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ABSTRACT 

Fluid phase behavior in shale reservoirs differs significantly from phase behavior in 

conventional reservoirs due to the strong interactions between fluid and boundary in nanopores. In 

this study, we applied equation-of-state (EOS) modeling, machine learning (ML) technique and 

molecular simulation to investigate fluid phase behavior in shale reservoirs. 

One common issue observed in liquid-rich shale (LRS) production is that oil recovery of LRS 

reservoirs is much lower compared to oil recovery from a conventional reservoir with the same 

drawdown. To understand this phenomenon, EOS modeling is developed to analyze the fluid 

compositions in the bulk and confined regions. Our simulation results indicate that hydrocarbons 

distribute heterogeneously with respect to pore size on a nanoscale. The leaner bulk composition 

leads to the reduction in oil recovery from LRS reservoirs. Although EOS modeling can accurately 

simulate fluid phase behavior in shale reservoirs, the required simulation time is much longer than 

that for models of conventional reservoirs. To solve this problem, ML techniques were applied to 

accelerate the phase-equilibrium calculations in the EOS modeling. In contrast to previous models 

designed for a specific type of hydrocarbon, we have developed a generalized, ML-assisted phase-

equilibrium calculation model that is suitable for shale reservoirs. In total, the average CPU time 

required for phase-equilibrium calculation using the generalized ML-assisted phase-equilibrium 

model was reduced by more than two orders of magnitude while maintaining an accuracy of 97%. 

With the development of shale oil and gas, depleted shale gas reservoirs may be attractive 

candidates for hydrogen (H2) storage. Molecular simulation was used to investigate the potential 

for H2 storage in depleted shale gas reservoirs. The results of the simulation suggest that a higher 

proportion of H2 exists in the bulk region. Because fluid is mainly produced from the bulk region, 
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the high percentage of H2 in bulk fluid would lead to high purity of H2 during the recovery process. 

This work contributes to the understanding and application of fluid phase behavior in shale 

reservoirs. 
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1. INTRODUCTION 

1.1 Problem Statement 

 In contrast to conventional reservoirs, which are dominated by macro-scale pores, shale 

reservoirs have a high proportion of nanopores [3]. According to the criteria suggested by IUPAC 

[4, 5], pores are categorized as three types: micropores (d < 2 nm), mesopores (2 nm < d < 50 nm) 

and macropores (d > 50 nm). The wide distribution of nanopores (including micropores and 

mesopores) leads to inaccurate predictions of hydrocarbon phase behavior using conventional 

models. Phase behavior has a significant effect on the composition and mobility of extracted oil 

and gas and their production rates [6]. Therefore, it is of great importance to develop new models 

to accurately describe fluid phase behavior in shale reservoirs. 

Liquid-rich shale (LRS) reservoirs belong to ultra-tight unconventional formations with a 

significant number of hydrocarbons [7]. In recent years, the widespread application of horizontal 

wells and multi-stage hydraulic fracturing has greatly enhanced the recovery of LRS [8]. One 

common issue observed in LRS production is that oil recovery from LRS is much lower compared 

with oil recovery from a conventional reservoir with the same drawdown [9]. To understand this 

phenomenon, the phase behavior of hydrocarbons in LRS should be investigated. 

The Peng–Robinson equation of state (PR EOS) [10] has been a commonly used equation-

of-state (EOS) modeling in petroleum engineering. However, it becomes inaccurate when the pore 

diameter decreases to below several nanometers. Travalloni et al. [11, 12] have proposed an 

extended PR EOS (PR-C EOS) which is accurate under both macro-scale and nanoscale 

conditions. Although the PR-C EOS has demonstrated much higher accuracy at nanoscale 

condition, the required CPU time increases significantly due to its complexity. Acceleration of 
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phase-equilibrium calculations using PR-C EOS is required before PR-C EOS can be incorporated 

in reservoir simulators. 

As a low-energy-density fuel [13, 14], hydrogen (H2) requires extremely large storage 

volume to meet energy demand compared with conventional fossil fuels. Previous studies [15-18] 

have shown that geologic H2 storage sites (including depleted gas reservoirs, salt caverns and 

saline aquifers) have high storage capacity. With the development of shale oil and gas, depleted 

shale gas reservoirs may have great potential for H2 storage, and this possibility needs to be further 

investigated as well [19, 20]. 

 

1.2 Review of Current Techniques 

Many studies have investigated fluid phase behavior in shale reservoirs. Commonly used 

methods have been experimental studies, EOS modeling, molecular simulation and machine 

learning (ML). 

The relevant experimental studies can be categorized as the adsorption-desorption 

experiments, the differential scanning calorimetry (DSC) experiments, and the lab-on-a-chip 

experiments. The adsorption and desorption experiments are performed to observe the phase 

transition by measuring the sharp change of fluid density. The sudden change of fluid density is 

caused by the accumulation or dispersion of molecules near the boundary surface [6]. Previous 

adsorption-desorption experiments [21-24] showed that the saturation pressure and critical 

temperature would decrease under confined conditions compared with bulk (unconfined) 

conditions. DSC is an important thermal technique that records the exothermic and endothermic 

rates at different temperatures. In the process of vaporization, the fluid absorbs heat from the 

surrounding to vaporize and the temperature stays constant. As a result, the heat flow rate increases 
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sharply at this specific temperature, which can be regarded as the bubble point [25]. Luo et al. [26, 

27] conducted a series of experiments using the DSC technique and found that the bubble-point 

temperature at the nano-scale condition is higher than the bubble-point temperature under bulk 

condition. The recently well-developed lab-on-a-chip technique is another effective method in the 

investigation of phase behavior. Several channels with different depths are etched on a chip to 

simulate the nanopores with various depths. The chip is placed under a high-resolution camera and 

the phase transition process can be observed and recorded directly [28, 29]. The experimental 

results show that, as the depth of the nanochannel decreases, the deviation of saturation point 

becomes more significant [30-32]. 

EOS modeling plays an important role in phase-equilibrium calculation in reservoir 

simulations. In petroleum engineering, PR EOS is one of the most widely used EOSs due to its 

accuracy and convenience. However, the accuracy of PR EOS largely decreases under nano-scale 

conditions. To incorporate the confinement effect into PR EOS, modifications are implemented in 

mainly three approaches: 1) considering the capillary pressure calculated by the Young-Laplace 

equation [33, 34], 2) tuning the critical parameters of pure components using experimental or 

molecular simulation results [35], and 3) use the generalized van der Waals theory to extend the 

application of PR EOS [11, 12, 36]. These modified PR EOSs have been applied to simulate fluid 

phase behavior in unconventional reservoirs and show better prediction results than traditional PR 

EOSs. Although the modified PR EOSs show higher accuracy in phase-equilibrium calculations, 

the required CPU time increases due to the complexity of the modified PR EOSs, especially for 

the PR-C EOS. 

Molecular simulation precisely simulates the interactions and motions of molecules at 

various conditions. The commonly used molecular simulation methods in phase behavior studies 
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are molecular dynamics (MD) simulation and Monte Carlo (MC) simulation [6, 37-39]. MD 

simulation analyzes the physical movements of particles based on Newton’s equations of motion. 

It has the advantage of investigating both equilibrium and non-equilibrium conditions [40]. MC 

simulation is a statistical method that performs different types of MC moves to allow the system 

to reach equilibrium. Different ensembles are designed to simulate various conditions. The grand 

canonical ensemble allows the exchange of molecules and energy and thus, the grand canonical 

Monte Carlo (GCMC) simulation is often used to investigate the fluid adsorption [41, 42]. 

Panagiotopoulos [43] developed the Gibbs ensemble Monte Carlo (GEMC) simulation by 

separately simulating the two phases into two boxes. The GEMC method is specifically effective 

in analyzing fluid density and phase behavior [44]. To investigate the confinement effect in a multi-

scale system, a gauge cell with fixed volume is added to an ensemble to simulate the confined 

region. Vasileiadis et al. [45] proposed the gauge-GEMC method for both single-component and 

multi-component conditions. For a multi-component system, each component is assigned with a 

gauge cell which can only transfer particles with the system box. Jin et al. [46-48] proposed the 

gauge-GCMC method to generate phase diagrams of multi-component systems under 

confinement. Both of their results showed that, in a multi-scale system, the critical temperature 

decreases while the critical density increases compared with the bulk condition. 

ML technique has been utilized in petroleum engineering to facilitate the production 

forecasting [49, 50], parameter optimization [51, 52], compositional simulation [53, 54], and 

image recognition [55, 56]. Specifically, many researchers applied the ML technique in the 

stabilization and acceleration of vapor-liquid equilibrium (VLE) calculations [57-60]. Gaganis and 

Varotsis [61] used ML to speed up the compositional reservoir simulation. For the stability test, 

the Support Vector Machines (SVM) algorithm [62] is used to determine the phase stability. 
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Instead of collecting data points uniformly, data points around the phase boundary are more likely 

to be selected to train the ML model while the data points with temperature higher than 

cricondentherm or pressure higher than cricondenbar are ignored since the fluid under that 

condition can be directly determined. For the phase split computation, Gaganis and Varotsis 

utilized feed-forward artificial neural network to estimate the equilibrium ratio, which is an 

important coefficient in the Rachford-Rice equation [63]. Kashinath et al. [64] improved Gaganis 

and Varotsis’s work by applying the relevance vector machine (RVM) [65] to predict the fluid 

phase stability. Compared with SVM, RVM sets a discriminant threshold for the classification 

results. The predicted result is accepted only when the posterior probability is higher than the 

threshold, therefore reducing the misclassification rate. Groven et al. [53] used the ANN to predict 

the VLE properties of polycyclic aromatic hydrocarbons (PAHs). The predicted results were 

consistent with the experimental results. Mesbah et al. [66] applied the Least-Squares Support 

Vector Machine (LSSVM) [67] algorithm to predict the saturation pressure of CO2/hydrocarbon 

binary mixture. The predicted results were in good agreement with the results calculated by EOS. 

Wang et al. [68] proposed a proxy flash calculator which can predict the phase condition for fluid 

system and provide the initial guess for phase split computation if the fluid system is in two-phase 

condition. Different from the previous work, the capillary pressure effect is incorporated in the 

proxy flash calculator to better predict the fluid phase behavior in unconventional reservoirs. 
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2. FLUID PHASE BEHAVIOR USING EQUATION-OF-STATE MODELING† 

This section describes the application of PR-C EOS to investigate hydrocarbon phase 

behavior in shale reservoirs during the constant volume depletion (CVD) process. The fluid 

compositions in the bulk region and nanopores were calculated, and the produced fluid 

compositions at different pressures were estimated. An in-house reservoir simulator was used for 

the simulations. The simulation results explain the phenomenon that oil recovery from LRS is 

much lower compared with oil recovery from a conventional reservoir with the same drawdown. 

 

2.1 Methodology 

Travalloni et al. [12] formulated the PR-C EOS through the generalized van der Waals 

theory by including the molecular descriptions of fluid-fluid and fluid-pore wall interactions. The 

PR-C EOS calculates the fractions of molecules in the adsorbed region and the central 

(unadsorbed) region. The fluid–pore wall interaction is described by a square-well potential with 

the parameters of square-well depth (εp) and square-well width (δp), as shown in Figure 1. The PR-

C EOS reverts to PR EOS when the pore diameter reaches macro-scale conditions. 

 
 Part of this chapter is reprinted with permission from “A Generalized Machine Learning-Assisted Phase-Equilibrium 

Calculation Model for Shale Reservoirs” by Fangxuan Chen, Sheng Luo, Shihao Wang and Hadi Nasrabadi, 2022. 

Fluid Phase Equilibria, Volume 558, Pages 113423, Copyright [2022] by Elsevier B.V. 
† Part of this chapter is reprinted with permission from “Multiscale Pressure/Volume/Temperature Simulation of 

Decreasing Condensate/Gas Ratio at Greater than Dewpoint Pressure in Shale Gas-Condensate Reservoirs” by Sheng 

Luo, Fangxuan Chen, Dengen Zhou and Hadi Nasrabadi, 2021. SPE Journal, Volume 26, Pages 4174-4186, Copyright 

[2021] by Society of Petroleum Engineers. 
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Figure 1: Square-well potential model for the fluid–pore wall interaction. 

 

Based on the generalized van der Waals theory, the canonical partition function (Q) was 

calculated as follows: 

𝑄(𝑇, 𝑉, 𝑁1, 𝑁2, … , 𝑁𝑛𝑐) = ∏ (
𝑞
𝑖

𝑁𝑖

𝜆
𝑖

3𝑁𝑖𝑁𝑖!
)𝑉𝑓

𝑁exp⁡(∫
𝐸𝑐𝑜𝑛𝑓

𝑘𝐵𝑇2

𝑇

∞
𝑑𝑇)𝑛𝑐

𝑖=1                            (1) 

where T denotes the temperature, V represents the total volume of the system, N is the total number 

of molecules, nc denotes the number of components in the system, q denotes intramolecular 

contribution, λ is translational contribution, Vf denotes the free volume, and Econf represents the 

configurational energy. The free volume (Vf) is calculated based on the equations shown below: 

𝑉𝑓 = 𝑉 − ∑ (
𝑁𝑖

𝜌𝑚𝑎𝑥,𝑖
)𝑛𝑐

𝑖=1                                                       (2) 

𝜌𝑚𝑎𝑥,𝑖𝜎𝑖
3 = 1.158 − 0.479 exp(0.621 (0.5 −

𝑟𝑝

𝜎𝑖
)) + 0.595exp⁡(4.014(0.5 −

𝑟𝑝

𝜎𝑖
))      (3) 

𝜎𝑖 = √
1.158

𝑁𝑎𝑣
𝑏𝑖

3
                                                             (4) 

The parameters ρmax,i and σi represent the packing density of pure component i and the effective 

diameter of component i, respectively. The PR-C EOS divides a pore into two parts: the surface 
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adsorbed region (Region I and II) and the confined core region (Region III), as shown in Figure 2. 

The fluid molecules in the confined core region are only affected by fluid-fluid intermolecular 

interactions, while the fluid molecules in the surface adsorbed region are subject to both fluid-fluid 

and fluid–pore wall interactions. Based on this assumption, the configurational energy (Econf) is 

modeled as follows: 

𝐸𝑐𝑜𝑛𝑓 = −∑ ∑ (
𝑁𝑗

2
𝑁𝑐,𝑖𝑗𝜀𝑖𝑗)

𝑛𝑐
𝑗=1

𝑛𝑐
𝑖=1 − ∑ (𝑁𝑖𝐹𝑝,𝑖𝜀𝑝,𝑖)

𝑛𝑐
𝑖=1                           (5) 

where Nc,ij is the coordination number, εij denotes the interaction energy between components i and 

j, εp,i denotes the interaction energy between component i and the pore wall, and Fp,i represents the 

percentage of molecules of component i in the surface-adsorbed region. The first part of Equation 

(5) represents the fluid-fluid interactions, while the second part represents the fluid–pore wall 

interactions. The term Fp,i is modeled by the empirical expression as shown below: 

𝐹𝑝,𝑖 = 𝐹𝑝𝑟,𝑖 + (1 − 𝐹𝑝𝑟,𝑖)(1 − exp⁡(−
𝜀𝑝,𝑖

𝑘𝐵𝑇
))(1 −

𝑥𝑖𝜌

𝜌𝑚𝑎𝑥,𝑖
)𝜃

𝑖
                             (6) 

𝐹𝑝𝑟,𝑖 =
(𝑟𝑝−𝜎𝑖/2)

2−(𝑟𝑝−𝜎𝑖/2−𝛿𝑝,𝑖)
2

(𝑟𝑝−𝜎𝑖/2)
2                                             (7) 

𝜃𝑖 =
𝑟𝑝

𝛿𝑝,𝑖+𝜎𝑖/2
                                                              (8) 

The term Fpr,i is the volume fraction of the surface-adsorbed region accessible to the mass center 

of the fluid molecules in a pore (calculated as the volume ratio of Region II over Regions II and 

III), which is affected by the value of δp,i. The term δp,i is the square-well width of the fluid–pore 

wall interaction potential of component i. When the distance between a fluid molecule and a pore 

wall is less than δp,I, the fluid molecule is subject to fluid–pore wall interaction. In this paper, the 

square-well width (δp) of different types of hydrocarbons was set as 0.5σi, which is widely used 

for square-well potential models in the existing literature [69, 70]. 
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Figure 2: Schematic figure of a cylindrical pore. The dark green regions (Regions I and II) 

are the surface-adsorbed regions, while the light green region (Region III) is the confined 

core region. Region II represents the surface-adsorbed region that is accessible to the mass 

center of the fluid molecules. Fpr is defined as the volume ratio of Region II over Regions II 

and III. 

 

The Helmholtz free energy (A) and chemical potential of component i (μi) were obtained 

using the following thermodynamic relations: 

𝐴(𝑇, 𝑉, 𝑁1, 𝑁2, … , 𝑁𝑛𝑐) = −𝑘𝐵𝑇𝑙𝑛𝑄(𝑇, 𝑉, 𝑁1, 𝑁2, … , 𝑁𝑛𝑐)                              (9) 

𝜇𝑖 = (
𝜕𝐴

𝜕𝑁𝑖
)𝑇,𝑉,𝑁𝑗≠𝑖

                                                            (10) 

The confinement-modified energy parameter (ap,ij) between components i and j and the 

confinement-modified volume parameter (bp,i) of component i were calculated as follows: 

𝑎𝑝,𝑖𝑗 = √𝑎𝑖𝑎𝑗(1 −
2

5

𝜎𝑖𝑗

𝑟𝑝
)                                            (11) 

𝑏𝑝,𝑖 =
𝑁𝑎𝑣

𝜌𝑚𝑎𝑥,𝑖
                                                               (12) 
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Applying the mixing rule based on the mole fraction of each component in a mixture, the 

confinement-modified energy parameter (ap) and the confinement-modified volume parameter (bp) 

of the fluid mixture were calculated as follows: 

𝑎𝑝 = ∑ ∑ (𝑥𝑖𝑥𝑗𝑎𝑝,𝑖𝑗)
𝑛𝑐
𝑗=1

𝑛𝑐
𝑖=1                                                   (13) 

𝑏𝑝 = ∑ 𝑥𝑖𝑏𝑝,𝑖
𝑛𝑐
𝑖=1                                                            (14) 

The parameters of the PR EOS used in this paper were determined by the equations shown below: 

𝑚𝑖 = {
0.3746 + 1.5423𝑤𝑖 − 0.2699𝑤𝑖

2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 < 𝑤𝑖 ≤ 0.5

0.3796 + 1.4850𝑤𝑖 − 0.1644𝑤𝑖
2 + 0.01667𝑤𝑖

3⁡⁡⁡⁡⁡𝑤𝑖 > 0.5
                   (15) 

𝑎𝑖 =
0.4572𝑅2𝑇𝑐,𝑖

2

𝑃𝑐,𝑖
(1 +𝑚𝑖(1 − √

𝑇

𝑇𝑐,𝑖
))2                                          (16) 

𝑏𝑖 =
0.07780𝑅𝑇𝑐,𝑖

𝑃𝑐,𝑖
                                                           (17) 

 

2.2 Model Description 

Shale reservoirs possess a complex and heterogeneous pore size distribution ranging from 

the nanoscale to the macroscale. Macroscale regions include large natural fractures and hydraulic 

fractures, and their widths are in the range of millimeters [71, 72]. Small natural fractures and 

macropores form the mesoscale region, with a width or diameter in the order of micrometers [73]. 

Nanopores in the organic matter contribute to the nano-porosity of the shale rock [74]. Two types 

of techniques have been applied to characterize shale pore geometry: fluid intrusion methods and 

imaging techniques. Fluid intrusion methods consist of mercury injection capillary pressure 

(MICP) analysis and low-pressure adsorption (LPA) tests. MICP can characterize pores with 

diameters higher than 2 nm, while low-pressure CO2 adsorption is able to determine the 

microporosity of pores less than 2 nm. Together, they can present a whole view of the pore size 

distribution [3]. Imaging techniques include nuclear magnetic resonance (NMR) [75], focused ion 
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beam scanning electron microscopy (FIB-SEM) [76], transmission electron microscopy (TEM) 

[77], and atomic force microscopy (AFM) [78]. Although we can roughly make a classification of 

pores and fractures, the width or diameter values may vary significantly from one formation to 

another. 

Luo et al. [79] presented a multi-scale PVT model to investigate the phase behavior and 

depletion process in shale porous media. In the model, the porous space is divided into two parts: 

the bulk region and nanoscale region. The bulk region refers to natural fractures, hydraulic 

fractures, and macropores, which are on the macroscale (d ≥ 50 nm). The nanoscale region includes 

nanopores (d < 50 nm). The nanoscale region is further divided into several regions with specific 

diameters. In this study, we assume three regions in the multi-scale PVT model: one bulk region 

and two nanopore regions. The bulk region has a diameter of 10 μm, while the two nanopore 

regions have diameters of 15 nm and 5 nm. The initial volumes of the three regions apply a ratio 

of Vbulk:V15nm:V5nm = 3:2:1 [79]. We adopt this pore size distribution scenario as the base case in 

multi-scale simulations. A sketch is shown in Figure. 3. 
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Figure 3: The multi-scale model used in this work with a volume ratio as Vbulk : V15nm : V5nm 

= 3:2:1. 

 

2.3 Reservoir Conditions and Fluid Properties 

Two cases are analyzed in this paper, one for a shallow reservoir and the other for a deep 

reservoir. Reservoir conditions are shown in Table 1 and the reservoir simulation parameters are 

listed in Table 2. 

 

Table 1: Reservoir conditions of the shallow and deep gas condensate cases 

Properties Case 1 (Shallow reservoir) Case 2 (Deep reservoir) 

Reservoir temperature 

(°F) 
165 210 

Initial reservoir pressure 

(psi) 
4,000 8,000 

Pore size distribution Vbulk : V15nm : V5nm = 3:2:1 Vbulk : V15nm : V5nm = 3:2:1 

Reservoir fluid type Gas condensate Gas condensate 

 

Table 2: Parameters for reservoir simulation in the shallow and deep reservoir cases 

Properties Values Unit 

nog 2  

ng 2  

Krog at Sgc 1 fraction 

Krg at Sorg 0.8 fraction 

Sorg 0.15 fraction 
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Sgc 0.03 fraction 

Rock Compressibility 6.010-6 1/psi 

 

The bulk-state phase diagram is shown in Figure 4. The reservoir fluids are initially in 

supercritical state and will go through an isothermal depletion. 

 

 

Figure 4: Bulk-state phase diagrams of the shallow and deep reservoirs. 

 

The gas condensate fluid uses a synthetic model of six-pseudo-component system to 

represent typical condensate sample’s compositions from lab test. The parameters of PR-C EOS 

are listed in Tables 3 and 4. The critical temperature, critical pressure, acentric factors, volume 

shift parameters, and binary interaction parameters are bulk-state parameters, while the fluid–wall 

interaction parameters (εp) and square well width (δp) are confinement parameters. εp is obtained 

by interpolating or extrapolating the fluid–pore surface affinity factor from the work by Luo et al. 

[79]. Based on the studies conducted by Vega et al. [80], they found that large values of δp/σ give 

deviated phase equilibrium and a range between 0.25 to 0.75 leads to the most accurate results. 
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Herein, δp/σ is assumed to be 0.5 for all pseudo-components, which have generally been used for 

square well potential models in previous works [69, 70, 81]. 

 

Table 3: Extended PR EOS properties for the gas condensate 

Species 
MW 

(g/mol) 

Tc  

(R) 

Pc 

(psia) 
ω VSP 

εp/kB  

(K) 
δp/σ 

Mole 

fraction 

C1-N2 16.14 343 667 0.008 -0.154 229 0.5 0.6442 

C2-CO2 30.19 550 711 0.099 -0.124 486 0.5 0.1738 

C3 44.10 666 616 0.152 -0.086 1210 0.5 0.0770 

C4-C5 62.67 785 522 0.193 -0.051 1836 0.5 0.0537 

C6-C10 103.44 1064 413 0.351 0.029 2044 0.5 0.0372 

C11
+ 198.56 1285 246 0.603 0.133 2323 0.5 0.0141 

 

Table 4: Binary interaction parameters for the gas condensate 

BIP C1-N2 C2-CO2 C3 C4-C5 C6-C10 C11
+ 

C1-N2 0.000 0.003 0.009 0.015 0.034 0.063 

C2-CO2 0.003 0.000 0.002 0.005 0.018 0.041 

C3 0.009 0.002 0.000 0.001 0.009 0.026 

C4-C5 0.015 0.005 0.001 0.000 0.004 0.018 

C6-C10 0.034 0.018 0.009 0.004 0.000 0.005 

C11
+ 0.063 0.041 0.026 0.018 0.005 0.000 

 

2.4 Results and Analysis 
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The compositions in both the single bulk-scale and multi-scale shale models of the two 

cases are compared under initial reservoir conditions. The composition profiles are shown in 

Figures. 5 and 6. The given mole fractions of the pseudo-components in Table 3 are used as the 

initial bulk region compositions. It is assumed that after geologic time the fluids in different sizes 

of pores are in thermodynamic equilibrium. The fluid compositions in 15 and 5 nm pores can be 

obtained by solving the chemical equilibrium equation shown below:  

𝜇𝑖,𝑏𝑢𝑙𝑘 = 𝜇𝑖,15𝑛𝑚 = 𝜇𝑖,5𝑛𝑚∀𝑖 ∈ 1,2, … ,𝑁𝐶                                     (18) 

 

 

(a) Single bulk model 

 

(b) Multi-scale model 

Figure 5: Fluid compositions in the shallow reservoir in the (a) single bulk model and (b) 

multi-scale model 
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(a) Single bulk model 

 

 

(b) Multi-scale model 

Figure 6: Fluid compositions in the deep reservoir in a (a) single bulk model and (b) multi-

scale model 

 

In the multi-scale PVT model, we assume a set of two-stage separators under the conditions 

of 200 psia, 100 °F and 50 psia, 80 °F. During the depletion process, fluids produced from system 

are assessed with flash calculations with separators conditions and stock tank condition (14.696 

psia and 60 °F). Typical reservoir properties are characterized based on the above process for both 

single bulk-scale and multi-scale models. For the shallow reservoir, the initial gas formation 

volume factors (Bg,i) are 0.716 and 0.776 rb/Mscf, and the initial solution oil-gas ratios (ri) are 82.5 

and 146.3 stb/MMscf for single bulk-scale and multi-scale models, respectively. The reservoir 

fluid compositions in the nanopores differ from the compositions in the bulk region. Fewer light 

hydrocarbons (C1-C2) but significantly more heavier hydrocarbons (C6+) are observed in the 

nanopores due to pore adsorption (Figures. 5 and 6). It should be noted that the composition shifts 

of components occur in different relative ratios: in the shallow reservoir case, C1-C2 decreases 

from 82% at bulk to 74% at 15 nm and 56% at 5nm, while C6+ significantly increases from 5% at 

bulk to 9% at 15 nm and 15% at 5 nm (Figure. 5). Such drastic composition shifts result in change 
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to original oil and gas in-place: the original gas in place (OGIP) of the multi-scale model decreases 

7.7%, while the original oil in place (OOIP) of the multi-scale model increases 63.8% when 

compared with the corresponding values of the single bulk-scale model. In the deep reservoir, 

similar trends can be observed. The values of Bg,i are 0.603 and 0.645 rb/Mscf, and the values of 

ri are 82.5 and 118.1 stb/MMscf for the single bulk-scale and multi-scale models, respectively. 

The OGIP of the multi-scale model decreases 6.6%, while the OOIP of the multi-scale model 

increases 33.8% when compared with the corresponding values of the single bulk-scale model. 

The results show that the existence of nanopores can slightly decrease the OGIP but significantly 

increase the OOIP, since nanopores contain more intermediate and heavy components. The 

compositional differences will affect the produced fluids as long as the depletion zone penetrates 

into the shale matrix. According to the comparison of Figures. 5(b) and 6(b), at a high pressure, 

such compositional differences are reduced among the three regions, because the pores will be 

more densely packed under higher pressure, which suppresses the selectivity effect of the 

nanopores. The OOIP increment is smaller in the deep reservoir case than in the shallow reservoir 

case, which is associated with the lower fractions of heavy components in the nanopores. 

Based on the PR-C EOS, each pore is divided into two regions: the core region and surface-

adsorbed region. A sketch of a pore is shown in Figure. 2. Fluid molecules in the core region only 

interact with fluid molecules, while fluid molecules in the surface-adsorbed region are affected by 

both fluid molecules and wall molecules. The distribution of fluid molecules is determined by the 

PR-C EOS considering the effects of temperature, fluid density, confinement degree, and the fluid–

wall interaction parameter.  Compositions in the multi-scale regions of the two cases are shown in 

Figures. 7 and 8. Regardless of pore size, the surface-adsorbed regions are rich in intermediate to 

heavy hydrocarbons (C3-C11+), while more light hydrocarbons (C1 and C2) end up in the core 
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region. Alfi et al. [82] applied the PR-C EOS and also found the existence of compositional 

heterogeneity between the small and large pores. The steric hindrance has more significant effect 

in small pores (d < 6 nm) while the energetic effect becomes dominant in relatively large pores (6 

nm < d < 40 nm). The fluid behaves bulk-like when the pore diameter is larger than 40 nm. 

However, in terms of the total mass percentage in the two regions, the pore size plays a dominant 

role. For macroscale pores, nearly all molecules gather in the core region. When the diameters of 

the pores decrease to the nanometer scale, the confinement effect plays a significant role on the 

fluid phase behavior, as there are more molecules distributed in the surface-adsorbed region. 

 

 

Figure 7: Compositions in the surface-adsorbed region and the core region of the shallow 

reservoir 
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Figure 8: Compositions in the surface-adsorbed region and the core region of the deep 

reservoir 

 

Constant volume depletion (CVD) processes are simulated using the multi-scale PVT 

model. First, the fluid phase equilibriums for the different porous geometry sizes are calculated to 

determine the compositions in each pore. The pore-size-dependent transmissibility (Ta) [83] is 

defined as: 

𝑇𝑎 =
𝐴𝑐𝐾𝐾𝑟

𝜇
                                                                 (19) 

where Ac is the cross-sectional area of cylindrical pores, and K is the pore-size-dependent 

permeability. Based on the pore-size-dependent transmissibility, the volume increment of pore i 

(∆𝑉𝑖) is determined by 

∆𝑉𝑖 = ∆𝑉 ∙
𝑇𝑎,𝑖

∑ 𝑇𝑎,𝑗
𝑁𝑅
𝑗=1

                                                             (20) 

where ∆𝑉 denotes the volume increment of the whole system. For a CVD process, the ending 

volume of pore i (Vend,i) is first calculated using Equation (21) by incorporating the rock 

compressibility factor (cf). The parameters 𝑉𝑖𝑛𝑖𝑡,𝑖, 𝑃𝑒𝑛𝑑, and 𝑃𝑖𝑛𝑖𝑡 denote the initial volume of pore 

i, the ending pressure, and the initial pressure, respectively. Then, the depleted fluid volume of 

pore i (𝑉𝑑𝑒𝑝𝑙𝑒𝑡𝑒𝑑,𝑖) is calculated by Equation (22), and the depleted fluid compositions of pore i can 

be determined according to 𝑉𝑑𝑒𝑝𝑙𝑒𝑡𝑒𝑑,𝑖. The depleted fluid moles for hydrocarbon j (𝑛𝑗,𝑑𝑒𝑝𝑙𝑒𝑡𝑒𝑑) 

are the sum of the depleted fluid mole from each pore i, as shown in Equation (23). 

𝑉𝑒𝑛𝑑,𝑖 = 𝑉𝑖𝑛𝑖𝑡,𝑖 ∙ 𝑒𝑥𝑝⁡(𝑐𝑓(𝑃𝑒𝑛𝑑 − 𝑃𝑖𝑛𝑖𝑡))                                        (21) 

𝑉𝑑𝑒𝑝𝑙𝑒𝑡𝑒𝑑,𝑖 = 𝑉𝑖𝑛𝑖𝑡,𝑖 + ∆𝑉𝑖 − 𝑉𝑒𝑛𝑑,𝑖                                            (22) 

𝑛𝑗,𝑑𝑒𝑝𝑙𝑒𝑡𝑒𝑑 = ∑ 𝑉𝑑𝑒𝑝𝑙𝑒𝑡𝑒𝑑,𝑖𝑐𝑗,𝑖
𝑁𝑅
𝑖=1                                                  (23) 
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Since the transmissibility in the bulk region is much higher than the nanopores, the depleted system 

volume is primarily governed by the depleted volume in the bulk region. Therefore, the moles of 

depleted fluid of the total system are approximately the same as the depleted moles from the bulk 

region. The depletion CGR is approximately the same as bulk region fluid oil-gas solution ratio 

(rbulk). 

In the shallow reservoir case (𝑇𝑖 = 165°𝐹, 𝑃𝑖 = 4000⁡𝑝𝑠𝑖𝑎), the compositions of each 

component in both the single bulk and multi-scale model under different pressures are shown in 

Figures. 9 and 10. 

 

 

Figure 9: Hydrocarbon compositions of single bulk model under different pressures in the 

shallow reservoir (L: liquid, V: vapor, SC: supercritical, Pd: dew-point pressure) 
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Figure 10: Hydrocarbon compositions of multi-scale model under different pressures in the 

shallow reservoir (L: liquid, V: vapor, SC: supercritical, confined Pd: dew-point pressure in 

the confined system) 

 

Due to the nanopore effect, the depletion process of multi-scale system occurs differently 

than the single bulk system (Figures. 9 and 10). Above dew point, the nanopores selectively release 

light hydrocarbons as the pressure decreases. As a result, the bulk region hydrocarbon fluid 

becomes learner and the depletion CGR decreases when the pressure is above dew point, as shown 

in Figure. 11. This behavior is consistent with field observations from the productions of shale gas 

condensate reservoirs [84, 85]. Such CGR behavior cannot be modeled with bulk thermodynamics 

modeling, which predicts a constant production CGR above dew point. It should be noted that in 

the multi-scale model the initial depletion condensate–gas ratio (CGRi = 82.5 stb/MMscf) is lower 

than the initial solution oil–gas ratio (ri = 146.3 stb/MMscf), as shown in Figure. 5. The reason is 

that the depleted fluid compositions are governed by the lean bulk region with a high 
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transmissibility. The decrease of CGR is sensitive to pore size distribution: as the volume 

percentage of bulk volume decreases from 70% to 30%, the CGR decline becomes steeper due to 

the increased nanopore effect. The continuous decrease in the CGR suggests that, in field 

production, CGR production will decrease above the dew-point pressure as the depletion zone 

penetrates into the shale matrix. 

 

 

Figure 11: Relations of CGR and pressure of single bulk and multi-scale models in the 

shallow reservoir (unshaded points represent the dew pressures). Bulk: pure bulk fluid; 

multi-scale cases: bulk region volume percentage as 30%, 50% and 70%. 15 and 5 nm pore 

volume are kept in ratio 2:1 for all cases. 50% bulk volume one is considered as the pore-

size-distribution base case and also applied in the deep reservoir scenario. 

 

As the bulk region composition changes due to the nanopore effect, the dew-point pressure 

shifts accordingly. We observe that the dew-point pressure of multi-scale system shifts to 3142 

psia compared with the single bulk system dew point of 3300 psia. It is worth noting that dew 

point only occurs within the bulk region and there is no liquid drop-out happens in nanopore. 

Throughout the process, the fluid in nanopores stays at single-phase state. Compositional 

differences become more remarkable at low pressures, as the bulk region is rich in light ends while 
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the nanopores accumulate intermediate and heavy components. This phenomenon indicates that, 

during the depletion process, a fraction of the intermediate and heavy components is trapped in the 

nanopores, which results in condensate recovery loss. 

In the deep reservoir case (𝑇𝑖 = 210°𝐹, 𝑃𝑖 = 8000⁡𝑝𝑠𝑖𝑎), compositions of each component 

in both the bulk and multi-scale models under different pressures are shown in Figures. 12 and 13. 

 

 

Figure 12: Hydrocarbon compositions of single bulk model under different pressures in the 

deep reservoir (L: liquid, V: vapor, SC: supercritical) 

 



 

24 

 

 

 

 

Figure 13: Hydrocarbon compositions of multi-scale model at different pressures in the deep 

reservoir (L: liquid, V: vapor, SC: supercritical) 

 

The bulk model has a dew-point pressure of 3327 psia, while there is no single- to two-

phase transition occurring in any region of the multi-scale model. Supercritical fluids in the bulk 

region and nanopores turn into subcritical liquid or vapor as the pressure in the corresponding 

region drops below the critical pressure. In the multi-scale model, the fluid in the bulk region is 

generally leaner than the fluid in the nanopores, and it becomes increasingly leaner as the pressure 

decreases. Compositional selectivity between the different regions causes the nanopores to be rich 

in intermediate and heavy components, which is similar to the shallow reservoir case. 

The CGRs of the bulk and multi-scale models under different pressures are summarized in 

Figure. 14. Similar to the trend of the shallow reservoir case, the bulk CGR remains constant when 

the pressure is above the dew-point pressure, while multi-scale CGR decreases upon the start of 

depletion. 
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Figure 14: Relations of CGR and pressure of single bulk and multi-scale models in the deep 

reservoir (Empty points represent the dew pressures) 
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3. ACCELERATING PHASE-EQUILIBRIUM CALCULATION USING MACHINE 

LEARNING† 

In this section, we propose a generalized ML-assisted phase-equilibrium calculation model 

to accelerate phase-equilibrium calculation. In our traditional reservoir simulator, the phase-

equilibrium calculation is performed using PR-C EOS, which is accurate but time-consuming. The 

introduction of ML techniques could significantly reduce the running time without decreasing 

accuracy unacceptably. In this regard, we have found that the combination of PR-C EOS and ML 

techniques can allow the proxy calculation model to conduct phase-equilibrium calculation in a 

rapid and accurate way. 

 

3.1 Methodology 

The methodologies of traditional phase-equilibrium calculation and ML models are 

explained in detail in this section. 

 

3.1.1 Traditional Phase-Equilibrium Calculation 

The phase-equilibrium calculation consists of two parts: stability test and phase-split 

computation. We need to first determine if the fluid is in single-phase or two-phase condition, 

which is the aim of the stability test. If the fluid is in two-phase condition, the phase split 

computation will be conducted to obtain the compositions in the vapor and liquid phases. 

 
 Part of this chapter is reprinted with permission from “A Generalized Machine Learning-Assisted Phase-Equilibrium 

Calculation Model for Shale Reservoirs” by Fangxuan Chen, Sheng Luo, Shihao Wang and Hadi Nasrabadi, 2022. 

Fluid Phase Equilibria, Volume 558, Pages 113423, Copyright [2022] by Elsevier B.V. 
† Part of this chapter is reprinted with permission from “A Novel Machine-Learning Assisted Phase-Equilibrium 

Calculation Model for Liquid-Rich Shale Reservoirs” by Fangxuan Chen, Sheng Luo, Shihao Wang and Hadi 

Nasrabadi, 2023. SPE Proceedings, SPE-212193-MS, Copyright [2023] by Society of Petroleum Engineers. 
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The basic principle of stability test using the PR-C EOS is the equality of the chemical 

potential of component i in vapor and liquid phase, as shown in the equation below: 

𝜇𝑖
𝑉 = 𝜇𝑖

𝐿                                                                (24) 

where 𝜇𝑖
𝑉  and 𝜇𝑖

𝐿  represent the chemical potential of component i in vapor and liquid phase, 

respectively. We first assume that the fluid is in single-phase condition and calculate the chemical 

potential of each component (𝜇𝑖
𝐼). Then we search for every possible set of composition that has 

the same chemical potential (𝜇𝑖
𝐼𝐼) as 𝜇𝑖

𝐼. The Newton-Raphson iteration is used in the searching 

program. If the new phase composition (𝑛𝑖
𝐼𝐼) is the same as the initial single-phase composition 

(𝑛𝑖
𝐼), the solution is trivial and the fluid is in single-phase condition. Otherwise, it is in two-phase 

condition. If the fluid is in two-phase condition, the phase split computation will be conducted to 

obtain the compositions in the vapor and liquid phase. The flowchart of the stability test is shown 

in Figure 15. 
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Figure 15: Flowchart of stability test using the PR-C EOS. The fluid is first assumed to be in 

single-phase condition and the chemical potential of each component (𝝁𝒊
𝑰) is calculated. Then 

every possible set of composition that has the same chemical potential (𝝁𝒊
𝑰𝑰) as 𝝁𝒊

𝑰 is searched 

using the Newton-Raphson iteration. If the new phase composition (𝒏𝒊
𝑰𝑰) is the same as the 

initial single-phase composition (𝒏𝒊
𝑰), the solution is trivial and the fluid is in single-phase 

condition. Otherwise, it is in two-phase condition. If the fluid is in two-phase condition, the 

phase split computation will be conducted to obtain the compositions in vapor and liquid 

phase. 

 

The phase split computation is performed by directly minimizing the total Helmholtz free 

energy (Atotal), which is calculated by the equation below: 

𝐴𝑡𝑜𝑡𝑎𝑙 = 𝐴𝐼 + 𝐴𝐼𝐼                                                          (25) 

where AI and AII represent the Helmholtz free energy of phase I and II, which is calculated using 

Equation (9). The variables of the minimization program are equilibrium ratio of each pseudo 

component (Ki), which can be used to calculate the number of moles of each component (ni) in the 

vapor and liquid phases. The initial guess of equilibrium ratio was calculated based on ni
I and ni

II 

obtained from the stability test. Since the fluid is determined to be in two-phase condition, the total 

Helmholtz free energy is minimized by changing the values of Ki. The lowest total Helmholtz free 

energy corresponds to the desired value of Ki. 

 

3.1.2 Machine Learning Models 

In the stability test, the multi-layer perceptron (MLP) was applied to predict fluid phase 

behavior due to its high flexibility and efficiency. In the phase split computation, the physics-
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informed neural network (PINN) was applied to incorporate the PR-C EOS into the ML model and 

the neural networks were trained by directly minimizing the total Helmholtz free energy. 

An artificial neural network (ANN) is a computing system that models information 

processing by a biological neural network. The basic unit of an ANN is the artificial neuron; 

“signals” (real numbers) can be transmitted between different neurons [86]. One common type of 

ANN is the MLP, which consists of at least three layers: an input layer, a hidden layer and an 

output layer [87]. The layers in MLP are fully connected, which means that a node in the previous 

layer is connected to all nodes in the next layer. Each node has a weight value and a bias value, 

reflecting the importance of the node. The training algorithm in MLP is the backpropagation (BP) 

algorithm [88], which focuses on the derivative of the loss function with respect to the weight (or 

bias). The connections between nodes in the adjacent layers are augmented by activation functions 

to include nonlinearity in the system. The commonly used activation functions in MLP include 

hyperbolic tangent (tanh), sigmoid and rectified linear unit (ReLU) [89]. During the training 

process, the model is optimized by continuously changing the weight and bias values of each node. 

The schematic illustration of MLP is shown in Figure 16. 
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Figure 16: The schematic illustration of MLP. MLP consists of at least three layers: an input 

layer, a hidden layer and an output layer. The layers in MLP are fully connected layers, 

which means that a node in the previous layer is connected to all the nodes in the next layer. 

Each node has a weight value and a bias value. The connections between nodes in the 

adjacent layers are augmented by activation functions. 

 

PINNs are widely used in different areas, for example fluid mechanics [90] and heat transfer 

[91]. The structure of a PINN is shown in Figure 17. A PINN mainly consists of two parts: the 

deep neural network and the partial differential equation (PDE) component [92]. The deep neural 

network includes one input layer, one or more hidden layers and one output layer. The output 

parameters in the deep neural network are functions of the input variables, connected by the 

weights and biases of the neurons. In the PDE portion, the derivatives of output parameters with 

respect to input variables are used as the target function. The loss function of a PINN may include 

the output parameters of the neural network, the target function, the initial conditions or the 

boundary conditions. In the training process of a PINN, the loss is continuously minimized by 

changing the weights and biases of the neurons. It should be noted that the training of a PINN does 

not require a data set [92]. By directly minimizing the loss function, the neural network plays a 

role as the function approximator but not works as a predictor between the input and output 

variables. 
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Figure 17: The schematic illustration of PINN. In the deep neural network (shown in blue 

square), the output is a function of the input variables. The derivatives of output with respect 

to input variables follow physical laws and can be calculated by PDEs (shown in black 

square). The loss function of PINN may include the loss of the output of neural network, 

initial conditions, boundary conditions and PDE results. 

 

3.2 Data Generation 

The generation of the dataset is detailly explained in this part. Six pseudo-components are 

selected as the typical fluid composition. A large range of parameters are considered to include 

various fluid types. 

 

3.2.1 General Set of Pseudo Components 

In the generalized ML-assisted phase-equilibrium calculation model, instead of using a 

specific set of real components, a general set of pseudo-components with the PR-C EOS 

parameters is considered. Based on the literature review of compositional analysis [93-95], we 

select 6 pseudo-components to be the representative composition for different types of reservoir 
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fluids, including C1-N2, C2-CO2-C3, C4-C6, C7-C12, C13-C24, C25+. When the fluid composition is 

given, it can be lumped into the six pseudo-components and the PR EOS parameters of each pseudo 

component (ni, Pc,i, Tc,i, MWi, wi, VSPi, and BIPi,j) are obtained. If these PR EOS parameters are 

considered as the input variables of the ML model, the ML model will be suitable for any fluid 

composition, which extends the application of our approach from fixed-fluid composition to 

generalized conditions. 

 

3.2.2 Data Range and Acquisition 

The input parameters of the generalized ML-assisted phase-equilibrium calculation model 

include P, T, rp, n, Pc, Tc, MW, w, VSP, εp and BIP. The range of P and T follows the reference 

[96] and the range of rp is based on the pore size distribution of shale reservoirs [3], as shown in 

Table 5. The lower bound of rp is set as 2nm because the pore diameter should be larger than the 

effective diameter (σ) of fluid molecules, which is required by the PR-C EOS. 

 

Table 5: Range of parameters of reservoir conditions 

Parameter Unit Minimum Maximum 

Pressure (P) MPa 1 80 

Temperature (T) °C 40 100 

Pore radius (rp) nm 2 50 

 

The values of PR EOS parameters (n, Pc, Tc, MW, w, VSP, and BIP) are determined by 

applying the mixing rule based on the mole fraction of each real component in a pseudo 

component, as shown in the equation below: 
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𝑆𝑝𝑠𝑒𝑢𝑑𝑜 = ∑𝑥𝑟𝑒𝑎𝑙,𝑖 ∙ 𝑆𝑟𝑒𝑎𝑙,𝑖                                                  (26) 

where S denotes one of the PR EOS parameters and xreal,i is the mole fraction of the real component 

i in a pseudo component. Each pseudo component is categorized under several real components 

for the simplicity of data generation, as shown in Table 6. The values of PR EOS parameters of 

real components are obtained from the previous work [97]. To clarify Equation (26), an example 

of calculating the critical pressure of C2-CO2-C3 is shown below: 

𝑃𝑐,𝐶2−𝐶𝑂2−𝐶3 = 𝑃𝑐,𝐶2 ∙ 𝑥𝐶2 + 𝑃𝑐,𝐶𝑂2 ∙ 𝑥𝐶𝑂2 + 𝑃𝑐,𝐶3 ∙ 𝑥𝐶3                            (27) 

𝑥𝐶2 + 𝑥𝐶𝑂2 + 𝑥𝐶3 = 1                                                     (28) 

where 𝑃𝑐,𝐶2−𝐶𝑂2−𝐶3, 𝑃𝑐,𝐶2, 𝑃𝑐,𝐶𝑂2, and 𝑃𝑐,𝐶3 denote the critical pressure of C2-CO2-C3, C2, CO2, and 

C3 respectively and 𝑥𝐶2, 𝑥𝐶𝑂2, and 𝑥𝐶3 represent the mole fraction of C2, CO2, and C3 in C2-CO2-

C3. 

 

Table 6: The lumped real components of 6 pseudo components 

Pseudo components Real components 

C1-N2 

C1 

N2 

C2-CO2-C3 

C2 

CO2 

C3 

C4-C6 

C4 

C5 

C6 
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C7-C12 

C7 

C9 

C12 

C13-C24 

C13 

C19 

C24 

C25+ 

C25 

C35 

C45 

 

The PR-C EOS parameter (εp) is calculated based on the equation [79] shown below: 

 =
𝜀𝑝𝛿𝑝

𝑀𝑊
                                                                  (29) 

where  is the normalized fluid-pore surface affinity factor, which can be obtained from the 

reference [79]. The value of εp of a pseudo-component is calculated using the same method as 

shown in Equation (26). 

In summary, for a six-pseudo-component system, each parameter of n, Pc, Tc, MW, w, VSP, 

and εp contains 6 values. For the matrix of BIP, it has a symmetric distribution and the values of 

the diagonal elements in the matrix are zeros. As a result, for a six-pseudo-component system, 36 

elements in the BIP matrix can be described by 15 different values. Together with the parameters 

of reservoir conditions (P, T, rp), the total number of input parameters for the generalized model 

is 60. The ranges of different parameters of the PR-C EOS are summarized in Table 7. The critical 
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temperature starts from 5.2 K for helium and can be too high to measure. Therefore, the critical 

temperature can be negative for hydrocarbon mixtures. 

 

Table 7: Range of parameters of the PR-C EOS 

Parameter Unit Minimum Maximum 

Critical pressure (Pc) Pa 736,768 5,455,021 

Critical temperature (Tc) K 175 954 

Molecular weight (MW) g/mol 16 533 

Acentric factor (w) Dimensionless 0.0084 1.3189 

Volume shift parameter (VSP) Dimensionless -0.1678 0.3535 

Binary interaction parameter (BIP) Dimensionless 0 0.1303 

Square-well depth (εp) K 228 2788 

 

3.2.3 Data Samples 

The samples are generated using the Latin Hypercube Sampling technique [98] to ensure 

the randomness in a multidimensional distribution. A total number of 123,050 samples are 

generated for the training and test of the ML model. 

 

3.3 Results and Analysis 

In this work, all the ML models are trained on Keras with the CPU of Intel Core i7-1065G7 

with an installed memory of 16 GB. The comparison between the traditional and ML-assisted 

phase-equilibrium calculation models is shown below. 
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3.3.1 Traditional PR EOS Modeling 

The average simulation time for the phase-equilibrium calculation using PR EOS and PR-

C EOS is compared, as shown in Figure 18. In the previous phase-equilibrium calculation studies 

[99], the computation time per phase-equilibrium calculation using cubic EOS is about 10 μs, 

which is much faster compared with our simulator. However, the aim of this section is not to 

optimize and accelerate traditional phase-equilibrium calculation model, but to show that the 

phase-equilibrium calculation using PR-C EOS is much slower compared with phase-equilibrium 

calculation using PR EOS. The reasons are two-folded: 1) the interaction between the fluid and 

pore wall is incorporated in PR-C EOS. As shown in Section 3.1.1, more parameters are introduced 

in PR-C EOS when the effect of fluid-wall interaction is taken into consideration. Compared with 

PR EOS, these extra computations require more CPU time; 2) the algorithm of solving the 

chemical equilibrium is more difficult in PR-C EOS modeling. In the phase-equilibrium 

calculation using PR EOS, the method of tangent plane distance (TPD) is often applied to find the 

solutions. However, in the phase-equilibrium calculation using PR-C EOS, the TPD method is not 

effective and a more time-consuming search method is used. Therefore, the application of ML 

technique provide a more significant speedup in the phase-equilibrium calculation using PR-C 

EOS. 
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Figure 18: The average CPU times for phase-equilibrium calculation using PR EOS and PR-

C EOS, respectively. 

 

3.3.2 Stability Test 

The function of the ML model of stability test is to determine the fluid phase state: single-

phase or two-phase. MLP is applied in the stability test. The input variables of the MLP are the 

reservoir conditions and EOS parameters. The output variable is the label of the phase condition, 

either single-phase or two-phase condition. The structure of the MLP is shown in Figure 19, 

including an input layer, 5 hidden layers and an output layer. The activation functions of the input 

layer and hidden layers are ReLU whereas the activation function of the output layer is sigmoid. 

The loss function is set as binary cross-entropy because the stability test is a binary classification 

problem. The Adam optimization algorithm [100] is used in the MLP, which is computationally 

efficient and requires less memory. All input variables are rescaled based on the normalization 

equation shown below: 

𝑦𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 = (𝑦 − 𝑦𝑚𝑖𝑛)/(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)                                        (30) 

where y denotes a variable among the 60 input variables. 

 



 

38 

 

 

 

 

Figure 19: Structure of the MLP of stability test. The number represents the number of 

nodes in each layer. 

 

A total of 123,050 samples are used for the stability test. The k-folds cross validation 

technique [101, 102] is applied in the training process. In this work, k is set as 10, which means 

the samples are divided into ten parts. Each time one part is selected as the test set and the 

remaining nine parts are used for the training set. The training process is performed 10 times until 

each part is selected as the test set. The accuracy obtained using k-folds cross validation is more 

robust and trustworthy compared with the method of splitting data directly because each sample 

is considered for training and test. 

To increase the accuracy of our ML model, several parameters of the MLP are optimized 

separately. Firstly, the number of hidden layers is optimized to provide a proper structure of the 

MLP. The results show that the structure with 5 hidden layers has the highest accuracy. Less layers 

may not fully interpret the complex relationship between the input and output variables while too 

many layers may lead to the problem of overfitting. Then, different combinations of nodes in each 
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layer are tested and the results show that this specific set of nodes (64, 128, 128, 128, 64) has the 

best performance. By balancing the accuracy and CPU time, the optimized batch size and the 

optimized number of epochs are 64 and 80, respectively. The optimal learning rate of Adam is 

0.001. The optimized parameters of MLP are summarized in Table 8. 

 

Table 8: The optimized parameters of MLP in the stability test 

Parameter of MLP Optimal results 

Number of hidden layers 5 

Number of nodes 64, 128, 128, 128, 64 

Batch size 64 

Number of epochs 80 

Learning rate of Adam 0.001 

 

Based on the optimized MLP of stability test, the average accuracy of the test set using k-

folds cross validation technique (k = 10) is 96.96%. If the activation function of the output layer is 

changed to ReLU, the average accuracy is 92.55%, which is lower than the condition using 

sigmoid. Sigmoid function is generally not used in hidden layers due to the gradient vanish 

problem. However, in the output layer, the output result is between 0 and 1. If the output result is 

equal to or higher than 0.5, the label is considered as 1. Otherwise, the label is 0. Therefore, 

sigmoid is a good choice for a binary classification problem. We randomly select 500 samples 

from the data set and perform the stability test by applying the algorithm in the traditional phase-

equilibrium calculation method and the MLP of stability test. The average CPU times for 

performing the stability test using the two methods are shown in Figure 20. The results show that 
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the utilization of ML technique can significantly improve the computational efficiency by 963 

times compared to the traditional method. 

 

 

Figure 20: The average CPU time for performing the stability test using the traditional 

phase-equilibrium calculation method and the MLP. 

 

3.3.3 Phase-Split Computation 

The function of the ML model of phase split computation is to obtain the initial guess of 

equilibrium ratio for the optimization program of total Helmholtz free energy (Atotal). A good initial 

guess is shown to largely reduce the number of iterations and, therefore, cut down the CPU time. 

In the traditional phase-equilibrium calculation, the initial guess of equilibrium ratio is obtained 

from the stability test. In the generalized ML-assisted phase-equilibrium calculation model, the 

MLP and PINN models of phase-split computation are trained to obtain the equilibrium ratio as 

the initial estimate for the Helmholtz free energy minimization program. 

The structure of the MLP of the phase-split computation is shown in Figure 21. The input 

variables are the parameters of the reservoir conditions and EOS, whereas the output variables are 

the equilibrium ratios of the six pseudo-components. Both the input and output variables are 

normalized using Equation (30). The optimization algorithm used for this model is the Adam 
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algorithm. The loss function is the mean square error (MSE), which is calculated based on the 

equation shown below: 

𝑀𝑆𝐸 =
1

𝑛𝑠∗𝑛𝑐
∑ ∑ (𝐾̂𝑖,𝑗 − 𝐾𝑖,𝑗)

2𝑛𝑐
𝑖=1

𝑛𝑠
𝑗=1                (31) 

where ns represents the number of samples and 𝐾̂𝑖,𝑗 is the predicted equilibrium ratio of component 

i in sample j. 

 

 

Figure 21: Structure of the MLP of phase-split computation. The numbers represent the 

number of nodes in each layer. 

 

The total number of samples for phase-split computation is 52,102. The MLP of phase-

split computation is optimized following the same method for the optimization of the MLP of the 

stability test. The optimized results are summarized in Table 9. 

 

Table 9: The optimized parameters of MLP in the phase-split computation 

Parameter of MLP Optimal results 



 

42 

 

 

 

Number of hidden layers 4 

Number of nodes 64, 128, 128, 64 

Batch size 64 

Number of epochs 40 

Learning rate of Adam 0.001 

 

The flow chart of the PINN of phase-split computation is shown in Figure 22. For the 

neural network, the input variables are the parameters of the reservoir conditions and EOS, whereas 

the output parameters are the equilibrium ratios. The structure of the neural network in the PINN 

is the same as the neural network of the MLP for the phase-split computation, as shown in the blue 

dashed box in Figure 22. For conventional NNs (e.g., MLP), the loss function represents the 

differences between the real values and predicted values of output parameters. The training of the 

neural networks is achieved by minimizing the deviations. However, for the PINN, the loss 

function does not require the real values of the output parameters. In this case, the initial estimate 

of Ki is used to calculate Atotal using PR-C EOS. Atotal is calculated using Equations (9) and (25). It 

is a function of the 60 input variables, including reservoir conditions and EOS parameters. Instead 

of directly minimizing the Atotal, we minimize the loss function shown below: 

ℒ =
1

𝑛𝑠
∑ (𝐴𝑡𝑜𝑡𝑎𝑙,𝑗/10

7)𝑛𝑠
𝑗=1      (32) 

where ℒ  is the loss function, ns represents the number of samples and Atotal denotes the total 

Helmholtz free energy. The reason is that Atotal is at the scale of 107 while Ki is in the range of 0 

and 1. A slight change of Ki can significantly affect the value of Atotal. For a node in the neural 

network, it consists of a weight and a bias. The training process focuses on the derivative of the 
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loss function with respect to the weight. If Atotal changes significantly, the gradient will change 

significantly, which makes the neural network not stable. Therefore, Atotal is normalized to ensure 

the neural network is trained smoothly. During the iteration process, the loss function and Atotal are 

continuously minimized. The neural network (blue dashed box) is trained to predict more accurate 

Ki. In the training of neural network, the real values of Ki are not used. The neural network is 

trained to find the minimal Atotal based on PR-C EOS and provide accurate prediction of Ki. 

 

 

Figure 22: Flow chart of the PINN of phase-split computation. The structure of the neural 

network is shown in the blue dashed box. The input variables are the reservoir conditions 

and EOS parameters, whereas the output variables of the neural network are the 

equilibrium ratios. The total Helmholtz free energy is calculated based on Equations (9) and 

(25) using the equilibrium ratios predicted by the neural network. During the iterations, the 

loss function is continuously minimized and therefore, the neural network is trained to give 

more accurate predictions of the equilibrium ratios. 
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To evaluate the performance of traditional method, MLP and PINN on the initial estimate 

of Ki, we select the mean absolute error (MAE) as the metric. The equation of MAE is shown 

below: 

𝑀𝐴𝐸 =
1

𝑛𝑠×𝑛𝑐
∑ ∑ |

𝐾̂𝑖,𝑗−𝐾𝑖,𝑗

𝐾𝑖,𝑗
|𝑛𝑐

𝑖=1
𝑛𝑠
𝑗=1                                               (33) 

where nc represents the number of pseudo-components and 𝐾̂𝑖,𝑗 represents the predicted value of 

the equilibrium ratio of pseudo-component j in the ith sample. A low value of MAE means a good 

prediction. The performance of different methods on the initial estimate of Ki is summarized in 

Figure 23. The MAE of Ki obtained from the stability analysis in the traditional phase-equilibrium 

calculation model (Method a) is relatively high. The MAEs of Ki obtained from MLP trained with 

a large dataset (Method c) and PINN (Method d) are reduced by 77.26% and 82.12% compared 

with Method a, respectively. However, the performance of MLP trained with a small dataset 

(Method b) becomes worse compared with Method a. The comparison between Methods b and c 

indicate that the performance of MLP is largely affected by the number of samples. A large dataset 

is required to ensure the prediction accuracy of MLP. For the PINN, it shows good performance 

even when it is fed with a small dataset. The reason is that the PR-C EOS is incorporated into the 

training of PINN. Instead of working as a black-box model, the neural network learns to minimize 

the Atotal and provides more reasonable predictions of Ki. PINN becomes more effective than 

conventional neural networks when the samples are hard to generate or collect. 
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Figure 23: The mean absolute error (MAE) of the initial estimates of equilibrium ratios 

obtained from different methods: a) the results of stability analysis in the traditional VLE 

calculation models, b) MLP trained with 1,000 samples, c) MLP trained with 52,102 samples, 

d) PINN fed with 1,000 samples. 

 

3.3.4 Phase-Equilibrium Calculation 

The stability test and phase-split calculation are combined as the phase-equilibrium 

calculation. The algorithms of traditional and ML-assisted phase-equilibrium calculation models 

are shown in Figure 24. In the traditional phase-equilibrium calculation model, the Newton-

Raphson iteration is used to search any possible phase II that has chemical equilibrium with phase 

I. The results obtained from the stability test are directly used as the initial estimate of Ki. In the 

ML-assisted phase-equilibrium calculation model, the MLP is used to determine the phase-state 

condition, which significantly reduces the computational time. The initial estimates of Ki are 

obtained from PINN. More accurate estimates of Ki can accelerate the minimization of Atotal. The 

average CPU time of VLE calculation using the traditional and ML-assisted phase-equilibrium 

calculation models are shown in Figure 25. The ML-assisted phase-equilibrium calculation model 

reduces the computational time by two orders of magnitude compared with the traditional phase-

equilibrium calculation model. 
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Figure 24: The algorithms of traditional and ML-assisted phase-equilibrium calculation 

models. 

 

 

Figure 25: The average CPU time of phase-equilibrium calculation using traditional and 

ML-assisted phase-equilibrium calculation models. 
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4. ANALYSIS OF HYDROGEN-HYDROCARBON MIXTURE PHASE BEHAVIOR USING 

MOLECULAR SIMULATION† 

Unlike traditional fossil fuels, hydrogen (H2) is a low-energy-density fuel; therefore, an 

extremely large storage volume is required for H2 to meet energy demand [13, 14]. To solve this 

problem, underground H2 storage has been considered due to its large storage capacity, safety and 

low cost. Conventional geologic H2 storage sites include depleted reservoirs, salt caverns and 

saline aquifers. With the development of shale oil and gas, a large number of shale gas reservoirs 

have been depleted; such reservoirs may be attractive candidates for H2 storage. In this section, we 

present an investigation of the potential of H2 storage in depleted shale gas reservoirs. 

 

4.1 Simulation Model 

The simulation methods and molecular settings of different Monte Carlo simulation models 

are described in this section. 

 

4.1.1 Single Bulk Conditions 

As discussed in Section 1.2, the GEMC method is designed to analyze fluid density and 

phase behavior. There are two types of GEMC simulations, the global volume-imposed GEMC 

(NVT-GEMC) and the pressure-imposed GEMC (NPT-GEMC). Because pressure, temperature 

and fluid composition are provided in our cases, the NPT-GEMC simulation is applied in this 

 
* Part of this chapter is reprinted with permission from “Molecular Simulation of Hydrogen-Shale Gas System Phase 

Behavior under Multiscale Conditions: A Molecular-Level Analysis of Hydrogen Storage in Shale Gas Reservoirs” 

by Fangxuan Chen, Mohamed Mehana and Hadi Nasrabadi, 2023. Energy & Fuels, Volume, Pages, Copyright [2023] 

by American Chemical Society. 
† Part of this chapter is reprinted with permission from “Molecular Simulation of Competitive Adsorption of Hydrogen 

and Methane: Analysis of Hydrogen Storage Feasibility in Depleted Shale Gas Reservoirs” by Fangxuan Chen, Shihao 

Wang and Hadi Nasrabadi, 2023. SPE Proceedings, SPE-212218-MS, Copyright [2023] by Society of Petroleum 

Engineers. 
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work. The schematic figure of NPT-GEMC simulation at bulk condition is shown in Figure 26. 

The two boxes (Box I and II) are designed for the potential two phases: one for the liquid phase 

and the other one for the gas phase. The advantage is that the separation of two phases into two 

simulation boxes avoids the consideration of explicit interfaces between the two phases. Periodic 

boundary conditions (PBCs) are applied at all three directions to simulate the bulk condition. 

During the simulation process, the total number of fluid molecules (N), system pressure (P) and 

system temperature (T) are kept constant. Three types of Monte Carlo moves are performed in the 

simulation process: 1) particle displacement (in the current box), 2) particle swap (between two 

boxes) and 3) volume change. 

 

 

Figure 26: Schematic figure of NPT-GEMC simulation at bulk condition 

 

The fluid phase behavior is determined by the fluid densities in the two boxes. The fluid is 

in single gas phase if the fluid densities in the two boxes are both gas-phase densities. When the 

fluid density in one box is gas-phase density while the other one is liquid-phase density, the fluid 

is in two-phase condition. In this work, the reference gas-phase density or liquid-phase density at 

specific pressure and temperature is estimated by PR EOS [10]. 

 

4.1.2 Single Nanoscale Conditions 
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As discussed in Section 1.2, the GCMC simulation was designed to investigate fluid 

adsorption characteristics. To analyze the fluid adsorption behavior in nanopores, we applied 

GCMC simulations under single nanoscale conditions. The simulation models are shown in Figure 

27. Slit pore was selected because it is the commonly observed pore shape in shale reservoirs [3, 

103, 104]. We consider two types of boundary materials, namely graphite as organic material and 

quartz as inorganic material. We later found that the adsorption behavior simulated in the graphite 

layer was similar to the adsorption behavior simulated in the kerogen boundary. For the inorganic 

boundary, we selected quartz as a representative material because quartz accounts for the highest 

portion (40%) of inorganic compositions in North American shale rocks [105, 106]. PBCs were 

applied at the extended directions of the boundary (x and y directions in Figure 27). During the 

simulation process, the chemical potential of each component (μ), system volume (V) and system 

temperature (T) are kept constant. Two types of Monte Carlo moves were performed in the 

simulation process: 1) particle displacement (in the current box) and 2) particle insertion or 

deletion. 

 

 

Figure 27: Slit pores in the simulation: a) graphite, b) quartz. For the graphite layer, the unit 

is a regular hexagon shape of carbon atoms, which is magnified for clarification. The crystal 
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structure of quartz is α-quartz. The grey, green and blue balls represent the atoms of carbon, 

silicon, and oxygen, respectively. 

The workflow of the simulation process is shown in Figure 28. Generally, the given 

conditions are temperature, pressure and fluid composition. The PR EOS is applied to first obtain 

the fluid density. For a specific volume, we can calculate the number of molecules of each 

component. Then, the chemical potential of each component is obtained using Widom’s particle 

insertion method [107] using the GEMC simulation, which has been used in previous studies [108, 

109], under bulk conditions. Based on the chemical equilibrium between bulk and confined fluid, 

we can obtain the chemical potential of each component under nanoscale conditions. After 

obtaining this potential, a GCMC simulation is performed under nanoscale condition to obtain the 

distribution of fluid molecules. Based on the fluid distribution, we can quantitatively analyze 

adsorption behaviors. 

 

 

Figure 28: Workflow of the simulation process. 

 

4.1.3 Multiscale Conditions 
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To simulate the multi-scale condition, we designed the modified NPT-GEMC method 

[110], as shown in Figure 29. Different from the traditional NPT-GEMC method discussed above, 

an extra gauge box is added to the modified NPT-GEMC method to simulate the confined region 

[111]. In Figure 29, the two cubic boxes (Box I and Box II) are used to simulate the gas and liquid 

phases of fluid in bulk condition, which is similar to the traditional NPT-GEMC method. The three 

types of MC moves are executed (particle displacement, volume change, and particle swap) in Box 

I and Box II to exchange particles and tune volume according to current pressure. A gauge cell 

(Box III) with fixed volume is utilized to simulate the confined region. Since the volume of Box 

III is fixed, only two types of MC moves (particle displacement and particle swap) are executed. 

It should be noted that the pressure (PIII) in Box III is not the same as the system pressure (P) 

because molecular simulation uses the Virial pressure [112], which is affected by the distribution 

of particles. Due to the confinement effect, particles in Box III tend to occupy the near-boundary 

region. The heterogeneous distribution largely affects the value of Virial pressure in Box III and 

therefore PIII is higher than P [113]. For a multi-scale system with M components, the constraints 

are shown in the following equations: 

𝑁𝑖
𝐼 + 𝑁𝑖

𝐼𝐼 + 𝑁𝑖
𝐼𝐼𝐼 = 𝑁𝑖⁡⁡⁡𝑖 = 1,2, … ,𝑀                                           (34) 

𝑃𝐼 = 𝑃𝐼𝐼 = 𝑃                                                             (35) 

𝑇𝐼 = 𝑇𝐼𝐼 = 𝑇𝐼𝐼𝐼 = 𝑇                                                       (36) 

𝑁𝑖, 𝑃, 𝑇, 𝑉
𝐼𝐼𝐼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡⁡⁡⁡𝑖 = 1,2, … ,𝑀                                       (37) 

Since Box I and II are designed as the bulk condition, PBCs are applied to all three dimensions. 

For Box III as the confined region, the PBC is applied only in the extended direction. 
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Figure 29: The schematic of modified NPT-GEMC method. Box I and II represent the bulk 

region while Box III simulates the confined region. The pressures in Box I and II are the 

same as system pressure and the temperatures of all three boxes are equal to system 

temperature. The volume of Box III is fixed. 

  

4.1.4 Molecular Settings 

In the simulation process, particle displacement and particle swap are conducted by 

randomly selecting a molecule in the system, inserting the molecule at a random position, and 

deleting the initial molecule. This method is effective for transferring a small molecule in a sparse 

environment. However, when it comes to inserting a long-chain molecule in a densely-packed 

simulation box, the acceptance rate would be much lower due to the overlap with other molecules, 

which prolongs the simulation time to reach equilibrium. To solve this problem, the 

configurational-bias Monte Carlo (CBMC) insertion move is applied. Instead of inserting a whole 

molecule at one time, CBMC inserts one atom in the molecule at a position randomly and tries to 

insert another atom in this molecule by evaluating the possible positions around the previous atom 
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[114]. CBMC insertion move significantly improves the acceptance rate of long-chain molecule 

insertion and therefore reduces the running time. In our simulations, 10 trial positions are set for 

each growing atom in the MC moves of particle displacement and particle swap. 

The nonbonded interaction energy (U(rij)) between particle i and j is calculated by the 

Lennard Jones (LJ) 12-6 potential, as shown below: 

𝑈(𝑟𝑖𝑗) = 4𝜀𝑖𝑗[(
𝜎𝑖𝑗

𝑟𝑖𝑗
)12 − (

𝜎𝑖𝑗

𝑟𝑖𝑗
)6]              (38) 

where εij represents the potential well depth, rij refers to the distance between particle i and j and 

σij is the separation distance between particle i and j where the LJ potential is zero. The Lorentz-

Berthelot mixing rule [115] is applied to calculate the potential parameters of diverse particles: 

𝜎𝑖𝑗 =
𝜎𝑖𝑖+𝜎𝑗𝑗

2
                  (39) 

𝜀𝑖𝑗 = √𝜀𝑖 ∙ 𝜀𝑗       (40) 

The cutoff distance is set as 10 Å and the long-range tail correction is incorporated in the 

simulation.  

The transferable-potentials-for-phase-equilibria united-atom (TraPPE-UA) force field 

[116] was used for hydrocarbons, graphite boundary and helium (He). The transferable-potentials-

for-phase-equilibria explicit-hydrogen (TraPPE-EH) force field [117] was applied for N2. In the 

TraPPE-EH force field, the N2 molecule was modeled as a three-site molecule with two nitrogen 

atoms bonded to the center-of-mass (COM). The parameters of quartz (SiO2) were obtained from 

the ClayFF force field [118]. The TIP4P model [119] was selected to simulate water (H2O) 

molecules due to its effective performance in molecular simulations [120, 121]. The symbol M 

shown in Table 10 represents the negative charge site of H2O molecule. The H2 molecule was 

considered as a single site molecule, and the potential parameters were obtained from the reference 
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[122], which exhibited good agreement with experimental isotherms. The parameter settings are 

summarized in Table 10. 

 

Table 10: The potential parameters used in the simulations 

 ε/kB (K) σ (Å) 

C (graphite) 30 3.70 

He 4 3.11 

CH4 148 3.73 

CH3 (hydrocarbon) 98 3.75 

CH2 (hydrocarbon) 46 3.95 

N (N2) 36 3.31 

COM (N2) 0 0 

Si (SiO2) 0 3.30 

O (SiO2) 78 3.17 

H (H2O) 0 0 

O (H2O) 78 3.15 

M (H2O) 0 0 

H2 37 2.96 

 

The structures of different boundaries are shown in Figures 27 and 30. As shown in Figure 

27, the graphite layer consists of carbon atoms, and the unit of graphite layer is in the shape of a 

regular hexagon. The unit of quartz boundary is α-quartz; the crystal structure of α-quartz is 
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obtained from American Mineralogist Crystal Structure Database (AMCSD) [123]. As shown in 

Figure 30, a buckytube is used as the boundary of Box III in the modified NPT-GEMC simulation. 

The buckytube [124] is a single-carbon-atom layer in a cylindrical shape, and the unit of the 

buckytube is in the shape of a regular hexagon. 

 

 

Figure 30: Structure of buckytube. The buckytube consists of carbon atoms, with an inner 

diameter of 6 nm. The unit of buckytube is in the shape of regular hexagon. 

 

The Monte Carlo for Complex Chemical Systems (MCCCS) Towhee [125] is modified to 

conduct all the simulations in this paper. 

 

4.2 Model Validation 

To demonstrate the accuracy of our simulation model and molecular settings, we performed 

a series of simulations on fluid phase behavior and adsorption characteristics. The simulation 

results were compared with the experimental results and other simulation outputs. 

 

4.2.1 Fluid Phase Behavior 



 

56 

 

 

 

To ensure the accuracy of potential parameters of H2, we simulate the density 

characteristics and phase behaviors of pure H2 and hydrogen-hydrocarbon (H2-HC) systems at bulk 

condition. 

The density profiles of pure H2 at bulk condition is shown in Figure 31. The blue line 

represents the experimental results [126] while the red dots are the simulation results. Since H2 is 

always in single gas phase, only one simulation box is used to measure the fluid density. A series 

of simulations with isothermal-isobaric ensemble (constant NPT ensemble) are performed. We can 

observe that the simulation results are consistent with the experimental results. 

 

 

Figure 31: Density profile of pure H2 at 300 K under bulk condition. The blue line represents 

the experimental results while the red dots are the simulation results. 

 

To the best of the authors’ knowledge, no experimental results of H2-SG system phase 

behavior are found. However, there are several experimental works focusing on the phase 

behaviors of H2-HC binary mixtures, including H2-C1 [127], H2-C2 [128], H2-C3 [128, 129], H2-

C4 [130] and H2-C6 [131] binary mixtures. Since shale gas consists of more than 90% of light 

hydrocarbons (C1~C3) [132], we validate the accuracy of potential parameters and simulation 

settings using H2-light hydrocarbon binary mixtures (H2-C1, H2-C2 and H2-C3). The phase 
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behaviors of H2-C1, H2-C2 and H2-C3 binary mixtures are shown in Figure 32. The experimental 

data of H2-C1 binary mixture is obtained from the previous study [127] while the experimental 

results of H2-C2 and H2-C3 binary mixtures are obtained from the previous work [128]. The blue 

lines represent the experimental results while the red dots are the simulation results. The simulation 

follows the method discussed in Section 4.1.1. For a specific simulation point (red dot), many 

parallel simulations with NPT ensembles are performed at the same pressure but different 

temperatures. With the variation of temperatures, there exists a temperature that the fluid changes 

from single-phase to two-phase condition, which is the temperature of phase transition we seek. 

Combined with the fixed pressure, we can obtain the pressure and temperature of the phase 

transition point, which is the coordinate of red dots shown in the figure. The reason we change 

temperature is that the phase transition is sensitive to temperature, which means that a small change 

of temperature can have significant effect on phase behavior. In Figure 32, we can observe that the 

phase transition points of three binary mixtures by simulation are in agreement with corresponding 

experimental results, indicating that our potential parameters and simulation settings are 

reasonable to perform further simulations. 

 

 

(a) C1 60% and H2 40% 
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(b) C2 50% and H2 50% 

 

(c) C3 50% and H2 50% 

Figure 32: Phase behaviors of H2-HC binary mixtures under bulk conditions: a) C1 60% and 

H2 40%, b) C2 50% and H2 50%, and c) C3 50% and H2 50%. The blue line represents the 

experimental results while the red dots are the simulation results. 

 

4.2.2 Adsorption Characteristics 

As shown in Figure 27, the pore size is defined as the distance (W) between the mass centers 

of the boundary atoms. The surface area (SA) is the area of the upper or lower boundary surface. 

However, due to the shape and size of molecules, the fluid molecules cannot overlap with boundary 

atoms. Therefore, the effective pore volume cannot be simply calculated based on the simulation 

box shape (𝑊 × 𝑆𝐴). Zhang et al. [133] measured the effective pore volume using He because He 
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does not exhibit strong adsorption behavior under confined conditions [108], and their simulation 

results showed that the effective pore volume was the same at different pressures. Similarly, we 

followed their methods and measured the effective pore volume of our slit pore model 

(60Å × 60Å × 40Å) at 338.15 K. The equation used to calculate the effective pore volume (Vp) is 

as follows: 

𝑉𝑝 =
𝑁𝐻𝑒

𝑁𝐴∙𝜌𝐻𝑒,𝑏
      (41) 

where NHe is the number of He molecules in the slit pore, NA is the Avogadro constant, and ρHe,b is 

the molar density of He under bulk condition, which is obtained from the National Institute of 

Standards and Technology (NIST) Chemistry Webbook [134]. 

The simulation process is similar to the workflow shown in Figure 28. Based on the He 

bulk density obtained from the NIST, we can determine the number of He molecules and perform 

the GEMC simulation to obtain the chemical potential of He under bulk conditions. According to 

the chemical potential equilibrium, the chemical potential of He in confined conditions is obtained 

and GCMC simulations are performed to determine the number of He molecules in the slit pore. 

We performed a series of GCMC simulations of He ranging from 2 MPa to 16 MPa, and the 

number of He molecules at each pressure was obtained. Based on Equation (41), we could obtain 

the effective pore volume at each pressure. The average effective pore volume was 133,643 Å3, 

which was less than the slit pore volume (𝑊 × 𝑆𝐴 = 144,000Å3). These results are consistent with 

Tian et al.’s work [108]. The deviations between the effective pore volumes at different pressures 

and average effective pore volume were less than 3%, indicating that the effective pore volume 

had not been affected by pressure. The excess adsorption capacity of C1 is calculated based on the 

following equation: 
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𝑚𝑒𝑥 =
𝑁𝐶1/𝑁𝐴−𝑉𝑝∙𝜌𝐶1,𝑏

2𝑆𝐴
      (42) 

where NC1 is the number of C1 molecules in the slit pore, ρC1,b is the molar density of C1 under 

bulk conditions, and mex is the excess adsorption capacity (mmol/m2). 

Generally, the adsorption data from experiments is expressed in unit per unit mass of the 

adsorbent (e.g., mmol/g). Chen et al. [135] have suggested that it would be easier to compare 

experimental data and simulation results by converting the adsorption data to unit per unit surface 

area of the adsorbent (e.g., mmol/m2). Based on previous measurements [136], the specific surface 

area of kerogen is approximately 250 m2/g. The experimental data [2] and simulation results [1] 

for C1 adsorption are converted to the unit of mmol/m2. The excess adsorption capacities of C1 

between 2 and 16 MPa at 338 K are shown in Figure 33. Our simulation results are consistent with 

the experimental data, indicating that our simulation model and molecular settings are reasonable. 

In addition, our simulation results are similar to the simulation results of Wang et al. [1], who used 

kerogen as a boundary material, which implies that graphite layers can be used to simulate 

adsorption behaviors on kerogen without a large loss of accuracy. 
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Figure 33: Excess adsorption capacity of C1 at 338 K. The blue line represents the simulation 

results of this work while the green line represents the simulation results of Wang et al. [1]. 

The red dots are the experimental results [2]. 

 

4.3 Results and Analysis 

Investigations of the phase behavior, compositional heterogeneity and adsorption 

behaviors of H2-HC systems at different conditions are presented in this section. The simulation 

results can be used to analyze the potential for H2 storage in shale reservoirs. 

 

4.3.1 H2-Hydrocarbon Under Nanoscale Conditions 

A series of MC simulations were performed to investigate the effect of pore size, 

temperature, pressure, boundary surface, and fluid compositions on C1-H2 competitive adsorption. 

In this work, we consider the pore sizes of 2, 4, and 10 nm. Jin and Firoozabadi [109] have shown 

that when the slit pore size is large than 4 nm, the fluid molecules in the pore center behave in a 

bulk-like way. Therefore, the pore size of 10 nm is representative for large mesopores. The 

temperature and pressure ranges are selected based on shale reservoirs conditions. The average 

depth of shale gas reservoirs in the US is in the range of 1,500 to 3,500 m [137]. Assuming the 

temperature gradient of 0.03°C/m [138] and a pressure gradient of 0.012 MPa/m [139], the 

temperature range of shale gas reservoirs is 340 to 400 K and the pressure range is 18 to 42 MPa. 

Here, we consider simulation temperatures of 340, 370, and 400 K and the simulation pressures of 

10, 30, and 50 MPa. Graphite and quartz are used as the organic and inorganic boundary surfaces, 

respectively. For the fluid composition, we consider the mole fractions of C1 in a C1-H2 system as 

20%, 50%, and 80%. In addition, we analyze the effect of H2O on C1-H2 competitive adsorption. 
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Experimental results [140] show that the water saturation is in the range of 17 to 43%. In this work, 

we set the mole fraction of H2O in the fluid system as 0%, 15% and 30%. The base case is the 

equimolar C1 and H2 system at 370 K and 30 MPa in the 4 nm graphite slit pore. 

The density profiles of C1-H2 mixtures with different compositions are shown in Figure 34. 

Position 20 represents the center of the slit pore, and positions 0 and 40 represent the lower and 

upper boundaries. When the mole fraction of C1 is relatively high (≥ 50%), C1 is adsorbed near the 

boundary while H2 is freely distributed in the slit pore regardless of the boundary material. The 

reason for this effect is that C1 is preferentially adsorbed near the boundary compared with H2. 

Due to the limited space of the adsorbed region, C1 molecules first occupy the region and force H2 

molecules away from the boundary. The preferential adsorption will be later quantitatively 

analyzed. When the mole fraction of C1 is 20%, in the graphite layer, H2 forms an adsorption layer 

because fewer C1 molecules occupy the adsorbed region, leaving space for H2 molecules. A similar 

phenomenon is not observed in the quartz boundary because the organic boundary has higher 

adsorption effects than the inorganic boundary [141]. 

 

        

                          (a) C1 in graphite layer                               (b) H2 in graphite layer 
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                               (c) C1 in quartz                                             (d) H2 in quartz 

Figure 34: Density profiles of C1-H2 mixtures with different compositions at 30 MPa and 370 

K under 4 nm slit pore: a) C1 in graphite layer, b) H2 in graphite layer, c) C1 in quartz, d) H2 

in quartz. The blue, green and orange lines represent the fluid densities of the fluid 

compositions of 20%, 50% and 80% C1, respectively. The position 20 represents the center 

of the slit pore while the positions 0 and 40 are the lower and upper boundaries. 

 

The density profiles of equimolar C1-H2 mixtures at different pressures, temperatures and 

pore sizes have similar trends to those of the equimolar C1-H2 mixture at 30 MPa and 370 K under 

4 nm slit pore. Therefore, the density profiles have not been shown to avoid redundancy. The 

density profiles of C1-H2-H2O mixtures in the graphite layer and the quartz boundary are shown in 

Figure 35. For the graphite layer, both C1 and H2O form adsorption layers near the boundary while 

H2 molecules are freely distributed in the slit pore. In addition, the H2O adsorption layer is closer 

to the boundary compared with C1 because the H2O molecules have stronger interactions with 

boundary atoms than C1 [140]. As a polar molecule, H2O is partially charged. The interaction 

between H2O molecules and boundary atoms consists of the van der Waals force and electrostatic 

force. However, due to the electric neutrality of C1 molecules, the interactions between C1 

molecules and boundary atoms are only based on van der Waals forces. The stronger interactions 

between H2O molecules and boundary atoms allow H2O to accumulate near the boundary surface 
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and force C1 molecules away from the boundary [142]. For the quartz boundary, H2O forms an 

adsorption layer near the boundary while C1 molecules tend to accumulate in the center of the slit 

pore. The reason for this effect is that quartz is hydrophilic and has higher affinity for H2O 

molecules [109]. H2O is more competitive than C1 and therefore, occupies the adsorbed region 

[143, 144]. Experimental studies [2, 105] have shown that the existence of H2O weakens the 

adsorption capacity of C1 by 20–60% and 60–95% in organic-rich and inorganic-rich shales, 

respectively. Our simulation results show the same trend. The hydrophilicity of quartz leads to 

more significant affinity of H2O and has stronger effects on C1 adsorption capacity than the 

graphite layer. 

 

        

                             (a) Graphite layer                                      (b) quartz boundary 

Figure 35: Density profiles of C1-H2-H2O mixtures (bulk composition: C1 35%, H2 35% H2O 

30%) at 30 MPa and 370 K under 4 nm slit pore: a) graphite layer, b) quartz boundary. The 

blue, green and orange lines represent the fluid densities of C1, H2 and H2O, respectively. 

The position 20 represents the center of the slit pore while the positions 0 and 40 are the 

lower and upper boundaries. 

 

The adsorption characteristics of C1, H2 and H2O are also analyzed. A schematic figure of 

slit pores is shown in Figure 36, following the definitions from previous work [108, 141]. The slit 
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pore is divided into three regions: the inaccessible region, the adsorbed region and the core region. 

The inaccessible region refers to the region that does not have molecules due to the shape and size 

of boundary and fluid molecules. It is defined as the region between points A (A’) and B (B’) 

based on the density profile. The adsorbed region refers to the region that has an adsorption layer 

of fluid molecules. In this work, we consider the adsorption behavior of C1 as monolayer 

adsorption, which has been shown in previous studies [145-147]. The width (lBC or lB’C’) of the 

adsorbed region is close to the effective diameter (σ) of the adsorbate molecule [148, 149]. The 

adsorbed phase density is calculated as the average fluid density in the adsorbed regions. Based on 

the symmetric characteristic of adsorption, the relevant equation is as follows 

𝜌𝑎 = ∫ 𝜌(𝑧)𝑑𝑧/𝑙𝐵𝐶
𝐶

𝐵
     (43) 

where ρa is the adsorbed phase density and lBC is the width of the adsorbed region. The remaining 

region in the slit pore is the core region. The fluid density in this region is similar to the bulk fluid 

density under the same conditions [108]. 

 

       

                         (a) Slit pore                                              (b) Density profile 

Figure 36: Schematic figures of (a) slit pores, (b) density profile. The red, green and yellow 

regions are the inaccessible region, adsorbed region and core region, respectively. Points A 



 

66 

 

 

 

and A’ are the positions of the mass centers of boundary atoms in the z direction. Points B 

and B’ are the positions to separate the inaccessible region and adsorbed region. Points C 

and C’ are the positions to separate the adsorbed region and core region. 

 

The adsorbed phase densities of C1 at different pore sizes, temperatures, pressures, 

boundary surfaces, and fluid compositions are shown in Figure 37. Because H2 molecules are 

freely distributed in the slit pore, adsorbed phase densities of H2 are not analyzed. The adsorbed 

phase densities of C1 at different pore sizes (Figure 37(a)) are similar because the change of pore 

size only affects the volume of the core region. The adsorbed region holds similar number of 

molecules when other conditions are the same. The adsorbed phase density increases with 

increasing pressure and mole fraction but with decreasing temperature. The same trend has been 

observed in previous studies [109, 141]. For constant temperature and volume, an increase in 

pressure leads to an increase in fluid molecules in the simulation box. Due to the confinement, 

fluid molecules first occupy the adsorbed region [36], which causes an increase in adsorbed phase 

density (Figure 37(b)). Similarly, an increase of the mole fraction of C1 adds C1 molecules to the 

system, which leads to an increase in the adsorbed phase density of C1 (Figure 37(c)). An increase 

in temperature has a negative effect on adsorption (Figure 37(d)). The reason for this effect is that 

the adsorption process is exothermic and the increase in temperature suppresses the adsorption 

process [150]. In addition, the increased temperature provides molecules with more energy to 

surmount the layer barrier and escape from the adsorbed region [151]. Therefore, an increase in 

temperature leads to a decrease in the adsorbed phase density of C1. The boundary surface does 

not change the trend in adsorbed phase density. The higher adsorbed phase densities of C1 in the 

graphite boundary are due to the strong interactions between C1 and graphite layer [141]. 
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                                  (a) Pore size                                                      (b) Pressure 

             

                              (c) Temperature                                        (d) Mole fraction of C1 

Figure 37: Adsorbed phase densities of C1 at different conditions in graphite layer and quartz 

boundary: a) pore size, b) pressure, c) temperature, and d) fluid composition. The blue and 

green lines represent the adsorbed phase densities of C1 in graphite layer and quartz 

boundary, respectively. 

 

As shown in Figures 35 and 36, C1 and H2O molecules accumulate in the adsorbed region 

while H2 molecules are freely distributed in the slit pore. The preferential adsorption is caused by 

the selectivity effect, which means that the surface adsorption capacities of different components 

are not the same. To quantitatively evaluate the boundary selectivity effect, the concept of relative 

selectivity has been introduced [152]. Relative selectivity refers to the ratio of the adsorbed 

fractions of the two components, which can be calculated by the following equation: 
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𝑆𝑖,𝑗 =
𝑥𝑖 𝑥𝑗⁄

𝑦𝑖 𝑦𝑗⁄
      (44) 

where xi and xj denote the mole fractions of components i and j in the adsorbed region while yi and 

yj represent the mole fractions of components i and j in the core region. Specifically, xi/yj is termed 

as the absolute selectivity of component i [152]. If Si,j > 1, component i is preferentially adsorbed 

by the boundary compared with component j. A high relative selectivity refers to strong adsorption 

preference. 

Many studies [1, 153] have applied relative selectivity to investigate the competitive 

adsorption of C1 and CO2. Their results have shown that 𝑆𝐶𝑂2,𝐶1 > 1 and CO2 is preferentially 

adsorbed near the boundary compared with C1. The preferential adsorption of CO2 contributes to 

the CO2 sequestration in depleted gas reservoirs. The results of selectivity effect in C1-H2 and C1-

H2-H2O mixtures are shown in Figures 38 and 39. 

 

             

                                 (a) Pressure                                                  (b) Temperature 

 

(c) Mole fraction of C1 
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Figure 38: Relative selectivity of C1-H2 mixture in graphite layer and quartz boundary: a) 

pressure, b) temperature, c) mole fraction of C1. The blue and green dots represent the 

relative selectivity of C1 and H2 in graphite layer and quartz boundary. The dashed line 

represents the relative selectivity of 1. 

 

 

Figure 39: Relative selectivity of C1-H2-H2O mixture (bulk composition: C1 35%, H2 35% 

H2O 30%) at 30 MPa and 370 K under 4 nm slit pore with graphite layer or quartz boundary. 

 

As shown in Figure 38, 𝑆𝐶1,𝐻2 is greater than 1 regardless of the pressure, temperature, fluid 

composition and boundary condition, indicating that C1 has been preferentially adsorbed compared 

with H2. In CO2 sequestration, the hope is that CO2 can be permanently stored underground and 

that the preferential adsorption of CO2 can be beneficial for long-term CO2 sequestration. 

However, in H2 storage, H2 is temporarily stored underground and is extracted when needed. The 

preferential adsorption of C1 allows H2 molecules to remain freely in the pore, which ensures that 

a large amount of H2 can be produced during the H2 recovery process. There is no obvious trend 

of 𝑆𝐶1,𝐻2  with changes in pressure, temperature or fluid composition because the change in 

conditions may have affected the number of molecules in the adsorbed region and core region 

simultaneously. Relative selectivity is affected by the mole fraction of fluid molecules in both the 

adsorbed region and the core region; therefore, an increase in the number of molecules in the two 
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regions cannot be used to predict whether the relative selectivity will increase or decrease. For the 

boundary condition, 𝑆𝐶1,𝐻2 is higher under the graphite layer compared to the quartz boundary. 

The reason for this effect is that C1 has strong interactions with the graphite layer [141] and more 

C1 molecules have accumulated in the adsorbed region. The high percentage of C1 in the adsorbed 

region leads to a large value of 𝑆𝐶1,𝐻2. 

As shown in Figure 39, 𝑆𝐻2𝑂,𝐶1 and 𝑆𝐻2𝑂,𝐻2 are greater than 1 regardless of the boundary 

conditions, indicating that H2O has been preferentially adsorbed compared to C1 and H2. When the 

boundary is the graphite layer, 𝑆𝐶1,𝐻2 is greater than 1 because C1 still forms the adsorption layer, 

as shown in Figure 35(a). However, in the slit pore with a quartz boundary, 𝑆𝐶1,𝐻2 is less than 1 

because C1 has been forced away to the core region due to the presence of H2O molecules, as 

shown in Figure 35(b). 

The above analysis shows the adsorption behaviors of C1-H2 and C1-H2-H2O mixtures. For 

the C1-H2 mixture, C1 is preferentially adsorbed compared with H2. For the C1-H2-H2O mixture, 

H2O molecules are preferentially adsorbed compared to C1 and H2. These conclusions are made 

based on the results of relative selectivity. Preferential adsorption ensures that H2 is freely 

distributed in the shale reservoirs and can be extracted easily during the H2 recovery stage. The 

pressure, temperature and boundary material do not have significant effect on the adsorption 

characteristics of C1 and H2. However, when the mole fraction of C1 is low, H2 forms an adsorption 

layer, as shown in Figure 34(b). The adsorbed H2 cannot be easily extracted during the H2 recovery 

process, resulting in a waste of H2. The adsorption of H2 highlights the importance of cushion gas. 

A certain amount of cushion gas must be injected to avoid the consumption of working gas. Our 

results show that 50% cushion gas is sufficient for H2 storage in depleted shale gas reservoirs if C1 

is used as the cushion gas. 
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4.3.2 H2-HC Under Multi-scale Condition 

In this section, we will analyze the phase behavior and compositional distribution of 

hydrogen-shale gas (H2-SG) system under multiscale conditions. The composition of shale gas is 

simplified from the work [132] by ignoring the components with mole fraction less than 1%. The 

composition of the simulated shale gas is summarized in Table 11. The initial pressure of shale 

gas reservoir is set as 5,000 psi while the reservoir temperature is considered as 130°F based on 

the references [154, 155]. To reduce the calculation errors, a total of 10,000 fluid molecules are 

simulated in each case. Different mole fractions of H2 in the fluid systems are considered to 

observe the effect of shale gas percentage on H2 storage. 

 

Table 11. Shale gas composition in the simulation 

Component Mole fraction (%) 

C1 93 

C2 4.2 

C3 1.2 

N2 1.6 

 

The compositional distribution of H2-SG system is shown in Figure 40. The red, yellow, 

green, blue and purple color bars represent the mole fractions of C1, C2, C3, N2 and H2 in the bulk 

or confined regions, respectively. We can observe that the compositional heterogeneity exists 

between the fluids in the bulk and confined regions regardless of the fluid composition, which can 

be demonstrated from the different lengths of the color bars of a specific component in the two 

regions. Specially, hydrocarbons (C1~C3) tend to stay in the confined region while more H2 
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molecules are present in the bulk region. The reason for this is that hydrocarbons have higher 

interaction energies with the boundary in the confined region (Box III) compared with N2 and H2. 

The nonbonded interaction energy is calculated based on Equation (38) and the potential 

parameters can be found in Table 10. A higher value of εp leads to a stronger interaction energy. 

Because hydrocarbons have higher values of εp, the nonbonded interaction energy between 

graphite boundary and hydrocarbons is higher. With the decrease of pressure, the compositional 

heterogeneity becomes more significant, which can be observed from the change of the mole 

fraction differences of H2 in the two regions. 

 

 

(a) SG 80% and H2 20% 
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(b) SG 50% and H2 50% 

 

(c) SG 20% and H2 80% 

Figure 40: Compositional distribution of H2-SG system at different pressures under 

multiscale condition: a) SG 80% and H2 20%, b) SG 50% and H2 50%, and c) SG 20% and 

H2 80%. The red, yellow, green, blue and purple color bars represent the mole fractions of 

C1, C2, C3, N2 and H2 in the bulk or confined regions, respectively. 

 

One important insight we can get from the above analysis is that H2 has higher mole 

fraction in the bulk region than initial state (50%). During the extraction of H2, the fluid in the bulk 

region is first produced due to the high mobility. Therefore, the extracted fluid has higher purity 

of H2, which makes depleted shale gas reservoir a better candidate for H2 storage than conventional 

gas reservoirs. With the decrease of pressure, the mole fraction of H2 becomes higher in the bulk 

region, which leads to a higher purity of H2 in the extracted fluid. The result indicates that shallow 

shale gas reservoirs are favorable candidates for H2 storage. In addition, the volume percentage of 

nanopores in the system also affects the mole fraction of H2 in the bulk region and therefore, affects 

the H2 purity in the extracted fluid. In Figure 40(b), the volume percentage of nanopores at 3000 

psi is about 5.30% in the whole system, which corresponds to 51.32% of H2 in the bulk region. As 
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we increase the volume percentage of nanopores at 3000 psi to about 15.48%, the mole fraction of 

H2 is 53.72% as shown in Figure 41. The increase of the volume percentage of nanopores causes 

more fluids flowing into nanopores. Therefore, more hydrocarbon molecules accumulate in the 

nanopores, while more H2 molecules show up in the bulk region, which leads to a higher mole 

fraction of H2 in the bulk region. 

 

 

Figure 41. Compositional distribution of equimolar H2-SG system at different pressures 

under multiscale condition. The volume percentage of nanopores at 3,000 psi is about 

15.48%. The red, yellow, green, blue and purple color bars represent the mole fractions of 

C1, C2, C3, N2 and H2 in the bulk or confined regions, respectively. 

 

Next, we analyze the bulk fluid phase behavior of H2-SG system. The fluid phase behavior 

in Monte Carlo simulation is determined by the fluid densities in the simulation boxes. Following 

the method mentioned in Section 4.1.1, we can compare the fluid densities of equimolar H2-SG 

system in Box I and II with the reference gas-phase density to obtain the bulk fluid phase behavior, 

as shown in Figure 42. The fluid densities in Box I and II are both gas-phase densities, indicating 

that the bulk fluid is always in single gas phase at different pressures. The same method cannot be 
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used to determine the fluid phase behavior in nanopores (Box III) because the fluid molecules in 

the nanopores are heterogeneously distributed due to the confinement effect. The high fluid 

densities in nanopores are caused by the adsorption of hydrocarbons, which is discussed later. 

 

 

(a) SG 80% and H2 20% 

 

(b) SG 50% and H2 50% 
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(c) SG 20% and H2 80% 

Figure 42: Density profile of H2-SG system: a) SG 80% and H2 20%, b) SG 50% and H2 

50%, c) SG 20% and H2 80%. The green and blue lines represent the simulated fluid 

densities in Box I and II, respectively. The red dots are the reference gas-phase density of 

H2-SG system, which is calculated by PR EOS. 

 

As mentioned before, the extracted fluid with high H2 purity is from the bulk region. When 

the bulk fluid is gradually extracted, fluid in nanopores will be released into the bulk region. 

However, the fluid released into the bulk region does not have the same composition as the fluid 

in the nanopores, which is affected by the adsorption of fluid molecules. The density profiles of 

H2-HC system in nanopores are shown in Figures 34 and 35. Previous analysis shows that C1 is 

preferentially adsorbed compared with H2 in the C1-H2 mixture while H2O molecules are 

preferentially adsorbed compared with C1 and H2 in the C1-H2-H2O mixture regardless of pressure, 

temperature and boundary material. The preferential adsorption ensures that H2 molecules are not 

adsorbed and have high mobility compared with hydrocarbons and H2O. When the fluid in 

nanopores is released to bulk region, more H2 molecules will move to the bulk region due to the 

high mobility. The adsorption of hydrocarbons and H2O limits their migration and therefore, tends 

to trap them in the nanopores. During the extraction process, the increase of H2 molecules released 

from the nanopores contributes to the high percentage of H2 in bulk fluid, which further increases 

the purity of H2 in the extracted fluid. 

 

4.3.3 Implication for H2 storage in depleted shale gas reservoirs 
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Here, we summarize the mechanism of H2 storage in shale gas reservoirs. When H2 is 

injected into shale gas reservoirs, the remaining shale gas and injected H2 form the H2-SG system. 

Due to the confinement effect, the compositional heterogeneity is observed between the bulk 

region and nanopores. The bulk region has higher percentage of H2 while more hydrocarbons show 

up in nanopores. In the nanopores, the fluid molecules are heterogeneously distributed. The 

hydrocarbons are adsorbed near the boundary whereas H2 molecules are freely distributed. During 

the extraction process, the bulk fluid is first recovered. Since the bulk fluid has higher percentage 

of H2, the extracted fluid has higher purity of H2, which improves the efficiency of H2 extraction. 

With the continuous extraction of bulk fluid, the fluid in nanopores is released to the bulk region. 

Due to the mobility difference between hydrocarbon and H2 molecules, more H2 molecules are 

released to the bulk region, which further increases the percentage of H2 in bulk fluid and the H2 

purity in extracted fluid. Therefore, we can conclude that the existence of nanopores in shale gas 

reservoirs allows higher proportion of H2 in the bulk region and the increase of H2 purity during 

H2 extraction, which benefits the H2 storage process. 
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5. SUMMARY AND FUTURE WORK 

 

5.1 Summary 

In this work, EOS modeling, ML and molecular simulation were applied to investigate 

fluid phase behavior in shale reservoirs. Due to the existence of widely distributed nanopores in 

shale reservoirs, fluids in shale reservoirs behave differently compared to the fluids in conventional 

reservoirs. EOS modeling estimated the fluid phase behavior in multiscale condition at the 

reservoir level, and ML was used to accelerate the phase-equilibrium calculation of the EOS 

modeling. Molecular simulation focused on the interactions between fluid molecules, which 

provided the foundation for analysis at the molecular level. 

In the EOS modeling, the PR-C EOS was incorporated in the phase-equilibrium calculation 

to accurately simulate fluid phase behavior under both bulk and nanoscale conditions. The 

confinement effect on shale gas-condensate reservoir fluid is analyzed, and the phenomenon of 

abnormal depletion CGR was explained. In LRS production, oil recovery from LRS reservoirs is 

much lower compared to oil recovery from a conventional reservoir with the same drawdown. The 

reason for this difference is the compositional heterogeneity in LRS reservoirs. Hydrocarbons 

distribute heterogeneously with respect to pore size in nanoscale. There are fewer intermediate to 

heavy hydrocarbons (C3-C11+) but more light ends (C1-C2) in the bulk region. Because fluids are 

mainly produced from the bulk region, the leaner composition in the bulk region leads to relatively 

lower oil recovery. In addition, the variation of bulk fluid composition leads to a change in 

depletion CGR. The bulk fluid composition is not constant when the pressure is higher than the 

dew point pressure. 

Although EOS modeling with the PR-C EOS was more accurate under multiscale 

condition, it is much more complex and time-consuming. In our simulations, the average CPU 
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time for phase-equilibrium calculation using the PR-C EOS was four orders of magnitude higher 

than the CPU time for phase-equilibrium calculation using the PR EOS. To accelerate the phase-

equilibrium calculation using the PR-C EOS, the MLP and PINN were applied in the stability test 

and phase-split computation, respectively. In the stability test, the MLP was trained based on the 

input variables of the reservoir conditions and the EOS parameters to determine whether the fluid 

was in a single-phase or a two-phase condition. If the fluid was in two-phase condition, the PINN 

model was used to obtain an initial estimate of the equilibrium ratio for the Helmholtz free energy 

minimization algorithm instead of obtaining the estimate in stability test. In total, the average CPU 

time for phase-equilibrium calculation using the generalized ML-assisted phase-equilibrium 

model was reduced by more than two orders of magnitude while maintaining an accuracy of 97%. 

Various molecular simulation models were applied to investigate the potential for H2 

storage in depleted shale gas reservoirs. The single bulk model was used to simulate H2-HC phase 

behavior under bulk condition. The simulation results were highly consistent with experimental 

results, demonstrating the accuracy of the simulation process and molecular settings. The single 

nanoscale model was applied to investigate the adsorption behavior of an H2-HC mixture in 

nanopores. For the C1-H2 mixture, C1 was preferentially adsorbed compared with H2. For the C1-

H2-H2O mixture, H2O molecules were preferentially adsorbed compared with C1 and H2. The 

preferential adsorption ensured that H2 was freely distributed in nanopores and was more likely to 

be released to the bulk region during the H2 recovery stage. In the multiscale model, compositional 

heterogeneity was observed for the H2-HC system. A higher proportion of H2 appeared in the bulk 

region while more hydrocarbons existed in the nanopores. Because the bulk fluid contained a 

higher percentage of H2, the extracted fluid had a higher purity of H2 as well, which would improve 

the efficiency of H2 extraction. 
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5.2 Future work 

Extensions of the current work can focus on the improvement of EOS modeling, different 

ML techniques and wider application of molecular simulation. 

The EOS modeling in this work was based on the PR-C EOS. Although the PR-C EOS is 

accurate in simulating fluid phase behavior under both bulk and nanoscale conditions, some of the 

equations and parameters are empirical or must be obtained from experiments. For example, in 

Equations (7) and (8), the square-well width (δp) has been set as 0.5σi regardless of fluid types. 

However, δp should be determined for each component to improve the accuracy. Equation (6) is 

an empirical expression of the term Fp,i, which refers to the percentage of molecules of component 

i in the surface-adsorbed region.. Luo et al. [36] have proposed a new method to calculate Fp,i by 

considering two layers of adsorption. More efforts can be focused on improving the PR-C EOS. 

The ML techniques used to accelerate the phase-equilibrium calculation were MLP and 

PINN. The MLP had the advantage of flexibility and simplicity, while the PINN could incorporate 

the PR-C EOS in the training process to achieve high accuracy with limited samples. The 

optimization of the generalized ML-assisted model focused on the structures of the MLP and PINN 

rather than the testing of different ML techniques. In future work, many other ML techniques can 

be used in the model to determine whether the model produces higher accuracy with other ML 

strategies. 

A series of molecular simulations was performed with different hydrocarbon mixtures 

under various conditions. The same simulation model could be used for more complex cases. For 

example, for the single nanoscale model, one slit pore was used to investigate the fluid adsorption 

characteristics. The boundary materials used in this work were graphite and quartz. Further 

analyses can test other boundary materials, including kerogen and minerals (e.g., montmorillonite, 
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kaolinite, and illite). For the multiscale model, the compositional heterogeneity of the H2-SG 

system was investigated under different conditions. Further analysis can include H2O as a 

component to observe the effect of H2O in the multiscale model. 
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