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A B S T R A C T

Laser-induced breakdown spectroscopy (LIBS), Fourier transform mid-infrared (FT-IR) and Raman spectroscopy
combined with chemometrics were investigated to quantify calcium (Ca) content in infant formula powder
(INF). INF samples (n = 51) with calcium content levels (ca. 6.5–30 mg Ca/100 kJ) were prepared in accordance
with the guidelines of Commission Directive 2006/125/EC. Atomic absorption spectroscopy (AAS) was used as
the reference method for Ca content determination. To predict Ca content in INF samples, partial least squares
regression (PLSR) models that developed based on LIBS, Raman and FT-IR spectral data, respectively. The model
developed using LIBS data achieved the best performance for the quantification of Ca content in INF (R2 (cross-
validation (CV))-0.99, RMSECV-0.29 mg/g; R2 (prediction (P))-1, RMSEP-0.63 mg/g). PLSR models that de-
veloped based on data fusion of Raman and FT-IR spectral features obtained the second best performance (R2CV-
0.97, RMSECV-0.38 mg/g; R2P-0.97, RMSEP-0.36 mg/g). This study demonstrated the potential of LIBS, FT-IR
and Raman spectroscopy to accurately quantify Ca content in INF.

1. Introduction

Breastfeeding provides optimal nutrition to human infants
(Harding, Cormack, Alexander, Alsweiler, & Bloomfield, 2017). How-
ever, most infants worldwide are not breastfed according to a WHO
funded study on feeding practices of infants and young children
(Victora et al., 2016). Infant formula (INF) is the only appropriate
substitute for breast milk. It provides all essential nutrients to support
adequate growth and development of infants and young children
(Rollins et al., 2016). When INF is a sole source of nutrients for neo-
nates, optimal mineral compositions of INF become critical to sustain
human body growth and development.

Dairy-based INF is usually made from bovine skim milk, which must
be modified to suit the needs of neonates (Ahmad & Guo, 2014). Cal-
cium is one of the most important micronutrients contained in milk. It is
required for normal growth and the development of the skeleton and
teeth of mammals (Arifin, Swedlund, Hemar, & McKinnon, 2014).

Calcium in INF always occurs in the form of salts or is associated with
other dietary constituents in the form of complexes of calcium ions
(Strain & Cashman, 2002). Ca content in INF can be modified by the
addition of lactose and demineralised whey powder to dilute Ca; and by
the addition of calcium salts (e.g. CaCO3) and other INF premixes to
enhance Ca content (Smith, Gordon, & Holroyd, 2013). Infant formula
production involves several processing steps and varies between man-
ufacturers (Ahmad & Guo, 2014). According to the report of Euro-
monitor International, global sales of baby milk formula could be worth
USD 71 billion in 2019 (Rollins et al., 2016). Hence, the dairy industry
is expecting the development of low-cost process analytical technolo-
gies (PAT) with the real-time monitoring capabilities to assure con-
sistent quality control (Cullen, O’Donnell, & Fagan, 2014).

Two principal techniques for detection and determination of mi-
nerals in INF are atomic absorption spectroscopy (AAS) and inductively
coupled plasma optical emission spectrometry/mass spectrometry (ICP-
OES/MS) (Walsh, 2014). These techniques are capable to determine
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elements at ultra-trace levels but only suitable for laboratory use. So-
phisticated instrumentation and time-consuming sample digestion
procedures are in demand; therefore, these techniques cannot meet the
requirements for real-time measurements.

Laser-induced breakdown spectroscopy (LIBS) is an atomic emission
spectroscopic technique which uses focused pulsed laser beam to gen-
erate plasma from the analytic material. A small amount of material is
ablated, producing a plasma plume which consists of atoms, ions and
free electrons. As the plasma cools down, the atoms, ions and electrons
lose energy and emit light with specific spectral characteristics for each
element existing in the target material (Markiewicz-Keszycka et al.,
2018). LIBS has been reported to quantify Ca in INF (Cama-Moncunill
et al., 2017) with a R2CV value of 0.90 and a RMSECV value of
0.62 mg/g.

Both of mid-infrared (MIR) and Raman are spectroscopic techniques
involving vibrational transitions. In MIR spectroscopy, the transitions
between energy levels of a molecule are induced by the absorption of
infrared radiation. An ‘infrared-active’ molecule must show an electric
dipole moment which is changed by vibration. The dipole moment of
such a molecule changes as the chemical bond expands and contracts
when absorbing and emitting infrared light; in Raman spectroscopy,
vibrational transitions occur during the scattering of light by molecules.
Molecular vibrations can be described as motions of atoms in a mole-
cule. All the atoms vibrate at a certain characteristic frequency. While
MIR requires a change in dipole moment during vibration, which
usually requires some polarity difference between the ends of chemical
bonds, Raman technique requires a polarisable change, which is ease of
introducing a polarity. Moreover, MIR spectroscopy is more active to
polar bonds (in asymmetric stretch mode) while Raman spectroscopy is
more active to non-polar bonds (in symmetric stretch mode). Other
chemical bonds somewhere in between may be weakly allowed in both
techniques (Bunaciu & Aboul-Enein, 2017; Socrates, 2002). MIR for the
prediction of major minerals including calcium in milk with moderate
accuracy (R2CVs-0.58–0.68, RMSECVs-120–153.02 mg/kg) (Visentin,
Penasa, Gottardo, Cassandro, & De Marchi, 2016) and poor accuracy
(R2CV-0.48; RMSECV-131 mg/L)) (Bonfatti, Degano, Menegoz, &
Carnier, 2016). Fourier transform mid-infrared (FT-IR) technique has
been introduced to eliminate biases which are associated with the
standard infrared methods in order to enhance infrared spectral fea-
tures (Juanéda, Ledoux, & Sébédio, 2007). Raman spectroscopy is ex-
cellent for the detection of multi-nuclear ions that contain polarisable
bonds, including phosphates, carbonates, etc. Calcium mainly exists as
calcium phosphate and CaCO3 in a milk based infant formula (Smith
et al., 2013). Very few publications have reported the use of Raman
spectroscopy to detect mineral content in dairy products. Smith et al.
reported using Fourier-transform Raman spectroscopy to detect and
quantify calcite in milk powder (Smith et al., 2013). However, both
MIR and Raman spectroscopic techniques are not adopted for the direct
detection and determination of minerals; it is due to the absence of
sufficient fundamental studies in this area. While on the other hand, it
has demonstrated that a correlation exists between the numbers of
cations and that of their corresponding anions in a neutral chemical
complex (Chukanov, 2014). Some previous studies have reported the
customary application of Raman spectroscopy or middle infrared for
the investigation of minerals by the identification of different groups of
atoms using spectral wavelength bands (Chou & Wang, 2017;
Chukanov, 2014). Recently, Raman spectroscopy was used to develop a
rapid tool for the estimation of calcium and ash contents in bone and
meat mixtures and obtained a R2CV value of 0.775 and a RMSECV value
of 0.33% for Ca content prediction (Wubshet, Wold, Böcker, Sanden, &
Afseth, 2019). Therefore, Raman and MIR spectroscopy combined with
multivariate data analysis hold the potential to quantify mineral cations
in a chemical complex via directly determination of their corresponding
anions. In addition, the combination of Raman and MIR spectral fea-
tures would give complementary information for the quantification of
minerals in INF.

In this study, the potential of Raman, FT-IR and LIBS were evaluated
to determine calcium content in powdered infant formula. This in-
vestigation was conducted with the objective to develop a mathema-
tical model for accurate quantification of calcium content in INF
powder using LIBS, FTIR and Raman spectroscopy combined with
chemometric approaches including data fusion strategies to accomplish
complementary spectral information for the quantification purpose.

2. Material and methods

2.1. Sample preparation

According to the Commission Directive 2006/141/EC (European,
2006), the content of Ca in INF manufactured from cows’ milk should
be in a range of 12–33 mg Ca/100 kJ. Ca content in the INF mixtures
used in this experiment was arranged from 6.5 to 30 mg Ca/100 kJ.
Commercial INF intended for children from 0 to 6 months was pur-
chased from local stores in Dublin, Ireland. Five calibration sample
formulae (Ca1, Ca2, Ca3, Ca4, Ca5) and 2 validation sample formulae
(CaV1, CaV2) were designed for the study. To obtain sample formulae
(Ca1, Ca2 and CaV1) at lower Ca content levels, lactose (α-lactose
monohydrate ≥99%) was added into the purchased commercial INF
powder (Ca3). In order to obtain homogenous samples with higher
amount of Ca, a premix sample (Premix1) containing 99 mg Ca/100 kJ
was prepared by blending 96 g of INF with 4 g of calcium carbonate
(CaCO3 ≥99%); Premix1 was subsequently diluted using INF (Ca3) to
get another premix sample (Premix2) with Ca content of 48 mg Ca/
100 kJ. Premix2 was used as Ca source for preparation of other sample
formulae (Ca4, CaV2 and Ca5). Each blend was prepared in the amount
of 100 g. The details of sample formulation are shown in
Supplementary (I).

To ensure accurate mixing of INF with CaCO3 and lactose, the
blending process was divided into two parts. Firstly, to reduce and
homogenise particle size, mixtures were ground in a laboratory blender
(8011G, Waring Laboratory Science, CT, USA) equipped with rotatory
stainless-steel blades for 2 min. Then the blends were transferred into a
laboratory V-mixer (FTLMV-1L&, Filtra Vibration S.L., Spain) and the
dry mixing was applied for 20 min. Sample powder was then pelleted
using a hydraulic press (GS01160, Specac Ltd., Orpington, U.K.) by
applying a pressure of 10 tonnes for 3 min. Samples were prepared in
triplicate for three batches following each calibration sample formula,
the five formulae (i.e. Ca1, Ca2, Ca3, Ca4 and Ca5) were followed;
therefore, 45 pellet samples were obtained for the calibration group. Six
pellet samples were also prepared by following the two formulae (i.e.
CaV1 and CaV2) of the validation group for three times. In total, 51
sample were prepared for this study. All chemicals used in the experi-
ments presented in this paper were purchased from Sigma Aldrich
(Arklow, Ireland).

2.2. Atomic absorption spectroscopy analysis

Calcium content in all samples were determined using atomic ab-
sorption spectroscopy (AAS) (Varian 55B AA, Agilent Technologies,
United States). Sample digestion was conducted in MarsXpress® vessels
in a microwave accelerated reaction system (CEM Corp. MARS 6,
Matthews, NC, USA) following the CEM digestion procedure for pow-
dered infant formula. In brief, 500 mg of each sample was weighed in
the MarsXpress® vessels and then 10.0 mL of 69% HNO3 (CAS 7697-37-
2, Sigma Aldrich, Inc.) was added. The microwave heating program
consisted of ramping from the ambient temperature to 200 °C in 20 min
and holding this temperature for 15 min. After cooling, the residual
solution of each sample was transferred into a 50 mL volumetric flask
and the volume was made up with high-purity deionized water. Further
dilutions using deionized water were carried out to maintain Ca con-
centrations within the AAS optimum measurement range (0–3 ppm). An
air-acetylene type flame was used for AAS analysis. To avoid
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interferences in air-acetylene, calcium content was determined in the
presence of lanthanum chloride solution. The metal-specific hallow
cathode lamp with an operating electrical current of 4 mA was used as
the radiation source. Ca absorbance was measured at the wavelength of
422.7 nm with a slit width of 0.5 nm. Calibration curves were estab-
lished by using aqueous standards prepared from a commercial calcium
stock solution (Calcium standard for AAS – 1000 mg L−1, Sigma-
Aldrich).

2.3. LIBS

The spectra of LIBS were obtained by using a LIBSCAN-150 system
(Applied Photonics, UK) and six fibre-optic compact optical spectro-
meters (Avantes, AvaSpec, Netherlands), which covered the spectral
range of 181.4–904.2 nm. The laser was operated in Q-switched mode
at a repetition rate of 2 Hz and 100 mJ/pulse, whereas the spectrometer
was operated at 1.27 µs gate delay and 1.1 ms integration time. Each
pellet was analysed at 100 different locations, directly in the air using a
controlled X-Y-Z translation stage (XYZ- 750, Applied Photonics
Limited, Skipton North Yorkshire, United Kingdom). To obtain the best
signal-to-noise ratio, each spectrum was acquired as the result of two
accumulations for each location. The spectra were obtained at a con-
stant optimum focal length of 76 mm.

2.4. Raman spectroscopy

Raman spectra were collected using DXR SmartRaman spectrometer
(ThermoFisher Scientific UK Ltd., Loughborough, UK) equipped with a
diode laser operating at 780 nm to minimise sample fluorescence issues
and a charge coupled device (CCD) detector. One side of the sample
pellet was placed over the aperture (50 μm slit) on the 180-degree
platform sampling accessory. All spectra of each sample were accu-
mulated for 5 min (i.e. 15 s exposure time ×20 exposures) using a 150-
mW laser power. Samples were scanned in a random order at ambient
temperature (ca. 20 °C). Raman intensity counts per second (cps) were
recorded over the wavelength range 250–3380 cm−1 at 2 cm−1 inter-
vals. Cosmic spikes were removed automatically by the supplied soft-
ware. Instrument control, spectral acquisition and file conversion were
performed using the supplied OMNIC software v 9.2.98 (Thermo Fisher
Scientific Inc., USA). Each sample was scanned twice at two different
locations on the sample pellet; the mean of these duplicate spectra was
used in subsequent chemometric operations.

2.5. FT-IR spectroscopy

The spectra of the samples were collected using Nicolet™ iS5
(Thermo Scientific, USA) Fourier transform mid-infrared spectrometer
equipped with diamond crystal attenuated total reflectance (ATR) ac-
cessory (iD7 ATR, Thermo Scientific, USA). For analysis, one side of the
sample pellet was placed on the ATR crystal to cover the entire crystal
surface. Single beam reflectance spectra were recorded over the wa-
venumber range 250–4000 cm−1 with a resolution of 2 cm−1.
Background calibration was carried out using air blank reference before
each measurement. Cleaning procedures were carried out before and
after each measurement using ethanol (99%) to wipe the ATR crystal.
During each measurement, 64 scans were performed and averaged.
Spectral data were recorded using the supplied OMNIC software v
9.2.98 (Thermo Fisher Scientific Inc., USA). Each sample was measured
in triplicate and the mean value was acquired for chemometric analysis.

2.6. Chemometric analysis and data fusion

Both raw Raman and FT-IR spectra were exported from OMNIC
software as .csv files and imported into Matlab 2018a (The Mathworks,
Natick, MA, USA). LIBS spectral data were imported into R (The R
Foundation for Statistical Computing, Austria). The mean spectrum of

each sample was calculated; baseline correction on raw data was car-
ried out using asymmetric least squares correction (AsLs).

Basic statistics on the analysis (including mean and standard de-
viations) of AAS were summarized. The mean Ca content value of each
sample was used as the chemical reference (Y-variables); the collected
full spectral variables or variables in the selected wavelength ranges of
each spectroscopic technique were used as X-variables for the devel-
opment of partial least squares regression (PLSR) models. The optimal
wavelength ranges used in modelling were selected on the basis of
observed spectral signal intensities. PLSR models were developed using
the nonlinear iterative partial least squares (NIPALS) algorithm on the
calibration samples (n = 45) and validated using independent valida-
tion samples (n = 6). Leave-one-out cross-validation was carried out.
To evaluate model performance, parameters such as root mean square
error of cross-validation (RMSECV) and prediction (RMSEP) as well as
regression coefficients of determination on cross-validation (R2CV) and
prediction (R2P) were calculated. The bias of cross-validation and
prediction was also determined. Robustness of PLSR models were en-
hanced using the most relevant spectral variables which were selected
by variable importance on projection (VIP) (Chong & Jun, 2005).

To achieve more accurate prediction results, PLSR models were also
developed based on complementary information of both Raman and FT-
IR spectral variables and features. Two data fusion strategies were
studied and compared (Fig. 1). The first approach was based on the
lower level fusion of both Raman and FT-IR spectral data in the same
selected wavelength range (450–2800 cm−1). The selected Raman and
FT-IR spectral variables were fused into one data frame by concatena-
tion (Fig. 1- Data fusion(I)A) or by coaddition (Fig. 1-Data fusion(I)B).
The second approach was based on the mid-level fusion of scores cor-
responding to the optimal latent variables used for the PLSR modelling
also based on Raman and FT-IR spectral data (450–2800 cm−1) (Fig. 1-
Data fusion(II)). VIP variable selection algorithm was used to assist the
selection of the most relevant spectral variables for Ca content predic-
tion in the lower fusion level. VIP is also a necessary procedure carried
out before the PLS modelling that generate optimal latent variables
used for the mid-level fusion of their relevant scores.

The limit of detection (LOD) values of the best performed PLSR
models were also calculated. LOD is the smallest amount or con-
centration of an analyte in the test sample that can be reliably dis-
tinguished. Pseudo-univariate LOD (LODpu) takes into account the un-
certainty of the calibration line and considers α and β probabilities of
error. The international union of pure and applied chemistry (IUPAC)
recommended LOD formula as below:

= + +
−LOD s h I var3.3 [(1 1/ ) ]pu pu min pu

1
0

1
2

where −spu
1 is the slope of the pseudo-univariate line, h min0 is the

minimum leverage when the concentration of analyte is 0, I is the
number of samples, varpu is the variance of the regression residuals
(Allegrini & Olivieri, 2014).

3. Results and discussion

3.1. Results and discussion of experiments

3.1.1. AAS results of Ca content
Atomic absorption spectroscopy (AAS) was performed as a reference

method to determine Ca content in all samples. The accuracy of AAS
results depends on the calibration curve obtained using standard solu-
tions of the examined element. The calibration curve obtained in the
current study exhibited linearity with a coefficient of determination
(R2) of 0.97. The statistics of AAS analysis was summarized in Table 1.
Mean values and the low standard deviation values (i.e. 0.01–0.23 mg/
g) were derived based on the AAS results of samples that prepared
following each formula. As samples were prepared following each for-
mula in three batches; the mean value of the measured Ca content
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showed no significant -differences (P > 0.05) between batches, while
the visible variations -were possibly caused by some sample handling
procedures and the dry mixing process. However, the measured Ca
content levels (ca. 1.08–8.33 mg/g) of samples prepared in three bat-
ches are around the estimated Ca content levels (ca. 1–6.17 mg/g) in
Supplementary (I). Nevertheless, the Ca contents determined by AAS
are generally higher than the estimated values that based on calcium
contents provided by the INF manufacturer.

3.1.2. LIBS spectra
For each sample, the LIBS spectrum was derived from the averaged

value of three hundred spectra (100 scans * 3 replicates). Based on the
reference NIST database, 25 emission lines related to calcium have been
identified (Kramida, Ralchenko, & Reader, 2016). High intensities of Ca
emission lines can be observed at 317.93, 393.36, 396.84 and
422.67 nm, while the highest intensity of LIBS wavelength (589.05 nm)
is related to the emission of Na ions. The LIB spectral features (Fig. 2a)
were as the same as the LIBS spectra of INF powder which have been
reported in a previous publication (Cama-Moncunill et al., 2017).

Fig. 1. The illustration of data fusion strategies.
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Fig. 2a shows the mean spectrum of samples (Ca1, Ca3 and Ca5) which
contain low, medium and high levels of Ca content respectively. In
Fig. 2a, the spectrum of the sample Ca5 shows higher intensities of Ca
bands than the spectra of samples Ca1 and Ca3. The emission bands of
other elements were also observed in the spectra including C2, Na, H, N,
K and O. Additionally, molecular emission bands of CN were identified
at 385.034–385.427 nm, 386.163–388.308 nm and
416.721–419.698 nm; while the intensities of LIBS wavelengths related
to CN, C, H, N and O didn’t show obvious differences but showed dif-
ferences on the wavelengths related to C2. The detected organic atoms
(i.e. C, H, N, O and CN) refer to the organic compounds of INF or can
originate from the surrounding air.

3.1.3. Raman spectra
Raman spectral details are shown on the mean spectrum in the

frequency range of 50–3398 cm−1 (Fig. 2b). Raman spectral bands at
357, 445, 850, 877, 950, 1064 and 1085 cm−1 are assigned to the vi-
brational mode of the glycosidic bond of α or β lactose (Kirk, Dann,
Blatchford, & C., 2007; Li-Chan, 1996). Raman bands of 645, 773 and
877 cm−1 may relate to δ (CeCeO) or δ (CeCeH) bonds of tryptophan
(Almeida, Oliveira, Stephani, & de Oliveira, 2011; Rodrigues Júnior
et al., 2016); 445 and 598 cm−1 may relate to δ (CeCeC) and τ (CeO)
bonds (Rodrigues Júnior et al., 2016); 950 cm−1 has been assigned to δ
(CeOeC), δ (CeOeH) and ν (CeO) bonds; 1064, 1085 and 1121 cm−1

have also been assigned to δ (CeOeH), ν (CeO) and ν (CeC) of aspartic
and glutamic acids (Almeida et al., 2011; Li-Chan, 1996). In the pre-
vious studies, Raman spectral signals around 1003 cm−1 were strongly
related to the ring-breathing structure of phenylalanine (Almeida et al.,
2011; Beattie, Bell, Farmer, Moss, & Patterson, 2004; Li-Chan, 1996;
Rodrigues Júnior et al., 2016; Zhao, Beattie, Fearon, O’Donnell, &
Downey, 2015). Prominent Raman peaks at 1262, 1442 and 1745 cm−1

are respectively assigned to γ (CH2), τ (CH2), δ (CH2) and ν (C]O)
bonds of aliphatic chains in lipids and amino acid residues (Beattie
et al., 2004; Li-Chan, 1996; Rodrigues Júnior et al., 2016). Raman
bands around 1555 and 1654 cm−1 are respectively related to δ (NeH)
and ν (C]N) of Amide II, and ν (C]O) of Amide I (Almeida et al., 2011;
Rodrigues Júnior et al., 2016). The region of 2855 and 2900 cm−1 may
be attributed to symmetric ν (CH2) and asymmetric ν (CH3) modes
while the region of 3005 cm−1 may result from the symmetric γ (CH2)
vibrational mode of aliphatic chain and aromatic structures of lipids
(El-abassy, Eravuchira, Donfack, von der Kammer, & Materny, 2011).

3.1.4. FT-IR spectra
The details of the mean FT-IR spectrum are shown in the frequency

Table 1
Ca content in dry matter (DM) of INF and the INF mixtures determined by AAS.

Batch Sample type Ca content*(mg/g DM)

Calibration 1 Ca1 1.09 ± 0.01
Ca2 3.01 ± 0.03
Ca3 4.49 ± 0.04
Ca4 5.88 ± 0.05
Ca5 7.44 ± 0.22

Calibration 2 Ca1 1.24 ± 0.11
Ca2 3.89 ± 0.13
Ca3 5.31 ± 0.11
Ca4 6.69 ± 0.18
Ca5 8.10 ± 0.23

Calibration 3 Ca1 1.31 ± 0.08
Ca2 3.41 ± 0.18
Ca3 5.39 ± 0.09
Ca4 5.98 ± 0.16
Ca5 7.73 ± 0.20

Validation CaV1 4.31 ± 0.10
CaV2 7.55 ± 0.17

*Mean ± standard deviation.

Fig. 2. a) Averaged LIBS spectrum (181–904 nm) of INF sample - Ca1, Ca3 and
Ca5 with low, medium and high Ca concentration, respectively; b) averaged
Raman spectrum pre-treated by AsLs baseline correction over the Raman fre-
quency range (250–3380 cm−1); c) averaged FT-IR spectrum pre-treated by
AsLs baseline correction over the Raman frequency range (400–4000 cm−1).
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range of 400–4000 cm−1 (Fig. 2c). The absorption peak at 634 cm−1 is
assigned to δ (NeC]O) of Amide II and III; the peak at 719 cm−1 is
related to δ (NeH) of Amide I; peaks at 779 and 1297 cm−1 are related
to δ (NeH) of amine salts and Amide III, respectively (Socrates, 2002).
Other peaks at 1230, 1370 and 1463 cm−1 are related to ν (CH2) of
aliphatic chains of fatty acids (Safar, Bertrand, Robert, Devaux, Genot,
1994). Absorption bands of 873, 1409 and 1450 cm−1 are assigned to ν
(CO3

2−) (Fleet, 2017). Bands at 602 and 1029 cm−1 are assigned to ν
(PO4

3−) (Liu, Eriksson, Jin, Nygren, & Shen, 2014). Peaks at 1161 and
1745 cm−1 are assigned to ν (CeO) and peaks at 2852 and 2924 cm−1

are attributed to asymmetric ν (CH2) and symmetric ν (CH2) of fatty
acids (Lei et al., 2010).

3.2. PLSR models developed using individual spectral data of each
technique

The PLSR models were developed using the full range of LIBS
(181.4–904.2 nm) including massive spectral variables (n = 11660)
and the VIP selected spectral variables (n = 4516). One model was also
developed using the spectral variables (n = 75) with high signal in-
tensities related to Ca content which were provided by the NIST data-
base as a reference. The best-performed model was developed using VIP
selected spectral variables and three PLS loadings achieved a R2CV
value of 0.985 with a RMSECV value of 0.287 mg/g and a R2P value of
0.996 with a RMSEP value of 0.634 mg/g (Fig. 3a & b).

For the prediction of Ca using Raman spectroscopy, PLSR models
were developed using VIP selected spectral variables in a series of
Raman frequency ranges including 250–1800, 250–3000, 450–3000,
450–2800 and 800–1800 cm−1 respectively and the collected full
spectral range in 250–3380 cm−1. Results showed that the model de-
veloped using all the collected Raman spectral variables (n = 3246)
had the relatively poor performance for Ca prediction, which revealed a
R2CV value of 0.76 with a RMSECV value of 1.15 mg/g and a R2P value
of 0.61 with a RMSEP value of 1.36 mg/g. However, model prediction
performance was improved significantly using VIP variable selection
algorithm to eliminate the non-relevant spectral variables. Generally,
four PLS loadings were required for PLSR modelling which yielded
R2CVs of 0.89–0.95 with RMSECVs of 0.49–0.75 mg/g and R2Ps of
0.87–0.97 with RMSEPs of 0.51–0.95 mg/g. The best-performed pre-
diction model developed using VIP selected Raman spectral variables
(n = 638) in the wavelength range of 450–2800 cm−1 achieved a R2CV
value of 0.954 with a RMSECV value of 0.490 mg/g and a R2P value of
0.964 with a RMSEP value of 0.532 mg/g (Fig. 3c & d).

The PLSR model developed using all the collected FT-IR spectral
variables (n = 3734) had a poor performance for Ca prediction due to
the interferences of the non-informative spectral variables. However,
after VIP variable selection, models developed based on the retained
spectral variables achieved R2CVs of 0.71–0.85 with RMSECVs of
0.89–1.23 mg/g and R2Ps of 0.68–0.91 with RMSEPs of 0.6–1.24 mg/g.
The best-performed model (Fig. 3e & f) was developed using seven PLS
loadings and VIP selected spectral variables (n = 190) in the wave-
length range of 450–2800 cm−1 to achieve a R2P value of 0.905 with a
RMSEP value of 0.604 mg/g.

In addition, the summary of the performances of all the PLSR
models developed using LIBS, Raman and FT-IR spectroscopy for the
prediction of Ca content in INF was shown in a table of Supplementary
(II).

3.3. PLSR models developed using Raman and FT-IR spectra using data
fusion strategies

Raman and FT-IR spectroscopic techniques can be complementary
to each other for the determination of the anions of the chemical
compounds in INF powder. Calcium exists in INF as cations which are
strongly correlated to the anions. Therefore, PLSR models developed
using the combination of Raman and FT-IR spectral information would

be helpful to improve the prediction accuracy on Ca. Based on the best
performance of PLSR models developed using individual Raman or FT-
IR spectral data, data fusion was carried out using spectral features in
the same wavelength range (450–2800 cm−1) of both Raman and FT-IR
spectroscopy. The first strategy of data fusion-(I)-A (Fig. 1) was devel-
oped to concatenate the VIP selected spectral variables while both
spectral data were pre-treated using normalisation and group scaling
and consequently to reform as a new data frame (51 samples * 828
spectral variables). The regression coefficient intensities (arbitrary units
(a.u.)) of the fused spectral data were derived from PLSR modelling
using four latent variables (LVs); high regression coefficient intensities
were related to Raman spectral variables while very low intensities
were related to FT-IR spectral variables. The PLSR model developed on
the strategy of data fusion-(I)-A yielded a R2CV value of 0.933 with a
RMSECV value of 0.592 mg/g and a R2P value of 0.939 with a RMSEP
value of 0.792 mg/g; as shown in Supplementary (III). The results were
more accurate than that of the models developed using individual FT-IR
spectral variables and slightly less accurate than those developed using
the individual Raman spectral variables.

In the strategy of data fusion-(I)-B (Fig. 1), both matrices of Raman
and FT-IR spectral data (450–2800 cm−1) of 51 samples were co-added
together to form a new data frame (51 samples*2438 spectral vari-
ables); then the PLSR model was developed using VIP selected spectral
variables (n = 283) and acquiring three LVs. The results achieved by
this strategy were slightly more accurate than those achieved by the
previous strategy - Data fusion (I)-A with a R2CV value of 0.950 with a
RMSECV value of 0.514 mg/g and a R2P value of 0.958 with a RMSEP
value of 0.704 mg/g.

Furtherly, a middle level of data fusion was carried out using the
second strategy of data fusion – data fusion (II) (Fig. 1). The aim of
PLSR modelling using the VIP selected Raman or FT-IR spectral variable
matrices (X) and the Ca reference array (Y) was to extract the latent
variable (LV) score matrices. To extract LV score matrices, the covar-
iance between X and Y were maximised by adding the weights of re-
gression coefficients of the related spectral variables (as the orthogonal
matrices (B)) to the scores of X. Fig. 4a and b illustrate the mechanism
of the score extraction procedures. In this study, the first four LV scores
of the model developed using Raman spectral data and the first seven
LV scores of that developed using FT-IR spectral data were con-
catenated to form a new data frame (51 samples * 11 LVs), which was
plotted out in Fig. 4c. For a further PLS modelling based on the new
data frame, the regression coefficients related to Raman scores ex-
hibited a higher intensity than those related to FT-IR scores (Fig. 4d). A
model developed using the fused scores achieved a R2CV value of 0.973
with a RMSECV value of 0.378 mg/g and a R2P value of 0.968 with a
RMSEP value of 0.368 mg/g; two PLS loadings were required for the
model development (Fig. 4e & f).

3.4. Discussion on the performance of PLSR models developed using LIBS,
FT-IR and Raman spectra

The minerals present in cows’ milk-based INF occur as inorganic
ions and salts or form complexes with proteins and peptides, carbohy-
drates, fats and small molecules (Vegarud, Langsrud, & Svenning,
2000). Ca ions chelate to milk proteins and peptides such as αs1-casein,
αs2-casein, β-casein, γ-casein, whey proteins, β-lactoglobulin and lac-
toferrin (Vegarud et al., 2000). Calcite (CaCO3) is another common
form of Ca contained in dairy-based INF (Smith et al., 2013). Raman
and FT-IR spectra can reveal information about the backbone and
structure of sample molecules (Socrates, 2002). On the other hand, Ca
element has a unique number of electrons, thus its atom will absorb or
release energy in a pattern unique to its elemental identity. Conse-
quently, atomic absorption or emission spectroscopy (i.e. AAS and
LIBS) can detect Ca elements directly by its unique energy release
pattern. It was observed in Supplementary (II) that for both Raman and
FT-IR methods, the best performing models were developed using the

M. Zhao, et al. Food Chemistry 320 (2020) 126639

6



wavelength range of 450–2800 cm−1. This wavelength range include
almost all the chemical bonds that related to milk proteins, peptides
and calcite. The results also show that the models developed based on
FT-IR spectra are less robust than those developed on LIBS and Raman
spectra; this was manifested mainly by the facts that the PLSR model-
ling using FT-IR spectral data relied on more latent variables (PLS
loadings) and yielded lower R2 values, higher absolute bias values and
RMSE values. However, the models developed on the data fusion of
Raman and FT-IR spectral features (i.e. the LV scores) are more robust
than the models developed using individual FT-IR or Raman spectral
features. On the other hand, the developed models based on the mid-
level fusion of the LV scores (Fig. 1–Data fusion (II)) demonstrated
better prediction performances than the models developed using the
lower level data fusion of spectral variables (Fig. 1 – Data fusion (I) A&
B).

The prediction potential of the models was also evaluated by the
LOD values. The highest LOD value was obtained for FT-IR method and
was 3.963 mg/g. LODs that derived from the best models based on LIBS
and Raman spectra were 1.079 mg/g and 1.872 mg/g, respectively. The
LOD values for the models developed using Data fusion-(II) was
2.036 mg/g and for that developed using Data fusion-(I) (Fig. 1) was
2.714 mg/g. As the LOD values represent the lowest quantity of a
substance that can be distinguished by the developed models from the
absence of this substance (with 99% of confidence) (MacDougall &
Crummett, 1980); the models developed using the spectral data of LIBS
demonstrated the best performance to detect the lowest quantity of Ca
content in INF. Nevertheless, the model developed using VIP selected
Raman spectral variables (n = 638) obtained the overall second-best
performance for the detection of the lowest quantity of Ca in INF.

Fig. 3. PLS regression plots of INF samples on measured Ca (X-axis) vs. predicted Ca (Y-axis) of the best performed model: a) cross-validation and b) prediction based
on LIBS spectra; c) cross-validation and d) prediction based on Raman spectra; e) cross-validation and f) prediction based on FT-IR spectra.
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3.5. Discussion of regression coefficient intensities for Ca prediction

In order to find the direct evidence of the spectral information re-
lated to Ca content, regression coefficient intensities of all LIBS spectral
variables (181.418–904.192 nm), individual Raman and FT-IR spectral
variables in the selected wavelength range (450–2800 cm−1) were
calculated during PLSR modelling.

In Fig. 5a, high regression coefficient intensities with positive values
were shown mostly at the Ca related wavelengths and rarely at N, K and
O related wavelengths. Other relatively high intensities with negative
values are shown at C, Mg, CN, Na, H and Mg emission related

wavelengths. This result was derived from the PLSR modelling for Ca
prediction using four latent variables and it indicates that Ca emission
lines positively influence the regression model for Ca prediction while
emission lines of other elements may negatively influence the predic-
tion or cause errors.

Fig. 5b shows that an outstanding high-intensity peak exists at
1085 cm−1 of Raman shifts, which has been approved to have a great
amount of influence to quantify calcite (CaCO3) in INF powder (Smith
et al., 2013). In the current study, the preparation of samples at dif-
ferent Ca content levels was controlled by the estimation on Ca content
that provided by the manufacture. In Fig. 5c, positively high regression

Fig. 4. Results of Data fusion (II): the procedures to extract PLS scores from PLS modelling based on a) Raman spectra, b) FT-IR spectra; c) the plot of PLS score
concatenation; d) the regression coefficient plot of PLSR modelling based on fused scores; PLS regression plots of INF samples on measured Ca (X-axis) vs. predicted
Ca (Y-axis): e) cross-validation and f) prediction.
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coefficient intensities of the FT-IR spectral wavelengths are shown at
1019, 1028 and 1517 cm−1 in the wavelength ranges of
1000–1120 cm−1 and 1450–1530 cm−1, which are assigned to CO3

2−

and PO4
3− of CaCO3 and the compound (Ca-PO4 = Ca = PO4-Ca)

bound to casein, respectively (Berzina-Cimdina & Borodajenko, 2012).
As calcite (CaCO3) was the only controlled source of Ca to modify the
Ca content of samples prepared in this study, the difference of calcite
content in samples could have been tracked using Raman or FT-IR
spectral features. To the same effect, other Ca source in INF could have
also been determined without tracking. Therefore, the regression
coefficients of calcite related Raman or FT-IR wavelengths can be used
to inspect the potential of vibrational spectroscopy for the determina-
tion of the anions or backbones of Ca ions bonded chemical functional
groups in INF. Both Raman and FT-IR spectra contain multivariate in-
formation on the functional groups that Ca is bounded to; therefore,
their correlated Ca ions can be determined using the combination of
vibrational spectroscopy (i.e. Raman and FT-IR) and multivariate ana-
lysis.

4. Conclusion

In this study, both atomic spectroscopy (i.e. AAS and LIBS) and
vibrational spectroscopy (i.e. Raman and FT-IR) were employed to
quantify Ca content in INF. AAS and LIBS are originally designed to
destruct complex INF materials in order to isolate various elements
including calcium. AAS was used as a reference method to quantify Ca
content in the samples; LIBS combined with PLSR modelling was used

to develop a rapid method for Ca prediction and to compare with the
prediction results of PLSR modelling based on Raman and FT-IR spec-
tral information. Overall, the model developed using LIBS achieved the
best prediction performance (R2CV-0.985, RMSECV-0.287 mg/g; R2P-
0.996, RMSEP-0.634 mg/g; LOD-1.079 mg/g). The second best-per-
formed model was developed using the mid-level data fusion of both
Raman and FT-IR spectral features (R2CV-0.973, RMSECV- 0.378 mg/g;
R2P-0.968, RMSEP-0.358 mg/g; LOD-2.036 mg/g). Based on the model
performances, it also can be concluded that Raman spectroscopy is
more effective than FT-IR spectroscopy to determine the Ca bounded
functional groups and protein backbones in INF. Chemometric ap-
proaches including algorithms of baseline correction, variable selection,
regression modelling and data fusions, allowed to isolate and interpret
the informative spectral features related to Ca content and eventually to
develop models for the quantification purpose. Results demonstrated
the feasibilities of Raman and FT-IR combined with chemometrics to
quantify Ca content in INF. The results obtained in this study also
confirmed that LIBS combined with chemometrics can be a rapid and
low-cost method for calcium quantification and should be considered as
a PAT strategy in the dairy industry.
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