
KNOWLEDGE-GUIDED MACHINE LEARNING FOR SPATIOTEMPORAL

ENVIRONMENTAL DATA ANALYSIS

A Dissertation

by

HANZI MAO

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Nicholas Duffield
Committee Members, Binayak Mohanty

Dilma Da Silva
Xia Hu

Head of Department, Scott Shaefer

August 2020

Major Subject: Computer Science

Copyright 2020 Hanzi Mao



ABSTRACT

With the emergence of ubiquitous environmental monitoring systems in the past few

decades, we are gaining unprecedented ability to collect vast amounts of spatiotempo-

ral environmental data. However, it still remains a challenge to mine information from

the spatiotemporal data for many environmental sustainability tasks. This dissertation fo-

cuses on utilizing machine learning to analyze spatiotemporal environmental data with

the guidance of domain knowledge and specifically proposes several novel algorithms for

the soil moisture gap-filling task and crop yield prediction task.

First, we study the problem of soil moisture gap-filling. Large spatiotemporal gaps

can be incurred for daily soil moisture product that adopts the radar-radiometer fusion

approach. This is normally due to the relatively low revisit schedule and the associ-

ated poor spatiotemporal coverage of radar observations. Gap-fill high resolution soil

moisture in regional scale for remote sensing soil moisture product is however a great

challenge. It requires models learned at neighboring regions to produce predictions at a

new region with reasonable accuracy. To address this issue, we propose a novel two-layer

machine learning-based algorithm that is motivated by the soil moisture radar-radiometer

fusion retrieval algorithm. It predicts the brightness temperature and subsequently the

soil moisture at gap areas. Compared with the traditional one-layer machine learning ap-

proach, this two-layer approach shows superior performance in extensive experiments at

four study areas with distinct climate regimes.

We then focus on information mining from the multi-channel geo-spatiotemporal data.

Existing approaches adopt various dimensionality reduction techniques without fully tak-

ing advantage of the data. In addition, the lack of labeled training data raises another chal-

lenge for modeling such data. We propose a novel semi-supervised self-attentive model

ii



that learns global spatiotemporal representations for prediction tasks. Spatial and tempo-

ral variations in the geo-spatiotemporal data are extracted to produce accurate predictions.

To overcome the data scarcity issue, we introduce sampled spatial and temporal context

that naturally reside in the largely-available unlabeled geo-spatiotemporal data. The pro-

posed algorithm is validated specifically on a large-scale real-world crop yield prediction

task. The results show that our semi-supervised self-attentive model outperforms ex-

isting state-of-the-art yield prediction methods and its counterpart, the supervised-only

self-attentive model, especially under the stress of training data scarcity.
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1. INTRODUCTION

1.1 Overview

In the past few decades, vast amounts of spatiotemporal data have been generated

from ubiquitous environmental monitoring systems. The emergence of remote sensing

technologies coupled with local monitoring workstations enables us the unprecedented

ability to monitor the environment in large scale. The spatiotemporal coverage of the

geographical data has also been improved remarkably. For example, the Moderate Res-

olution Imaging Spectroradiometer (MODIS) product tracks changes of the earth surface

globally with high temporal resolution [2]. It provides estimates of many environmental

factors, such as surface temperature, land cover type, and vegetation growth. The cap-

tured environmental heterogeneity over large spatial and temporal extents benefits many

regional- and global-scale applications.

Recent years have seen a proliferation of studies that mine information from the geo-

spatiotemporal data utilizing machine learning techniques. Improvements in terms of

prediction accuracy have been seen in many computational sustainability tasks, such as

land cover classification [3], wildfire prediction [4], precipitation downscaling [5], and

climate modelling [6]. Machine learning techniques like random forests [7], support vec-

tor machine [8], and deep learning models [9] are adopted to extract complex nonlinear

relationships existing among various environmental factors.

However, there are still many challenges remaining in exploiting spatiotemporal data

with machine learning techniques. This dissertation specifically contributes to this re-

search area with two domain knowledge-guided machine learning methods. The first is

a two-layer machine learning framework motivated by the soil moisture radar-radiometer

fusion retrieval algorithm for the challenging gap-filling problem. The second is a semi-
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supervised self-attentive model to produce predictions from the multi-channel spatiotem-

poral data with data scarcity issue. The semi-supervised self-attentive model is validated

through a large-scale real-world crop yield prediction task. In the rest of this chapter, we

first briefly introduce knowledge-guided machine learning for environmental data analy-

sis with more details being presented in Chapter 2. We then introduce the two proposed

knowledge-guided machine learning methods in turn.

1.2 Knowledge-guided Machine Learning for Environmental Data Analysis

Recognizing the success of machine learning in numerous applications like image

recognition [5], natural language processing [10], and online recommender systems [11],

attentions have been paid to apply machine learning on environmental monitoring data to

solve environmental science problems. Domain knowledge regarding the characteristics

of collected data and underlying complex earth system processes guide the design of ma-

chine learning models in various forms, such as feature engineering, model architecture

design, and learning problem formalization. Traditional machine learning approaches

like support vector machine [8] and random forest [7] take scalar features as input while

ignoring the spatiotemporal structure of the data. Hand-coded features embedded with

the domain knowledge of the monitored processes are of great importance to improve the

model performances [12]. Deep learning models like convolutional neural networks and

recurrent neural networks can capture spatial and temporal information contained in the

data and are found to be able to produce state-of-the-art performances in tasks like crop

yield prediction [13], land cover detection [3], and oceanic eddy detection [14]. In recent

years, there are more and more studies that push forward the progress of this research area

with advanced techniques proposed [3, 15]. These techniques are driven by the unique

challenges posed by the analysis of environmental data and associated learning tasks. We

present two studies in this dissertation in pursuit to contribute to this emerging research
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Figure 1.1: Near-surface soil moisture measured by remote sensing satellite (adapted from
[1]).

area.

1.3 Two-layer Machine Learning Framework for Gap Filling of Soil Moisture

Soil moisture is one of the key environmental variables that controls the exchange

of water and energy between the land surface and the atmosphere. High-resolution soil

moisture retrieval with good spatiotemporal coverage benefits many fields, including agri-

cultural and irrigation practices [16], drought and flood predictions [17], and climate

modelling [18]. Traditional methods collect point-scale soil moisture estimates relying

on either human labor resources or monitoring networks, which are infeasible to scale

and are normally sparsely distributed. Remote sensing techniques, on the contrary, en-

able soil moisture retrieval at a global scale with soil moisture heterogeneity at large

spatiotemporal extents captured.

Existing microwave remote sensing techniques are limited to retrieve soil moisture

data in the near-surface soil layers (near-surface soil moisture as shown in Figure 1.1).

Passive radiometer measures the brightness temperature, which relates to soil moisture

status, in the form of land surface emissions, from which highly accurate soil moisture

estimates can be generated [19]. The accuracy advantage of the passive radiometer re-
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trieved soil moisture data is, however, compromised by its coarse footprint scale (∼40

km). Active radar, on the contrary, measures the backscattered signal after transmitting

an active radar signal. While the spatial resolution of its retrieved soil moisture estimates

can be much higher than the ones from the passive radiometer, the accuracy of its soil

moisture retrievals is not as satisfactory as the prior due to the high sensitivity of radar

backscatter signals to surface roughness and vegetation [20].

One of the most promising ways to improve the spatial resolution of soil moisture

estimates from the passive radiometer is to combine the observations from both radiome-

ter and radar [21]. This radar-radiometer fusion approach is based on the co-variation

of the radar and radiometer signals to the observed ground surface. Specifically, coarse-

resolution brightness temperature is first downscaled to high-resolution with the aid of

high-resolution radar backscatter estimates, from which high-resolution soil moisture can

be produced. On 31 January 2015, the National Aeronautics and Space Administration

(NASA) launched the Soil Moisture Active Passive (SMAP) observatory. Its mission

was to provide high-resolution (3-km) soil moisture at global scale with 2- to 3-day re-

visit schedule combining observations from the equipped L-band radiometer and L-band

radar.

Unfortunately, the L-band radar carried by the SMAP observatory unexpectedly ceased

its operation after three months. To recover its capability to provide high-resolution soil

moisture at global scale, C-band Sentinel-1 radars of the Eurapean Space Agency was

proposed to replace the original L-band SMAP radar [22]. The SMAP/Sentinel-1 3-km

soil moisture product we focus on is just the product from this work. One restriction

of the SMAP/Sentinel-1 3-km soil moisture product is that it has large spatiotemporal

gaps incurred by the narrow swath and low revisit schedule of the Sentinel-1 radars. This

severely restrict the applications of the resulting soil moisture product for many regional-

and global-scale hydro-climatological studies [23].
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Existing machine learning researches fill the gap of high-resolution soil moisture by

learning linear or nonlinear models that capture the relationship between coarse-resolution

and fine-resolution soil moisture [24, 25, 26]. Auxiliary environmental factors, such as

land surface temperature, soil properties, and precipitation, are included in the models

as they have been studied as major drivers of soil moisture variations [27, 28]. One

shortcoming of this approach is that additional uncertainty is incurred when introduc-

ing coarse-resolution soil moisture as the main input feature. The radar-radiometer fu-

sion retrieval algorithm downscales the coarse-resolution brightness temperature to fine-

scale first, then converts the fine-scale brightness temperature to soil moisture. Coarse-

resolution soil moisture, as a by-product of this process, is converted from coarse-resolution

brightness temperature and carries extra noise. Moreover, the gap filling task itself poses

extra challenges to the machine learning models as it requires models learned at neighbor-

ing regions to perform well at a new region with similar hydroclimate conditions. Tradi-

tional machine learning methods sometimes cannot produce predictions with satisfactory

accuracy under this setting. Additionally, existing machine learning models normally

rely on fine-resolution soil moisture collected from either catchment-scale campaigns or

sparsely distributed monitoring networks. This restricts the size and spatial coverage of

available training data, and thus the applicability of the produced machine learning mod-

els.

To address these issues, we propose a two-layer machine learning-based framework.

Different from existing approaches which directly downscales soil moisture from coarse-

resolution to fine-resolution, we first downscale coarse-resolution brightness tempera-

ture to fine-resolution, then predict fine-resolution soil moisture using two consecutive

machine learning models. This avoids the dependence on the coarse-scale soil mois-

ture which carries extra uncertainties. We decide the input features of the two machine

learning models with the guidance of the original radar-radiometer retrieval algorithm.
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The average of historical radar measurements are introduced, at the first time, as input

features and are found to be useful in terms of boosting the predictive performance of

the machine learning models. To produce predictions that are consistent with available

SMAP/Sentinel-1 soil moisture product, we use estimates from the SMAP/Sentinel-1

product as target variables. The expanded training data also enable us to conduct ex-

periments at regional scale and produce machine learning models which adapt to large

spatial extents.

Another intuition we have here is that the feature input designed based on the radar-

radiometer fusion retrieval algorithm might be more consistent across different regions in

terms of both space and time, compared with the feature set of environmental factors used

in previous studies. The SMAP/Sentinel active-passive retrieval algorithm [22], which is

introduced in detail in Chapter 3, is designed to fuse the radar and radiometer observations

over vegetated soil for soil moisture estimates by isolating the vegetation contribution.

Feature set based on the retrieval algorithm is assumed to have less spatial and temporal

heterogeneity, from which machine learning models with better generalization ability can

be trained.

We conduct extensive experiments to validate the performance of the proposed two-

layer machine learning framework using 3.5-year data from 1 April 2015 to 30 September

2018. Multiple regions with disparate climate regimes and land surface heterogeneities

across the Contiguous United States are chosen to conduct the experiments. It is shown

that the proposed two-layer machine learning approach consistently outperforms tradi-

tional machine learning method with great margin. It also shows satisfactory results for

the comparisons of the predictions from the two-layer framework with in situ measure-

ments from monitoring networks, as well as with airborne soil moisture campaign data.
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1.4 Semi-supervised Self-attentive Model for Crop Yield Prediction

For the previous soil moisture gap-filling task, scalar feature are taken as input to

the regression model. The next topic we focus on is to extract necessary information

from higher-dimensional environmental data, the multi-channel geo-spatiotemporal data,

to improve the prediction performance of computational sustainability tasks. Informa-

tion mining from multi-channel geo-spatiotemporal data, however, poses great challenges

to many computational sustainability applications, and machine learning models them-

selves. Traditional machine learning models like support vector machine and random

forest are not good at extracting spatial and/or temporal variations from the spatiotempo-

ral data. On the contrary, deep learning models, such as convolutional neural networks

and recurrent neural networks, have the ability to extract spatial/temporal variations from

the data, but require more training samples with the increased model complexities.

We propose a novel semi-supervised self-attentive model that learns global spatiotem-

poral representations for prediction tasks. Spatial and temporal variations in the geo-

spatiotemporal data are extracted to produce accurate predictions. To overcome the data

scarcity issue, we introduce sampled spatial and temporal context that naturally reside in

the largely-available unlabeled geo-spatiotemporal data. The proposed model is mainly

based on the following observations that can generally be applied to many computational

sustainability tasks. First, spatially explicit heterogeneity and interactions among envi-

ronmental factors contain important information regarding the characteristics of environ-

mental factors at larger spatial scales [29, 30]. Spatially averaging the input environmental

factors would incur unnecessary information loss. Second, temporal variations of the en-

vironmental factors also carry valuable information that can aid the predictions [3, 30].

Third, the spatial variations and interactions among the environmental factors often show

distinct but relatively consistent temporal patterns [30]. Machine learning models which
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enable knowledge transfer among different time steps can aid the generation of more ac-

curate predictions. Forth, many computational sustainability tasks suffer from the lack

of ground-truth labels [15]. This is an especially crucial issue for deep learning models

that deal with high-dimensional data. Fifth, the spatial and temporal context signals con-

tained in the largely-available unlabeled geo-spatiotemporal data haven’t been taken full

advantage of to aid the learning of machine learning models.

To evaluate the performance of the proposed model, especially under the stress of

data scarcity, we conduct extensive experiments on a large-scale real-world crop yield

prediction task. Accurate large-scale crop yield estimation is of great importance to food

security, grain policy making, and market management [31, 32]. With the increasing

food demand due to population growth [33], accurate and timely crop yield estimation

becomes ever more imperative. Traditional crop yield estimation methods that rely on

manual survey or simulation-based crop models are cost-inefficient and limited to local

scales [34].

In recent years, remote sensing has drawn great attention for crop yield estimation due

to its large-scale spatial coverage and timely monitoring of crop progress. Specifically,

multi-spectral satellite images and their derived vegetation indices are highly sensitive

to aboveground biomass [35] and have been frequently used in crop yield estimation

[13, 36]. In addition to remote sensing data that directly monitors cropland growth sta-

tus, there are various environmental factors that indirectly impact the end-of-season crop

yields. Meteorological factors such as precipitation and temperature are shown to have

significant effects on crop yield, especially in its late grain-filling period [35]. Geograph-

ically localized, time-invariant factors such as soil properties and elevation also influence

how different climate conditions impact crop growth [37]. More importantly, it varies by

growing phases of the crop sensitivities toward these environmental variables [30].

There are however, very limited studies that integrate remote sensing and climate data
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in spatiotemporal space to capture the cumulative impact of climate dynamics on crop

progress. Existing crop yield prediction approaches rarely handle the fusion of heteroge-

neous geodata in spatiotemporal space directly. Most approaches take spatially averaged

time-series variables [34, 30, 38] while ignoring the spatial distributions of crop growth

and environmental events. In a more recent research [13], variables with spatial distri-

butions are first converted to histograms, with the assumption of permutation invariance,

before feeding to CNN or LSTM. Their assumption is less appropriate for the fusion of

crop growth variables and environmental information as environmental factors like pre-

cipitation and temperature usually have spatially explicit and temporally varying impacts

on crop growth. Unmanned Aerial Vehicles (UAVs) can acquire spatially distributed mul-

tispectral and thermal images in high resolution. However, existing researches [39, 40, 41]

only focus on collecting UAV data at fixed time steps during the growing season and are

limited to local scales.

The novel semi-supervised self-attentive-based CNN model we proposed jointly learns

the crop yield prediction function and embedding function for crop status representa-

tion. Crop status representations at each time step are first extracted from heterogeneous

geospatial data through convolutional neural networks. A self-attention layer is then ap-

plied to temporally aggregate crop representation at all time steps to generate the final

yield predictions. To aid meaningful representation learning from the scarce but high-

dimensional data, we further introduce the spatial and temporal coherence signals that

naturally reside in the data. Similar to the proximity-based word embedding models in

natural language, we make an assumption here that images of crop status that are spa-

tially/temporally close should have similar representation, and vice versa.

We evaluate our approach through the challenging county-level soybean yield pre-

diction task. The results show that our semi-supervised self-attentive model outperforms

existing state-of-the-art yield prediction methods and its counterpart, the supervised-only
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self-attentive model, especially under the stress of training data scarcity. Additionally, we

examine the generalization ability of the proposed model across different regions. This

sheds light on how the model trained using input data from one location would perform

for prediction tasks of another location. Extensive feature importance analysis is also

conducted for both early in-season prediction and right-before harvesting prediction.

The rest of this dissertation is organized as follows. We present in Chapter 2 a survey

of machine learning for environmental data analysis. Chapter 3 presents the two-layer ma-

chine learning algorithm for the soil moisture gap-filling problem. Chapter 4 focuses on

the semi-supervised self-attentive model that produces crop yield predictions from multi-

channel geo-spatiotemporal data. We finish this dissertation with Chapter 5 to summarize

the dissertation and discuss future work.
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2. SURVEY OF MACHINE LEARNING FOR ENVIRONMENTAL DATA

ANALYSIS

The past few decades see unprecedented progresses in both machine learning and data

produced by environmental monitoring systems. While there are promising opportunities

in environmental sustainability of applying machine learning to analyze the environmen-

tal data, unique challenges are posed by the characteristics of the environmental data and

the underlying earth system processes. In recent years, a proliferation of studies have

been done to address some of the challenges in pursuit of advancing both machine learn-

ing from the computer science discipline and many other disciplines such as geophysics,

hydrology, and agricultural economics. We provide in this chapter a brief survey of the

progress of machine learning for environmental data analysis across various disciplines,

which also serves as a background for the rest of the thesis.

2.1 Sources of Environmental Data

Human beings have long been monitoring the earth and its interacting components

like biosphere and atmosphere through in-situ sensors/workstations. These in-situ sensor-

based observations are either available for a small local region or scattered non-uniformly

and sparsely across a large spatial region. For example, there are more than 10,000 pre-

cipitation gauges scattered through the United States which provide daily precipitation

measurements [42]. Observations provided by the in-situ sensors are often perceived as

the most reliable and accurate estimates of many environmental factors and events. Their

availability to large spatial/temporal extents are however limited by the nature of their

collection processes.

Satellite-based remote sensing techniques, on the contrary, can provide regional or

global estimates of an environmental factor, such as surface temperature and spectral re-
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flectance, at the remote sensing footprint scale. The most common remote sensing data

utilized by the machine learning field is the multispectral images of the earth surface

[13, 15] from satellites like Moderate Resolution Imaging Spectroradiometer (MODIS)

[2] and Landsat [43]. The visual spectral bands (red, green, and blue) of the multi-

spectral images can reconstruct the visual view of the earth surface and benefit com-

puter vision tasks like urban building classification [44] and economic tasks like poverty

mapping from nighttime light intensity [45, 46]. There are also numerous environmen-

tal/geoscience variables like soil moisture [22], vegetation indices [47] can be derived

from the multispectral images which consecutively benefits a wide range of sustainabil-

ity disciplines. Besides the satellite-based remote sensing techniques, Unmanned Aerial

Vehicles (UAVs) or airborne radar and radiometer can also provide observations of par-

ticular environmental factors. These techniques are often restricted to cover a local region

at irregular temporal intervals [48, 40].

Another source of environmental data is the simulation data from physics-based mod-

els. Large amounts of simulation data can be generated from the models that capture the

complex environmental geoscience processes based on physical laws and principles. For

example, near-surface climate variables, such as precipitation, temperature, wind speed,

and humidity, from the North-American Land Data Assimilation System Project Phase

2 (NLDAS-2) are used to spatially downscale coarse-resolution precipitation through the

random forest model [5]. While the simulation data has the advantage over other data

sources that continuous coverage at prefixed spatial and temporal resolutions can often be

guaranteed, the accuracy of the simulated data are restricted by the extent to which the

underlying complex geoscience process being captured by the simulation models.

In addition to the aforementioned data sources, there are also work that fuse environ-

mental data from various sources in pursuit to improve the data quality or spatial/temporal

coverage. The Parameter-elevation Relationships on Independent Slopes Model (PRISM)
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dataset, for example, fuse climate observations from a wide range of monitoring sensors

and radars to provide estimates of climate variables with continuous spatial coverage,

such as precipitation, temperature and vapor pressure deficit, using climate-based inter-

polation [49]. The improved spatial coverage of the climate data benefit many tasks like

crop yield prediction [30], climate modeling and change tracking [50].

2.2 Machine Learning for Environmental Data Analysis

Recognizing the success of machine learning in numerous applications like recom-

mendation system, natural language processing, and image recognition, in the past two

decades researchers in computer science and various environmental science fields have

been applying machine learning to analyze environmental data to help solve environmen-

tal science challenges facing humanity [51]. Domain knowledge from the environmental

science is embedded in machine learning models in the forms of feature engineering,

model architecture design, and learning problem formalization. This benefits not only

the specific disciplines which the learning tasks fall in but also the machine learning field

itself.

While this is still an emerging research area with new techniques keeping coming

out, we categorize here the work of machine learning for environmental data analysis into

three kinds, traditional machine learning approaches relying on hand-coded features, deep

learning models that handle the spatiotemporal structure of the data and automatically

extract relevant features from the data, and more advanced techniques that attempt to

address unique challenges posed by the environmental data. The rest of this chapter will

present the three kinds of work in turn.

2.2.1 Traditional Machine Learning Approaches

Traditional machine learning models like linear models [52], support vector machine

[8], and random forest [7] take scalar features as input, and extract either linear or non-
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linear relationship between the input features and the target variable. Hand-coded feature

engineering is often heavily relied here for two main reasons. First, traditional machine

learning models are not able to automatically extract information regarding the spatial

and temporal variations contained in the raw spatiotemporal environmental data [12].

Hand-coded features embedded with the domain knowledge of the underlying complex

earth system processes are of great importance to improve model performances. Second,

certain extent of explainability or interpretability are often expected from these traditional

machine learning models. Utilizing hand-coded features, while might not be flexible

enough, helps communications with domain experts and benefits decision making process

[53].

Among numerous traditional machine learning models that capture complex nonlin-

ear relationships between input features and output variable, random forest model is one

of the most widely used and successful models applied to analyze environmental data.

Random forest model gains its reputation for being less prone to the overfitting problem

and have better generalization ability compared with other traditional machine learning

approaches [54, 55]. For example, researchers in [56] utilize random forest model to

classify land cover types for a mountainous area in Colorado. Multispectral data from the

Landsat satellite and topographic features like elevation, slope, and aspect are taken as

input considering that the experiment area is mountainous. Additional experiments are

done to examine the feature importance of predicting each land cover type.

2.2.2 Deep Learning

The spatiotemporal structure of the environmental data brings both challenges and op-

portunities. On one hand, traditional machine learning approaches are not able to handle

the spatiotemporal data in its raw form. Dimensionality reduction techniques like spatial

averaging have to be adopted for higher-resolution spatial images when they are taken
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as input for a unit-wise prediction task. Time-series scalar features are fed into machine

learning models like random forest without differentiating the temporal order among the

features. Since almost all environmental science phenomena happens in both spatial and

temporal dimensions [12], ignoring such variations in the data would hamper the perfor-

mance of the learning models. On the other hand, the spatial and temporal variations in the

environmental data contain much useful information, which can be utilized to aid model

learning [30]. There are also natural spatiotemporal correlation/context signals existing

in the data [15]. For example, a location covered by one type of land cover is often sur-

rounded by locations with similar land cover types [3]. These domain knowledge-guided

observations can be utilized to boost the performance of machine learning models.

We present here three classic kinds of deep learning models which can handle the

spatial and/or temporal structure of the environmental data, the deep residual neural net-

works [5] for learning of spatial images, the Long Short Term Memory-Attention (LSTM-

Attention) networks [57] for learning of time-series data, and more advanced deep learn-

ing models that handle spatiotemporal data, such as convolutional LSTM network [58]

and 3d convolutional neural networks (C3D) [59, 60, 61].

2.2.2.1 CNNs and Deep Residual Neural Networks

Convolutional neural networks have demonstrated its superior ability to extract spatial

information from the data and have been applied successfully to many vision-oriented

tasks [62]. Its achievement is established mainly due to the convolutional layer which

applies the convolution operator across the first two dimensions (height and width) of the

input images. The shared weights of the convolutional filter greatly reduces the number of

model parameters. Deep convolutional neural networks are constituted of stacked layers

of convolutional neural networks and can integrate low/middle/high- level features and

produce powerful classifiers/regressors.
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Figure 2.1: Building block for residual neural network.

Training deep convolutional neural networks is however not easy. The degradation

problem is noticed by researchers in [5] that the prediction accuracy gets saturated, and

then degrades rapidly when increasing the network depth. It is further argued that the

degradation problem happens as learning models might have difficulties in approximating

identity mappings when many nonlinear layers get stacked. Instead of approximate com-

plicated functions, e.g. f(x), using neural networks, it is hypothesized that approximate

the residual function, e.g. f(x)− x, can ease the learning. Reformulation of the problem

is used here to help precondition the problem. Figure 2.1 shows the basic residual block.

The input of the whole building block gets added to the output of two convolutional lay-

ers. The intuition behind this is that if the underlying function to be learned is closer to

an identity mapping than to a zero mapping, it should be easier for the model equipped

with such residual building block to learn a function closer the the identity mapping, than

to learn a new function from the beginning. It is then proposed in [5] different versions

of residual neural networks with different depths. The ResNet-18, for example, has eight

residual building blocks stacked together and eighteen convolutional layers in total.

Deep residual convolutional neural networks can be applied to extract spatial patterns

contained in the environmental data. In [15], ResNet-18 is applied to static multispectral

images from the USDA’s National Agriculture Imagery Program (NAIP) and Landsat 8

satellite to produce predictions for tasks such as land cover classification, poverty predic-
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Figure 2.2: The architecture of LSTM-Attention networks.

tion, and country health index prediction.

2.2.2.2 LSTM-Attention Networks

Instead of handling the spatially distributed data, the Long-Short Term Memory

(LSTM) networks have been utilized to mine temporal patterns from time-series envi-

ronmental data. In [63], LSTM networks are trained to expand satellite-provided soil

moisture observations to gap areas in pursuit of seamless coverage of soil moisture in

large scale. Model-simulated moisture, atmospheric forcings like precipitation, tempera-

ture, humdity, and static physiographic attributes are taken as inputs. LSTM is found to be

able to learn temporal patterns of soil moisture dynamics where physics-based simulation

models fail.

A domain knowledge-guided observation is made for the land cover detection task in

[57] that there exists a discrimination period in the sequence of input data. Successful de-

tection of such discrimination period is required to produce satisfactory results for the land

cover classification task. For example, croplands can be more easily identified/classified

during the growing season compared to the early planting stage or late harvesting stage.

The attention mechanism [64] is added to LSTM networks to aid the discovery of the dis-

criminative period as shown in Figure 2.2. Specifically, a sequence embedding is learned
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separately to represent the entire sequence data. After the generation of hidden represen-

tations ht at each time step t, relevance scores of each time step are calculated based on

the similarity between a hidden representation and the sequence embedding. Finally, all

hidden representations can be aggregated into one unifying embedding through weighted

average based on the relevance scores, from which the classification prediction can be

produced.

2.2.2.3 Convolutional LSTM and 3D CNNs

While there are many deep learning models that attract the attention of environmen-

tal scientists after achieving their success in computer science discipline, convolutional

LSTM is one of the few standard deep learning models whose design was driven by

the unique characteristics of environmental data and the precipitation nowcasting task

[58]. The precipitation nowcasting task is formulated as as a sequence prediction prob-

lem, of which both the input and output are spatiotemporal sequences. Different from

traditional LSTM-based encoder-decoder framework [65], the convolutional LSTM net-

works proposed in [58] keep the convolutional structures for both the input-to-state and

state-to-state transitions. All the inputs, hidden states, gates, and cell outputs of the new

LSTM cell (noted as ConvLSTM) are in the forms of 3D tensors instead of 2D ones. The

convolutional LSTM is assumed to be able to better preserve the spatial information, in

addition to the temporal information, of the input data. It is further validated in [58] that

the convolutional LSTM networks outperform the state-of-the-art operational algorithm

for precipitation nowcasting.

3-dimensional convolutional networks (3D CNNs) proposed in [59] instead designs a

novel 3D architecture for the convolutional neural networks in order to handle spatiotem-

poral data. Observing that the traditional 2D convolutional neural networks can only

apply 2D convolution operator across two dimensions, i.e. height and width of the input,
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the 3D convolution is designed to preserve the temporal information of the input signal.

Researchers in [66] apply the 3D CNNs to conduct crop yield prediction from satellite

images and find that the additional temporal information captured by the 3D CNNs help

the model achieve better performance than traditional 2D CNNs.

2.2.3 Advanced Techniques Addressing Unique Challenges

In addition to the aforementioned traditional machine learning approaches and classic

deep learning models, in recent years, there are more and more interesting work that adopt

advanced techniques to address unique challenges posed by the environmental data and

associated learning tasks. Observations based on domain-knowledge are infused into the

model architecture design and problem formulation, which greatly improve the produced

prediction accuracy than standard deep learning models.

For example, it is observed in [3] that both long- and short-term temporal variation

patterns exist in the vegetation growth features for the land cover prediction task. Tradi-

tional LSTM fails to capture both long-term seasonal changes and short-term recent envi-

ronmental changes, which are vital for accurate land cover forecasting. A dual-memory

LSTM is thus designed where two sets of cell states with different time windows are kept.

This customized design based on domain knowledge achieves better performance than

standard LSTM model.

While proximity-based word embedding models have been widely used in natural

language processing area [67, 68], it is until recently that a similar spatial context idea is

applied to spatially distributed data to learn unsupervised representations [15]. Image tiles

here are treated as atomic units with the first law of geography that “everything is related

to everything else, but near things are more related than distant things” applied. A triplet

loss function is designed to minimize the distance, which is measured as the Euclidean

distance of representation embedding vectors, between image tiles that are close in space,
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while maximize the distance between image tiles that are far away. It is shown in [15]

that the learned unsupervised representations of multispectral images can improve the

predictions of many downstream tasks, especially when the labeled data are scarce.

2.3 Conclusion

Geo-spatiotemporal data have their unique characteristics due to the nature of the

underlying complex geoscience processes and the collection process of the data, which

poses challenges to machine learning techniques that are applied to analyze such data.

Addressing these challenges will not only benefit the specific discipline the tasks fall

in but also the machine learning field itself. As stated in the beginning of this chapter,

applying domain knowledge-guided machine learning to analyze environmental data is

still an emerging research topic. Joint efforts of computer scientists and environmental

scientists are needed to push forward progress in this area.
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3. GAP FILLING OF HIGH-RESOLUTION SOIL MOISTURE FOR

SMAP/SENTINEL-1: A TWO-LAYER MACHINE LEARNING-BASED

FRAMEWORK∗

3.1 Introduction

Soil moisture is an essential variable controlling the exchange of water and energy

fluxes between the land surface and the atmosphere. Retrieving high-resolution soil mois-

ture at local, regional and global scales is critical for best agricultural and irrigation prac-

tices [16], weather and climate predictions [18, 69], biogeochemical process character-

izations [70] and drought and flood predictions [17, 71]. To complement the sparsely

distributed in situ soil moisture measurements [72, 73, 74], various microwave remote

sensing approaches have been developed over the last few decades to retrieve soil mois-

ture estimates at a global scale such as the Advanced Scatterometer [75], the Advanced

Microwave Scanning Radiometer-EOS [76], the Soil Moisture and Ocean Salinity [77],

the Soil Moisture Active Passive (SMAP) mission [78], and the Sentinel-1 mission [79].

Global-scale microwave sensing soil moisture products have the advantage of capturing

soil moisture heterogeneity over large spatial extents. This further benefits regional- and

global-scale applications that are impacted by land-atmosphere interactions and/or soil

moisture variability [80, 81, 82].

Existing microwave remote sensing techniques measure the near-surface soil moisture

(≤ 5 cm) indirectly through its relationship with water content and soil dielectric constant.

They can be classified into two categories according to the source of their signals, 1) the

active radar measuring the backscattered signal after transmitting an active pulse and 2)

∗Reprinted with permission from “Gap Filling of High-Resolution Soil Moisture for SMAP/Sentinel-
1: A Two-Layer Machine Learning-Based Framework” by H. Mao, D. Kathuria, N. Duffield, and B. P.
Mohanty, 2019, Water Resources Research, vol. 55, no. 8, pp. 6986-7009, doi:10.1029/2019WR024902.
Copyright 2019 by John Wiley and Sons, Inc.
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the passive radiometer measuring the land surface emissions. Active radars typically re-

trieve soil moisture at a spatial resolution varying from several meters to ∼3 km. In

addition to soil moisture, they are also highly sensitive to surface roughness and vegeta-

tion, which reduces the accuracy of the retrieved soil moisture estimates [20, 83]. On the

contrary, the relatively mature passive radiometers have the ability to provide better soil

moisture estimates due to their high sensitivity to soil moisture [19]. The high accuracy

of the soil moisture estimates retrieved by the passive remote sensing is, however, com-

promised by its coarse resolution, ∼40 km for both the Soil Moisture and Ocean Salinity

and SMAP passive soil moisture products [77, 84], which restricts the application of the

resulting soil moisture products for regional hydro-climatological studies [23, 78, 85, 86].

Among the various methods proposed to downscale coarse-scale soil moisture

[87, 88], the fusion of radar and radiometer microwave observations is one of the most

promising and robust techniques to provide high-resolution (1-10 km) soil moisture es-

timates at a global scale. The SMAP mission, specifically, adopts the active-passive

retrieval algorithm proposed by [21]. In this two-layer retrieval algorithm, the radar

backscatter measurements are first used to downscale the coarse-scale passive brightness

temperature measurements from which the high-resolution soil moisture is then retrieved

through the single channel algorithm (SCA) [89]. The original SMAP observatory was

launched on 31 January 2015. Equipped with an L-band radiometer and an L-band radar

as a single observation system, its mission was to combine 36-km brightness temperature

and 3-km radar backscatter to provide 9-km soil moisture at a global scale [78, 90].

Unfortunately, the SMAP L-band radar unexpectedly ceased its operation on 7 July

2015. To recover the capability of providing high-resolution soil moisture, one possible

solution was to replace the SMAP L-band radar measurements with the C-band radar

measurements from the European Space Agency’s Sentinel-1 radars, Sentinel-1A and

Sentinel-1B [91, 92]. Many studies have investigated the performance of integrating the
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C-band active and the L-band passive observations to retrieve high resolution soil mois-

ture with promising results [91, 93, 94, 95].

As the most recent 3-km soil moisture product from the SMAP mission, the

SMAP/Sentinel-1 product L2_SM_SP [96] combines the 33-km brightness temperature

from the SMAP-enhanced passive soil moisture product L3_SM_P_E with the 3-km ag-

gregated copolarization (co-pol) and cross-polarization (cross-pol) backscatter measure-

ments retrieved by the Sentinel-1 radars. They adopt the SMAP/Sentinel active-passive

retrieval algorithm [22] similar to the original SMAP active-passive algorithm where

high-resolution brightness temperature and soil moisture are retrieved consecutively. One

restriction of this product, however, is that the Sentinel-1 radar observations have much

narrower swath (∼250 km) compared with the relatively wide swath (1,000 km) of the

SMAP radiometer. As the SMAP/Sentinel active-passive retrieval algorithm requires con-

current radar and radiometer observations, the narrow swath of the Sentinel-1 radar sig-

nificantly reduces the spatial coverage of the resulting daily soil moisture compared with

the SMAP-enhanced passive 33-km soil moisture product (Figure 3.1). The temporal res-

olution also drops from a 3-day revisit schedule to a 6-day one when using the collocated

Sentinel-1A and Sentinel-1B radar backscatter observations [78, 91, 97]. Additionally,

considering that the Sentinel-1A and Sentinel-1B sensors provide backscatter measure-

ments with different swath patterns and interleaved revisit schedules, the temporal reso-

lution further drops to 12 days or more for some locations. The narrow swath and low

revisit schedule of the SMAP/Sentinel-1 3-km soil moisture cannot achieve the required

temporal resolution for many soil moisture-related applications [88, 98].

This chapter thus focuses on downscaling/gap-filling soil moisture at areas where the

SMAP/Sentinel active-passive retrieval algorithm cannot be applied due to missing radar

backscatter measurements. [87] and [88] outline the various techniques to downscale

passive remote sensing soil moisture. The techniques that do not rely on concurrent radar
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Figure 3.1: Spatial availability of the SMAP/Sentinel-1 active-passive 3-km soil mois-
ture product (L2_SM_SP) and the SMAP-enhanced passive 33-km soil moisture prod-
uct (L3_SM_P_E) on 16 June 2018 for the Continental United States. (a) The 33-
km brightness temperature retrieved by the SMAP radiometer. (b) The 33-km soil
moisture converted from (a) using the single channel algorithm. (c) The 3-km aggre-
gated normalized copolarization backscatter retrieved by the Sentinel-1A/Sentinel-1B
radars. (d) The 3-km aggregated normalized cross-polarization backscatter retrieved by
the Sentinel-1A/Sentinel-1B radars. (e) The 3-km downscaled brightness temperature
from the SMAP/Sentinel active-passive algorithm. (f) The 3-km downscaled soil mois-
ture converted from (e) using the single channel algorithm. SMAP = Soil Moisture Active
Passive.

observations can be applied to gap fill the SMAP/Sentinel-1 3-km soil moisture product,

such as fusion of optical/thermal and microwave methods [99, 100, 101], data assimila-
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tion methods [102, 103], and machine learning methods [26, 24, 104, 105, 25]. Among

these approaches, machine learning techniques have shown great potential to downscale

soil moisture with its ability to handle noisy data and learning complex nonlinear pro-

cesses [106, 5]. Existing machine learning methods capture the relationship between

coarse-scale and fine-scale soil moisture directly with the aid of auxiliary environmental

variables, such as soil properties, topography, land cover, and meteorological forcings.

The fine-scale soil moisture estimates used to train/calibrate the machine learning models

are restricted to ground data obtained from either catchment-scale campaigns [24, 25] or

sparsely distributed soil moisture networks [26].

In this chapter, estimates from the SMAP/Sentinel-1 active-passive 3-km soil moisture

product serve as target variables to train the machine learning models and learn complex

relationships existing between coarse-scale and fine-scale soil moisture [107]. Directly

using remote sensing soil moisture estimates for training a machine learning model also

has the advantage of maintaining high consistency, or “high fidelity” [63], between the

downscaled predictions and the SMAP/Sentinel-1 3-km soil moisture product. We pro-

pose a two-layer machine learning-based framework motivated by the SMAP/Sentinel

active-passive retrieval algorithm to improve the consistency between the downscaled

soil moisture and the retrieved 3-km soil moisture from the SMAP/Sentinel-1 soil mois-

ture product. The downscaled brightness temperature and soil moisture are predicted

consecutively using machine learning models in the two layers of the framework. In-

stead of directly downscaling the 33-km soil moisture from the SMAP-enhanced passive

soil moisture product to 3 km, the 33 km brightness temperature (from the same prod-

uct) is first downscaled to 3 km through a machine learning model. A separate machine

learning model is then applied to convert the 3-km downscaled brightness temperature to

3-km soil moisture. This machine learning approach, different from the SMAP/Sentinel

active-passive retrieval algorithm, removes the dependence on concurrent radar and ra-
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diometer observations and thus can be applied to gap fill soil moisture at areas where

the SMAP/Sentinel active-passive retrieval algorithm cannot be used. Compared with the

conventional one-layer machine learning framework that directly downscales soil mois-

ture from 33 km to 3 km, the two-layer framework avoids the dependence on the 33-km

soil moisture that has additional uncertainties incurred by the indirect conversion from the

33-km brightness temperature. Moreover, it allows us to naturally introduce the average

of historical (past 30 days) radar backscatter measurements as a key input to downscale

the 33-km brightness temperature. This is critical as the vegetation and surface hetero-

geneity captured by the average of historical radar backscatter measurements can help

produce more accurate downscaled brightness temperature, from which high resolution

soil moisture with higher accuracy can be subsequently derived.

Using the proposed framework, downscaled soil moisture that is highly consistent

with the SMAP/Sentinel-1 3-km soil moisture product can be reconstructed at gap ar-

eas. The framework is a general one though and can embed any machine learning model.

We implement both a general one-layer framework that directly downscales 33-km soil

moisture to 3 km and our proposed two-layer framework with the Random Forest [7]

serving as the predictive machine learning model. The Random Forest model is specif-

ically chosen here for its ability to handle complex nonlinear relationships with reduced

overfitting. It has also shown promising results in many soil moisture downscaling studies

[26, 104, 108, 109].

In this chapter, relationships between the SMAP/Sentinel-1 3-km soil mois-

ture/brightness temperature and the input features (ancillary data) are learned through

machine learning models at regions where the 3-km soil moisture/brightness temperature

is available. The learned models are then applied to predict 3-km soil moisture/brightness

temperature at spatially/temporally neighboring gap regions where the Sentinel radar ob-

servations and thus the 3-km soil moisture and brightness temperature values are missing.
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We validate the performance of the models in disparate regions across Contiguous United

States from 1 April 2015 to 30 September 2018 by predicting holdout SMAP/Sentinel-1

3-km soil moisture data. The efficacy of the proposed framework is also demonstrated

by comparing it with in situ measurements from soil moisture networks as well as with

airborne soil moisture data retrieved during the SMAPVEx 2016 campaign in Iowa.

The contribution of this chapter is threefold. First, it is the first study using machine

learning to address the poor spatial and temporal coverage for downscaled soil moisture

estimates retrieved by the radar-radiometer combination approach. Second, it designs a

novel two-layer machine learning framework motivated by the original SMAP/Sentinel

active-passive retrieval algorithm to improve 3-km soil moisture predictions. Third, the

30-day average of historical radar backscatter measurements is introduced for the first

time as a key input to aid in capturing subgrid soil moisture heterogeneity. The rest of the

chapter is organized as follows. Section 3.2 describes the data sets and study area. Section

3.3 gives a brief introduction of the SMAP/Sentinel active-passive retrieval algorithm.

The specifics of the methodology are presented in section 3.4. The results and validations

are discussed in section 3.5. The conclusions and discussion for future work are then

provided in section 3.6.

3.2 Data Sets and Study Area

3.2.1 Soil Moisture and Brightness Temperature

The most recent SMAP/Sentinel-1 active-passive soil moisture product (L2_SM_SP)

provides 3-km soil moisture and 3-km brightness temperature that can serve as the learn-

ing targets of our machine learning models. As a Level 2 product, for any specific day,

there are hundreds of data files each containing a subpatch of the globally covered data.

We generate daily composites from this Level 2 product with the averaged value applied

to overlapping estimates. Besides the 3-km brightness temperature and soil moisture,
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3-km radar backscatter cross-section measurements and other physically based parame-

ters are available in L2_SM_SP from which averages of historical (past 30 days) values

can be generated for both covered and gap regions. We take the 33-km soil moisture

and 33-km brightness temperature (values are posted on 9-km resolution grids) from the

SMAP-enhanced passive soil moisture product (L3_SM_P_E). For both the aforemen-

tioned SMAP soil moisture products, only the descending overpass, or local 6 A.M., data

are used in this chapter considering the thermal equilibrium effect [110]. These products

are gridded using the Equal-Area Scalable Earth-2 (EASE2) projection [111] where the

3-km subgrids are nested consistently inside the 9-km grid. In situ soil moisture obser-

vations from two soil moisture networks, Soil Climate Analysis Network (SCAN) [112]

and U.S. Climate Reference Network (USCRN) [113] were used for additional validation

at selected study areas from April 2015 to September 2018. The spatial resolution perfor-

mance of the gap-filled soil moisture was further assessed by the airborne soil moisture

data from the SMAP Validation Experiment 2016 (SMAPVEX16) at South Fork, Iowa

(August 2016) [114].

3.2.2 Ancillary Data for Proposed Two-Layer Framework

Ancillary data used in the SMAP/Sentinel active-passive retrieval algorithm are also

used in the proposed two-layer framework to capture the fine-scale heterogeneity in soil

moisture and brightness temperature. Soil properties represented by the percent sand, per-

cent clay, and bulk density were obtained from Soil Geographic (STATSGO) Data Base

[115] with 1-km resolution. Land cover class was extracted from the MCD12Q1 [116]

with 500-m resolution. Both the soil properties and land cover class are linearly averaged

to 3 km. Effective soil temperature, scattering albedo, vegetation water content, vegeta-

tion opacity, and roughness coefficient were obtained from the 33-km SMAP-enhanced

passive soil moisture product and are rescaled to 3 km using bilinear interpolation.
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3.2.3 Ancillary Data for Traditional One-Layer Framework

Different from our proposed two-layer framework, existing machine learning meth-

ods normally predict soil moisture by capturing its relationship with other environmental

variables, such as soil properties, topography, land cover, and meteorological forcings.

We also implement this one-layer framework to compare with the proposed two-layer ap-

proach. Again, we take the soil properties from the STATSGO and landcover class from

MCD12Q1. The elevation data were obtained from the NASA Shuttle Radar Topography

Mission Global 3 arc second product [117]. Additional land surface controls represented

by leaf area index and land surface temperature were extracted from the Moderate Res-

olution Imaging Spectroradiometer (MODIS) products, MCD15A3H [118] with 500-m

resolution and MOD11A1 [119] with 1-km resolution, respectively. Precipitation forcing

data were obtained from the Global Precipitation Measurement [120] 3IMERGDF prod-

uct with ∼11-km resolution. All these inputs were resampled to the 3-km EASE2-Grid

projection through linear averaging (for inputs with resolutions higher than 3 km) or using

bilinear interpolation (for inputs with resolutions lower than 3 km) to match the grid size

of the learning targets. Slope was then computed from the resampled elevation data sets.

Land surface temperature and precipitation data have a daily temporal resolution, while

the leaf area index has a 4-day temporal resolution. We assume that the leaf area index

stays the same for each 4-day period.

Additional post-processing was applied to land surface temperature and precipitation

data. As retrieval for land surface temperature depends on the satellite thermal infrared

channels, invalid surface temperature values are generated for surfaces that are obscured

by clouds [121]. For these grids with invalid values, we search for historical values within

a 2-week finite window and select the most recent valid historical values as substitutes.

For precipitation, to incorporate its lagged effect on vegetation, surface characteristics,
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and soil moisture, we use precipitation values from recent 3 days separately as inputs.

3.2.4 Study Area

We apply the proposed framework separately at four U.S. states with distinct cli-

mate regimes and land surface heterogeneities: Arizona, Oklahoma, Iowa, and Arkansas

(Figure 3.2). Arizona has primarily an “arid” climate (BSk and BWh classification), Ok-

lahoma is “warm-temperate” (Cfa classification), Iowa is primarily “snow” with fully

humid hot summer (Dfa classification), while Arkansas is “warm temperate” (Csc classi-

fication) according to the Köppen-Gieger classification [122]. While Arizona, Oklahoma,

and Iowa are predominantly composed of open shrublands (70.8%), grasslands (75.5%),

and croplands (85.1%) respectively, Arkansas is covered with forest (28.7%), croplands

(25.5%) and woody savannah (19%) [116]. Arizona has a high mean elevation (above

mean sea level) of 1283.1 m, while Oklahoma, Iowa, and Arkansas have mean elevations

of 398.3, 323.5, and 166.2 m, respectively [117]. In Figure 3.2, we show daily examples

of the 33- and 3-km soil moisture. Arizona with the “arid-steppe-hot” climate generally

has dry conditions compared with the other three states (Figure 3.2). Even with low soil

moisture values, high levels of heterogeneity can still be seen at the 3-km resolution, es-

pecially for areas with latitude lower than 35◦N. Oklahoma, Iowa, and Arkansas have soil

moisture values ranging from 0.0 to 0.5 cm3/cm3. While the high-resolution soil mois-

ture has more variability at Arkansas (Figure 3.2(g) and 3.2(h)), Oklahoma and Iowa are

spatially homogeneous at 3 km (Figure 3.2(c) and 3.2(d) and Figure 3.2(e) and 3.2(f)).

3.3 The SMAP/Sentinel Active-Passive Retrieval Algorithm

We provide here an overview of the retrieval algorithm adopted by the

SMAP/Sentinel-1 3-km soil moisture product [21, 123, 22] that motivates the design

of our proposed two-layer machine learning-based framework. This retrieval algorithm

adopts a two-layer strategy where coarse-resolution SMAP radiometer brightness tem-
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Figure 3.2: Locations of the four study areas. The background shows the MODIS Inter-
national Geosphere Biosphere Programme (IGBP) land cover class. (a) The 33-km soil
moisture and (b) 3-km soil moisture at Arizona on 13 June 2018. (c) The 33-km soil mois-
ture and (d) 3-km soil moisture at Oklahoma on 1 June 2018. (e) The 33-km soil moisture
and (f) 3-km soil moisture at Iowa on 9 June 2018. (g) The 33-km soil moisture and (h)
3-km soil moisture at Arkansas on 3 June 2018. The 33-km soil moisture is converted
from 33-km brightness temperature through the single channel algorithm, while 3-km
soil moisture is the downscaled product from the Soil Moisture Active Passive-Sentinel
active-passive algorithm.

perature is first downscaled using overlapping high-resolution Sentinel radar backscatter

data followed by soil moisture retrieval through the SCA (Figure 3.3(a)).

The algorithm first disaggregates the coarse-scale brightness temperature measure-

ments (TB, at polarization v or h) with the aid of fine-scale radar backscatter measure-
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Figure 3.3: Architecture comparison of (a) the SMAP/Sentinel active-passive retrieval al-
gorithm, (b) the one-layer machine learning model, and (c) the two-layer machine learn-
ing framework. Only key inputs are listed here. SMAP = Soil Moisture Active Passive.

ments. Both co-pol (σvv or σhh) and cross-pol (σvh) radar backscatter cross sections

(in normalized/linear scale) are used in the algorithm. Cross-pol measurements are in-

cluded in the algorithm to capture the subgrid variations of brightness temperature within

a coarse-scale footprint due to the variations in vegetation characteristics and surface

roughness. The vegetation characteristics and surface roughness are assumed to be in-

variant within a short period of time. Suppose that we have brightness temperature mea-

surements at a coarse support “C” and radar backscatter measurements at a fine support

“M.” Within a single pixel of the grid at support C, the disaggregated brightness temper-
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ature of a subpixel at support M can be obtained using

TB(M) = [
TB(C)

TS
+ β(C) · {[σvv(M)− σvv(C)] + Γ · [σvh(C)− σvh(M)]}] · TS. (3.1)

TS is the effective surface temperature of the near-surface soil (top ∼5 cm). Parameter

β is derived from retrieved brightness temperature, radar backscatter, and other phys-

ically based parameters, such as scattering albedo and vegetation opacity, to estimate

the covariation of the emission and backscatter observations. The sensitivity parame-

ter, Γ ≡ [δσvv(M)/δσvh(M)], is used to convert the subgrid heterogeneity captured by

the cross-pol deviations [σvh(C) − σvh(M)] to co-pol deviations. Once the downscaled

brightness temperature is obtained, the SCA [89] is applied to retrieve the downscaled

soil moisture.

Table 3.1 lists the inputs required for downscaling brightness temperature and SCA

separately. For some of the derived inputs like σvv(M), we also list their corresponding

data sources. Physically based parameters like scattering albedo and vegetation opacity

depend on vegetation structures, polarization, microwave frequency, and so forth. They

are currently obtained through a land cover-driven lookup table that contains parameter

values under different land cover classes [110]. It can be seen from the table that the

SMAP/Sentinel active-passive retrieval algorithm, especially the brightness temperature

downscaling, requires concurrent radar and radiometer observations on the same day.

The narrow imaging swath and low revisit schedule of the Sentinel radars thus severely

restricts the spatial and temporal coverage of the resulting downscaled soil moisture esti-

mates. In the next section, we propose a machine learning framework to account for this

shortcoming.
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Table 3.1: Inputs of the SMAP/Sentinel Active-Passive Retrieval Algorithm.

Algorithm Inputs
Brightness temperature
downscaling

TB(C), TS,
σvv(M), σvv(C), σvh(M), σvh(C),
β(C)← (TB(C), TS, σvv(M), σvh(M),
scattering albedo, vegetation opacity, incidence angle),
Γ(C)← (σvv(M), σvh(M))

Single channel algorithm TB, TS,
vegetation water content, vegetation opacity,
sand and clay percentages, bulk density,
scattering albedo, roughness coefficient,
land cover class

3.4 Methodology

3.4.1 Two-layer Machine Learning Framework

To downscale soil moisture that has a high consistency with the SMAP/Sentinel-1

3-km soil moisture estimates at gap areas, we hypothesize that it would be beneficial to

learn a two-layer machine learning framework whose structure and inputs are guided by

the SMAP/Sentinel active-passive retrieval algorithm.

First, we formulate the relationship learned by the first-layer machine learning model

to disaggregate the 33-km brightness temperature to 3 km. Following the SMAP/Sentinel

active-passive algorithm, we rewrite equation (3.1) as

TB(3km)− TB(33km)

TS
= β · {[σvv(3km)− σvv(33km)] + Γ · [σvh(33km)− σvh(3km)]}.

(3.2)

The left side of equation (3.2) can serve as the learning target of our first-layer machine

learning model. It is available at areas where the radar and radiometer observations are

available and missing at the gap areas where the radar observations are absent.

The parameters on the right side of equation (3.2) are restricted by the availability
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of radar observations and therefore incur gap areas for the SMAP/Sentinel-1 3-km soil

moisture product. To remove this dependence, we define the function f1 that will be

learned by our first-layer machine learning model as

y =
TB(3km)− TB(33km)

TS
= f1(rb

hist, βhist,Γhist, ω, τ, lat, lon). (3.3)

ω and τ refer to the scattering albedo and vegetation opacity, respectively, and can be

obtained from the SMAP-enhanced passive soil moisture product. They are thus avail-

able in both covered and gap areas. Latitude and longitude were added to this framework,

and all following frameworks, to aid the machine learning models to learn more local-

ized patterns. Instead of directly using the radar observations σvv(3km) and σvh(3km)

that are not available at gap areas, we use the average of historical radar backscatter

measurements rbhist within a 30-day window as substitutes to capture the subgrid hetero-

geneity in vegetation and surface physical characteristics. This substitution is based on

the knowledge that radar backscatter measurements can capture the subgrid land-surface

heterogeneity and can be assumed to have less variability, compared with the dynamics of

soil moisture, within a finite temporal window [21, 123]. To the best of our knowledge,

this is the first study utilizing the average of historical radar backscatter measurements for

downscaling/gap-filling soil moisture. In addition to the average, we also include the stan-

dard deviation of the historical 3-km radar backscatter measurements as an input to reflect

the extent to which they change during the past 30 days. Thirty-day historical averages of

β (βhist) and Γ (Γhist) are also introduced to improve the efficacy of the models.

Using these ancillary data, the first-layer machine learning model will be trained at

areas where the learning target and inputs are available. The learned model can then be

used to obtain the predicted ŷ at areas where TB(3km) is missing. We use the “hat” symbol

over a variable to denote that it is a predicted value. The 3-km brightness temperature at
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these gap areas can, therefore, be reconstructed through

T̂B(3km) = TB(33km) + ŷ · TS. (3.4)

After downscaling the 33-km brightness temperature, the downscaled 3-km soil moisture

is obtained through the second-layer machine learning model f2 given by

ŜM(3km) = f2(T̂B(3km), TS, V WC, S, ω, τ, h, L, lat, lon). (3.5)

VWC, S, h, and L refer to vegetation water content, soil properties including sand and

clay percentages and bulk density, roughness coefficient, and land cover class, respec-

tively. These features, along with the predicted 3-km brightness temperature, effective

surface temperature, scattering albedo, and vegetation opacity, also form inputs to the

original SCA algorithm. We call this machine learning framework as “two-layer.”

3.4.2 Traditional One-Layer Machine Learning Framework

In addition to the two-layer machine learning-based framework, we also implement

a one-layer framework which directly downscales soil moisture from 33 to 3 km using

ancillary data in section 3.2.3. It also has the ability to gap fill soil moisture at missing

areas as long as the ancillary data are available. The function f3 learned by this framework

can be written as:

ŜM(3km) = f3(SM(33km),H, lat, lon), (3.6)

where H denotes the feature set including leaf area index, land surface temperature, soil

properties, elevation, slope, land cover, and precipitation which have been shown to be

the major drivers of soil-moisture variability in past studies [27, 124, 125, 28]. In this

chapter, we call this framework as “one-layer.”

Figure 3.3(b) and 3.3(c) show the structures of the one-layer framework and the pro-
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posed two-layer framework, respectively. Comparing Figure 3.3(a) and Figure 3.3(c),

it can be seen that the two-layer machine learning-based framework follows a similar

structure as the original SMAP/Sentinel active-passive retrieval algorithm while using a

machine learning paradigm. Its performance over the one-layer framework in terms of

downscaling soil moisture at gap areas will be demonstrated through extensive machine

learning-based experiments as discussed in section 3.5.

3.4.3 Additional Machine Learning Frameworks for Comparison

For a comprehensive evaluation, we also compare the proposed two-layer with the

following machine learning frameworks:

• Two-layer+: Two-layer framework but with ancillary data from both sections 3.2.2

and 3.2.3 as inputs.

• One-layer+ (SM): One-layer framework but with ancillary data from both sections

3.2.2 and 3.2.3 as inputs.

• One-layer+ (BT): One-layer framework which converts 33-km brightness temper-

ature (instead of 33-km soil moisture) directly into 3-km soil moisture and with

ancillary data from both sections 3.2.2 and 3.2.3 as inputs.

The “two-layer+” and “one-layer+ (SM)” allows us to evaluate the effect of adding “extra”

covariate information in the machine learning frameworks. The “one-layer+ (BT)” is

also evaluated to demonstrate the potential advantage of using a two-layer framework as

opposed to directly downscaling brightness temperature to 3-km soil moisture.

3.4.4 Random Forest

In this chapter, for all the machine learning frameworks, the Random Forest [7] will

be used as the “machine learning model” for downscaling soil moisture/brightness tem-

perature (i.e. the model used in f1, f2 and f3 in equations (3.3), (3.5), (3.6), respectively).
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Proposed in 2001, the Random Forest model quickly gained its reputation for being able

to learn complex nonlinear relationships between the target variable and input features

while resisting to the overfitting problem. Its superior performance is achieved through

an ensemble of individually learned decision trees combined with the bagging method and

random selections of features. During the training process of the Random Forest model,

multiple hierarchical decision trees are learned independently with the goal of maximizing

the variance reduction for each split. The individually grown decision trees can, however,

easily suffer from the overfitting problem where significantly disparate performances can

be observed on the training and test sets. To tackle this issue, the Random Forest model

averages the predictions generated by all trees in the forest with additional strategies to

reduce the correlation between them. The correlation reduction is done through bagging

and the random selections of features. During the training process, each decision tree is

exposed to different data subsets that are randomly sampled with replacement from the

same training set. Additionally, randomly selected subset of the features are considered

for each split. The Random Forest model generalizes well on test set when strong decision

trees are constructed with controlled correlations between them.

3.4.5 Spatiotemporal Regional Learning

For a machine learning framework, we test the following three hypotheses in this

chapter: High-resolution soil moisture/brightness temperature at gap areas can be re-

constructed from the models learned at (1) spatial neighboring regions, (2) temporal

neighboring regions, and (3) both spatial and temporal neighboring regions. We define

these three settings as the spatial regional learning, the temporal regional learning, and

the spatiotemporal regional learning, respectively. For the temporal regional learning

and the spatiotemporal regional learning, a 30-day window is adopted to search for the

most recent temporal neighboring regions for the gap regions. As shown in Figure 3.4,
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Figure 3.4: 3-km soil moisture swath at Arizona on (a) 13 June 2018 and (b) 5 June 2018
from Soil Moisture Active Passive L2_SM_SP.

machine learning models are built using data available at covered spatial and/or tempo-

ral neighboring regions (inside the orange frames) and are subsequently used to predict

high-resolution soil moisture at the gap region (inside the red frame) where the original

SMAP/Sentinel-1 active-passive soil moisture product is missing. In this chapter, all ma-

chine learning frameworks are trained for individual regions at a daily scale. The success

of these machine learning frameworks depends on how effectively information learned at

spatial/temporal neighboring regions can be extrapolated to the gap region.

The three regional learning settings enable expanded training data from spatiotem-

porally neighboring data regions. The expanded training data enabled by the regional

learning settings allow the models to learn complex relationships between coarse-scale

and fine-scale soil moisture and achieve higher predictive capabilities. Note that we fo-

cus on gap filling the “neighboring” spatiotemporal regions in this chapter which fall into

the same or, at least, similar hydroclimates as the regions where the models are learned.

Building models that can be applied to “almost everywhere” or discussing whether a

model learned under one hydroclimate is applicable to another is beyond the scope of this

chapter and will be explored in the future.
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3.5 Results and Discussions

We validate the downscaled soil moisture at four selected study areas, Arizona, Okla-

homa, Iowa, and Arkansas, for the 3.5-year period between 1 April 2015 and 30 Septem-

ber 2018. Besides the one-layer framework (equation (3.6)), we also compare the per-

formance of our proposed two-layer framework with the 33-km soil moisture from the

SMAP-enhanced passive soil moisture product. As the SMAP-enhanced passive soil

moisture product is posted on 9-km EASE2 grids, we resample the 33-km soil mois-

ture to 3 km by simply assuming that all the 3-km EASE2 subgrids lying inside one 9-km

EASE2 grid have the same value. We denote this product as the “resampled 33-km soil

moisture.” The resampled 33-km soil moisture estimates serve as a reference for com-

parison with the one-layer and the proposed two-layer frameworks. In terms of metrics,

the correlation coefficient (R) and unbiased root mean square error (ubRMSE) are used

to quantify and compare the overall agreement between the predicted 3-km soil moisture

and the retrieved ones. Note that, for every study region (Arkansas, Arizona, Iowa, and

Oklahoma), each machine learning framework is trained individually for each day, and

the results in the subsequent sections are summarized using boxplots. Average metrics

from five machine learning runs are reported for all the experiments.

3.5.1 Thirty-Three Kilometers versus One-Layer versus Two-Layer

To demonstrate the performance of our proposed two-layer framework, we split the

covered regions (where the 3-km soil moisture estimates are available) into training and

test regions. Machine learning models learned at the training region for each day are

used to predict the downscaled soil moisture/brightness temperature at the test region. At

each of the selected study areas, Arizona, Oklahoma, Iowa, and Arkansas, there are two

to three different major swath patterns with ∼12-day interleaved revisit schedules. As

shown in Figure 3.5, we select two swath patterns for each of the study areas, the main
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Figure 3.5: Train and test splits at Arizona, Oklahoma, Iowa, and Arkansas. (a) Selected
swath A at Arizona on 13 June 2018. (b) Selected swath B at Arizona on 5 June 2018.
(c) Selected swath A at Oklahoma on 1 June 2018. (d) Selected swath B at Oklahoma on
24 May 2018. (e) Selected swath A at Iowa on 9 June 2018. (f) Selected swath B at Iowa
on 3 June 2018. (g) Selected swath A at Arkansas on 8 July 2018. (h) Selected swath B
at Arkansas on 21 June 2018. SCAN = Soil Climate Analysis Network; USCRN = U.S.
Climate Reference Network.

swath A and the shadow swath B. The overlap of the two swaths will be used as a filter to

obtain the holdout test region. For any specific day which has the main swath A available,

the filter will be applied to obtain the test region (as shown in the red frames of Figures

3.5(a), 3.5(c), 3.5(e) and 3.5(g)), while the rest will be used as spatial neighboring regions

for the training process (as shown in the orange frames in Figures 3.5(a), 3.5(c), 3.5(e)

and 3.5(g)). For the temporal regional learning task, a 30-day sliding window is adopted

to search for the most recent shadow swath B. Once the most recent shadow swath B is

obtained, the filter of the test region is applied to obtain the temporal neighboring region

(as shown in the orange frames of Figures 3.5(b), 3.5(d), 3.5(f) and 3.5(h)). This training

and test splitting strategy mimics how the regional learning is applied to fill/downscale

soil moisture at real gap areas where the 3-km soil moisture estimates are indeed miss-

ing. It also allows us to compare the performance of the three regional learning settings,
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spatial

temporal

(a) (b)

(c)

Figure 3.6: Spatial/temporal regional learning for (a) Test area at Arizona on 13 June
2018. (b) Spatial neighboring region on the same day. (c) Search for temporal neighbor-
ing regions within 30-day sliding window is applied to obtain the most recent temporal
neighboring region on 5 June 2018.

Table 3.2: Number of Days Covered for Each Quarter of a Year (1 April 2015 to 30
September 2018) and Average Sizes of Spatial Training Regions and Test Regions. rT =
Ratio.

Year 2015 2016 2017 2018
Train Test rTQuarter 2 3 4 1 2 3 4 1 2 3 4 1 2 3

Arizona - - - - - - - 2 4 6 7 6 7 3 11,463 3,676 3.1
Oklahoma - 2 - - 4 4 5 1 5 2 3 4 6 8 4,306 2,330 1.8
Iowa - - - - - 6 - 4 5 7 6 2 7 7 7,773 2,512 3.1
Arkansas - - - - - - 3 7 5 7 5 7 7 7 4,782 2,215 2.1

the spatial regional learning, temporal regional learning, and the spatiotemporal regional

learning. Figure 3.6 shows, as an example, the test region at Arizona on 13 June and its

corresponding spatial neighboring region and temporal neighboring region for the train-

ing. Table 3.2 lists the number of days covered for each quarter of a year at the selected

study areas where the main swath A is available for test and spatial neighboring regions

and the shadow swath B is available for a temporal neighboring regions search. It can be

seen from the table that Arizona, Iowa, and Arkansas have no coverage in 2015 and the
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Figure 3.7: Correlation coefficient (R) comparisons of the resampled 33 km, one-layer
model and our proposed two-layer framework for the selected study areas under different
regional learning settings.

first three quarters of 2016 which is due to the limited/no coverage of the SMAP/Sentinel-

1 3-km soil moisture product during that period. The average sizes (number of pixels

available) of spatial training and test regions and their corresponding ratio for each area

are also listed in the table. The sizes of temporal training regions are the same as the sizes

of the test sets.
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Figure 3.8: ubRMSE comparisons of the resampled 33km, one-layer model and our pro-
posed two-layer framework for the selected study areas under different regional learning
settings. ubRMSE = unbiased root mean square error.

Figures 3.7 and 3.8 summarize the performance (in terms of R and ubRMSE, re-

spectively) of the resampled 33-km soil moisture, one-layer framework and our proposed

two-layer framework under different regional learning settings at available test regions

for the entire duration of the analysis. At each selected study area, performance metrics

are summarized by boxplots to show a general pattern of how different frameworks per-
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form. It can be seen that the proposed two-layer framework generally outperforms both

the resampled 33-km soil moisture product and the one-layer framework in terms of R

and ubRMSE under all three regional learning settings. The improvement in R is signif-

icant, especially at Arizona and Arkansas. Taking the spatiotemporal regional learning

as an example, the mean R at Arizona is increased to 0.728 for the two-layer framework

compared to 0.572 (27% improvement) for the one-layer framework and 0.493 (47% im-

provement) for the 33-km soil moisture, while the mean R at Arkansas is increased to

0.744 for the two-layer framework compared to 0.651 (14% improvement) for the one-

layer framework and 0.413 (80% improvement) for the 33-km soil moisture. Exceptions

of improvement in performance are noticed at Oklahoma and Iowa for the spatial regional

learning and temporal regional learning where relatively insignificant changes in the cho-

sen metrics are found when comparing the resampled 33-km soil moisture product, the

one-layer framework, and the two-layer framework. This is, however, expected as the

retrieved 3-km soil moisture has much lesser spatial heterogeneity at Oklahoma and Iowa

as discussed in section 3.2.4.

To visually compare the performance of these frameworks, Figure 3.9, as an example,

focuses on a daily test region on 13 June 2018 at Arizona to show the disaggregated soil

moisture produced by the resampled 33-km soil moisture product, the one-layer frame-

work, and the proposed two-layer framework. It can be seen that although the one-layer

framework under the spatiotemporal regional learning has the ability to reconstruct fine-

scale soil moisture to some extent (Figure 3.9(c)), its downscaling quality is still inferior

to the proposed two-layer framework, even when compared to the spatial regional learning

only approach (Figure 3.9(d)). With the proposed two-layer framework, more fine-scale

soil moisture heterogeneity can be predicted/downscaled with improvement in both R and

ubRMSE (Figure 3.9(f)). Figure 3.10 shows the pixel-by-pixel comparison of the correla-

tion of the resampled 33 km, one-layer framework, and the proposed two-layer framework
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(b) Resampled 33 km soil moisture 

(corr=0.401, ubRMSE=0.0294 cm3/cm3)(a) 3 km soil moisture 

(f) Predicted 3 km soil moisture from 
two-layer under spatiotemporal 

(corr=0.761, ubRMSE=0.0208 cm3/cm3)
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Figure 3.9: Performance comparisons for test region at Arizona on 13 June 2018. (a) The
3-km soil moisture from SMAP/Sentinel-1 active-passive product. (b) Resampled 33-km
soil moisture from SMAP-enhanced passive product. Predicted 3-km soil moisture from
(c) the one-layer model under spatiotemporal regional learning, (d) the two-layer frame-
work under spatial regional learning, (e) the two-layer framework under temporal regional
learning, and (f) the two-layer framework under spatiotemporal regional learning. SMAP
= Soil Moisture Active Passive; ubRMSE = unbiased root mean square error.

under the spatiotemporal regional learning with the SMAP/Sentinel-1 observations. The

correlation values are calculated for all available values inside each 33 km × 33 km pixel

of the test region. As the SMAP 33-km-enhanced passive soil moisture product is ac-

tually posted on a 9-km resolution grid, it has nonzero correlation values inside the 33

km × 33 km pixels. Figure 3.10, again, shows that our two-layer framework increases

the correlation between the gap-filled predicted soil moisture and the SMAP/Sentinel-1
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Figure 3.10: Correlation of the resampled 33 km, one-layer model, and our proposed two-
layer model with the SMAP/Sentinel-1 observations under the spatiotemporal regional
learning. Each pixel in this figure is a patch of 11 × 11 3-km Equal-Area Scalable Earth-
2 grids. SMAP = Soil Moisture Active Passive.

3-km observations compared with both the resampled 33-km soil moisture and the one-

layer predictions, though as mentioned earlier, the improvement is moderate in Iowa and

Oklahoma.

Since the above discussion summarizes the performance of the proposed framework

for the entire duration of the data, it is also worthwhile to look at how the framework

performs seasonally. To achieve this, we group the results from all years into four quarters

(January-March, April-June, July-September, and October-September) and compare R

and ubRMSE across these time periods. (Figure 3.11). It can be seen that the two-layer

framework consistently outperforms the 33-km soil moisture and the one-layer framework

across seasons. It can also be seen that for the majority of the seasons, the scatter of the

boxplot for the two-layer is also less, making the predictions consistently accurate across
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Figure 3.11: Seasonal performance metrics of the two-layer framework, one-layer frame-
work, and 33-km soil moisture. The two-layer framework outperforms the other two
consistently across seasons.

Figure 3.12: Performance comparisons of the proposed two-layer machine learning mod-
els with three other machine learning models with different feature designs. Two-layer+
adds auxiliary environmental variables to the two-layer model. One-layer+ (SM) is a one-
layer model which uses all the features that are used in the two-layer models but directly
downscale soil moisture from 33 to 3 km. One-layer+ (BT) is a one-layer model which
directly downscales 33-km brightness temperature to 3-km soil moisture.

all days in a season.

3.5.2 Comparison With Additional Frameworks

Since in the previous section, we found that the spatiotemporal regional learning out-

performs the spatial-only and temporal-only approaches, we now compare the two-layer

framework with machine learning frameworks defined in section 3.4.3 under the spa-
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tiotemporal regional learning using the same test-train split criterion as section 3.5.1.

Figure 3.12 compares the various frameworks in terms of the mean R between the pre-

dictions and observation in the test region for all four study areas. We find that for all

the study areas, there is insignificant improvement between the two-layer and two-layer+

frameworks denoting that adding the extra features from section 3.2.3 has no effect in

improving soil moisture predictions. We can also see that the two-layer outperforms

both the one-layer+ (SM) and one-layer+ (BT) across all four study regions which under-

scores the importance of using a two-layer machine learning framework for soil moisture

downscaling rather than directly downscaling 33-km soil moisture or 33-km brightness

temperature to high-resolution soil moisture. Note that, as mentioned earlier, the Random

Forest forms the “machine learning model” for all the analyzed frameworks.

3.5.3 Feature Importance of Input Data in Two-Layer Framework

Another advantage of using the Random Forest model in the two-layer framework is

that it has the ability to assess the relative importance of the covariates used as inputs to

the model. Figure 3.13 shows the relative feature importance (normalized by the sum) of

the input data (Table 3.1) in the first layer of the framework. It can be seen that the 30-

day historical radar-backscatter data (co-pol hist and cross-pol hist in Figure 3.13) are the

most important input of the first layer of the framework followed by a moderate effect of

the rest of the parameters. This implies that incorporating the historical radar backscatter

data from both spatial and temporal regions can significantly improve the prediction capa-

bilities of the machine learning model to predict downscaled brightness temperature. For

the second layer of the model, as expected, the predicted 3-km brightness temperature

from Layer 1 is the most important input followed by surface temperature for Arizona

and land cover for Arkansas, Iowa, and Oklahoma (Figure 3.14). For Arkansas, the ef-

fect of land cover is especially significant because, as mentioned earlier in section 3.2.4,
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Figure 3.13: The 30-day average historical radar backscatter data (co-pol hist and cross-
pol hist) are the most important feature for Layer 1 of the machine learning framework
with moderate importance of the rest of the features. Co-pol = copolarization; cross-pol
= cross-polarization.

Arkansas consists of diverse land cover classes compared to the other study regions which

comprise predominantly (more than 70%) of one land cover only. It is interesting to note

that, for the second layer, the rest of the inputs are not significant for any study region.

3.5.4 Comparison With Airborne and In Situ Soil Moisture Data

We also compare the proposed machine learning framework (under spatiotemporal

learning) using publicly available high-resolution (airborne) soil moisture data set re-

trieved during the SMAPVEx 2016 campaign at South Fork, Iowa (Figure 3.5(e)). Due

to the poor temporal coverage of the SMAP/Sentinel-1 product, only one day (6 August
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Figure 3.14: For Layer 2 of the machine learning framework, the predicted 3-km bright-
ness temperature from Layer 1 is the most important input followed by surface temper-
ature for Arizona and land cover for Arkansas, Iowa, and Oklahoma. For Arkansas, the
effect of land cover is more significant due to the presence of multiple land classes in the
state.

2016) of the airborne campaign coincided with the SMAP/Sentinel-1 overpass. Figure

3.15(a) shows the Passive Active L-band System airborne soil moisture data upscaled to

the 3-km EASE2 grid. Figure 3.15(b) shows the retrieved 3-km soil moisture from the

SMAP/Sentinel-1 product, and Figure 3.15(c) shows the soil moisture predictions from

the two-layer framework. The two-layer predictions show good consistence with the air-

borne soil moisture with correlation value being 0.23 and ubRMSE being 0.032 cm3/cm3.

These values are similar to the ones between the actual SMAP/Sentinel-1 product and the
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Figure 3.15: Soil moisture comparisons at South Fork, Iowa, on 6 August 2016. (a)
Airborne data upscaled to 3-km Equal-Area Scalable Earth-2 grid. (b) The 3-km soil
moisture from SMAP/Sentinel-1 active-passive product. (c) Predictions from two-layer
model under spatiotemporal regional learning. PALS = Passive Active L-band System;
SMAP = Soil Moisture Active Passive.

airborne soil moisture, which has a correlation of 0.09 and ubRMSE of 0.038 cm3/cm3.

This serves as a good validation of the proposed framework.

To explore the temporal stability of the proposed framework, we further validate the

soil-moisture predictions with in situ data from SCAN and USCRN. Figure 3.5 lists the

available SCAN and USCRN stations falling into the test regions at the four selected

areas (one each for Arizona and Oklahoma, two for Iowa, and three for Arkansas). Fig-

ure 3.16 shows the time series of the in situ data, our soil moisture predictions, and the

actual SMAP/Sentinel-1 soil moisture values. Note that, for predictions, the entire test

region, following Figure 3.5, was held out during the training process. It can be seen

that the predictions from our two-layer machine learning framework mimic the majority

of the wetting and drying phases of the observed SMAP/Sentinel-1 product and in situ

data. The performance of the predictions follows a similar trend as that of the actual

SMAP/Sentinel-1 product (Table 3.3).

For instance, compared with USCRN data in Arizona, the correlation of the pre-
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Figure 3.16: Time series matchup of the in situ soil moisture collected by two sparse soil
moisture networks, SCAN and USCRN, with the SMAP/Sentinel-1 retrievals and pre-
dictions from two-layer machine learning framework under the spatiotemporal regional
learning. SMAP = Soil Moisture Active Passive; SCAN = Soil Climate Analysis Net-
work; USCRN = U.S. Climate Reference Network; DOY = day of year.

Table 3.3: Comparison of the SMAP/Sentinel-1 Observations and the Two-Layer Predic-
tions with in-Situ Soil Moisture. SMAP = Soil Moisture Active Passive; SCAN = Soil
Climate Analysis Network; USCRN = U.S. Climate Reference Network.

R/ubRMSE(cm3/cm3) SMAP/Sentinel-1
v.s. in situ

Two-layer
predictions
v.s. in situ

Two-layer predictions
v.s. SMAP/Sentinel-1

SCAN

Oklahoma 0.55/0.071 0.61/0.068 0.81/0.042
Iowa 0.04/0.125 0.10/0.126 0.92/0.037
Arkansas-1 0.65/0.069 0.47/0.085 0.76/0.053
Arkansas-2 0.79/0.056 0.68/0.045 0.49/0.075

USCRN
Arizona 0.65/0.047 0.71/0.043 0.93/0.018
Iowa 0.06/0.077 0.08/0.079 0.38/0.060
Arkansas 0.52/0.056 0.42/0.062 0.76/0.032

dictions is 0.71 (ubRMSE = 0.047 cm3/cm3) when the correlation of the actual

SMAP/Sentinel-1 product is 0.65 (ubRMSE = 0.043 cm3/cm3), while for Iowa SCAN

data, the correlation of predictions drops down to 0.10 (ubRMSE = 0.126 cm3/cm3) when

the SMAP/Sentinel-1 soil moisture correlation is 0.04 (ubRMSE = 0.125 cm3/cm3). This
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is a good validation of the proposed framework as our aim is to extend the established

SMAP/Sentinel-1 product to unobserved areas (and not improve the SMAP/Seninel-1 re-

trieval). The efficacy of the predictions for a given surface heterogeneity and hydroclimate

is therefore limited by the accuracy of SMAP/Sentinel-1 retrievals in those conditions and

future improvements in the retrieval algorithm will enhance the predictive capability of

the machine learning algorithm as well.

3.5.5 Regional Learning Limitations

3.5.5.1 Spatial Regional Learning

To compare the downscaling performances of different regional learning settings,

fixed-size test regions were adopted for the above experiments at each study area. It

is worthwhile to explore whether our proposed two-layer framework can achieve satisfac-

tory performance when the size of the test regions expands. To project how our models

will perform when we fill real gaps, we split the training and test regions by shrinking

the regions covered by the 3-km soil moisture. Taking the available swath at Arkansas

on 14 June 2018 as an example, as shown in Figure 3.17, we split the region covered by

the SMAP/Sentinel-1 3-km soil moisture product (Figure 3.17(a)) into training and test

regions with various size ratio (Figure 3.17(b)-3.17(e)). Here four different size ratios,

1:4, 1:2, 1:1 and 2:1, are chosen. A higher ratio indicates that less training samples are

used during the training process and more samples are used to validate predictions. Mod-

els learned using data from the training region are used to downscale soil moisture at test

region. Figure 3.18 shows the corresponding results at the three selected study areas.

While generally deteriorating performances are observed with the growing size ratio, at

Arizona and Arkansas, our proposed two-layer framework outperforms the resampled 33

km soil moisture and the one-layer framework. Especially at Arkansas, the R values are

approximately 0.7 when the test region is twice the size of the training region compared
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Figure 3.17: Vertical split of the whole swath at Arkansas on 14 June 2018 (a) with
various size ratios of test region versus training region. (b), (c), (d), (e) show size ratios
of 1:4, 1:2, 1:1, and 2:1, respectively.

Figure 3.18: Performance comparisons of the resampled 33-km soil moisture, one-layer
model, and our proposed two-layer framework under different size ratios of the test region
versus the training region. ubRMSE = unbiased root mean square error.

with ∼0.4 R from the 33-km soil moisture and ∼0.5 R from the one-layer framework.
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Figure 3.19: Search for temporal neighboring regions within a 30-day window for test
regions at Arizona on 7 May 2018 and 7 July 2018. DOY = day of year.

3.5.5.2 Temporal Regional Learning

To obtain the temporal neighboring region for the temporal regional learning and spa-

tiotemporal regional learning, we search back from the current day to find the most recent

historical temporal neighboring region from another swath pattern within a 30-day win-

dow. In this section, we explore how the timespan between the current day test region

and the obtained temporal neighboring region influences the predictive performance. For

the Sentinel-1 radars, the temporal resolution of one swath pattern is ∼12 days, while

the timespan between two different but consecutive swath patterns is ∼6 days. Consid-
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Figure 3.20: Performance comparisons of the resampled 33-km soil moisture, one-layer
model, and our proposed two-layer framework under different temporal distances between
the test region and the temporal neighboring region. ubRMSE = unbiased root mean
square error.

ering that the swaths may be missing due to various reasons, the timespan between the

current-day test region and the obtained temporal neighboring region can be ∼6 days,

∼18 days or∼30 days. To explore how these different timespans influence the downscal-

ing performances of the one-layer framework and our two-layer framework, as shown in

Figure 3.19, we continue searching within the 30-day window to find all available tempo-

ral neighboring regions and compare the results aggregated by different timespans. Figure

3.20 shows the comparisons at the three study areas. All the three study areas observe de-

teriorating performances, to different extents, as the timespan increases between the test

region and the temporal neighboring region. Again, our two-layer framework returns bet-

ter downscaling performances, especially at Arizona and Arkansas, compared with the

one-layer framework and the resampled 33-km soil moisture.

3.5.6 Prediction at Gap Areas

In this subsection, we predict and compare the downscaled soil moisture produced by

the models at real gap areas where the 3-km soil moisture estimates are indeed missing for
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Figure 3.21: Real gap filling at Arizona on 13 June 2018. (a) The 3-km soil moisture from
Soil Moisture Active Passive/Sentinel Product for spatial neighboring region on the same
day. (b) Resampled 33-km soil moisture from Soil Moisture Active Passive L3_SM_P_E.
Gap-filled 3-km soil moisture from (c) the one-layer model using spatiotemporal regional
learning, (d) the hierarchical learning models using spatial regional learning, (e) the hier-
archical learning models using temporal regional learning, and (f) the hierarchical learn-
ing models using spatiotemporal regional learning.

the SMAP/Sentinel-1 product. As we have discussed in section 3.4.5, we first train mod-

els using data from spatiotemporal neighboring regions of the gap regions. The learned

models are then fitted to predict the 3-km brightness temperature and soil moisture at real

gap areas. Figure 3.21 shows the predicted high-resolution soil moisture at Arizona on 13

June 2018, as an example, from the resampled 33-km soil moisture, the one-layer frame-

work, and the two-layer framework under different regional learning settings. Again, our

two-layer framework reconstructs more subgrid soil moisture heterogeneities compared
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with the one-layer framework.

Gaps of SMAP/Sentinel-1 active-passive product for Contiguous United States can

be filled adopting the same methodology. The gap-filled soil moisture has the same 3-

km resolution as the SMAP/Sentinel-1 active-passive product and the same spatial and

temporal coverage as the SMAP-enhanced passive product. Figures 3.22(a) and 3.22(b)

show the daily 3-km soil moisture product from the SMAP/Sentinel-1 active passive prod-

uct and daily resampled 33-km soil moisture product from the SMAP-enhanced passive

product, on 16 June 2018, respectively. Large areas that are not covered by the fine-

scale soil moisture can be observed. Again, this is due to missing high-resolution radar

backscatter measurements. Figures 3.22(c) and 3.22(d) show the comparison of the gap-

filled soil moisture produced by the one-layer framework and our proposed two-layer

framework. We were able to gap fill most of the missing areas except those that have

missing inputs, mainly the historical radar scatter measurements. Additionally, while the

one-layer framework is able to reconstruct the 3-km soil moisture (under the spatiotem-

poral regional learning), it produces much less fine-scale soil moisture heterogeneity than

proposed two-layer framework.

3.6 Conclusion

Recognizing the importance of global-scale soil moisture estimates with fine spatial

and temporal resolution, this chapter introduces the regional learning strategy to enable

regional gap-filled high-resolution soil moisture that maintains high consistency with the

SMAP/Sentinel-1 3-km soil moisture product. It also presents a novel two-layer machine

learning-based framework motivated by the SMAP active-passive retrieval algorithm. The

two-layer framework can downscale/gap-fill soil moisture with more heterogeneity cap-

tured at areas where the SMAP/Sentinel-1 active-passive 3-km soil moisture product is

missing. The average of historical radar backscatter measurements is introduced as one of
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Figure 3.22: Real gap filling of the Continental United States on 16 June 2018. (a) Ob-
served 3-km soil moisture from SMAP L2_SM_SP. (b) Resampled 33-km soil moisture
from SMAP L3_SM_P_E. (c) Gap-filled 3-km soil moisture from the one-layer model
under the spatiotemporal regional learning setting. (d) Gap-filled 3-km soil moisture
from the proposed theory-guided hierarchical framework under the spatiotemporal re-
gional learning setting. SMAP = Soil Moisture Active Passive.

the key inputs for soil moisture downscaling. We compare the two-layer framework with a

conventional one-layer framework and the resampled 33-km soil moisture product under

three different regional learning settings against holdout SMAP/Sentinel-1 active-passive

soil moisture estimates. We show that our two-layer framework outperforms the one-

layer model and the resampled 33-km soil moisture, in terms of R and ubRMSE, under

all scenarios. The most significant performance improvements of the proposed two-layer

framework were seen on the R under the spatiotemporal regional learning where it is in-

creased to 0.728 at Arizona compared to 0.493 for the resampled 33 km and 0.572 for the

one-layer, 0.742 at Oklahoma compared to 0.649 for the resampled 33 km and 0.679 for

the one-layer, 0.649 at Iowa compared to 0.537 for the resampled 33 km and 0.556 for the

one-layer, and 0.744 at Arkansas compared to 0.413 for the resampled 33 km and 0.651

for the one-layer.
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One limitation of our gap-filled soil moisture product is that its availability is still re-

stricted by the availability and accuracy of the inputs, mainly the 33-km soil moisture and

33-km brightness temperature from the SMAP-enhanced passive product. The best tem-

poral resolution produced is therefore ∼2-3 days. This issue will hopefully be addressed

by the generation of seamlessly covered coarse-scale soil moisture and/or brightness tem-

perature data in the future. This can be achieved by developing gap-filling techniques for

the 33-km SMAP soil moisture or by fusing multiple soil moisture products with SMAP.
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4. CONTEXT-AWARE ATTENTIVE REPRESENTATION LEARNING FOR

GEO-SPATIOTEMPORAL ANALYSIS

4.1 Introduction

Environmental monitoring is critical to risk control, policymaking, and resource pro-

tection and management [126, 127], in order to understand the effects both of systematic

factors such as increasing population [33] and occurrences of dynamic or sporadic phe-

nomena such as extreme weather events [128]. With the emergence of new remote sensing

technologies deployed in ubiquitous monitoring platforms, we are gaining the ability to

collect vast amounts of geo-spatiotemporal environmental data [129].

Recent years have seen a proliferation of studies concerning computational ap-

proaches that exploit geo-spatiotemporal data for applications to environmental sustain-

ability. These applications include crop yield prediction [13], soil moisture downscal-

ing [130], land cover classification [15], wildfire prediction [4], and climate modeling

[131]. The input data for these applications are either multi-channel data from a sin-

gle source (e.g. multispectral remote sensing images) or conflated geodata fused from

various sources [132]. Combining multi-feature spatial data in time series results in a

high-dimensional dataset. It comprises the data features associated with each represented

point in the four-dimensional product space of temporal and spatial coordinates. As an

example, Figure 4.1 shows the available input of a midwestern county in the U.S. for the

county-level crop-yield prediction task, which consists of monthly plant growth estimates

from remote sensing satellites and climate data from various sources collected during the

growing season.

Extracting information from the high-dimensional data remains a challenge. Most

previous studies have avoided dealing with the full spatiotemporal data directly through
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Figure 4.1: Up: County-level soybean yield of mid-western U.S. in 2017. Down: monthly
plant growth estimates (including vegetation indices) and climate data (including land
surface temperature, precipitation, soil properties and elevation) at Tama, Iowa.

various dimensionality reduction techniques. The most common approach is to spatially

average the input resulting in time series scalar features [34]. In [13], spatial images are

converted to histograms with the assumption that spatial distributions of the features do

not contribute to the accuracy of the predictions. These approaches ignore the spatially

explicit heterogeneity and interactions existing among the fused environmental features.

The ignored subgrid heterogeneous dynamics, however, play an important role in many

sustainability applications, such as crop yield prediction [30] and soil moisture downscal-

ing [130]. In addition, there are studies that generate predictions from a one-time snapshot

of the geo-spatiotemporal data [39, 41] without taking advantage of the temporal infor-
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mation.

Another challenge that commonly exists in the applications of spatiotemporal geo-

graphical data is the lack of labels [15]. Many computational sustainability tasks rely on

label collection procedures that are either expensive or cumbersome [133]. The scarcity

of labeled training data becomes an even severe issue for machine learning models that

deal with high-dimensional data [134].

In this chapter, we propose a novel semi-supervised self-attentive-based model that

jointly learns a prediction function and an embedding representation function. At each

time step, spatial information contained in the multi-channel three-dimensional images is

first extracted to a latent space as representations through convolutional neural networks.

A self-attentive model is then applied to temporally aggregate the spatial representations

at all time steps to generate a global spatiotemporal representation, from which final pre-

dictions are produced. To overcome the scarcity of training data, we further introduce

the spatial and temporal coherence signals that naturally reside in the largely-available

unlabeled geo-spatiotemporal data through a novel sampling procedure. Similar to the

proximity-based word embedding models in natural language, we make an assumption

that images that are spatially or temporally close should have similar representation, and

conversely. Under our semi-supervised training framework, this newly introduced spa-

tiotemporal context can aid meaningful representation learning that adapts to the super-

vised prediction task at the same time. We evaluate our approach through a large-scale

real-world crop yield prediction task. Experimental results show that our semi-supervised

self-attentive model outperforms existing state-of-the-art crop yield prediction methods

and its counterpart, the supervised-only self-attentive model, especially when there are

less labeled training data. The contributions of this work are summarized as follows:

• We propose a novel semi-supervised self-attentive model which learns global spa-

tiotemporal representations for prediction tasks. This model takes full advantage of
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the multi-channel geo-spatiotemporal data with both spatial and temporal variations

captured.

• We aid the representation learning with spatial and temporal context sampled from

largely-available unlabeled geo-spatiotemporal data. Under the semi-supervised

training framework, context-aware representations that adapt to the supervised pre-

diction task are learned.

• We conduct extensive experiments on a challenging large-scale real-world crop

yield prediction task. Experimental results demonstrate the effectiveness of our

semi-supervised self-attentive model over existing state-of-the-art yield prediction

methods and its counterpart, supervised-only model, especially under the stress of

scarce labeled data.

4.2 Related Work

With the emergence of environmental monitoring in the past decade, great progress

has been made in many computational sustainability tasks through the use of geo-

spatiotemporal data [135]. The most common approach to prediction in this area, either

as regression or classification, is to incorporate multiple features from various sources

with the consideration of domain knowledge. Specifically, much research [3, 130, 34]

take time series scalar features as input to generate predictions for ground-truth labels

within a predefined spatial unit. Input features with higher resolutions than the labels are

averaged without considering the subgrid heterogeneous dynamics. However, it has been

studied and well acknowledged in many environmental sustainability domains that the

spatially explicit dynamics and interactions among environmental factors play a great role

determining the characteristics of environmental factors at larger spatial scales [30, 29].

Ignoring these subgrid heterogeneity results in unnecessary information loss. In [13],

multispectral remote sensing images with spatial distributions are converted to histograms
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with the assumption of permutation invariance. Their assumption is less appropriate when

conflated geodata with spatially explicit dynamics and interactions are used as inputs. In

addition, several studies only incorporates static spatially distributed data without consid-

ering the temporal patterns in the geo-spatiotemporal data, such as land cover prediction

[136], poverty mapping [15]. There is however valuable information contained in the

temporal variations that can aid the predictions [3, 30].

The temporal self-attentive representation learning model proposed in this chapter,

instead, adopts a hierarchical framework where spatial representations at each time step

are learned first, followed by a temporal aggregation through a self-attentive model. It

extracts both spatial and temporal variations in the data with a global spatiotemporal rep-

resentation learned for the prediction task. Recurrent convolutional networks [137] shares

a similar architecture with our model, but processes latent output at each time step in a

temporally explicit order. While the self-attentive model has demonstrated its superiority

in capturing global information and handling sequential data at longer lengths in many

fields [138, 139], there is no research, to our best knowledge, to demonstrate its ability to

mine spatiotemporal patterns from geographical data. Geo-spatiotemporal data normally

show distinct but relatively consistent temporal patterns [30]. The knowledge transfer

among different time steps enabled by the self-attentive model can aid the generation

of a more meaningful global representation. The 3d convolutional neural networks [59]

also aims at spatiotemporal feature learning. They apply 3d convolutions across both the

spatial and temporal dimensions.

Another remaining challenge for learning spatiotemporal environmental monitoring

data is the lack of labels. In addition to data augmentation [136, 40] and transfer learning

[45] that have been proposed to alleviate this issue, there have been attempts to introduce

spatial context to aid model learning [140, 15]. In [140], weighted representations of

all spatial neighbors within a predefined region are considered. However, their settings
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are not practical when dealing with high-dimensional spatiotemporal data. An existing

study [15] introduces the spatial context through sampling from the neighboring region

to aid their unsupervised representation learning, and learn representations independently

from downstream tasks. In our research, we sample spatial and temporal context from

the largely-available unlabeled data. Information from the sampled context is learned

together with a supervised prediction task under the semi-supervised training framework.

Context-aware representations that adapt to the prediction task at the same time can thus

be learned.

4.3 Method

4.3.1 Problem Definition

In this section, we present the formulation for the geo-spatiotemporal unit-wise pre-

diction task. Specifically, given the multi-channel geo-spatiotemporal data as input, the

goal is to predict labels for each geographical unit. This approach can be used in many

real-world applications, such as land cover classification [3] and wildfire prediction [4]

in field-scale, crop yield prediction in county-level [13], and health index prediction for

countries [15]. Given a unit i, there are T different multi-channel spatial images centered

at the unit. Different images represent the geo-spatiotemporal data for different time steps.

We denote the time series spatial images as Ai ∈ RT×h×w×d. Note that h and w denote

the height and width of the image, and d is the number of features incorporated from

either a single dataset or a conflated dataset fused from various sources. To utilize the

spatial and temporal context information, for each unit i, we obtain three context-aware

images, known as the spatial neighbor SNi, spatial distant SDi, and temporal neighbor

TNi through a novel sampling procedure, which is introduced in Section 4.3.3. These

context-aware images share the same dimensions T × h× w × d as Ai.

Our objective is to learn a predictive model to predict the label for unit i from the time
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Figure 4.2: Architecture overview of the semi-supervised context-aware attentive rep-
resentation learning model. Arrows in orange and blue denote the data flows for the
supervised and unsupervised learning, respectively.

series spatial image quadruplets. Formally, it can be written as

yi = F
(
{Ai,SNi,SDi,TNi}1, · · · , {Ai,SNi,SDi,TNi}T

)
, (4.1)

where yi denotes the prediction for the geographical unit i.

4.3.2 Framework Overview

In this chapter we propose a novel semi-supervised model that jointly learns a predic-

tion function and an embedding representation function. The architecture of the pro-

posed framework is presented in Figure 4.2. The framework consists of three parts.

First, for each time step, we employ convolutional neural networks (CNNs) to extract

its spatial representations from the image quadruplets {A,SN,SD,TN}. Since CNNs

have demonstrated its superior ability to extract spatial information in computer vision

field [62], we adopt CNNs to extract spatially explicit dynamics and interactions exist-

ing among the fused environmental features. Specifically, we use a modified ResNet-18

architecture [5] where the final classification layer is removed. Formally, for each im-
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age in the quadruplets, the CNNs map it to an m-dimensional embedding, denoted as

g(·) ∈ Rm. Then we denote the resulted time series context-aware spatial representations

as {g(A), g(SN), g(SD), g(TN)}t. Note that for all different time steps and images, the

same CNNs are shared. Second, a self-attentive model is applied to temporally aggregate

the spatial representations g(A)t at the labeled regions to produce a global spatiotemporal

representation. Finally, a prediction layer composed of a fully-connected neural network

is deployed to generate predictions from the extracted global information. The objective

function of our model is composed of four parts:

L := LS + α(LUS + βLUT + γLR), (4.2)

where LS denotes the supervised loss for the prediction task. LUS and LUT denote un-

supervised losses for spatial and temporal context respectively. LR is added here to reg-

ularize the learned representations to a meaningful hypersphere. α, β, γ are trade-off

weights. We first explain how we produce spatial and temporal context-aware represen-

tations through unsupervised learning and a novel sampling procedure in Section 4.3.3.

Descriptions of the temporal self-attentive model for the generation of a global spatiotem-

poral representation are presented in Section 4.3.4.

4.3.3 Context-aware Representation Learning

The widely explored proximity-based word embedding models [67] assume that “a

word is characterized by the company it keeps”; thus words that appear in similar contexts

should have similar representations. Extending this idea to our spatiotemporal distributed

geographical data, we make an assumption that spatial images that are close spatially or

temporally should have similar representations than those that are far apart.

To constrain the closeness in spatiotemporal space, we introduce the concepts of spa-

tial neighborhood and temporal neighborhood. First, we denote the regions where la-
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Figure 4.3: An example of spatial neighborhood region and spatial distant region cor-
responding to an anchor image A. Spatial neighbor SN is sampled from the spatial
neighborhood region. Spatial distant SD is sampled from the spatial distant region. A
conflated geodata that fuse various environmental features, such as vegetation indices,
temperature, soil properties, etc., are plotted in background.

bels are obtained and predictions ought to be produced as anchor regions. The spatial

neighborhood is then defined as a larger spatial region that is within a predefined spatial

distance of an anchor region and appears at the same time step. An example of a spatial

neighborhood region is shown in Figure 4.3. The temporal neighborhood, instead, is de-

fined as the same spatial region of the anchor region but appears at a time step within a

predefined temporal distance. Spatial neighbor image SN, spatial distant image SD, and

temporal neighbor image TN can be obtained in the context of the spatial neighborhood

and temporal neighborhood through a sampling procedure, which will be introduced in

4.3.3.2.

4.3.3.1 Learning Objective

Now suppose that we have time series spatial representations

{g(A), g(SN), g(SD), g(TN)}t generated from the CNNs with {A,SN,SD,TN}t
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as input. At each time step t ∈ (1 · · ·T ), we seek to minimize the Euclidean distance

between the representation vectors of the anchor image and spatial/temporal neighbor

image, while maximize the distance between the representation vectors of the anchor

image and spatial distant image. The unsupervised loss for the spatial and temporal

context can be calculated by

LtUS = max(0, ||gθ(At)− gθ(SN t)||2 − ||gθ(At)− gθ(SDt)||2 + p) (4.3)

and

LtUT = ||gθ(At)− gθ(TN t)||2, (4.4)

respectively. Following existing work [15], a rectifier with margin p is introduced here to

control the extent how the representations of the spatial distant image are pushed away

compared to the representation of the spatial neighbor image.

To constrain the learned embeddings within a hypersphere where better representa-

tions with meaningful relative distance can be learned, we further introduce a L2 regular-

ization with loss LtR:

LtR = ||gθ(At)||2 + ||gθ(SN t)||2 + ||gθ(SDt)||2 + ||gθ(TN t)||2. (4.5)

Finally, for given a dataset ofN geographical regions with T time steps, the unsupervised

loss is given as

min
θ

1

T

N∑
i=1

T∑
t=1

(LtUS(i) + βLtUT (i) + γ
LtR(i)√
m

) (4.6)

where m is the dimension of the embedding vectors and θ is the parameters of the CNNs.

This unsupervised loss is jointly trained with the supervised prediction task to generate

context-aware representations that are suitable for the prediction task [141].
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4.3.3.2 Quadruplet Sampling

We adopt the following procedure to generate times-series image quadruplets with

spatial and temporal context. First, anchor images A are collected as images that cover

the area of interest with fixed image size. Second, spatial neighbor SN and spatial distant

SD images are sampled with respect to the anchor images based on spatial distance. We

adopt a similar sampling procedure as in [15] with the spatial neighborhood introduced to

constrain the sampling of spatial neighbor images. Specifically, the center of the spatial

neighbor images must be within a predefined number of pixels of the anchor image center

both vertically and horizontally. Different from the pure-unsupervised learning in [15]

where the size of spatial neighborhood is relatively more flexible, we find in our setting

that the size of spatial neighborhood should adapt to the supervised task. In practice,

we find that choosing the spatial neighborhood similar to the size of the anchor images

produces better supervised predictions.

As computational sustainability tasks normally conduct experiments in large-scale,

e.g. the county-level crop yield prediction across the United States [13], we further con-

strain the distant region from which the spatial distant images can be sampled. As shown

in Figure 4.3, in addition to the spatial neighborhood region colored in blue, there is a

spatial distant region colored in red around the anchor image A. The image NSD in the

black rectangle, while is also far away from A as the sampled distant image SD, will

not be considered as spatial distant in this setting. This is similar to the “hard negative”

idea introduced to the temporal embedding learning in [142]. We find in practice that this

newly added constraint help us learn better representations with the prediction accuracy

improved. Finally, the temporal neighbor images are sampled from a fixed temporal win-

dow as temporal context for each anchor image. The sampling procedure is applied at all

time steps separately to enrich the spatial and temporal proximity signals the model sees.
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4.3.4 Temporal Self-Attentive Model

We present here a temporal self-attentive model used for the generation of a global

spatiotemporal representation. As output from the CNNs, we have the time series context-

aware spatial representations (g(A)1, g(A)2, · · · , g(A)T ) for the labeled regions. As

these representations are generated independently at each time step, there is no order

information learned to aid networks in later stage understanding the relative distance of

these embeddings. To incorporate order of sequence information, we add “positional em-

bedding” [143] to the spatial representations through position-wise summation. Specifi-

cally, we use the positional encoding in a sinusoidal form. The encoding added to a spatial

representation at time step t is given as:

PE(t, 2i) = sin(t/100002i/m)

PE(t, 2i+ 1) = cos(t/100002i/m)

(4.7)

where m is the length of the representation embedding and i ∈ [0,m/2]. The added

parameter-free position-dependent embeddings can help followed networks incorporate

the temporal order of the spatial representations without incurring extra computation bur-

den.

After the adding of the positional encoding, we adopt the multi-head self-attentive

model [143] for temporal aggregation. First, we reformulate the time series position-

dependent spatial representations in a matrix form Z ∈ RT×m. This representation matrix

is then linearly projected to three matrices, queries (Q), keys (K), and values (V), inde-

pendently. To empower learning in different representation subspaces, the three matrices

are further split into h parts and attended by h parallel heads separately. For each head
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i ∈ h, we have its self-attention score calculated through the scaled dot-product attention:

Si = softmax(
QiK

T
i√

m/h
), (4.8)

where Si ∈ RT×T is the self-attention score matrix which denotes how information con-

tained in representation subspace Vi can transfer to each other. The scale factor 1/
√
m/h

is added to prevent the gradient vanishing problem [144]. The updated spatial representa-

tions of i-th head is then obtained by multiplying the self-attention score matrix with the

values matrix Vi:

Zui = SiVi (4.9)

where Zui ∈ RT×m/h is the refined subspace representations. With this update, spatial

representation (zti)
u ∈ Rm/h at a time step t can incorporate information contained in

other times steps resulting in meaningful knowledge transferring.

To generate a unifying representation from all subspaces, the updated matrices from

h parallel heads are concatenated and once again projected to have:

Zu = concat(Z1, · · · ,Zh)W (4.10)

where Zu ∈ RT×m and W ∈ Rm×m is a projection matrix for the concatenated unifying

matrix. Following [143], we use a residual connection [5] to add the original spatial

representations to the refined representations to enable the propagation of useful features

learned at low-level to deeper levels:

Zu = Zu + Z. (4.11)

To further increase the length of the representations, and thus improve the model’s
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expressive capability [145], we add position-wise feed-forward network as in [143] to

process the updated representations position-wisely. Finally, the refined spatial repre-

sentations at all time steps are temporally averaged through a pooling layer to generate

a global spatiotemporal representation, after which a fully-connected neural network is

deployed to generate the final prediction. For a regression task, as an example, the super-

vised loss for the predictions can be calculated through the mean squared error:

LS =
1

N

N∑
i=1

(yi − ŷi)2 (4.12)

where ŷi denotes the prediction from the model for region i. We find in practice that

this temporal self-attentive model is easy to train and less prone to overfitting compared

with previously studied models for geo-spatiotemporal data, especially when the training

data is scarce. It becomes even more powerful when accompanied with the context-aware

unsupervised representation learning.

4.4 Experiments

To validate the effectiveness of our proposed approaches, we conduct experiments

over a large-scale real-world dataset for the crop yield prediction task. The dataset con-

sist of conflated geospatiotemporal data from various sources. In this section, we first

introduce the dataset, including the crop yield dataset and the input datasets. Then we

describe the evaluation metrics and baseline methods. Results of model performance are

presented last. Codes for the models and data pre-processing will be released to public

for reproducibility.

4.4.1 Dataset

County-level soybean yield prediction has been an important task and actively re-

searched in previous studies [146, 13]. The ground-truth of the task is average county-
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level soybean yields harvested in every October and November. We collect the data from

the USDA National Agricultural Statistics Service (NASS) Quick Stats Database [147]

for years between 2003 to 2018. 12 states of the midwestern United States are selected

which account for over 80% national soybean production. There are around 850 data

points per year.

We fuse plant growth estimates from remote sensing and environmental factors from

various sources as inputs. Specifically, a pair of monthly vegetation indices, the Normal-

ized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI), are

collected from the MODIS satellite product MOD13A3 [148] at 1 km resolution. These

two vegetation indices complement each other and have been widely used to monitor plant

growth in previous studies [34]. For environmental factors, we consider precipitation and

surface temperature to reflect the water and heat stress, to which the crop growing pro-

cesses were observed to be highly sensitive [149]. Monthly precipitation data at 4 km

resolution are from the Parameter-elevation Relationships on Independent Slopes Model

(PRISM) dataset where precipitation data are derived from nearly 13,000 stations using

climate-based interpolation [49]. Daily surface temperature data during the day and night

are collected from the 1 km MODIS satellite product MOD11A1 [119]. They are aggre-

gated to a monthly time step through taking averaged. We also introduce geographically

localized and time-invariant factors such as elevation and soil properties, e.g., soil sand,

silt, and clay fractions. They are also important environmental factors to be considered,

as they determine how stresses like water and heat influence crop growth. The elevation

data is obtained from the NASA Shuttle Radar Topography Mission Global 30 m product

[150] while the soil properties data are collected from 1 km Soil Geographic (STATSGO)

Data Base [115]. We map all the inputs from various sources to the MODIS product grid

at 1 km resolution through averaging or nearest-neighbor search.

Once the data preprocessing steps are finished, anchor images are cropped as 50× 50
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pixels centering at the counties which have soybean yields, considering that the average

size of counties in the U.S. is around 2500 km2. MODIS landcover product MCD12Q1

is further introduced in this step to decide the center of croplands at each county. Fixing

the image size as 50 × 50 for all the counties might not be optimal but is practical as

we are conducting the prediction task in large scale. Spatial and temporal contextual

images are sampled corresponding to the anchor image with the same spatial size. We

collect before-harvest input data from March to September, resulting in a feature space

X ∈ {A,SN,SD,TN}with four dimensions, X ∈ R7×50×50×9, for each county where

the number of time steps is 7 and the number of features is 9.

Note that we do not apply masks to differentiate the land cover types or crop types

inside the geographical regions. Instead, we rely on the model itself to extract necessary

information from the sequences of raw images to make accurate crop yield prediction.

Another caveat is that the fused heterogeneous geographic data originally have different

spatial/temporal resolutions, noise sources (e.g., cloud, urban agglomerations, etc.) and

data acquisition errors. This also poses challenges to our model to extract meaningful

spatiotemporal signals for the prediction task.

4.4.2 Baseline Methods

The baseline methods that are compared with can be classified into three categories

based on the dimensions of the input data. The first category includes ridge regression

(LR) [34], random forest (RF) [37], and multilayer perceptron (MLP) [41]. These are

conventional machine learning models that have been widely used in crop yield prediction

tasks. The inputs they take are scalar features in time series which can be obtained by

spatially averaging the features at each time step.

The second category includes four deep learning models introduced in [13], LSTM,

LSTM+GP, CNN, and CNN+GP. Instead of taking average of features in spatial space,
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they convert the spatial image to histogram to keep the frequency distribution which re-

sults in a three-dimensional input space. The input is then fed into a LSTM or CNN for

information extraction. Additionally, they adopt a Gaussian process after the prediction

of deep models to alleviate the spatial correlations in the prediction errors.

The third category includes two advanced deep learning models, 3d convolutional

neural networks (C3D) [60, 66] and recurrent convolutional networks (CNN-LSTM)

[137]. We adopt a similar architecture for the 3d convolutional neural networks as in

[66], with minor modifications to adapt to the height and width of our input. CNN-LSTM

deploys the same convolutional networks as our proposed models, but uses the LSTM

model, instead of self-attentive model, for temporal feature learning. Both CNN-LSTM

and C3D take the four-dimensional features as input.

Additional feature standardization processes, including subtraction of mean and divi-

sion of standard deviation, are applied to the input data of LR and MLP. As for the deep

models, LSTM, LSTM+GP, CNN, and CNN+GP, raw features are fed to generate his-

tograms, after which subtraction of mean is applied as in [13]. The same standardization

process as our proposed models is applied to the input taken by CNN-LSTM and C3D,

which will be introduced in 4.4.3.

4.4.3 Our Approaches

We evaluate both the semi-supervised self-attentive model (Semi-Attention) and its

counterpart, supervised-only self-attentive model (S-Attention). The supervised-only

model shares a similar architecture as the semi-supervised one with an exception that

no sampled spatial neighbor/distant and temporal neighbor data are provided to constrain

the unsupervised representation learning. Both Semi-Attention and S-Attention take four-

dimensional data as input.

We standardize the input by subtracting from it per-channel mean and dividing it by
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per-channel standard deviation. The standardization process is applied to each month

separately as we observe that there are monthly variations in the mean and standard de-

viation of all the features. Monthly per-channel mean and per-channel standard deviation

are obtained through using input data from the year 2003 to 2013.

4.4.4 Evaluation Approach and Metrics

To evaluate the generality of the baseline methods and our proposed approaches to

unseen data in future years, we adopt a temporal nested validation approach. We conduct

prediction experiments for 5 years between 2014 and 2018 independently. When a year

y is selected to collect the test data, data from year y − 1 are used for validation, while

data collected from year y − Ny − 1 to y − 2 are used for training. Ny here can be used

to control the size of training data and test the performance of a model under the stress of

data scarcity.

We report Root Mean Square Error (RMSE) and R2 as the evaluation metrics. Both

RMSE and R2 have been widely used to evaluate the crop yield prediction performances

in previous studies [13, 34, 30]. RMSE measures the consistency of prediction results and

ground-truth values. R2 measures the fraction of variance in ground-truth values that can

be explained by predictions. R2 is not as scale-dependent as RMSE.

4.4.5 Hyperparameter Tuning

We tune the hyperparameters of the baseline methods and the proposed approaches

based on the performance of the validation dataset. For all the deep models, including our

self-attentive models, 50 epochs are run with the best model saved based on validation

performance. Grid search from reasonable hyper-parameter combinations is adopted for

LR, RF, and MLP.

Generally, we find our self-attentive models are easy to tune and less prone to over-

fitting. Weights for the unsupervised loss, temporal unsupervised loss, and regularization
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(α, β, and γ as in Equation (4.2)) are set as 0.2, 0.001, 0.2, respectively. An exception is

made for 2016 where we find through validation that it is more sensitive to unsupervised

training part than other years. The unsupervised loss weight α is changed from 0.2 to 0.1.

Radius to sample spatial neighbor and spatial distant are set as 25 and 100, respectively.

As the time step granularity of our feature is relatively coarse, i.e., monthly, we fixed the

temporal neighborhood as the region that appears at one-time step early. It can be easily

adjusted for other tasks that have more sensitive time granularity though. We set both the

dimensions of the spatial representation and the global spatiotemporal representation as

256. The inner-layer of the position-wise feed-forward networks has dimensionality as

512. A dropout with value 0.2 is applied to the temporal self-attentive layer as in [143].

For all the results of our proposed approaches reported in this chapter, the aforementioned

hyperparameters are adopted.

4.4.6 Results of Model Performance

We first set Ny to 10 in comparing all the methods, which means 10 years of past

data are used for training. This size of training data has been adopted widely in previous

studies [13, 37]. Table 4.1 and Table 4.2 show the empirical results for the comparison

with baselines in terms of RMSE and R2 respectively. It can be seen that our approaches

consistently outperform all the baseline methods with significant margins. A 13.5% im-

provement in terms of RMSE and 16.5% improvement in terms of R2 can be seen when

comparing the semi-supervised model with the best-performing baseline C3D. In compar-

ison with the supervised-only model, a 2.9% and 2.1% improvements in terms of RMSE

and R2 are observed. It is worth noting that S-Attention outperforms CNN-LSTM with

14.5% improvement in RMSE and 23.8% improvement in R2. This demonstrates the ad-

vantage of self-attentive model over LSTM in capturing temporal patterns on this crop

yield prediction task.
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Table 4.1: RMSE comparison of various methods when 10-year data are used for training.

Method
Year

Avg
2014 2015 2016 2017 2018

LR 6.465 7.754 7.589 6.839 8.163 7.362
RF 5.332 6.69 8.134 6.352 7.692 6.840
MLP 5.236 6.076 6.752 6.025 8.242 6.466
LSTM 5.595 6.450 8.389 6.890 5.655 6.596
LSTM+GP 5.013 5.553 6.761 5.134 5.522 5.597
CNN 4.833 5.625 8.157 5.302 6.318 6.047
CNN+GP 4.824 5.540 8.136 5.706 6.235 6.088
C3D 4.969 5.891 5.462 5.736 5.558 5.523
CNN-LSTM 4.948 5.698 6.688 5.596 5.83 5.752
S-Attention 4.762 5.336 4.308 4.741 5.452 4.920
Semi-Attention 4.579 5.174 4.548 4.464 5.121 4.777

One thing that deserves to be mentioned is that all the baseline methods perform

poorly in the year 2016, i.e., the RMSE values are significantly higher and R2 values are

significantly lower than other years. One potential reason for this is that the year 2016

saw a record high yield across nearly all the midwestern states [151]. The information

extracted through the baseline methods fails to catch the causes that lead to such a dis-

parate pattern. Our temporal self-attentive models, including the semi-supervised one and

the supervised-only one, instead, are able to extract necessary signals from past data to

generalize well in this case.

Another interesting observation is that the Gaussian process does not bring much im-

provement compared with its counterpart as in [13], especially for the CNNs model. It

might be due to the geographically localized factors, such as elevation and soil properties,

can capture part of the spatial correlation existing in the real values and thus leave less

work to do for the Gaussian process.

To further test the performances of all the approaches under the stress of label scarcity,

we decrease the number of years to be used as the training data from 10 to 7, then 3, e.g.,
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Table 4.2: R2 comparison of various methods when 10-year data are used for training.

Method
Year

Avg
2014 2015 2016 2017 2018

LR 0.495 0.231 0.002 0.458 0.361 0.309
RF 0.657 0.428 -0.15 0.532 0.432 0.380
MLP 0.669 0.528 0.209 0.579 0.347 0.466
LSTM 0.622 0.467 -0.220 0.450 0.693 0.402
LSTM+GP 0.696 0.605 0.207 0.694 0.707 0.582
CNN 0.717 0.595 -0.154 0.674 0.617 0.490
CNN+GP 0.719 0.607 -0.148 0.622 0.627 0.485
C3D 0.7 0.556 0.481 0.618 0.704 0.612
CNN-LSTM 0.701 0.582 0.224 0.637 0.674 0.564
S-Attention 0.724 0.634 0.678 0.739 0.714 0.698
Semi-Attention 0.746 0.658 0.641 0.769 0.748 0.712

when Ny = 3, there are only 3 years of data used in training, 1 year for validation, and 1

year for test. This is a relatively extreme case but can shed some light on practical cases

where input labeled data are less available or expensive to obtain, such as in developing

counties or when a manual survey has to be adopted to collect the data.

Figure 4.4 shows the results averaged from 2014 to 2018 with the x-axis representing

the number of labeled training instances. To have better readability, we separate the com-

parisons with the baseline methods based on the dimensionality of the input data. It can

be seen that our models again outperform all the baseline methods consistently. There are

two observations that we would like to mention here. First is that the advantage of the

semi-supervised model over the supervised-only model becomes more obvious when the

size of training data decreases. The improvements in terms of RMSE/R2 are increased to

3.17%/3.75% when 7 years of data are used for training and 8.55%/14.39% when 3 years

of data are used for training. The second observation is that the performance gap between

our models which take full advantage of the data and the models with dimensionality

reduction techniques, shrinks, while still remains, when less data are used for training.
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Figure 4.4: Model performance with varying numbers of labeled training instances. (a)-
(b) Comparison between self-attentive method and conventional machine learning meth-
ods. (c)-(d) Comparison between self-attentive models and deep models (with three-
dimensional input). (e)-(f) Comparison between self-attentive models and deep models
(with four-dimensional input). All numbers are averaged from 2014 to 2018.

However, we still see a 16.0% R2 improvement comparing our semi-supervised model

with the best-performing baseline model CNN-LSTM when 3 years of labeled data are

used for training.

To better visualize the trends of the model performances with the decreasing of train-

ing data, we plot the averaged RMSE and R2 from 2014 and 2018 for our self-attentive

models and the top four baselines, C3D, CNN-LSTM, LSTM+GP and CNN, as shown in

Figure 4.5. Comparing Semi-Attention with S-Attention, it can be found that the semi-

supervised model has a smaller performance drop when less training data is used. While

CNN shows the slowest performance drop, there is still big metrics gap between it and

our semi-supervised model.
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Figure 4.5: The trend of model performance with varying numbers of labeled training
instances. (a) RMSE and (b) R2. All numbers are averaged from 2014 to 2018.

4.4.7 Cross-border Model Generalization

In this section, we study how the semi-supervised model trained using input and crop

yield data from one location performs for prediction tasks using input data from another

location. This is to examine the generalization ability of the model across borders and

is especially crucial for many computational sustainability tasks, of which the collection

of ground-truth labels are expensive [152]. Here we first divide data into small groups

based on the state of the location. Then data from different states are grouped based on

location proximity. Specifically, we have group 1 for states North Dakota, South Dakota,

Minnesota, and Wisconsin, group 2 for Nebraska, Kansas, Iowa, and Missouri, and group

3 for Illinois, Indiana, Ohio, and Kentucky. Group 1 has around 200 data records per

year while group 2 and group 3 have around 300 data records per year. Figure 4.6(a) and

4.6(b) show the averaged results from 2014 to 2018 when 10-year training data are used.

It can be found from the figure that the best model for one group is trained using data

from that group, as would be expected. When considering cross-border predictions, it

shows that model trained using group 2 or group 3 data can achieve reasonable accuracy
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Figure 4.6: Cross-border model generalization. (a) RMSE and (b) R2 values for semi-
supervised model trained in one group of states and applied in another group of states.
States are grouped based on location proximity. 10-year training data are used. All num-
bers are averaged from 2014 to 2018.

for prediction task on group 1 input. It also indicates that this cross-border model gen-

eralization ability needs to be further checked and verified for specific tasks as relatively

low R2 values can be found for some of the groups, e.g. model trained on data of group 1

and tested with input from group 2.

4.4.8 In-Season Crop Yield Prediction

Early in-season crop yield prediction benefits farmers, policy makers but poses ex-

tra challenges to the model than the yield prediction task right before harvesting. We

evaluate in this section the ability of our semi-supervised model to predict soybean yield

using input data collected in early growing months. In particular, we collect monthly

data starting from March and ending in an in-season month between May and Septem-

ber. Experiments are conducted for each collection of data separately resulting in an

online-learning fashion. Figure 4.7 shows the results averaged from 2014 to 2018 when

10-year training data are used. Again, we separate the comparisons with baseline meth-

ods based on the input data dimensionality. It is shown that both the self-attentive models,

85



Figure 4.7: Model performance measured in in-season months. (a)-(b) Comparison be-
tween self-attentive method and conventional machine learning methods. (c)-(d) Compar-
ison between self-attentive models and deep models (with three-dimensional input). (e)-
(f) Comparison between self-attentive models and deep models (with four-dimensional
input). All numbers are averaged from 2014 to 2018.

S-Attention and Semi-Attention, perform consistently better than the baseline methods.

The predictions produced by the self-attentive methods in May achieve comparable or

better performance compared to the predictions of baseline methods in July. The advan-

tage of the semi-supervised model over the supervised-only model disappears for predic-

tions between May and August though. One potential reason for this may be that the

hyperparameter combination tuned for prediction in September needs to be modified for

in-season predictions in earlier months. Another observation we have is that there is one

performance jump happening in predictions in July compared to predictions in May and

June. This might indicate that July is the month where more meaningful signals start to

be contained in the input data, from which more accurate predictions can be produced.
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4.4.9 Feature Importance Analysis

To understand how our semi-supervised model exploits the geo-spatiotemporal data

fused from various sources, we provide a feature importance analysis here by excluding

one type of environmental factors at a time from the input. The importance of a feature

or a set of features can be demonstrated through the performance drop when they are

not included in the input for training. The average performances from 2014 to 2018

of the semi-supervised model for both early in-season prediction (from May to August)

and right-before harvesting prediction (September) is shown in Figure 4.8. Ten years of

training data are used here. Specifically, we group the environmental features into six

groups. Group VI is for the input when two vegetation indices are excluded. Group LST

is for the land surface temperatures during the day and night. Group PPT, SOIL, and ELE

are for the precipitation, soil properties and elevation, respectively. Group CLIMATE only

uses two vegetation indices as input while all other climate variables are removed. We add

group ALL for comparison which uses all available factors. For predictions in August and

September, it can be seen from the figure that all groups see performance drops to different

extents, which means that our model is capturing information from all environmental

factors. Another interesting observation is that our model can still achieve satisfying

performance when the two vegetation indices are not included and only climate data are

used (group VI). It has been reported in previous studies [38, 30] that either vegetation

indices or the source of their data, i.e., the multi-spectral remote sensing images, are

necessary to achieve a satisfying crop yield prediction performance. Our self-attentive

semi-supervised model, however, is able to achieve comparable performance solely using

the climate data. This achievement is established because our model is more capable of

extracting spatiotemporal signals in the climate data for producing accurate predictions.

Figure 4.8(c) and 4.8(d) show the RMSE and R2 changes of each group compared
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Figure 4.8: (a) RMSE and (b) R2 values when one type of environmental factor is ex-
cluded from the input. The ALL group uses all available factors. (c) Increase of RMSE
and (d) decrease of R2 comparing each group with group ALL. All numbers are averaged
from 2014 to 2018.

to group ALL. It can be seen from the figures that vegetation indices start to play a role

in model prediction as early as in June, while precipitation and land surface temperature

start to bring positive impact on model performance from August. Removing precipitation

and land surface temperature from the input result in performance improvement in May,

June, and July. This is consistent to researches in agricultural field [35, 41] that crop

growing processes in late grain-filling period are more sensitive to environmental stress.

Another interesting observation is that static factors like soil and elevation show much
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importance for predictions in May and June when the soybeans are still in early-growing

stages. Their importances drop, compared to other factors, when the soybeans are close

to maturity, especially in August and September.

4.5 Conclusion

Machine learning approaches that exploit geo-spatiotemporal data have played a cru-

cial role in many environmental sustainability applications. Unfortunately, the data het-

erogeneity and label scarcity often pose fundamental challenges to such applications. To

tackle these challenges, we propose a novel semi-supervised self-attentive model. This

model takes full advantage of the multi-channel spatiotemporal data and is able to learn

global spatiotemporal representations for downstream prediction tasks. To overcome the

limitation in label scarcity, we introduce unsupervised representation learning where spa-

tiotemporal context sampled from unlabeled data are utilized. Our model jointly min-

imizes the unsupervised loss along with the supervised loss for the learning tasks. To

evaluate the effectiveness of the proposed methods, we compare its performance with

many state-of-the-art baselines in a regression task over large-scale real-world data. The

experimental results clearly demonstrate the advantages of the proposed methods. We ob-

serve that the advantages become more obvious when less data are utilized in the training

phase. To verify the impacts of this unsupervised loss, we compare the performance of

the model with vs. without the unsupervised part. The results justify the positive impacts

of the unsupervised loss in improving the overall performance of the proposed method.

Although the experiments mainly focus on regression tasks, it is worth emphasizing

that the proposed framework generally works for other environmental sustainability ap-

plications, such as land cover classification or health index prediction. Since the inputs

of our model only require the raw features of instances, the timestamps and positions the

instances represent, and the labels of the instances. There are no restrictions on the type
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of the labels to be categorical or numerical.

One promising direction for future work is to work on the convolutional neural net-

works part of our proposed model, recognizing that the conflated geographic data coming

from different sources have varying spatial resolutions and characteristics, such as in

spatial correlation, noise, and accuracy. Relying on one unifying convolutional neural

networks with fixed-size filters, while as simple and scalable as it is, might not be able

to extract the full spatial variations from the data. The same idea can also be applied to

the temporal model part of the proposed model. Different environmental factors show

different temporal patterns which ultimately have varying impacts on the target labels.

Mining more spatial and temporal variation signals from the data would aid producing

more accurate predictions, and is worth exploring in the future.
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5. SUMMARY AND FUTURE WORK

We present in this chapter a summary of the contributions and highlight future direc-

tions for continued research.

5.1 Summary

Recent years see a proliferation of studies solving environmental sustainability prob-

lems through machine learning techniques applying on geo-spatiotemporal data. While

this is still an emerging topic, this dissertation attempts to tackle two specific tasks driven

by different observations and challenges. The proposed algorithms, however, can gener-

ally be applied to other computational environmental sustainability tasks as well.

We first address a challenging task falling into the hydrology field, the gap filling of

high-resolution soil moisture problem. Different from existing studies that test the gen-

eralization ability of machine learning models at locations with the same hydroclimate

conditions, the gap filling task examines how machine learning models learned at a lo-

cation would perform at spatiotemporal neighboring locations with similar hydroclimate

conditions. Traditional machine learning methods that learn relationship between coarse-

and fine-resolution soil moisture, with the aid of auxiliary environmental factors, cannot

produce satisfactory predictions in this case. We propose in this dissertation a two-layer

machine learning framework, whose design is motivated by the soil moisture retrieval al-

gorithm. The input features are also decided with the guidance of the retrieval algorithm.

We find through extensive experiments that the proposed two-layer machine learning

framework outperforms existing machine learning methods. The predictions generated

are more consistent with the available high-resolution soil moisture product. Additional

validations against monitoring networks data and airborne data are also satisfactory.

We continue investigating the crop yield prediction task, which is of great importance
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especially with the increasing food demand and population growth. For each ground-truth

label at a geographical unit, multi-channel geo-spatiotemporal data are taken as input.

The design of this feature space is common in many computational sustainability tasks,

such as wildfire prediction in field-scale and economic index for counties. Most existing

machine learning methods however do not handle the spatiotemporal variations existing

in the input features, which results in unnecessary information loss. Moreover, the lack

of ground-truth labels hampers the performance of many machine learning methods, es-

pecially of the deep learning models. We propose in this dissertation a semi-supervised

self-attentive model. It extracts spatiotemporal variations of the input data through the

combination of convolution neural networks and the temporal self-attentive model. To

alleviate the issue of training data scarcity, we introduce the spatiotemporal context sig-

nals that naturally reside in the largely-available unlabelled data. We train the models

with the unsupervised loss and the supervised prediction loss to produce context-aware

representations that adapt to the prediction task at the same time. We conduct experi-

ments on a large-scale real-world crop yield prediction task. The results show that our

semi-supervised self-attentive model outperforms existing state-of-the-art yield predic-

tion methods and its counterpart, the supervised-only self-attentive model, especially un-

der the stress of training data scarcity.

5.2 Future Work

We present here two promising directions for future research:

• The semi-supervised self-attentive model proposed in the third chapter processes

multi-channel spatial images at each time step using the same convolution neural

networks. While this is a simpler way to preprocess the data, there are two po-

tential issues. First, spatial images of all environmental factors are required to be

rescaled to the same resolution. This might incur information loss for spatial im-
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ages which originally have higher resolutions. Second, fixed-size filters are applied

to each channel of the input to extract spatial information from the data. This is

less appropriate for conflated geographical data that have different spatial correla-

tions. Instead, multiple convolutional neural networks can be utilized to process

different types of input environmental factors separately. Moreover, a hierarchical

self-attentive model can be adopted. First, a lower-layer self-attentive model is used

to enable knowledge transferring among different types of environmental variables,

followed by a second-layer temporal self-attentive model for knowledge transfer-

ring among different time steps. This architecture however is more complex than

the semi-supervised self-attentive model proposed in this dissertation and requires

more training data for model learning.

• The second direction is to improve prediction accuracy by investigating tempo-

ral variations of the environmental factors. Different environmental factors might

show different patterns of temporal variations which consecutively play different

roles determining the values of the target variable. This observation might not help

the yearly crop yield prediction task but is crucial for real-time prediction tasks

that follow a streaming mode, such as the real-time water flow prediction problem

[153]. A similar observation is made in [3] for the land cover prediction task that

both long-term and short-term temporal variation patterns exist in the input features.

A dual-memory LSTM model is thus proposed to address this issue. Their model

is however not flexible and scalable when taking multiple environmental factors as

input. Another interesting problem that worth to be solved for the real-time predic-

tion task is to take advantage of newly available data to augment the performance

of the machine learning models.
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