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ABSTRACT

The Study of Tissue Heterogeneity and Classification Using Al Techniques

Jude AlOudeh and Mohamed Zeid
Department of Electrical and Computer Engineering
Texas A&M University

Research Faculty Advisor: Dr. Othmane Bouhali
Department of Electrical and Computer Engineering
Texas A&M University

The idea behind our project is to design an algorithm that utilizes artificial intelligence to
detect tissue heterogeneity in patients without the need to carry out an invasive biopsy. We aim
to make the cancer prognosis process based solely on the study of the scanned medical images
such as MRI or CT. The algorithm will be written in Python and will utilize large data sets of
radiomics biomarkers extracted from medical images of different modalities through a software
called LIFEX. Radiomics biomarkers are huge amounts of quantitative features extracted from
medical images that characterize tumor phenotypes like texture and shape. The objective that we
want our algorithm to achieve is to classify the cancer stage. In this project, we will focus on
cervix cancer as it is of great interest to our collaborators who are providing us with private data.
Another benefit to our algorithm is that it will offer a noninvasive method for cancer diagnosis
and will hence bypass biopsies as they are associated with many additional health risks and costs.
This project will contribute to changing the way doctors diagnose cancer and make it a more

efficient process using our robust, reliable detection of tissue heterogeneity.
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1. INTRODUCTION

Cervical cancer has been determined to be the fourth leading cancer induced cause of
death in developed countries, and the second most common cause of death (due to cancer) in
developing countries. It is also the second most occurring form of cancer among women.
Moreover, there are 530,000 new cervical cancer cases worldwide every year [1].

The treatment method for patients suffering from cervical cancer differs depending on the tumor
stage and nodal analysis. For early stages of cervical cancer with locally confined tumors, the
treatment strategy involves surgically removing a part or all of a tissue, structure, or organ where
the cancer exists. For more advanced stages of cancer with node-positive tumors, more extensive
methods are required, including radio chemotherapy [2]. Federation of Gynecology and
Obstetrics (FIGO), is a cervical cancer staging system introduced in 2018 [3]
It consists of five different stages [4]:

- stage 0: carcinoma in situ (common in cervical, vaginal, and vulval cancer)

- stage I: confined to the organ of origin

- stage Il: invasion of surrounding organs or tissue

- stage Il spread to distant nodes or tissue within the pelvis

- stage 1V: distant metastasis(es)

Several studies have shown that cervical cancer has a five-year survival rate of 65% for
FIGO stage 11, 40% for FIGO stage Il , and 15% for FIGO stage IV-A [2].

A method that has been proven to improve the result of the treatments of cervical cancer is early
diagnosis. There are a few biomarkers that relate to cervical cancer such as FIGO stage,

histology, tumor volume, lymph node metastasis (LNM), and single gene markers. These are all


https://radiopaedia.org/articles/missing?article%5Btitle%5D=carcinoma-in-situ&lang=us
https://radiopaedia.org/articles/cervical-cancer?lang=us
https://radiopaedia.org/articles/vaginal-cancer?lang=us
https://radiopaedia.org/articles/primary-vulval-cancer?lang=us

used as prognostic factors when characterizing the cancer [2] . With the use of these biomarkers,
decisions on treatment strategies can be made. In addition to the biomarkers discussed above,
feature extraction from various imaging modalities can be used to assist in decisions regarding
treatment plans for patients. This is done using radiomics [5]; Radiomics transforms medical
images into high-dimensional quantitative features using various data characterization algorithms
[6]. Some of the most essential features such as tumor volume and major axis length can be
extracted from MRI images. [7]

1.1  Diffusion Weighted Imaging

Diffusion-weighted MR imaging (DWI) measures the diffusion of water molecules
within cellular tissues [8]. The contrast of DWI imaging is a result of the variance in the water
molecules mobility in the different regions [10]. This makes DWI sensitive to smaller
abnormalities in tissue, hence it is able to provide a more detailed characterization of the tissue
[8]. Apparent diffusion coefficient (ADC) values are calculated from DWI images to
quantitatively assess the magnitude of the diffusion of water molecules in the tissue [11].

The choice of b-values is crucial for the acquisition of DWI. This is decided based on the
context in which the image is obtained as well as the model chosen for analysis. For the models
based on both perfusion and diffusion information, a range of low b-values and high b-values are
needed. For a voxel-by-voxel analysis, given very high b-values, the signals could be impacted
by a high level of noise. In order to select the optimal b-values for a specific model and a specific

anatomical site, a careful assessment of the signal decay curves is necessary [10].

In [8], a study is conducted to investigate the use and effectiveness of DWI in detecting
and staging of cervical cancer before and after therapy. It still remains a challenge to radiologists

to accurately assess the tumor’s response to therapy. DWI imaging can effectively display the



tumor due to its superior contrast with normal cervix tissue. Several previous studies were
discussed in [8]; one study found that the mean ADC value of cervical cancer was
1.094+0.20x10—3mm?2/s which turned out to be lower than that of normal cervix 1.79 + 0.24 x
10—3 mm2 /s and increased after therapy to 1.48+0.23x10—3 mm2/s. Another study showed that
the median ADC value of cervical cancer was 1.09 = 0.20 X 10—3 mm?2 /s and that is also lower
than the ADC value of normal cervix identified by this study to be 2.09 + 0.46 x 10—3 mm2 /s. It
can be shown from the results of both studies that the value of ADC for cervix cancer is lower
than that of normal cervix tissue. This reduction is expected to be due to hypercellularity within
malignant tissues. These studies also determined that the completion of therapy results in

increased ADC values [8].

1.2 Radiomics workflow

The first step in the radiomics workflow for determining the cancer stage of a patient is
the image outcome of an MRI scan. Using this image outcome to calculate a corresponding
Apparent Diffusion Coefficient (ADC) image is the first of the raw DW MRI data processing
stages which offers a better diffusion representation. The raw data is then segmented in order to
identify the Region Of Interest (ROI), either through the use of an automated segmentation
program or by an experienced radiologists that manually delineates it. Using software such as
LIFEX [12], the qualitative features that are present in the medical image are extracted from the
ROI. Depending on the imaging modality of choice (or should this just be about DWI MRI?),
said features could include the cellular composition characteristics of the ROI as well as its
interaction with the surroundings, textural features as well as the shape of the tumor which is
later used to classify the cancer stage. The following and final stage of the radiomics workflow is

the machine learning model. The machine learning model starts by the data going through



feature reduction algorithms such as the Support Vector Machine with Recursive Feature
Elimination (SVM-REF) or the Principal Component Analysis (PCA). These reduction
algorithms are used to remove any and all heavily correlated features to improve the future
accuracy of the classifier, leaving only the features most significant to the class that have the
smallest p values (p<0.05) [13]. The remaining, most significant features are then fed into a
machine learning classifier that is able to determine the probabilities of the tumor outlined in the
ROI being in the different stages. This classifying procedure is only possible after the machine
learning algorithm of choice, be it a Neural Network (NN), Random Forest (RF), SVM, or any
other classifier, is trained beforehand on an appropriate data set with the resulting accuracy
tested on a testing set to ensure the algorithms accuracy.
1.3 Prediction of histological type

Winfield et. al conducted a study on the ability of different DW MRI models to
differentiate between types and grades of cervical cancer tumors. The non-mono-exponential
model deemed to be the best model to differentiate between tumor types based on its parameters:
a (stretched exponential), K (kurtosis), f and D* (bi-exponential) which showed significant
differences in tumor types. ADC alone is sufficient to predict the grade of the tumor, however,
the use of the non-mono-exponential model parameters along with ADC can provide a better
characterization of the tumor type, i.e. squamous cell carcinoma versus adenocarcinoma.
Therefore, this study concludes that the non-mono-exponential model parameters describe
different aspects of the tumor microstructure with the stretched exponential model showing
uncorrelated parameters that describe the histological features of the tumor. This is therefore

recommended to be the most relevant for prognosis prediction [14].



14 Prediction of tumor’s grade

Tumor grade is important information that MDs use to decide on the tumor treatment.
Cancer grading describes the cellular phenotype of the tumor in comparison to healthy cells, the
treatment protocol differs from one grade to another which is why grade identification is a crucial

step in cancer treatment decisions [15,16].

In a research conducted by Dr. Yin Liu which compared the grade evaluation accuracy
between using Regions Of Interest (ROI) and VVolumes Of Interest (\VOI) for different b-values, it
was concluded that VOI yielded better results and found an optimum b value of 1000 when dealing
with DWI pelvic scans. The Least Absolute Shrinkage and Selection Operation (LASSO)
regression was the regression technique of choice, 10-fold cross validation and overall
misclassification were used to evaluate the performance of the different parameters as well as find
the optimum A (tuning/ penalty coefficient) for the LASSO. The features included histogram-
based, textural, and Laplace of Gaussian filtered features. The results showed a slightly better
performance for the b value of 1000 when compared to the b value of 800 for the VOI with a
superior misclassification percentage of (0.3642 £ 0.0162) compared to (0.3758 + 0.0118). While
this paper demonstrated the superiority of VOI over ROI, its range of tested b values were very

limited and hence did not demonstrate as strong a proof for the b value selection [9].

A paper published by Xi Zhang looked to distinguish between high and low grade bladder
cancer using textural features extracted from DWI and ADC and proposed a radiomics based
cancer grading strategy using textural features only. With a b value of a 1000, textural features
were derived from Haralick and histogram features obtained from the VOIs. This paper
demonstrated the superiority of Support Vector Machine with Recursive Feature Elimination
(SVM-REF) over standard SVM classification [9].
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15 Prediction of tumor’s stage

The staging system used to classify the stage of cervical cancer is International
Federation of Gynecology and Obstetrics (FIGO) (i.e., stages I, Il, Il1, and V). To characterize
and correlate the FIGO stages of cervical cancers, whole-lesion ADC first-order statistics and
texture features can be used after the MRI analysis. This allows for the comparison between
lower FIGO (IB-11A) cervical cancer stages and higher FIGO (IB-11A) stages. [17] Some of the
first order statistics that proved to be a very efficient method to differentiate between lower and
higher stages of cervical cancer include skewness, kurtosis and entropy. [18] First order statistics
are an ADC based feature and provide the distribution of ADC values throughout the image [17]
[18]. The use of the first order statistics and texture features allows for Spearman’s rank
correlation coefficients to be calculated for the set of FIGO stages. The ManneWhitney U-test
can be utilized to compare stages IB-11A to 11B-VA cervical cancers. While the diagnostic
performance of all whole-lesion ADC features can differentiate between IB-11A from stage 11B-
IVA cervical cancers. The diagnostic performance is done using a Receiver Operating
Characteristic (ROC) curve analysis [18]. In ADC, first-order statistics comparing the skewness
allows to differentiate between various FIGO stages, in specific stage IB or I1A from stage 1B,
[1IA, or I11B cervical cancers; the values for the skewness were skewness 1.4 and 2.3,
respectively. Higher cervical cancer stages resulted in more positively skewed histograms.
Kurtosis describes the tailedness of ADC histograms. Higher stages of cervical cancer produce a
much larger kurtosis than that of lower stages meaning the distribution has more outliers.
Entropy expresses the randomness of ADC values within a VOI. It was found to be that higher

stages of cervical cancer have a much higher entropy than that of lower stages of cancer [18].



2. METHODS

2.1  Algorithm Workflow

The project is sectioned out into the following parts. The first step is data acquisition
from various sources to train the algorithm. The second step is radiomics feature extraction
which is done by the LifeX software. The third step is data splitting into multiple sets for the
implementation of cross validation at a later stage. The fourth step constitutes feature reduction
and sub-sampling. The fourth step is processing of the data. This is broken down into 4 main
parts the first is the feature reduction and selecting data which is important to normalize the
features and remove the heavily correlated ones. The second part is sub-sampling, this is done to
ensure the optimum ratio between the different classes. The third is the classification stage which
uses supervised learning. Finally, we have the evaluation stage, where we use the Area Under the
Receiver Operating Characteristic Curve to compute the accuracy. The final step is classifying
the grade of the cancer. This project focusses on cervical cancer, yet the same logic can be used

in this algorithm can be implemented to different forms of cancer.
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Figure 2.1: Algorithm workflow

2.2  Data Acquisition

Data acquisition is a very vital part of this project as the amount of data used has a direct
correlation with the prediction powers of the algorithm. Data is required to train and test the
algorithm, check how well it performs. The main dataset used in this project is Diffusion-
Weighted MR images from cervical cancer patients. Most of these cervical cancer images were
obtained from the largest hospital in Qatar. An issue that was raised is the small amount of data
present, therefore a public source was also utilized to obtain these medical images. After
obtaining the DWI-MR images the appropriate radiomics features needed to be extracted, this

was done through the LifeX program. The output from the program is displayed on an excel
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sheet, giving the values for various radiomics features selected previously. The LifeX interface is

seen below.
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Figure 2.2: Head and neck cancer patient CT image in LifeX software
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Figure 2.3: Generated .csv extracted feature file
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2.3  Classifier selection

A lot of emphasis is placed on the predicting powers of the algorithm, therefore various
codes were tested to choose the set that produces the most reliable results. As a result, an
assortment of classifiers and preprocessing codes were tested. The algorithms tested include a
combination of the following pre-processing codes (Principal Component Analysis (PCA) and
Synthetic Minority Oversampling Technique (SMOTE)) along with the following classifying
algorithms: Random Forest (RF), K-Nearest Neighbor (KNN), Decision Tree (DT), X-Gradient
Boost (XGB), Light Gradient Boosting Machine (LGBM), CatBoost, Dense Neural Network
(DNN), Support Vector Machine (SVM), Naive Bayes (NB) and Support Vector Classifier
Recursive Feature Elimination (SVC RFE). Cross validation was used to find the classification
configuration with the optimum performance for each classifier.

Sample size is a vital factor that affects the prediction performance, and so does the
balance of the data. Cancer is usually discovered at a later stage, and therefore the cancer data is
usually skewed towards the more advanced cancer cases. SMOTE is used to balance the different
class distributions by increasing the minority class classes via replication to make a perfectly
balanced data set. On the other hand, PCA is used as a form of dimensionality reduction since a
large number of features are extracted from medical images, with many of them simply being
either noise or highly correlated, ultimately reducing the performance.

The metric of choice used to evaluate the performance of each of the potential algorithm
combinations was the Area Under the Curve (AUC). To further increase the performance of the
algorithm, an ensemble model was built. An ensemble model averages the different predicted

probabilities of each class from the selected classifiers, combining them to form a new
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prediction. This method is used in the XGB algorithm and is one of the reasons it is such a

powerful classifier.
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3. RESULTS

3.1  Classifiers Results

In this study, two different cancer data sets were used, head and neck cancer data was
obtained from a public archive while cervical cancer data was obtained provided by our
collaborators. The head and neck data contained information from 259 patients, the largest stage
percentage was stage 4 with 69% while the lowest stage represented was stage 2 with only 5.4%.
For this dataset, both SMOTE and PCA were tested along with the different classifiers
mentioned in Methods and the resulting tables can be found below. The evaluating metric of
choice for this data set was a combination of precision, recall, and Mathews Correlation
Coefficient (MCC). Precision and recall are ratios of confusion matrix elements with a value
closer to 1 being best. Precision is an evaluation metric on the relevance of the results, recall is a
metric which refers to the percentage of accurately classified and relevant results, and MCC is
the evaluation metric which determines the linkage between the observations and predictions
with a value of 1 being best. The four tables below (Table 1, Table 2, Table 3 and Table 4) show
the results of each classifier used on the head and neck data for stages 1, 2, 3, 4. From the
results, we can deduce several observations. First, most classifiers perform very poorly in stage
2, this is because of the quality of the data since stage 2 was the least represented only making
up only 5% of the data. Secondly, XGBoost outperforms all the other classifiers which proves its
powerful classification abilities. XGBoost is a classifier that is an ensemble of a range of tree-
based classifiers optimized with speed and performance as a goal. XGBoost is one of the

most popular classifiers and tends to excel when it comes to tabular data and it is therefore not a
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surprise that it outperforms the other classifiers. PCA was also tested but proved to have an

adverse effect on the performance of the classifiers.

Table 1: Results of the various classifiers for stage 1 of head and neck.

KNN 0.444 1 0.769 0.399
KNN + SMOTE 0.188 0.750 0.477 0.305
Naive Bayes 0.250 0.5 0.446 0.286
Naive Bayes + SMOTE 0.5 0.75 0.554 0.383
Decision Trees 0.364 1 0.677 0.337
Decision Trees + SMOTE  0.15 0.750 0.323 0.152
XGBoost 0.861 0.733 0.861 0.446
SVC (rbf kernel) Nan 0 0.861 0

Random Forest 0.714 0.555 0.907 0.579
Light GBM 0 0 0.892 -0.039
CatBoost 0.625 0.556 0.892 0.528
DNN 1 0.111 0.635 0.189

Table 2: Results of the various classifiers for stage 2 of head and neck.

KNN 0 0

0.769 0.399
KNN + SMOTE 0.111 0.5 0.477 0.305
Naive Bayes 0.200 0 0.446 0.286
Naive Bayes + SMOTE 0.2 0 0.554 0.383
Decision Trees 0 0 0.677 0.337
Decision Trees + SMOTE 0 0 0.323 0.152
XGBoost 0.938 0.491 0.938 -0.027
SVC (rbf kernel) 0.046 1 0.046 0
Random Forest Nan 0 0.953 0
Light GBM 0 0 0.938 -0.027
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CatBoost Nan 0 0.953 0
DNN 0 0 0.635 0.189

Table 3: Results of the various classifiers for stage 3 of head and neck.

0.091 0.769 0.399

KNN + SMOTE 0.421 0.727 0.477 0.305
Naive Bayes 0.276 0.727 0.446 0.286
Naive Bayes + SMOTE 0.320 0.727 0.554 0.383
Decision Trees 0.417 0.455 0.677 0.337
Decision Trees + SMOTE  0.25 0.364 0.323 0.152
XGBoost 0.892 0.641 0.892 0.306
SVC (rbf kernel) 0.092 1 0.092 0
Random Forest 0.092 1 0.092 0
Light GBM 0 0 0.892 -0.039
CatBoost Nan 0 0.907 0
DNN 0 0 0.635 0.189

Table 4: Results for the various classifiers for stage 4 of head and neck.

KNN 0.818 0.938 0.769 0.399
KNN + SMOTE 0.905 0.396 0.477 0.305
Naive Bayes 0.944 0.354 0.446 0.286
Naive Bayes + SMOTE 0.958 0.479 0.554 0.383
Decision Trees 0.833 0.729 0.677 0.337
Decision Trees + SMOTE  0.933 0.292 0.323 0.152
XGBoost 0.646 0.601 0.646 0.189
SVC (rbf kernel) nan 0 0.276 0

Random Forest 0.773 0.872 0.723 0.237
Light GBM 0 0 0.892 -0.039
CatBoost 0.784 0.851 0.723 0.261
DNN 0.627 1 0.635 0.189
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The cervical cancer data was used to classify the cancer grade of the patients. The data
set contained 66 patients, 58 % grade 3 and 42% grade 2. The evaluation metric of choice for this
binary classification was the AUC, the classifier that achieved the highest AUC score was the
LGBM classifier with an AUC score of 0.66. A higher AUC score was achieved however, using
an ensemble model which combined the LGBM, RF and XGB classifiers to get an AUC score of

0.70 AUC. The results of each of the classifiers can be seen below in table 5.

Table 5: Results for the various classifiers for cervical cancer grade

Classifiers used AUC score
LGBM, RF, XGB & 0.5535
KNN
LGBM, RF & XGB 0.6964
LGBM, RF & KNN 0.5357
LGBM, XGB & KNN 0.5714
RF, XGB & KNN 0.4821
LGBM & RF 0.6607
LGBM & XGB 0.6428
LGBM & KNN 0.5357
RF & KNN 0.5
RF & XGB 0.5357
KNN & XGB 0.5
KNN 0.4553
RF 0.5714
XGB 0.5446
LGBM 0.6607
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4. CONCLUSION

4.1  Conclusion

In this study, an optimal radiomics based model for both the head and neck staging
classification and the cervical cancer grading classification were investigated. A variety of
different classifiers were tested, XGB proved superior for head and neck staging while an
ensemble model containing LGBM, RF and XGB had the best performance for the cervical
cancer staging. It was also observed that the unfiltered dimensionality reduction PCA algorithm
and the sub-sampling SMOTE technique did not have positive effect when used in conjecture
with all the classifiers.
4.2  Future recommendation

Artificial Intelligence is a rapidly evolving field, and cancer research is a never ending
one. One of the main constraints we faced in our project is the data availability, for that our
recommendation would be to use a data augmentation algorithm or to acquire larger data sets.

An alternative classification method that can be further looked into is transfer learning.
Transfer learning is not as limited by data size as other machine learning algorithms and should

prove to achieve better results given the availability of the medical imaging.
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