 =

γ−A(δ2+1)− γ−B(δ2+1)

(δ2 +1) lnγ

I
θ̂ ,2 =

γ−A(δ2+2)− γ−B(δ2+2)

(δ2 +2) lnγ
, I

θ̂ ,3 =
γBδ2− γAδ2

δ2γδ2(A+B) lnγ
(A.34)

Similarly we can find the conditional expectation or the Bayes estimator of the re-parameterized

stress coefficient by evaluating the integral

α̂ =
∫

α

f (α|t1, t2, ..., tr,sr+1, ...,sN)dα

=
Kα,r

B−A
λ

δ1
1 λ

δ2
2

Γ(δ1)Γ(δ2)

∫
β

∫
θ

∫
α

β
r+δ1−1

θ
r+δ2−1

r

∏
i=1

tβ−1
i:N

αγ
rα exp[−(γαPθ +λ1β +λ2θ)]dβdθdα (A.35)

Substituting the value of Kα,r and the integral I1 in (A.35), we have for the Bayes estimator of α

α̂ =

∫
α

αγ−α(δ2+1)(γαP− (r+δ2)λ2)dα∫
α

γ−α(δ2+1)(γαP− (r+δ2)λ2)dα
(A.36)
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The integrals in the numerator and denominator of (A.36) have closed-form solutions and this gives

the final form of the Bayes estimator of α

α̂ =
PIα̂1,r− (r+δ2)λ2Iα̂2,r

PIα̂3,r− (r+δ2)λ2Iα̂4,r
(A.37)

Where

Iα̂1,r =
G1−G2

δ 2
2 ln2

γ
; Iα̂2,r =

G3−G4

(δ2 +1)2 ln2
γ

Iα̂3,r =
γBδ2− γAδ2

δ2γ(A+B)δ2 lnγ
; Iα̂4,r =

γ−A(δ2+1)− γ−B(δ2+1)

(δ2 +1) lnγ

(A.38)

G1,G2,G3 and G4 in (A.38) are given by

G1 = exp(−Aδ2 lnγ)(Aδ2 lnγ +1)

G2 = exp(−Bδ2 lnγ)(Bδ2 lnγ +1)

G3 = exp(−Aδ2 lnγ−A lnγ)[1+ lnγ(A(δ2 +1))]

G4 = exp(−Bδ2 lnγ−B lnγ)[1+ lnγ(B(δ2 +1))]

(A.39)
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APPENDIX B

METROPOLIS HASTING ALGORITHM-MCMC SIMULATION

This appendix describes the Markov Chain Monte Carlo-based Metropolis-Hastings algorithm

used to obtain the full posterior of the model parameters. The Metropolis-Hastings algorithm

enables sampling from a target posterior distribution by performing a random walk on a Markov

Chain in a manner that the target distribution is the stationary distribution of the simulated Markov

Chain. Given a target distribution π∗, the Metropolis-Hastings algorithm constructs a transition

kernel that converges to π∗ in the limit.

B.1 Irreducible and Aperiodic Markov Chain

Consider a stochastic process {X(n);n ≥ 0} as a family of Ω-valued random vectors defined

on the same probability space (Rd,B,Φ). B is the Borel σ -field on Rd and Φ is the probability

measure defined on the subsets of B.

The stochastic process {X(n);n≥ 0} is a Markov chain in discrete time taking values in finite

continuous state space, Ω⊂ Rd if it satisfies

Pr(Xn+1 ∈ A|Xn = In,Xn−1 = In−1, ...,X0 = I0) = Pr(Xn ∈ A|Xn = In) (B.1)

∀n≥ 0,In,In−1, ...,I0 ∈ Rd,∀A ∈ B

For the d-dimensional Markov process defined in (B.1), we consider a transition kernel P(I,A)

where I ∈ Rd and A ⊂ Rd . P(I,A) is the probability that the d-dimensional Markov process will

arrive in in the set A⊂ R given that the process is in state vector I ∈ Rd .

Pn(I,A) = Pr(Xn ∈ A|X0 = I)∀n ∈ N (B.2)

To ensure the irreducibility and aperiodiciy of the simulated Markov Chain the transition kernel
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must converge to a stationary distribution. This implies that the transition kernel must be irre-

ducible and aperiodic. To accomplish this consider two extremely small and disjoint subsets ∆In,Φ

and ∆I∗,Φ of Ω that contain the state current state vector In ∈ ∆In,Φ and the proposed state vector

I∗ ∈ ∆I∗,Φ with Φ(∆In,Φ)> 0 and Φ(∆I∗,Φ)> 0. The transition kernel P(Xn+1 ∈ ∆I∗,Φ|Xn ∈ ∆In,Φ)

will be Φ-irreducible and aperiodic if it has the form

P(Xn+1 ∈ ∆I∗,Φ|Xn ∈ ∆In,Φ) = a(In,I∗)q(I∗|In) (B.3)

Where a(In,I∗) is the acceptance probability of the candidate state vector I∗ ∈ ∆I∗,Φ and q(I∗|In)

is the multivariate proposal distribution of the candidate state vector I∗ ∈ ∆I∗,Φ conditioned on

the current state vector In ∈ ∆In,Φ. To preserve the ergodicity of the simulated Markov process

the Metropolis Hastings algorithm defines the acceptance probability of the candidate state vector,

I∗ ∈ ∆I∗,Φ as

a(In,I∗) = min

{
1,

π∗(I∗)q(In|I∗)
π∗(In)q(I∗|In)

}
(B.4)

Assuming that the target posterior is strictly positive in the entire state space, it follows that

a(In,I∗)> 0 and q(I∗|In) = Pr(I∗ ∈ ∆I∗,Φ|In ∈ ∆In,Φ)> 0 and hence

P(Xn+1 ∈ ∆I∗,Φ|Xn ∈ ∆In,Φ)> 0 (B.5)

Thus a Markov Process with the transition kernel given by (B.3) is irreducible and aperiodic and

hence converges to a unique invariant distribution.

B.2 Target Posterior as Invariant Distribution

A probability distribution π∗ on the finite continuous state space Ω satisfies detailed balance or

reversibility conditions with respect to the transition kernel in (B.3) if for any disjoint ∆In,Φ ⊂ Ω

and ∆I∗,Φ ⊂Ω

π
∗(∆In,Φ)P(Xn+1 ∈ ∆I∗,Φ|Xn ∈ ∆In,Φ) = π

∗(∆I∗,Φ)P(Xn+1 ∈ ∆In,Φ|Xn ∈ ∆I∗,Φ) (B.6)
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If a target posterior π∗ satisfies (B.6), then π∗ is the invariant or stationary distribution defined

on Ω with respect to the transition kernel of (B.3). With the transition kernel defined as in (B.3)

and the acceptance probability in (B.4) it can be shown that the target distribution π∗ satisfies the

detailed balance conditions and thus is a sample from the invariant distribution. To see this suppose

a(In,I∗) = 1. This implies that

a(I∗,In) =
π∗(∆In,Φ)q(I∗|In)

π∗(∆I∗,Φ)q(In|I∗)
(B.7)

With a(In,I∗) = 1 the left hand side of (B.6) becomes

π
∗(∆In,Φ)P(Xn+1 ∈ ∆I∗,Φ|Xn ∈ ∆In,Φ) = π

∗(∆In,Φ)q(I
∗|In) (B.8)

The right hand side of (B.6) thus equates to

π
∗(∆I∗,Φ)a(I∗,In)q(In|I∗) = π

∗(∆I∗,Φ)
π∗(∆In,Φ)q(I∗|In)

π∗(∆I∗,Φ)q(In|I∗)
q(In|I∗) = π

∗(∆In,Φ)q(I
∗|In) (B.9)

Hence the detailed balance or the reversibility condition is satisfied. Similarly it can be easily

shown that the detailed balance is satisfied in the case a(In,I∗) = π∗(I∗)q(In|I∗)
π∗(In)q(I∗|In)

B.3 Ergodic Theorem

he ergodic theorem dictates the long term probabilistic behavior of an irreducible Markov pro-

cess. An ergodic Markov process converges to a unique invariant distribution regardless of the

initial distribution. If the total number of visits made by an irreducible Markov process to a state

vector In ∈ ∆In,Φ be N∆In,Φ
(n) then by the Ergodic theorem

Pr
(

lim
n→∞

N∆In,Φ
(n)

n
= π

∗(∆In,Φ)

)
= 1 (B.10)

Equation (B.10) says that if an ergodic Markov process is run for a long time, the steady-state

probability of being in state vector In ∈ ∆In,Φ is the same as the fraction of the time the process
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spends in state vector In ∈ ∆In,Φ. Since the Markov process is never explicitly constructed, the

ergodic theorem allows us to sample from the target posterior by walking the Markov process and

recording the states.
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