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ABSTRACT 

The rapid pace of developments in Artificial Intelligence (AI) provides unprecedented 

opportunities to enhance the performance of Intelligent Transportation Systems. Automating 

vehicle detection and classification using computer vision methods can complement traditional 

sensors or serve as a cost-effective and environmentally friendly substitute for conventional 

sensors. This study investigates the robustness of existing deep learning models for vehicle 

identification and classification using a heterogenous dataset. The dataset is grouped into six 

distinct classes based on the Federal Highway Administration (FHWA) vehicle classification 

scheme. This study uses three different versions of You Only Look Once (YOLO) single-stage 

object detection models, namely YOLOv7, YOLOv5m, and YOLOv5s. The comparative 

evaluation will depend on four performance metrics: recall, precision, F1-score and mean average 

precision (MAP). The results show that for this case study, YOLOv7 outperformed the other 

models with 84.7% precision, 89.4% recall, 86.1% F1-score and 93% MAP at 0.5, and 82.4% 

MAP at 0.95. 
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1.  INTRODUCTION 

1.1. Research Background 

Vehicle classification is the process of dividing all detected vehicles into specific predefined 

classes [1]. In transportation engineering, the accuracy of vehicle classification data is paramount for 

appropriate future highway design, including determining pavement characteristics, eradicating 

traffic jams, and enhancing safety. Local and national governments use vehicle classification data to 

make informed decisions about mobility, infrastructure, and taxation. Vehicle classification poses a 

complex problem as some vehicle classes have high intra-class contrasts and relatively low inter-

class variations [2]. Organizations depending on vehicle classifiers for data collection should be 

mindful that systems are sometimes impacted by hardware and sensor malfunction and the device’s 

implementation of the classification scheme [3]. Automating vision-based vehicle detection and 

classification using convolutional neural networks (CNNs) could be a more effective alternative to 

sensors. Computer vision is not limited to vehicle detection and classification but also vehicle 

tracking and traffic anomaly detection, which can all be leveraged for transportation engineering.  

1.2. FHWA Vehicle Classification Scheme 

Figure 1 illustrates the standardized vehicle classification system developed by the Federal 

Highway Administration (FHWA) in the mid-1980s. This 13-category system resulted from 

compromises invented to satisfy the needs of many traffic data users and to meet the requirement for 

the electronic equipment and sensors available at the time (primarily simple road tubes) to distinguish 

passing vehicles into the predefined classifications. Traffic data users such as pavement designers 

and the safety community were very interested in the portion of travel occurring in multi-unit 

vehicles (power units of various types pulling trailers of multiple configurations). At the time, 

available sensors could measure the presence of vehicles, detect axles, and determine the distance 

between consecutive axles based on every vehicle’s speed as it moves over the sensors [4]. 
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Figure 1. FHWA 13-category scheme for vehicle classifications [4] 

The FHWA classification definitions shown in Table 1. are presently used for most Federal 

reporting requirements and serve as the foundation for most state vehicle classification counting 

efforts [5]. 
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Table 1. FHWA vehicle classification definitions [5] 

Class  Class Definition Class Includes Number of Axles 

1 Motorcycles Motorcycles 2 

2 Passenger Cars 

All cars. Cars with one-axle 

trailers. Cars with two-axle 

trailers 

2, 3, or 4 

3 

Other Two-Axle Four-

Tire Single-Unit 

Vehicles 

Pickups and vans. Pickups and 

vans with one- and two- axle 

trailers 

2, 3, or 4 

4 Buses Two- and three-axle buses 2 or 3 

5 
Two-Axle, Six-Tire, 

Single-Unit Trucks 
Two-axle trucks 2 

6 
Three-Axle Single-Unit 

Trucks 

Three-axle trucks. Three-axle 

tractors without trailers 
3 

7 
Four or More Axle 

Single-Unit Trucks 

Four-, five-, six- and seven-axle 

single-unit trucks 
4 or more 

8 
Four or Fewer Axle 

Single-Trailer Trucks 

Two-axle trucks pulling one- and 

two-axle trailers. Two-axle 

tractors pulling one- and two-axle 

trailers. Three-axle tractors 

pulling one-axle trailers 

3 or 4 

9 
Five-Axle Single-Trailer 

Trucks 

Two-axle tractors pulling three-

axle trailers. Three-axle tractors 

pulling two-axle trailers. Three-

axle trucks pulling two-axle 

trailers 

5 

10 
Six or More Axle Single-

Trailer Trucks 
Multiple configurations 6 or more 

11 
Five or Fewer Axle 

Multi-Trailer Trucks 
Multiple configurations 4 or 5 

12 
Six-Axle Multi-Trailer 

Trucks 
Multiple configurations 6 

13 
Seven or More Axle 

Multi-Trailer Trucks 
Multiple configurations 7 or more 

14 Unused ---- ---- 

15 Unclassified Vehicle Multiple configurations 2 or more 

 

Researchers have identified some shortcomings of the FHWA classification system. The 

FHWA definitions are based on vehicle features that can be effortlessly identified visually but cannot 

be ideally computed based on the number, weight, and spacing of axles. Truck attributes may alter 
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considerably from state to state because vehicle owners and manufacturers create and optimize 

vehicles to increase their profits, which relies on each state’s truck size and weight laws. The FHWA 

chart in Figure 1 categorizes pickup trucks as class 2, class 3, and class 5. Let us consider three 

pickup trucks with the same number of axles and axle spacing. The pickup truck will belong to class 

3 if it has a conventional (two-tire) rear axle, whereas it will be classified as class 5 if it has dual tires 

on the sides of its four-tire rear axle [5]. In this example, the weight in motion (WIM)-based 

classification that includes axle weights as a classification parameter can accurately differentiate 

traditional pickups from larger pickup trucks because the truck weight configuration will vary based 

on the heavier engine. Nonetheless, traditional vehicle classifiers that do not have access to axle 

weight information cannot differentiate between those two vehicles. Traditional vehicle classifiers 

may place both conventional pickups and trucks in the same vehicle category, resulting in one of 

these trucks being correctly classified and the other being misclassified [5]. 

1.3. Conventional Vehicle Detection and Classification Methods 

Conventionally, vehicle detection and classification can be conducted through three 

approaches, including manual counting, in-pavement sensors, or roadside sensors. The manual traffic 

count is the most straightforward of classifying vehicles. In this method, trained observers use tally 

sheets or mechanical counters to record visually observed vehicles belonging to a particular class at 

specific locations and times. The manual approach can be conducted onsite or offsite, but it is time-

consuming and subject to human errors.  

To overcome the disadvantages of the manual counting method, in-pavement sensors became 

available and popular since 1920 including the pneumatic tube, magnetic loop detector, and 

piezoelectric sensors. The pneumatic tube detectors were introduced, and presently they collect 

vehicular data for a short period. A pneumatic tube can identify the number of axles and the axle 

spacing of a moving vehicle. This method is not appropriate for high-volume and high-speed 



5  

roadways [6]. A magnetic loop detector is a device utilized for vehicle classification in recent 

decades. A magnetic loop detector is a vehicle classification technology that detects vehicle length. 

It also measures vehicle speed using dual-loop sensors. Though magnetic loop detectors are 

inexpensive and execute automatic classification, they do not do well in high congestion [7]. 

Piezoelectric sensors are used alone or in combination with Weight-In-Motion (WIM) systems to 

detect the vehicle weight and the axle configuration. The disadvantage of piezoelectric sensors is 

their sensitivity to vehicle speed and pavement temperature. Weigh-in-Motion (WIM) technology 

was first conceptualized over 50 years ago. The purpose of a WIM system is to measure the dynamic 

axle load of moving vehicles to calculate their static axle weight and gross vehicle weights as they 

pass over a measurement site [8].  The WIM architecture consists of modeling and estimation 

components [9]. A network of in-pavement sensors, a data collecting facility, and an algorithm or 

framework for WIM data extraction make up an efficient WIM system. WIM system is categorized 

depending on the operating vehicle speed; the low-speed weigh-in-motion (LS-WIM) is for passing 

speeds up to 25 mph, and the high-speed weigh-in-motion (HS-WIM) is for passing speeds up to 80 

mph [8].  The WIM system is also expensive and not feasible for local roads [9].   

Meanwhile, roadside sensors such as radar, infrared, and video sensors also have been 

developed for easier sensor management and maintenance. Radar sensors are well-known for 

classifying vehicles using dimensions such as length, size, and height [10]. The radar sensors are less 

sensitive to environmental variation than other methods but are inappropriate for dense traffic 

congestion. Acoustic sensors use speed-independent acoustic signatures to recognize vehicle classes 

[11]. Infrared sensors estimate the reflected infrared light by each vehicle and compare the data with 

the database to locate the best-matched profile. Infrared sensors are susceptible to environmental 

factors. In addition, in recent decades, cameras have become affordable and effectively for vehicle 

counting and classification using video detections with machine learning techniques. Like other 
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roadside sensors, the detection accuracy of the video-based methods is also susceptible to weather 

and environmental factors. 

1.4. Vehicle Detection and Classification Using Deep Learning 

1.4.1. Dataset Used for Object Detection and Classification 

The progress of image processing, pattern recognition, and vehicle-type classification 

technology based on deep learning has grown in popularity, with most research focusing mainly on 

vision-based methods. These approaches usually use image processing techniques to detect and 

classify vehicles using several steps, such as data preprocessing, feature extraction and selection, and 

classification. The cameras for data collection can be surveillance video systems, omnidirectional 

cameras, aerial images, Closed-Circuit Television (CCTV), or regular cameras [12]. Deep Learning 

algorithms are data-hungry and they depend on the high quantity and quality of data to build robust 

and accurate models. The dataset is a crucial input in deep learning-based classification systems, 

enabling the algorithms to extract the features and make predictions based on the learned 

information. Data collection primarily involves data acquisition, image annotation, and improvement 

of existing data or models [13]. The dataset for the object detection and classification can be obtained 

using manual recording, fix cameras, or an unmanned aerial vehicle (UAV). 

Using manual recording, Espinosa et al. [14] recorded a video sequence of a two-lane road 

in an urban area of Medellín, Colombia. The vehicles were grouped into four classes: cars (including 

sedans, vans, and taxis), motorbikes, buses, and trucks. Any vehicle that does not belong to any 

indicated group was classified as "unknown." The authors made the video recording during daytime 

and favorable weather conditions and consists of 1812 RGB frames of size 640 * 480. Regmi et al. 

[15] generated a unique dataset containing a substantial number of mainframes by positioning a high-

resolution (2304*1296) CCTV camera toward a road to capture vehicles at 24fps. The video captures 

keyframes of severe morning fog traffic, dense peak daytime traffic, and nighttime traffic. 
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According to Akdag et al. [16], there is no publicly accessible large-scale dataset for vital 

vehicles. Significant obstacles include the lack of emergency vehicles and the varying coloring norms 

among nations. They combine photos acquired from multiple sources with the aid of the YOLO 

vehicle recognition model to create a large-scale crucial vehicle dataset in order to deal with the 

limitations mentioned above. Fire trucks, police cars, ambulances, military police cars, hazardous 

trucks, and ordinary vehicles are the different classifications of the created dataset.   

On the other hand, oblique photography involves moving the camera along the axis to the 

vertical. Because of the training set, the YOLO algorithm does not produce results in photographs 

collected from the nadir. By collecting data from two significant Indonesian toll roads, the Jagorawi 

Toll and the Kapuk Toll, Arinaldi et al. [17] created their dataset named the Indonesian Toll Road 

dataset. They filmed the video for the Jagorawi toll data at Ramp 2 Taman Mini Indonesia Indah 

(TMII) Jasa Marga, Indonesia. Manually utilizing a camera, the dataset was collected from a 

pedestrian bridge. The authors captured the video at the Kapuk Toll Gate for the Kapuk Toll Road. 

The dataset is available with a resolution of 4096x2160 and a frame rate of 22.0. 

Through fixed roadside cameras, Abdullah Anwer Mardin et al. [18] established two datasets. 

The first dataset is called general accident images (GAI), and it contains pictures from internet google 

images, DCD, and accident datasets. The second dataset, Kurdish accident photos (KAI), contains 

pictures directly acquired from the interior ministry of the regional government of Iraqi Kurdistan 

(KRG). These images depict accidents between 2015 and 2020 on routes like motorways and 

crossroads. The raw dataset has 100 videos and 2000 photos of the accidents. To create pictures of 

the accident, they took screenshots of particular sections of the footage. After obtaining the datasets, 

data preprocessing and data labeling starts. The GAI dataset is divided into six categories: cars, cars 

and buses, cars and motorcycles, buses and trucks, and cars and trucks. To keep the balance, each 

class receives 118 images, totaling 708. 
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The challenge of detecting vehicles is complicated by lighting changes, objects' backgrounds, 

time of day, occlusions, blur, motion, and camera quality. According to the Federal Highway 

Administration, Faruque et al. [19] divide vehicles into bicycles, trucks, vans, buses, and trailers 

(FHWA). The images are all collected from the New Jersey Department of Transportation (NJDOT) 

traffic video sequences. Note that these videos are captured from similar camera angles during day 

time. Due to the camera viewing angles, lighting fluctuations, and weather circumstances, there are 

many complex problems in classifying the vehicles in the footage. There can be more visual 

instances, making the vehicle detection issue more complex. 

Amund Hansen Vedal et al. [20] searched for sources of annotated car images to build a large 

dataset rapidly. They wanted to build their dataset rather than a pre-made dataset like CompCars, but 

they recognized how tiring it would be to use Google Image searches. They created a database of 

1000 labeled pictures per class –similar to the intent of the ImageNet dataset. Firstly, they 

downloaded 7217 car model pictures from PlatesMania, a free database of labeled vehicle pictures, 

and hand-sorted them into 28 distinct classes. The authors selected some classes based on related 

studies, internet sources, or when needed to minimize the "Other"- class (like concrete mixer, 

Military, and Crane). They downloaded 296,000+ images of the vehicle models they had already 

classified throughout our experiments, automatically mapping them to our classes. The images are 

taken in different environments, not always encompassing the whole vehicle, and have a reasonable 

resolution (~ 1200x900 pixels). The watermarks, people, buildings, and trees in some images can 

serve as noise to their dataset, which the network must learn to recognize as irrelevant. The authors 

claim to have produced the largest vehicle dataset, containing over 207,000 unique images naming 

it the "PlatesMania dataset."  

Muhammad Atif Butt et al. [21] assert that no standardized public vehicle dataset is available 

that includes pictures of typical automobiles to address classification tasks. For instance, the real-
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time classification systems cannot be implemented using the CompCars and Standford vehicle 

datasets since they only contain the classes of modern cars from a few regions. They provide a new 

vehicle dataset to address this problem, which consists of 10,000 photos divided into six classes 

based on standard road traffic vehicles, and each class has 1670 images. The dataset is formed 

through manual labeling using the windows editing tool. Data augmentation is a prevalent technique 

to reduce overfitting from the network by artificially inflating the dataset through label-preserving 

transformation strategies to raise the diversity of our dataset. The authors used four distinct types of 

data augmentation: Gaussian blur, rotation, horizontal flip, and Gaussian noise. 

Sumeyye et al. [22] used video with a resolution of 1280x720 from an unmanned aerial 

vehicle (UAV) and 1080x1920 from a terrestrial source. Each of the two films is around a minute 

long and has a frame rate of 24 fps. There was no preprocessing done before using the videos. Instead 

of being created at nadir, the footage taken by the UAV was produced obliquely. Nadir photography, 

which takes pictures with the camera axis vertically below the subject, is the norm for UAV surveys. 

In 2018, Uzar M. et al. [23] selected parking lots located at Technical University in Istanbul, Turkey, 

as data collection sites to garner aerial images using the Unmanned Aerial Vehicle (UAV) system. 

They obtained Ninety-four images with a size of 5472 * 3648 pixels and a resolution of 72 dpi. Most 

studies apply data augmentation techniques to the dataset to contribute to the representative ability 

of the dataset. The authors used three primary data augmentation methods for their research: 

brightness analysis, shear, and rotation. Brightness analysis is to change the image's brightness to 

become darker or lighter than the original image. Shear transformation is to fix one axis and stretch 

the image at a certain angle, known as the shear angle. Image rotation enables the image to rotate 

along the positive or negative axis. Cars, minibuses, and buses are the three categories for vehicle 

classification.  Visual Object Tagging Tool (VoTT) is the software used for data annotation.  
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Data annotation involves labeling data (photos and video) to teach supervised deep learning 

models to comprehend input patterns by interpreting them and generating reliable results. Image 

annotation is executed using different methods that produce different results and image labels. The 

annotation type depends on the use case and the application domain. The different annotation types 

are image classification, object detection, and segmentation. Image classification simply assigns the 

entire image one label to show the presence of the target object. Object detection combines image 

classification and localization to find the presence, location, and the number of target objects in an 

image.  Image segmentation is a sophisticated data annotation type that separates the image’s objects 

into segments. There are three types of image segmentation: semantic segmentation, instance 

segmentation, and panoptic segmentation. Semantic segmentation (class segmentation) differentiates 

between objects by assigning one label to every object belonging to that specific class. Instance 

segmentation detects and segments each object instance of a particular class in an image. Panoptic 

segmentation unifies semantic segmentation and instance segmentation.  

The data annotation technique is the shape used to select the object of interest when labeling 

the data. The bounding box method draws rectangular boxes to define the target object's location 

within an image. It is the most basic data annotation technique due to its simplicity and versatility. It 

is beneficial when objects are symmetrical and when the precise shape of an object is of little interest. 

Bounding boxes can be either two-dimensional (2D) or three-dimensional (3D). The 3D cuboid 

annotation draws a 2D box around the object and considers the depth factor. Polygonal segmentation 

is a variation of the bounding box technique where polygons define the target object's location and 

boundaries more accurately. Polygons are suitable for irregularly shaped objects because they 

eliminate irrelevant pixels that can confuse the model. The polyline technique plots continuous lines 

and splines to delineate boundaries within an image. It is suitable for linear target objects. 

Nevertheless, it only works for some use cases because most objects are not linear and require more 
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than one pixel width. Landmarking (dot annotation) involves connecting dots to represent the outline 

or skeleton of an object in the image. These dots help detect and quantify the features of an object. 

This approach is time-consuming and prone to inaccuracy. 

1.4.2. Object Detection and Classification Models Performances 

Object detection can be challenging because the objects in images often have different sizes, 

orientations, and overlapping objects resulting in the occlusion of the object of interest. Vehicle 

detection methods have been developing for several years in academia and industry. So far, some 

state-of-the-art object detection methods cannot achieve competitive performance on vehicle 

detection benchmarks. The main issues for vehicle detection are a considerable variation of light, 

dense occlusion, and significant variation of object scales. Espinosa et al. [14] compared two deep-

learning models for vehicle detection using Alex Net and Faster R-CNN. Several tests were executed 

to evaluate the quality of detections, failure rates, and time to finish the task. The results gave 

essential conclusions regarding the architectures and strategies for implementing such a network for 

video detection. Faster R-CNN evaluations are executed based on the Non-max Suppression (NMS) 

parameter threshold, used to lessen the redundancy of proposed regions. The best results correspond 

to an NMS threshold of 0.6 to an F1-score of 0.76. The findings demonstrate that lowering the 

Intersection over Union (IoU) threshold criteria raises the overall and correct detection rates for each 

class under study while also raising false alarm rates. Meanwhile, working with the AlexNet 

classifier with the Gaussian Mixture Model (GMM) background subtraction, the best results are for 

a history of 500 frames (F1 = 0.57). The results indicate that Faster R-CNN surpasses the AlexNet + 

GMM model in the correct detection rate obtained while producing fewer false detections. For the 

time spent in the analysis, the Faster R-CNN model was closer to real-time with (40 ms per frame) 

while AlexNet + GMM took almost 100 ms per frame.  
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Regmi et al. [15] initially compared the vehicle detection model’s accuracy and speed. In 

both comparisons, YOLOv3 models outperform the Mask RCNN model with a slight accuracy 

tradeoff for light vehicle recognition. The YOLOv5 model, though, functions better than both 

YOLOv3 and Mask RCNN in terms of accuracy. According to the experimental findings, the YOLO 

V5 is the best option for vehicle detection. There is a need to improve the accuracy of nighttime 

vehicle recognition because all of the models' vehicle detection accuracy is relatively low compared 

to daytime. The authors believe there is a significant research gap in enhancing the accuracy of 

motorcycle identification, as evidenced by the deficient performance of the models during 

motorcycle detection. Faruque et al. [19] used traffic videos from the New Jersey Department of 

Transportation (NJDOT) for the training data sets. The Faster R-CNN and YOLO deep learning 

methods perform differently when using different training data sets regarding training time, testing 

time, vehicle classification accuracy, and generalization performance. The experiments show the 

feasibility of vehicle classification in videos using deep learning methods and reveal that the YOLO 

deep learning method is much faster than the Faster R-CNN deep learning method.  

Pre-training and fine-tuning are frequently used to leverage the limited number of vehicle 

images and improve classification performance. Akdag et al. [16] assess the performance of the three 

models, namely EfficientNet, Vision Transformer (ViT)- base, and ResNet-50, by deploying the 

following performance metrics: recall, accuracy, and F1-score. The study revealed that the vision 

transformer (ViT) model's average accuracy was 99.39%, while EfficientNet and ResNet-50 were 

98.44% and 98.27%, respectively. Although the convolutional neural network (CNN) models have 

better results in a few class types, the ViT model achieves the best for all metrics on average. It was 

observed that the models could quickly pinpoint the ambulance and firetruck classes thanks to their 

distinctive and prominent salient colors and stripes. The military police cars achieve the lowest F1-

score of 94.79% in EfficientNet and 96.29% in ResNet-50. With 97.24% in EfficientNet and 96.66% 
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in ResNet-50, the class of police cars has the second-lowest accuracy rating. Akdag et al. [16] 

compared the latency for each classification model. EfficientNet and ResNet-50 took 0.015 seconds 

and 0.013 seconds, respectively, to classify one image, compared to 0.017 seconds for the ViT 

model. The ViT model achieves more significant latency, which is acceptable, despite exceeding 

other models for the crucial vehicle classification.  

Sumeyye et al. [22] applied high-resolution aerial or remote sensing images to extract data 

using the YOLO-v3, YOLO-v3-spp, and YOLO-v3-tiny models. The study’s findings showed that 

the Yolov3-spp approach produced the best results, with an average IoU of 84,88% and a precision 

value of 72,02%. The IoU value is less than 0.5. Thus, even if the vehicle is correctly identified in 

the aerial video, it is not considered an accurate object. The approach that performed the best on the 

COCO is the YOLOv3-spp model, with an on-the-ground accuracy of 84.88%. With 88.56% for 

terrestrial video and 81.21% for UAV, the average IoU was attained. The YOLOv3-tiny method fails 

to detect small objects. Since the UAV video was captured from a distance, YOLOv3-tiny could not 

identify the object. As a result, while comparing the accuracy and true ground value of the video 

captured by UAV, the YOLOv3-tiny approach produced no results. The accuracy findings for the 

YOLOv3-spp model are better, with a precision of 72.02%; the accuracy for the UAV was 63.53%, 

and the accuracy for the model was 80.49%. In terms of model estimation and accuracy factor, both 

model comparisons produced results, and it was discovered that the model with the higher 

performance on terrestrial videos was more appropriate. The vehicles in UAV images can be 

successfully identified with the data set appropriate for the specified investigation. With the data set 

to be employed, more accurate detections can be made concurrently with the goal of the targeted 

study. Training and verification processes are crucial in the data set appropriate for the input data in 

order to raise the accuracy factor. The data set employed is better suited for terrestrial photos, which 
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is the leading cause of the low accuracy in the aerial footage. However, success rates will boost trust 

in deep learning techniques with more thorough training. 

Ahmad Arinaldi et al. [17] evaluate the classification accuracy outcomes of five-fold cross-

validation between the SVM-based models and the Faster RCNN model for the classification of 

vehicle kinds. They demonstrate that, in terms of cross-validation accuracy, Faster RCNN beats both 

SVM-based classification models for both the Indonesian Toll Road dataset and the MIT Traffic 

dataset. Another intriguing finding is that the accuracy ranges in the Indonesian Toll Road dataset 

differ significantly from those in the MIT Traffic dataset. They postulate that this is caused by the 

Indonesian Toll Road dataset's more pronounced variability, which includes two separate sites and 

a range of illumination conditions at different times (day and night). In comparison, there is just one 

scenario with homogeneous lighting in the MIT Traffic dataset. Abdullah Anwer Mardin et al. [18] 

assert that convolutional neural networks (CNNs) can achieve accurate classification and detection 

results. Five deep learning models, GoogleNet, ResNet50, MobileNetV2, AlexNet, and SqueesNet, 

have been compared for vehicle classification. The chosen networks have provided different 

classification rates (MobileNetV2 and ResNet50 achieved 4% more than the remaining networks). 

The research discoveries revealed that using detector networks with deep CNN topologies boosts the 

accuracy of accident vehicle classification by finding the location and vehicle class in the accident 

image. Though the YOLOv2's training time was extensively less than Faster RCNN, the study results 

reveal that pre-trained Resenet50, used as a feature extractor with the YOLOv2 model, achieves 

relatively vehicle detection results (more than 6%) in both datasets. Regardless, these outcomes fall 

short of anticipations as the research aims to discover a network or method to describe the accident 

images and detect the vehicle classes accurately. Thus, deep semantic segmentation is under research 

to help precisely classify vehicle classes.  
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Uzar M. et al. [23] implemented the nine YOLO models, namely YOLOv5s-CSP, YOLOv5s-

tiny, YOLOv5s-P5, YOLOv5s-P6, YOLOv5s, YOLOv5l, YOLOv5m, YOLOv5n, YOLOv5x for 

performance analysis of automatic vehicle detection using UAV-based aerial images. The 

YOLOv5s-tiny model gives the highest F1-score of 0.89. YOLOv5 models give similar results, but 

YOLOv5s-CSP, YOLOv5s-P5, and YOLOv5s-P6 models show relatively lower F1-scores than the 

other architectures. The YOLOv5 models have higher MAP values than the YOLOv5s models. The 

YOLOv5m provides the MAP of 84% as the highest value. For a model to perform real-time vehicle 

detection, the fps values of the models must be examined. YOLOv5s-tiny and YOLOv5n models 

with a processing speed of 63 fps are the fastest ones developed for low-performance systems. The 

slowest models are YOLOv5s-P5, YOLOv5s-P6, and YOLOv5x, developed for high-performance 

systems. All of the YOLOv5 models provided the highest MAP values. Thus, YOLOv5 MAP results 

for each class show that cars are the most accurately predicted class. However, minibuses and buses 

reduce the overall accuracy of the model. 

1.5. Problem Statement and Significance of This Study 

The above literature review shows that traditional vehicle classification methods, though 

having many advantages, tend to have some drawbacks. The manual counts require more than one 

counter to achieve maximum accuracy. Manual counting is also incredibly ineffective and is 

vulnerable to human error while putting the counters' safety at risk. The permanent traffic site 

counting devices are relatively expensive and cause damage to the surrounding environment. They 

also have a limited design life and provide moderate accuracy.  

Recently, research on vision-based vehicle detection and classification methods has been 

rising because of the progress of image processing, pattern recognition, and vehicle-type 

classification technology based on deep learning. Vision-based vehicle detection and classification 

face many complex problems due to camera viewing angles, lighting fluctuations, deplorable 



16  

weather, dense occlusion, and significant variation of object scales. Also, traffic data can contain 

many visual instances of objects that are not of interest, which serve as noise that the models must 

learn to recognize as irrelevant. 

As there is a need to leverage deep learning to improve vision-based vehicle classification 

methods, it is worth exploring the performance of deep learning algorithms for vehicle detection and 

classification since they can be a cost-effective, environmentally friendly, and safer means of 

collecting, analyzing, and reporting vehicle classification data. Though not perfect, deep learning 

models are well known for providing very high performances for detection and classification tasks, 

and studies to explore these models’ performance on vehicular data are of interest. There is a need 

to assess the performance of state-of-the-art deep learning models for vehicle classification in 

different scenarios to assure users of their effectiveness, strengths, and weaknesses. 

1.6. Objectives and Organization of Thesis 

This thesis investigates the performance of different state-of-the-art deep learning models for 

vehicle detection and classification and compares the model’s effectiveness using some performance 

metrics. Each model will generate varying results; therefore, we must determine which algorithm is 

most suitable for the use cases and datasets. The research undertaken has the following objectives: 

1) First, the study collects unique datasets that other studies have not exhaustively investigated. 

This requires amassing massive data samples based on varying weather conditions, time of 

day, resolution, and camera positions. The images were annotated further to serve as ground 

truth for the various object detection models. The annotations were done using the computer 

vision annotation tool (CVAT). 

2) Second, the study conducts a comparative analysis of various object detection models. Three 

cutting-edge single-stage object detection models were considered to accomplish this goal: 

YOLOv5m, YOLOv7, and YOLOv5s. Each model was trained and tested on thousands of 
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heterogeneous datasets. The purpose of the heterogeneous dataset is to increase the variance 

of the training dataset. The models were then tested for precision, recall, F1-score, and mean 

average precision (MAP). 

The organization of the rest of this thesis document is as follows. Chapter two describes the 

state-of-the-art deep learning models being used for the research. The methodology for this study is 

presented in Chapter three. Chapter four presents a discussion of the experimental results. Finally, 

Chapter five summarizes the research, the conclusions drawn from the results, and recommendations 

for future research.  
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2. DEEP LEARNING MODELS 

2.1. Object Detection and Classification 

The application of convolutional neural networks (CNNs) and computer vision technologies 

unlocks limitless possibilities. Deep learning techniques for object detection using convolutional 

neural networks have become more prevalent compared to feature and edge extraction methods like 

scale-invariant feature transform (SIFT) and Histogram of oriented gradients (HOG). Object 

detection models are trained to recognize the presence of instances of specific objects associated with 

a predefined class by enclosing the target object in a bounding box, identifying their class, and 

providing the probability of the object belonging to that class. Object detection models can be used 

in images, videos, or real-time operations. 

The original You Only Look Once (YOLO) was introduced in 2016 by Joseph Redmon et al. 

[17] in a custom framework called Darknet. Using CNN, YOLO can predict all objects in a single 

forward pass, hence its full name, “You Only Look Once.” YOLO is one of the most influential 

algorithms for object detection, but before YOLO, the two-stage object detection architecture 

dominated the object detection field. YOLO was the first object detection network to combine the 

task of drawing bounding boxes and identifying class labels in one end-to-end differentiable network. 

Thus, it is referred to as a single-stage object detector. The general YOLO architecture consists of 

various parts such as the backbone, neck, and head. The process starts by feeding the input (which is 

the training dataset) to the network, where they are processed in batches in parallel by the GPU. The 

backbone network performs feature extraction to compute feature maps from the input images. The 

neck is a subset of the bag of specials that conducts feature aggregation by collecting feature maps 

from different stages of the backbone before passing them on to the prediction head. There are many 

versions of the YOLO real-time object detection models, but for this research, we utilize three YOLO 

models, namely: YOLOv7, YOLOv5s, and YOLOV5m. 
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2.2. YOLOv5 

In June 2020, YOLO Version 5 (YOLOv5) was released by a company called Ultralytics.  

YOLOv5 is an iteration of the YOLO series and a state-of-the-art single-stage object detection 

algorithm. YOLOv5 is based on Scaled-YOLOv4, but unlike YOLOv4, YOLOv5 uses the PyTorch 

framework instead of Darknet. As shown in Figure 2, YOLOv5 employs Cross Stage Partial Darknet 

(CSPDarknet) as the backbone to extract essential features from the given input image. 

CSPDarknet53 backbone within YOLOv5 consists of 29 convolutional layers 3 × 3, a receptive field 

size of 725 × 725, and 27.6 M parameters. The Spatial Pyramid Pooling (SPP) block attached over 

YOLO's CSPDarknet53 expands the proportion of receptive fields without influencing its operating 

speed. CSPNet overcomes the issue of repeated gradient information in large-scale backbones by 

integrating gradient changes into the feature map, reducing the model’s parameters and FLOPS 

(floating-point operations per second), and ensuring inference, speed, and accuracy while reducing 

model size. 

The architecture’s neck consists of layers that blend and integrate representational image 

features to proceed further with prediction. The feature aggregation is performed through Path 

Aggregation Network (PANet) by exploiting different backbone levels. Yolov5 used PANet to 

improve information flow. PANet employs a new feature pyramid network (FPN) structure with an 

improved bottom-up path to improve the propagation of low-level features. Concurrently, adaptive 

feature pooling, which connects the feature grid and all feature levels, propagates valuable 

information in each feature level directly to the following subnetwork. PANet enhances the 

utilization of accurate localization signals in lower layers, improving object location accuracy.  

The head utilizes features from the neck and generates predictions from the anchor boxes for 

object detection and class prediction. The head generates three different sizes of feature maps (18*18, 

36*36, 72*72) to achieve multi-scale prediction, enabling the model to handle small, medium, and 
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large objects. The activation functions that YOLOv5 uses are leaky rectified linear unit (ReLU) and 

sigmoid activation. YOLOv5 uses stochastic gradient descent (SGD) and ADAM as optimizer 

options and Binary cross-entropy with logit loss as a loss function. YOLOv5 pushes state-of-the-art 

features such as weighted-residual connections, cross-stage partial-connections, cross mini-batch, 

normalization, and self-adversarial training, making it exceptionally efficient. 

 

Figure 2. Generalized YOLOv5 network architecture [23] 

YOLO models usually release a series of variant models by scaling up and down the model 

size depending on parameters such as the width (number of channels) and depth (number of layers) 

for different use cases. Although these variants belong to the same YOLOv5 family, there are still 

significant changes to the models that can alter their performance on the same dataset. Figure 3 

illustrates the different scales of the YOLOv5 models, and Table 2 provides the difference in 

specification between the various YOLOv5 models. 
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Figure 3. Different variants of the YOLOv5 model [23] 

Table 2. Specification of YOLOv5 model variants [23] 

Model Number of Layers Number of Parameters FLOPs 

YOLOv5n (nano) 270 1,797,927 4.2 

YOLOv5s (small) 270 7,027,720 15.9 

YOLOv5m (medium) 369 20,879,400 48.1 

YOLOv5l (large) 468 46,149,064 108 

YOLOv5x (extra-large) 567 86,231,272 204.2 

 

YOLOv5 offers five models including YOLOv5 extra small, medium, large, and extra-large 

and each delivers different levels of detection accuracy and performance. YOLOv5n is the smallest 

in the family and is used for mobile deployment. YOLOv5s is a small model with 7.2 million 

parameters, and YOLOv5m is a medium-sized model with 21.2 million parameters. They are both 

suitable for cloud deployments.  YOLOv5l is a large model of the YOLOv5 family with 46.5 million 

parameters. It is appropriate for datasets requiring smaller object detection. YOLOv5x is the largest 

among the five models, with 86.7 million parameters. It is slower to run because models with more 

parameters need more CUDA memory to train [23]. 

2.3. YOLOv7 

Wang et al. [26] published the latest official YOLO version, YOLOv7, in July 2022. The 

YOLOv7 aimed to advance object detection by designing a network architecture that would predict 

more accurately than its peers at comparable inference speeds. The YOLOv7 architecture is based 

on previous YOLO model architectures, such as YOLOv5s, Scaled YOLOv5s, and YOLO-R. 
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Model re-parameterization merges numerous computational models at the inference stage to 

accelerate inference time. It takes motivation from prior studies on network efficiency. As shown in 

Figure 4, YOLOv7’s backbone uses E-ELAN (Extended efficient layer aggregation networks) for 

model re-parameterization. The E-ELAN architecture of YOLOv7 uses expand, shuffle, and merge 

cardinality to continuously enhance the network's learning ability without transforming the original 

gradient path. This approach employs group convolution to extend the channel and cardinality of 

computational blocks by using the same group parameter and channel multiplier for every 

computational block in the layer. The block then calculates the feature map, shuffles it into many 

groups, and combines it. The groups are combined to merge cardinality, ensuring that the number of 

channels in each group of feature maps is the same as that of the original architecture. Changing the 

model architecture only in the computational block does not affect the transition layer, and the 

gradient path remains fixed. The E-ELAN design analyzed the following factors that influence speed 

and accuracy; Memory access cost, I/O channel ratio, element wise operation, activations, and 

gradient path. 

 

Figure 4. Extended efficient layer aggregation networks [26] 
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The YOLOv7 model concurrently scales the network depth and width while concatenating 

layers, as shown in Figure 5. Ablation studies reveal that the compound scaling technique optimizes 

the model architecture while scaling for different sizes. 

 

Figure 5. Model scaling for concatenation-based models [26] 

Bag of Freebies (BoF) are techniques that increase the model’s performance without 

increasing training costs. Re-parameterization is a technique that averages a set of model weights to 

create a more robust model for generalization. Model level and module level ensemble are two types 

of re-parametrizations used to finalize models. Recent studies show that module-level re-

parameterization has acquired traction. This process splits the model training process into multiple 

modules, and the outputs are ensembled to obtain the final model. YOLOv7 uses gradient flow 

propagation paths to analyze how to combine re-parameterized convolution with different networks. 

Figure 6 shows how to place the convolutional blocks with the check-marked options representing 

that they worked. 
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Figure 6. Planned re-parameterized model [26] 

The head contains the predicted model outputs. YOLOv7 is inspired by Deep Supervision, a 

technique commonly used in training deep neural networks. The lead head is in charge of the final 

output, while the auxiliary head is in charge of assisting with training in the middle layers. In 

addition, a Label Assigner mechanism, as shown in Figure 7, was introduced to improve deep 

network training, which considers network prediction results and ground truth before assigning soft 

labels. In contrast to traditional label assignment, which relies solely on the ground truth to generate 

complex labels based on given rules, reliable soft labels employ calculation and optimization 

methods that consider the quality and distribution of prediction output in addition to the ground truth. 

 

Figure 7. Coarse for auxiliary and fine for lead head label assigner [26] 
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2.4. Summary 

Vehicle detection combines classification and localization to specify the exact locations of 

vehicles in an image using bounding boxes and classify the vehicles into previously defined classes. 

YOLO is a leading object detection algorithm and was the first one-stage object detection network 

that combined the task of drawing bounding boxes and identifying class labels in one end-to-end 

differentiable network. There are many renditions of the YOLO real-time object detection models, 

but for this research, we utilize three YOLO models, including YOLOv7, YOLOv5m, and 

YOLOv5s. These are the latest official YOLO models. YOLOv7 was only released a few months 

ago, and there has not been extensive research on this model. We use two models from the YOLOv5 

family to investigate how they compare to YOLOv7. Although these variants belong to the same 

YOLOv5 family, there are still significant changes to the models that can alter their performance on 

the same dataset.           

 The differences in the YOLOv5 and YOLOv7 architectures contribute to their differences in 

performance. YOLOv5 employs Cross Stage Partial Darknet (CSPDarknet) as the backbone, while 

YOLOv7’s backbone uses E-ELAN (Extended efficient layer aggregation networks) for model re-

parameterization. Model re-parameterization can significantly increase the architecture's 

performance by enhancing the network’s learning ability. Unlike YOLOv5, YOLOv7 introduces a 

compound scaling method applied to concatenation-based architectures to calculate alterations in the 

computational block's output channel. The recommended compound scaling method maintains the 

qualities of the original and optimal model design. Unlike the traditional independent label assigner 

in YOLOv5, YOLOv7 proposes a multi-headed framework. The lead head is in charge of the final 

output. The auxiliary head helps with training in the middle layers. The YOLOv7 model learns better 

by simultaneously getting the training lead head and auxiliary head labels. 
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3. METHODOLOGY 

3.1. Data Collection 

Data collection formed the most integral part of this research work since we employ 

supervised learning to train our data for vehicle detection and classification. The initial concept for 

data collection was to take a video recording of busy highways at varying times. However, it became 

evident that relying solely on video recordings may not be as effective because of the overwhelming 

number of passenger cars and comparatively fewer instances of other vehicle classes. Hence, vehicle 

images from the internet seemed to alleviate this problem since it would be easier to control what 

vehicle classes would be incorporated into work. This enables the collection of vehicles from rarely 

seen classes like the multi-trailer trucks. Vehicles were captured from different angles, including the 

front, rear, side, and aerial views, to ensure that the model learns to identify the vehicle from any 

viewpoint. Vehicles of each class come in different brands, shapes, sizes, and colors, so capturing 

many vehicles belonging to different classes and not just one type was essential. The vehicles were 

also captured at different times and weather conditions, including sunny, rainy, snowy, and 

nighttime. For this study, 3,327 images with different weather conditions were collected to form the 

dataset used for vehicle classification, as shown in Table 3 and Figure 8 for the detailed distribution 

of the number of images for each weather condition in the formed dataset. The data was gathered 

from different sources; about 30% of the total data was gathered by recording videos of the I-94 at 

Otsego, Minnesota. The remaining 70% of the data was gathered using the google search engine and 

videos from YouTube. These images have different resolutions, which are necessary for image 

variety, promoting the model's robustness. Table 4 shows the different sources and the different 

image resolutions.   
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Figure 8. Vehicles captured in sunny, rainy, snowy, and night conditions. 

Table 3. Number of frames for each time of day and weather condition 

Weather Condition Number Of Frames 

Sunny 1,753 

Snowy 602 

Rainy 455 

Night 517 

 

 

Figure 9. Frequency distribution of the number of frames for each condition 
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Snowy Rainy 
 

Night time 
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Table 4. Percentages of different resolutions 

Source Percentage Pixels 

Recorded Video at I94 Otsego, Minnesota 0.3 1280x720 

Google Search 0.1 259x194 

Google Search 0.08 275x183 

Google Search 0.04 284x177 

Google Search 0.02 700x319 

Google Search 0.09 1000x665 

YouTube Video 0.05 1920x1000 

YouTube Video 0.15 1920x1080 

 

3.2. Vehicle Classes 

Although most states based their vehicle classification on the FHWA’s 13-category 

classification system in Table 1, many individuals, companies, and agencies have revised the original 

FHWA classification system numerous times to address some of the system’s shortcomings. A key 

recommendation supporting vehicle detection and classification purposes is to use only three or four 

generic categories of vehicles provided in Table 1 [4]. Some researchers recommend using an 

aggregated classification scheme because, in some States, volumes in many of the 13-FHWA vehicle 

categories are very low [5]. When volumes within a vehicle class are low, the models predict the 

classes very poorly, resulting in low accuracies. This study suggests six vehicle classes, as shown in 

Table 5 and Figure 10. 
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Table 5. Suggested vehicle classification scheme 

Class Vehicle Type 

Class 1 Motorcycles – Two or three-wheeled motorized vehicles. Vehicles in this class 

usually have saddle-type seats controlled by handlebars instead of steering wheels. 

Class 1 includes motorcycles, motor-powered bicycles, motor scooters, mopeds, and 

three-wheel motorcycles. 

Class 2 Passenger Cars – Passenger Cars – All two axle four-tire vehicles designed mainly 

to transport passengers with/ without recreational or light trailers such as sedans, 

coupes, station wagons, pickups, panels, vans, campers, motor homes, ambulances, 

hearses, carryalls, and minivans. 

Class 3 Buses – All two or more axle vehicles built as passenger-carrying buses. This class 

contains only conventional buses (including school buses), customized buses should 

be considered to be a truck and should be suitably classified. 

Class 4 Single Unit Trucks – All two or more axle trucks on a single frame. Truck tractor 

units without a trailer is regarded as single-unit trucks. 

Class 5 Combination trucks - All four or more axle trucks with two units, the tractor or 

straight truck power unit and the trailer. This class contains semi-trailer trucks. 

Class 6 Multi-trailer trucks - All five or more axle trucks with a tractor and two or more 

trailer units. 

 

 

Figure 10. Vehicle classes from different angles 

Class  Side view Front view Aerial view Rear view 
Class 1 

    
Class 2 

    
Class 3 

    
Class 4 

    
Class5 

    
Class 6 
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3.3. Vehicle Annotation 

Data annotation is the use of corresponding bounding box coordinates (bottom left and top 

right (x, y)) to enclose an object belonging to a predefined class (label). Vehicle annotation is a time-

consuming and exhaustive process that requires consistent, reliable, and accurate labeling to not feed 

the deep learning model with wrong information since we are training the model to learn from our 

annotated data, which could affect the model’s accuracy. The data annotation type chosen for this 

research is object detection, and the data annotation technique used is the bounding box. The 

bounding box technique was preferred to other techniques because it is a relatively faster, less 

expensive, and user-friendly alternative. This study derived 8,587 annotated instances across 3,327 

frames using a software called Computer Vision Annotation Tool (CVAT). The CVAT was the 

preferred annotation tool as it is beginner-friendly and has advanced annotation functionality. The 

overall statistics for the annotated vehicle instances are summarized in Table 6. It is very evident that 

the number of Class 2 (passenger cars) instances dominates the dataset, which is a true reflection of 

most traffic conditions.  

 

Figure 11. Vehicle annotation using CVAT 
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Table 6. Number of vehicle instances for each class 

Class Number Of Instances 

Class 5 364 

Class 1 429 

Class 4 883 

Class 6 1,039 

Class 3 1,551 

Class 2 4,321 

 

 

Figure 12. Frequency distribution of the number of class instances  

There are some challenges encountered during the data annotation, as illustrated in Figure 

13, which may influence the classification accuracy later, including: 

1) Occlusion: In frames where two or more vehicles are too close and appear to merge, the 

vehicle that does not fully appear becomes difficult to annotate since an integral feature is 

omitted.  

2) Adverse weather conditions and tiny targets: Vehicles in adverse weather conditions and 

small vehicles not in the camera’s focus tend to be quite difficult to label accurately. These 
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instances were meticulously labeled with potentially compressed bounding boxes from a very 

distant point of view.  

3) Special vehicles: A few special vehicles with class ambiguity, such as tractors, dozers, and 

excavators, appear in some frames. From the literature review, it was observed that some 

researchers choose to assign a label to unknown vehicles, but for this study, these unique 

vehicles are entirely ignored.  

 

 

Figure 13. Some annotation challenges encountered 

3.4. Data Preprocessing and Augmentation 

Roboflow, a developer tool for building computer vision models, was used for data 

preprocessing and augmentation. The dataset in this study contains images of various sizes. However, 

most modern convolutional neural networks usually expect equally sized square-shaped images as 

input. Thus, all the frames are resized to 417 x 417. Data augmentation is a technique used to train 

large neural networks by increasing the diversity of the data without collecting new samples. In most 

of the reviewed studies, data augmentation techniques were employed since small datasets tend to 

result in overfitting deep learning models. This study applied three data augmentation methods, 

Occlusion  Farther objects in adverse 
weather 

Unlabeled special vehicles 
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noise, grayscale, and flip, to the training dataset, as shown in Figure 14. After this technique, the 

number of frames for the dataset increased from about 3,327 to 7,985 frames. 

 

Figure 14. Data augmentation methods applied to training data using roboflow 

3.5. Model Training  

The programming language used for this study was Python, as it provides access to great 

deep-learning libraries. Google Colaboratory (Colab) is a cloud-based Jupyter notebook that allows 

the writing and execution of arbitrary python code through the browser while providing access to 

computing resources, including GPUs. Google Colab offers an NVIDIA K80 / T4 GPU with 52GB 

RAM for training and testing neural networks. The code for each neural network is cloned from the 

GitHub accounts of the creators into Google Colab pro. The dataset was split into 70% for training, 

15% for validation, and 15% for testing. Some hyperparameters were altered to ensure that the model 

was trained to generate the best results possible. The hyperparameter settings for training YOLOv5m, 

YOLOv7, and YOLOv5s have been summarized in Table 7. The PyTorch framework is used for all 

three models. The batch size is the number of training samples used in one iteration, which can affect 

the training speed and memory usage. The batch size was set to 16 for all three models because the 
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models train at an optimum speed while avoiding resource-exhausted errors caused by running out 

of memory. An optimization algorithm adjusts the attributes of the neural network, such as weights 

and learning rate. For training the neural network, we used stochastic gradient descent as a training 

optimizer for YOLOv5s and YOLOv5m and adaptive moment estimation as the optimizer for 

YOLOv7. The learning rate decides the step size at each iteration while moving toward a minimum 

loss function. It regulates the rate at which an algorithm revises the parameter estimates. Each model 

uses an initial learning rate of 0.01. The activation function controls whether or not to activate a 

neuron by calculating the weighted sum and adding bias. The activation function aims to introduce 

non-linearity into a neuron’s output to help reduce the overall loss and improve accuracy. All three 

models use the leaky rectified linear activation function. The epoch size denotes the number of passes 

the algorithm’s entire training dataset has completed. Each model was set to train on 1000 epochs. 

However, early stopping was enabled to allow the models to stop training when convergence occurs, 

revealing that the model is not experiencing any significant improvement in the last 100 epochs. 

Training YOLOv5m on 801 epochs took 17 hours 38 mins 2s, YOLOv5s took 10 hours 27 min 38 s 

to train on 699 epochs, and finally, YOLOv7 took 9 hours 14 mins 2s to train on 247 epochs. After 

training, the best weights were used for the testing process. 

Table 7. The hyperparameter values used in training 

Hyperparameters YOLOv5s YOLOv5m YOLOv7 

Batch Size 16 16 16 

Learning Rate 0.01 0.01 0.01 

Epoch Size 699 801 247 

Activation 

Function 

Leaky Rectified Linear 

(ReLu) 

Leaky Rectified Linear 

(ReLu) 

Leaky Rectified Linear 

(ReLu) 

Optimization 

Algorithm 

Stochastic Gradient 

Descent (SGD) 

Stochastic Gradient 

Descent (SGD) 

Adaptive Moment 

Estimation (ADAM) 
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3.6. Summary 

In total, 3,327 vehicle images were collected from different angles, brands, shapes, sizes, 

weather conditions, times of day, and colors, to form a dataset/database for this study, ensuring that 

the model learns to identify the vehicle in diverse scenarios. An aggregated classification scheme 

with six vehicle classes based on the FHWA 13 vehicle classification scheme is recommended for 

this study. This study derived 8,587 annotated instances across 3,327 frames using Computer Vision 

Annotation Tool (CVAT) software. The dataset was split into 70% for training, 15% for validation, 

and 15% for testing. Three data augmentation methods, including noise, grayscale, and flip, were 

applied to the training dataset causing the number of frames to increase from about 3,327 to 7,985 

frames. The programming language used for training and testing the models was Python. The models 

were trained on an NVIDIA K80 / T4 GPU with 52GB RAM using Google Colab pro. Some 

hyperparameters, such as batch size, learning rate, optimizer, activation function, and epochs, were 

altered to ensure the model training generated the best results possible. Training YOLOv5m on 801 

epochs took 17 hours 38 mins 2s, YOLOv5s 10 hours 27 mins 38s to train on 699 epochs, and 

YOLOv7 took 9 hours 14 mins 2s to train on 247 epochs.  
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4. RESULTS AND DISCUSSION 

4.1. Evaluation Metrics 

To assess the performance of the three models, we deploy four evaluation measures, 

including precision, recall, F1-score, and mean average precision (MAP). The confusion matrix 

refers to a N x N matrix used to assess the performance of a classification model, where N represents 

the number of target classes. The matrix compares the ground truth to the model’s predictions. This 

gives us a concise overview of how well the models perform and the types of prediction errors they 

make. 

Table 8. Confusion matrix diagram for binary classification 

 

Confusion Matrix 

Actual 

Positive Negative 

Predicted Positive TP (True Positive) FP (False Positive) 

Negative FN (False Negative) TN (True Negative) 

Notes: The definition of TP, TN, FP, and FN are below. 

True Positive (TP): The actual is positive, and the model correctly predicted it as positive. 

True Negative (TN): The actual is negative, and the model correctly predicted it as negative.  

False Positive (FP): The actual is negative, but the model wrongly predicted it as positive. 

False Negative (FN) The actual is positive, but the model wrongly predicted it as negative. 

According to the established guidelines, determining the metrics to assess the performance 

of the three models relies on the dataset and its characteristics [29]. It was addressed earlier that the 

dataset contains an overwhelming amount of Class 2 vehicles. This is due to numerous factors, such 

as (1) real-life traffic contains more passenger cars, (2) Class 2 entails a variety of passenger cars 

such as campers, minibuses, pickups, vans, ambulances, and more, to capture that variety as much 

as we could, (3) other classes like Class 6 which represents multi-trailer trucks were not as easy to 

come by like passenger cars.  Some literature suggests that using accuracy to evaluate a classification 
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model might not correctly reflect the classifier model’s performance due to class imbalance. Thus, 

this study uses only precision, recall, MAP, and F1-score as the performance metrics to prevent 

misleading results [30]. 

Recall indicates the percentage of ground truth positives predicted as true positives. 

Mathematically, recall is the ratio of true positives to the sum of true positives and false negatives 

as:  

𝑅𝑒𝑐𝑎𝑙𝑙 =
True Positive(TP)

True Positive(TP)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝐹𝑁)
                                 (1) 

Precision represents the percentage of predicted positives that are true positives. It is denoted 

by the ratio of true positives to the sum of true positives and false positives as: 

      𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True Positive(TP)

True Positive(TP)+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)
                           (2) 

The F1-score is a harmonic mean of precision and recall that summarizes a model’s predictive 

performance by combining two otherwise competing metrics, which can be represented as:  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
Precision∗Recall 

Precision+𝑅𝑒𝑐𝑎𝑙𝑙
                                                    (3) 

The F1-score is highest when precision equals recall. 

In addition, MAP is estimated by taking all the classes’ mean of the average precision (AP). 

The AP summarizes the precision-recall curve into one value representing the average of all 

precisions. Equations (4) and (5) depict the AP and MAP formula as follows: 

       AP = ∑ [Recall(k) − Recall(k + 1)] ∗ Precision(k)]
𝑘=𝑛−1

𝑘=0
                             (4) 

                                                             MAP =
1

𝑛
∑ 𝐴𝑃𝑘

𝑘=𝑛
𝑘=1                                                               (5) 

where 𝐴𝑃𝑘 is the AP of class k, and n is the number of classes. The MAP at 0.5 and 0.95 thresholds 

will be provided for this study. 
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4.2. Model Training and Validation 

The validation dataset demonstrates how the trained model behaves on unseen data. Figures 

16, 17, and 18 illustrate the results from the training and validation of each of the models. The plots 

show the training and validation loss against the number of training epochs. It is observed that the 

training losses are slightly lower than the validation losses. The training and validation losses 

converged after some iterations revealing that the model was not experiencing any more significant 

losses and was done learning. Even though YOLOv7 trained for the least number of epochs, it still 

obtained the highest precision and recall compared to the other models. YOLOv7’s and YOLOv5s’s 

precision surpassed 0.9, while YOLOv5m’s precision only exceeded 0.8, even though it trained for 

the longest. The recall for all three models exceeded 0.8, with YOLOv7’s model getting closer to 

0.9. The MAP estimates how well the models are detecting objects, and YOLOv7 once again obtains 

better MAPs at both 0.5 and 0.95 thresholds.   

 

Figure 15. Results from YOLOv7 model training 

 

Figure 16. Results from YOLOv5s model training 

 

Training Loss Validation loss Precision Recall MAP 0.5 MAP 0.95 

      

Training Loss Validation loss Precision Recall MAP 0.5 MAP 0.95 

      

Training Loss Validation loss Precision Recall MAP 0.5 MAP 0.95 

      

 

Training Loss Validation loss Precision Recall MAP 0.5 MAP 0.95 

      

Training Loss Validation loss Precision Recall MAP 0.5 MAP 0.95 

      

Training Loss Validation loss Precision Recall MAP 0.5 MAP 0.95 
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Figure 17. Results from YOLOv5m training 

4.3. Model Testing Results 

After training and validation, we tested the remaining 15% of the dataset allocated for testing 

using the best-trained weights. Testing is used to determine the generalization ability of the trained 

model on new data. Firstly, we generate each model's confusion matrix to understand the model's 

confusion when predicting vehicles of the various classes. According to the model developers, the 

object detection model’s confusion matrix is unlike the traditional classification confusion matrix 

because most mistakes will be with the background class rather than other classes. Figure 18 

illustrates the confusion matrix for YOLOv7, YOLOv5s, and YOLOv5m.   

 

Figure 18. Confusion matrices for object detection models 

 

Training Loss Validation loss Precision Recall MAP 0.5 MAP 0.95 

 
   

  

 

 
(a) 

 
(b) 

 
(c) 
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YOLOv7 had the highest number of true positives for Class 1, followed by YOLOv5s and 

then YOLOv5m. YOLOv5s and YOLOv5m did not have very high true positives for Class 1, 

meaning the models could not detect this class and mistake it for the background. Figure 19 shows 

that though the annotator labeled the bicycle as Class 1, YOLOv5s could not detect the object of 

interest, counting it as a background, but YOLOv7 could correctly predict it. We can also observe 

from Figure 18 that YOLOv7 did not confuse Class 1 with any other class. In contrast, YOLOv5s 

and YOLOv5m mistake 2% of actual Class 1 for Class 2. Class 1 has the least interclass 

misclassification compared to the other classes. This means that Class 1 has distinct features making 

it relatively easier for the models to differentiate it from other classes. After all, it is the only class 

with two wheels, and it has a much smaller size than the other classes. 

 

Figure 19. Example of YOLOv5s misclassifying class 1 as a background 

The greatest number of Class 2 true positives are seen in YOLOv7, followed by YOLOv5s 

and YOLOv5m. YOLOv7 mistook 3% of actual Class 4 for Class 2, which is not surprising because 

some passenger pickups share similar features with smaller single-unit trucks. YOLOv5s wrongly 

predicted actual classes 1, 3, 4, and 5 as Class 2. YOLOv5m also misclassifies true classes 1,3 and 4 

as Class 2. For YOLOv5s and YOLOv5m, Class 2 still receives the highest number of true positives 

compared to the other classes. Class 2 has the most intraclass variations, consisting of pickups, vans, 

Ground Truth YOLOv5s YOLOv7 
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and campers. Class 2 vehicles share some similarities with other classes, which could be a reason for 

all the interclass misclassifications associated with Class 2.  In Figure 20, YOLOv5s wrongly predicts 

Class 3 as Class 2.  

 

Figure 20. Example of YOLOv5s predicting a class 3 as class 2 

Across all three models, Class 2 had the highest misclassification of actual backgrounds as 

Class 2 vehicles. Object detection models must be able to differentiate between the detection of the 

background and foreground of an image. Precision reduces when backgrounds are classified as 

vehicles, thus increasing the false positives. Deep learning models thrive on quality images, but to 

ensure the model was trained and tested on all kinds of image quality, we included some images with 

poor quality. In Figure 21, the YOLOv5m model detects the background and classifies it as Class 2. 

This happened in a snow weather condition image, probably, the model did not have enough snow 

weather images to learn from, or the image quality was just not high enough. 

GROUND TRUTH PREDICTION 
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Figure 21. YOLOv5m misclassifying the background as class 2 

During the annotation process, the annotator found some vehicles very difficult to label since 

images had to be zoomed in before being able to draw the bounding box around the vehicle. For 

some images, the vehicles were so far in the background that we decided not to annotate them. 

However, the models still detected some background vehicles, as seen in Figure 22. Hence, even 

though the model correctly predicted that vehicle, since it was not annotated as ground truth, this 

will contribute to the model not performing well because this will be counted as a false positive. 

  

GROUND TRUTH PREDICTION 
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Figure 22. False positives due to the YOLOv7 detecting unlabeled vehicles 

For Class 3, the true positives are highest in YOLOv7, then YOLOv5s, and then YOLOv5m. 

The three models do not have many confusions of Class 3 with other classes. YOLOv7 misclassifies 

only 1% of true Class 4 as Class 3. The FHWA vehicle classification scheme states that Class 3 

should contain only conventional buses. Customized buses should be considered trucks and should 

be suitably classified. Because modified buses share the same color (yellow with black strips) as 

traditional buses, it could be that the YOLOv7 could still not accurately classify the modified buses. 

YOLOv5s and YOLOv5m predict 2% of actual Class 5 as Class 3. Again Class 3 represents buses 

that are quite distinct from other Classes; however, the models still had some false positives and false 

negatives because the models did not correctly detect some buses. 

In classes 4, 5, and 6, YOLOv7 has the most significant number of true positives, followed 

by YOLOv5s and YOLOv5m. All three models confuse Class 4 for Class 5 and Class 6 and vice 

versa. Interclass misclassifications can occur between Class 4, Class 5, and Class 6 (the classes 
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designated to different types of trucks). Trucks belonging to Classes 4, 5, and 6 sometimes look 

similar when the truck is being filmed from the front view, aerial view, rear view, or when there is 

occlusion. This is not surprising since some frames do not capture the entire truck and may miss 

essential features like the number of truck axles. A multi-trailer truck can easily be confused with a 

semi-trailer truck when its multiple trailers are not revealed in that particular frame.  

The results from the confusion matrices in Figure 18 are used to compute the precision, recall, 

and F1-score summarized in Table 9. The average of all the classes' precision, recall, and F1-scores 

have been provided for each model.   

Precision informs us about the accuracy of the model’s positive predictions, and precision is 

preferred when False Positives are more relevant than False Negatives. From the experimental results 

in Table 9, the YOLOv7 model had the highest average precision compared to YOLOv5s and 

YOLOv5m. This means that on average YOLOv5m had the highest False Positive during prediction. 

The highest precision for YOLOv7 is Class 6, but for YOLOv5s and YOLOv5m, it is Class 1. Class 

2 had the lowest precision for all three models. In scenarios where False Negatives are more relevant 

than False Positives, recall is the best metric. Recall estimates the number of actual positive instances 

predicted correctly. Again, YOLOv7 had the highest average recall, followed by YOLOv5s and 

YOLOv5m. Class 5 had the highest recall for YOLOv7, but Class 2 had the highest recall for 

YOLOv5s and YOLOv5m. Class 1 recorded the least recall for all three models. Ideally, a model 

would have perfect precision and recall, but practically, a tradeoff usually exists between the two.  
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Table 9. Summary of performance metrics of model testing 

 YOLOV7 

Class Name Precision Recall F1-Score MAP @ 0.5 MAP @0.95 

CLASS 1 0.953 0.820 0.882 0.848 0.679 

CLASS 2 0.571 0.929 0.708 0.944 0.752 

CLASS 3 0.878 0.869 0.873 0.882 0.802 

CLASS 4 0.906 0.879 0.892 0.947 0.871 

CLASS 5 0.795 0.970 0.874 0.967 0.889 

CLASS 6 0.978 0.900 0.938 0.989 0.952 

Average 0.847 0.894 0.861 0.930 0.824 

 YOLOV5m 

Class Name Precision Recall F1-Score MAP @ 0.5 MAP @ 0.95 

CLASS 1 0.982 0.535 0.692 0.604 0.438 

CLASS 2 0.586 0.859 0.697 0.878 0.674 

CLASS 3 0.778 0.566 0.655 0.684 0.490 

CLASS 4 0.800 0.640 0.711 0.761 0.534 

CLASS 5 0.806 0.822 0.814 0.896 0.714 

CLASS 6 0.884 0.752 0.813 0.852 0.530 

Average 0.806 0.696 0.730 0.779 0.563 

Due to this tradeoff, it is vital to comprehend the task we are attempting to solve and any 

underlying consequences of prioritizing False Positives over False Negatives or vice versa. False 

Positives and False Negatives are instrumental to this study, and given this competing tradeoff, it is 

very convenient to have the F1-score as a single performance metric that is neutral to both precision 

and recall. For YOLOv7 and YOLOv5s, Class 2 has the lowest F1-score, and Class 3 has the lowest 

F1-score for YOLOv5m. Class 6 has the highest F1-score for YOLOv7 and YOLOv5, and Class 5 

has the highest F1-score for YOLOv5m. On average, YOLOv7 scored the highest F1-score of 0.861, 

then YOLOv5s with 0.771, and YOLOv5m with 0.730. The analysis shows that all three models had 

 YOLOV5s 

Class Name Precision Recall F1-Score MAP @ 0.5 MAP @ 0.95 

CLASS 1 0.982 0.550 0.705 0.604 0.437 

CLASS 2 0.569 0.870 0.688 0.892 0.679 

CLASS 3 0.823 0.657 0.730 0.727 0.508 

CLASS 4 0.814 0.782 0.798 0.848 0.549 

CLASS 5 0.822 0.830 0.826 0.910 0.704 

CLASS 6 0.904 0.859 0.881 0.850 0.521 

Average 0.819 0.758 0.771 0.805 0.566 
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performances comparable to the results in previous research that trained YOLOv7, YOLOv5s, and 

YOLOv5m (C-Y. Wang et al. [26], Horvat Marko et al. [31] and Uzar et al. [23]).  

Most researchers prefer evaluating the object detection models using the mean average 

precision because it compares the ground-truth bounding box to the predicted bounding box. The 

MAP is measured at a 0.5 and 0.95 intersection over the union (IOU) threshold. The object detector 

with a higher MAP score is considered the more accurate object detection model. In this study, the 

YOLOv7 model has a 0.93 MAP at 0.5 thresholds and 0.824 MAP at 0.95 thresholds, the highest 

MAP at both 0.5 and 0.95 thresholds among all the models. The YOLOv5s gives the second highest 

MAP at both thresholds with a score of 0.805 and 0.566 at a threshold of 0.5 and 0.95, respectively. 

The least performing model is YOLOv5m, with a MAP score of 0.779 at 0.5 and 0.563 at 0.95. 

 These results may be because YOLOv7’s backbone uses E-ELAN (Extended efficient layer 

aggregation networks) for model re-parameterization, significantly improving the network’s learning 

ability. YOLOv7 also uses a compound scaling method to compute alterations in the computational 

block's output channel. Finally, YOLOv7 uses a multi-headed framework that improves performance 

by allowing the shallower auxiliary head to directly learn the information that the lead head has 

already learned. Hence, the lead head is more focused on learning residual data that has not been 

learned previously. 

4.4. Summary 

The performances of the three models are estimated using precision, recall, F1-score, and 

mean average precision (MAP) at 0.50 and 0.95 thresholds. Accuracy is not used because the study 

was conducted using imbalanced data. We observed that the training and validation decrease till they 

converge while the performance measures: precision, recall, and MAP increase till they record high 

scores showing that the models are performing well. The comparison of the three deep learning 

models reveals the dominance of the YOLOv7 model in detecting and classifying vehicles scoring 
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the highest performance results with 84.7% precision, 89.4% recall, 86.1% F1-score, 93% MAP at 

0.5 thresholds and 82.4% MAP at 0.95 thresholds on average. YOLOv5s is the second-best result, 

followed by YOLOv5m. YOLOv5s scored the second highest results with 81.9% precision, 75.8 

recall, 77.1% F1-score, 80.5% MAP at 0.5 threshold, and 56.6% MAP at 0.95 threshold. YOLOv5m 

was the worst performing model with 80.6% precision, 69.6% recall, 73% F1-score, 77.9% MAP at 

0.5 threshold, and 56.3% MAP at 0.95 threshold.  
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5. CONCLUSIONS AND FUTURE WORK 

This thesis compares the robustness of three state-of-the-art object detection models (YOLOv7, 

YOLOv5m, and YOLOv5s) for vehicle classification according to a modified FHWA vehicle 

classification scheme. We generated 7,985 frames from a heterogenous dataset containing images of 

vehicles in different conditions, including sunny, snowy, rainy, and night. Each model was trained on the 

same dataset allocating 70% for training, 15% for validation, and 15% for testing. After running inference 

on the trained models, we calculated the precision, recall, MAP, and F1-scores, which were used as 

metrics to evaluate and identify the best model. The conclusions of this thesis can be drawn as follows:  

1) YOLOv5m trained 801 epochs in 17 hours 38 minutes 2 seconds, YOLOv5s trained 699 

epochs in 10 hours 27 minutes 38 seconds, and YOLOv7 trained 247 epochs in 9 hours 14 

minutes 2 seconds. The training and validation loss plots against the epochs show that the 

training losses are slightly lower than the validation losses for all models. The training and 

validation losses converged after some iterations indicating that the model finished training. 

Despite training for the least epochs, YOLOv7 obtained the highest precision and recall 

compared to the other models. 

2) Interclass misclassifications can occur between Class 4, 5, and Class 6. The classes 

designated to different truck types increase the False Positives. Classes 4, 5, and 6 trucks 

sometimes look similar when filmed from the front view, aerial view, or when there is 

occlusion. Some frames only show a portion of the truck and may miss vital features like the 

number of truck axles. A multi-trailer truck can easily be mistaken for a semi-trailer truck 

when its multiple trailers are excluded from that particular frame.  

3) Two explanations for the algorithms’ difficulties distinguishing foreground and background 

are that deep learning models thrive on high-quality images, yet the formed heterogeneous 

dataset contains poor-quality nighttime and inclement weather images. Additionally, because 
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certain occurrences were left unlabeled by the annotator when the model accurately predicted 

these vehicles, the detections will be regarded as false positives. 

4) The YOLOv7 model had the highest average precision compared to YOLOv5s and 

YOLOv5m. This means that on average YOLOv5m had the highest False Positive during 

prediction. The highest precision for YOLOv7 is Class 6, but for YOLOv5s and YOLOv5m, 

it is Class 1. Class 2 had the lowest precision for all three models. 

5) YOLOv7 had the highest average recall, followed by YOLOv5s and YOLOv5m. Class 2 had 

the highest recall for YOLOv7, but Class 2 had the highest recall for YOLOv5s and 

YOLOv5m. Class 1 recorded the least recall for all three models. 

6) In this study, the YOLOv7 model has a 0.93 MAP at 0.5 thresholds and 0.824 MAP at 0.95 

thresholds, the highest MAP at both 0.5 and 0.95 thresholds among all the models. The 

YOLOv5s gives the second highest MAP at both thresholds with a score of 0.805 and 0.566 

at a threshold of 0.5 and 0.95, respectively. The worst-performing model is YOLOv5m, with 

a MAP score of 0.779 at 0.5 thresholds and 0.563 at 0.95 thresholds.  

7) The reason why YOLOv7 dominates the other models may be due to the difference in the 

models’ architectures. In the YOLOv7 backbone, E-ELAN (Extended efficient layer 

aggregation networks) is used as the computational block for model re-parameterization to 

dramatically improve the YOLOv7’s learning ability. YOLOv7 also employs a compound 

scaling method to calculate alterations in the computational block's output channel. Finally, 

YOLOv7 uses a multi-headed framework to increase performance by ensuring the shallower 

auxiliary head can directly learn the data the lead head has already learned. Hence, the lead 

head is more focused on learning residual data that has not been learned yet. 

In future work, researchers can create a new benchmark dataset containing a balanced number 

of instances for all 13 FHWA vehicle classes and investigate how differently the models perform, 
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considering accuracy as an evaluation measure. Since this study focuses primarily on urban areas, 

future work can concentrate on rural areas and examine how individual weather conditions influence 

the performance of the models. Future studies can also compare the deep learning models’ 

performance to the traditional sensor for vehicle detection and classification.  
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APPENDIX 

 

Figure A1. YOLOv7 vehicle detections 
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Figure A2. YOLOv5s vehicle detection 
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Figure A3. YOLOv5m vehicle detections 

  

  

  
 


