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ABSTRACT 

Disease statuses and biological conditions are known to be greatly impacted by 

differences in gene expression levels. A common challenge in RNA-seq data analysis is to 

identify genes whose mean expression levels change across different groups of samples, or, more 

generally, are associated with one or more variables of interest. Such analysis is called 

differential expression analysis. Many tools have been developed for analyzing differential gene 

expression (DGE) for RNA-seq data.  

RNA-seq data are represented as counts. Typically, a generalized linear model with a log 

link and a negative binomial response is fit to the count data for each gene, and DE genes are 

identified by testing, for each gene, whether a model parameter or linear combination of model 

parameters is zero.  

We conducted a simulation study to compare the performance of our proposed modified 

permutation test to DESeq2 edgeR, Limma, LFC and Voom when applied to RNA-seq data. We 

considered different combinations of sample sizes and underlying distributions. In this 

simulation study, we first simulated data using Monte Carlo simulation in SAS and assessed 

True Detection rate and False Positive rate for each model involved. We then simulated data 

from real RNA-seq data using SimSeq algorithm and compared the performance of our proposed 

model to DESeq2 edgeR, Limma, LFC and Voom. 

The simulation results suggest that Permutation tests are a competitive alternative to 

traditional parametric methods for analyzing RNA-seq data when we have sufficient sample 

sizes. Specifically, the results show that Permutation controlled Type I error fairly well and had a 

comparable Power rate. Moreover, for a sample size n≥10 simulation exhibited a comparable 

True detection rate and consistently kept the False Positive rate very low when sampling from 
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Poisson and Negative Binomial distributions. Likewise, the results from SimSeq confirm that 

Permutation tests do a better job at keeping the False Positive rate the lowest. 
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CHAPTER 1. INTRODUCTION 

Disease statuses and biological conditions are known to be greatly impacted by 

differences in gene expression levels (Li & Tibshirani, 2013). The recent rise of RNA-seq 

technology has now supplanted microarrays as the technology of choice for genome‐wide 

Differential Gene Expression (DGE) experiments.  

As described by Li and Tibshirani (2013), in each experiment, messenger ribonucleic 

acids (mRNAs) are shattered and reverse transcribed into complementary deoxyribonucleic acid 

(cDNA). These short pieces of cDNA are amplified by a polymerase chain reaction and 

sequenced by a sequencing machine, giving a list of short sequences called reads. These reads 

are then mapped to the reference genome using an appropriate algorithm, telling us which region 

each read comes from. Finally, for a set of regions of interest on the genome, such as genes, 

exons, or junctions, we count the number of reads mapped unambiguously to each of them and 

use this count as a measure of the expression of the region. 

A common challenge in RNA-seq data analysis is to identify genes whose mean 

expression levels change across different groups of samples, or, more generally, are associated 

with one or more variables of interest. Such analysis is called differential expression analysis. 

Differential expression analysis usually involves carrying out a significance test for each gene. 

Because RNA-seq data generally contain thousands of genes, differential expression analysis 

involves testing thousands of hypotheses.  

Many tools have been developed for Analyzing DGE for RNA-seq data. RNA-seq data 

are represented as counts and statistical methods that try to identify differential expression – 

enhanced (“up-regulated”) or suppressed (“down-regulated”) make assumptions about the 
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statistical properties inherent to the data and they exploit a range of normalization and analysis 

techniques to compute the magnitude of a DGE result and estimate its significance.  

Typically, a generalized linear model with a log link and a negative binomial response is 

fit to the count data for each gene, and DE genes are identified by testing, for each gene, whether 

a model parameter or linear combination of model parameters is zero. 

It is reported that data from technical replicates can often be well characterized by 

Poisson distribution, while data from biological replicates have much larger variance and 

negative binomial models seem to be more appropriate. 

Estimates obtained from inferential statistical methods are generally reliable when the 

underlying assumptions are met. However, when the underlying assumptions of the test statistic 

are not met, the sampling distribution of the test statistic may deviate substantially leading to 

inaccurate inferences. 

According to Zimmerman and Zumbo (1990), the tendency of researchers to prefer the 

use of parametric statistics have led many to propose some transformation techniques to satisfy 

the underlying parametric assumptions. However, others such as Sawilowsky, Blair and Higgins 

(1985) have shown that transforming data for certain designs can be dramatically non-robust and 

often produce poor power properties. This controversy calls for the need to better understand 

statistical procedures available to researchers given an unknown or non-normal population 

distribution. 

Simple permutation tests use rearrangements of the original sample to build the sampling 

distribution of the test statistic so make minimal assumptions about the data. For clients with 

modest mathematical or statistical background, permutation tests are often more intuitive than 

even basic parametric tests such as the two-sample t-test. Inferential methods associated with 
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RNA-seq data are substantially more mathematically challenging than the two-sample t-test so 

may be even more difficult to comprehend.  

According to Good (1994), permutation tests can be applied to continuous, ordered and 

categorical data, and to values that are normal, almost normal, and non-normally distributed. For 

almost every parametric and nonparametric test, one may obtain a distribution-free permutation 

counterpart. The resulting permutation test is usually as powerful as or more powerful than 

alternative approaches. And permutation methods can sometimes be made to work when other 

statistical methods fail. 

Permutation tests can take multiple forms. Exact permutation tests compile all possible 

combinations of treatment and control data for the chosen test statistic. They are called exact 

because the relevant properties are specifically determined, that is an exact level of significance 

is determined by a significance test (Walsh, 1968). The moment approximation test uses the 

continuous probability density function based on the exact lower moments of the test statistic 

fitted to the discrete permutation distribution. Finally, the approximate randomization test 

focuses on a random subset of all possible permutations (Mielke & Berry, 2001). In situations 

where the number of permutations may be overwhelming due to a large sample size, an 

approximate randomization test can be a viable alternative. Several researchers suggest that 

permutation and randomization tests help to rehabilitate the power of parametric tests under 

conditions of non-normality (Potvin & Roff, 1993; Edgington, 1995). And still, others offer 

permutation tests as preferred alternatives to rank-based tests, citing that rank tests are less 

powerful than randomization tests on scores (May, Masson, & Hunter, 1989). 

The goal of this study is twofold. First, to compare the performance of the permutation 

test to comparable parametric tests in the two-sample differential expression setting using 
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simulated data that mimic RNA-seq data. And secondly, to investigate how the sample sizes 

impact the permutation results. Various scenarios will be explored, some in which the underlying 

assumptions on the data are met such that the parametric tests perform well and in others where 

the underlying assumptions on the data for the parametric tests are violated to varying degrees.  

Our general expectations are that the parametric tests will usually be more powerful, but if 

simple permutation tests yield reasonably close results, they may be preferred by clients due to 

their more intuitive nature.  A broad study outline follows.  

The core of this study will be carried out in two phases. The first phase is further divided 

into four sub-phases. Firstly, we will simulate RNA-seq data assuming various underlying 

distributions using Monte Carlo simulation in SAS to mimic real RNA-seq datasets for relatively 

small sample sizes (n1=n2≤10). For our simulated data, we will consider three distributions, 

namely: Normal, Poisson and Negative Binomial (NB) distributions and then assess Type I error 

and Power rate for each combination of underlying distribution and sample sizes for the fitted 

models considered. Secondly, we will repeat the simulation process as describe above but this 

time we will set twenty percent (20%) of the simulated RNA-seq data to be differential 

expressed (the DE genes are obtained at 0.5σ and 1σ effect sizes). We will then assess 

differential expression using permutation, two-sample t-tests, Poisson regression and Negative 

Binomial regression at varying number of replicates. For each combination of underlying 

distribution (Normal, Poisson or NB) and number of replicates (n = 5, n = 7 and n = 10), we will 

obtain the number of differentially expressed (DE) genes for each of the fitted models (T-test, 

Permutation, Poisson, Negative Binomial). Secondly, from the DE genes obtained we will assess 

the True Positive (TP) rate and the False Positive (FP) rate and compare these rates across the 

fitted models. 
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The process just described was conducted for distributions with mean µ = 30 and 

standard deviation σ = 5 for samples simulated from Normal distribution and Lambda=30 for 

samples simulated from Poisson distribution. For negative binomial, we increased the standard 

deviation from 5 to 8 and kept the mean the same as that of normal and Poisson distribution at µ 

= 30. And thirdly, we will increase the number of replicates (greater or equal to 12) and repeat 

the same process as described above. However, it is important to note for the permutation 

distribution that when a large number of replicates is considered we did not perform a full 

permutation test. The number of possible permutations is overwhelming for large samples, 

therefore we take a random sample of all possible permutated data instead (B=5000). For each of 

the sub samples of the permuted data we will assess DE genes for each fitted model at varying 

number of replications and compare the True Positive and False Positive rates across all the 

fitted models. 

After checking the capability of the models to reasonably control false positive rate and 

detect true DE genes on the simulated data from the theoretical models using Monte Carlo 

simulation, we will then simulate RNA-seq data from a real dataset in phase 2. The process in 

phase 2 is much the same as that conducted in phase1 with a slight difference in the simulation 

procedure. Unlike phase 1, in phase 2 we will simulate RNA-seq dataset from an existing large 

RNA-seq dataset using SimSeq approach. SimSeq is a data-based simulation algorithm proposed 

by Sam Benidt and Dan Nettleton (Benidt & Nettleton, 2015). The algorithm is thoroughly 

described in chapter 4. We will again fit each model (T-test, Permutation, edgeR, limma, LFC 

and DESeq2) to the simulated data from SimSeq and assess True Positive and False Positive 

rates across the fitted models and several samples sizes. For large number of replicates (≥12), 
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similarly to phase 1, we will take sub samples (B=5000) of the permuted data and compute the 

True Positive and False Positive rates. 

We expect the parametric tests to perform better in terms of True detection rate (with the 

false Positive rate fairly low by all approaches). However, our early results suggested that 

permutation consistently keeps the False Positive rate low compared to EdgeR, Deseq2, Limma, 

LFC and Voom. Although we expect the detection rate for the parametric tests to be better, we 

are interested in showing how much poorer the results are using the permutation test. For some 

clients, the permutation test may be preferable due to its intuitive nature *if* the loss of power is 

not too great. 

Additionally, the two phases as described above were carried out under balanced Two-

Sample scenario (Treatment and Control). Moreover, we also applied the scenario described in 

phase 1 phases to unbalanced sample sizes and see how the results compared to that of balanced 

sample sizes.  

We then attempt to answer the following research questions: 

• How do True Positive rate and False Positive (FP) rates compare across T-test, 

Permutation, Poisson, Negative Binomial, EdgeR, Limma-Voom and DESeq when 

applied to RNA-Seq data?  

• How does the sample size impact the permutation test results?  

In the following section, we will first describe more in depth the background of 

parametric methods used for RNA-Seq data (PoissonSeq, EdgeR, DESeq, Poisson and NB 

distribution), the use of Monte Carlo Simulation and SAS programming to estimate and test the 

simulated results, as well as past research. Second, we will discuss the methodology and 

simulation study approach. We will then present the results from the simulations, along with 
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some discussion on these results. Following the results, we will elaborate on the importance of 

the results. The last section of this paper will consist of the summation and the overall thoughts 

and findings of this simulation study. Figure 1 below summarizes the different stages of this 

study. 

 
Figure 1. Thesis workflow 
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CHAPTER 2. LITERATURE REVIEW 

In this chapter, we will review some of the historical literature associated with our paper. 

First, we will review the use of parametric methods assuming particular distribution to identify 

differentially expressed features from RNA-Seq data such as Poisson, Negative Binomial and 

Gaussian distribution. Then we will review some non-parametric models as a valid 

competitor/alternative to the parametric methods. More specifically, we will review the use of 

simple permutation to detect differentially expressed genes from RNA-Seq data. Finally, we will 

sum it up with review regarding the best model for RNA-Seq data. 

Parametric Methods for RNA-Seq Data 

Parametric tests rely on a set of underlying assumptions for the results to be valid. T-test 

for instance assumes the observations are independent from each other and that the samples are 

drawn from a normally distributed population. Additionally, it assumes equal variances across 

the treatment groups (Hunter & May 1993).  

Parametric tests can be robust when violation of the assumptions are not severe 

(Zimmerman, 1987; Sawilowsky & Blair, 1992) and when the sample size is relatively large 

(n≥30). In reality, samples used in experiments do not always satisfy underlying assumptions of 

the models used and researchers should carefully examine and choose appropriate models. Since 

RNA-seq generates count data, discrete probability distributions are generally appropriate to use 

to analyze differential gene expression (Robinson & Smyth, 2007). Traditional parametric 

models used to analyze differential gene expression in RNA-seq data including, but not limited 

to EdgeR, DESEq2, Limma, Voom, assume Poisson or Negative Binomial distributions 

(Robinson, McCarthy & Smyth, 2009; Anders & Huber, 2010).  
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A study conducted by Schurch et al. compared nine DGE tools on a clean dataset of 889 

million genes with 42 biological replicates for both control and treatment groups namely: 

baySeq, cuffdiff, DESeq, edgeR, limma, PoissonSeq, SAMSeq and DEGSeq. Three of the nine 

tools, EdgeR, DESeq and limma showed excellence performance. They successfully controlled 

their false positive rate (FPR), maintaining it consistently close or below 5% regardless of fold-

change threshold or number of replicates. These are the most widely‐used tools, with the 

exception of limma, suggesting that the majority of the RNAseq DE analyses in the literature are 

using the most appropriate tools for the job (Schurch et al, 2015). Furthermore, the study 

suggested that for a low number of replicates (n ≤ 12) with high capture of significantly 

differentially expressed (SDE) genes, EdgeR is preferred to limma or DESeq due to its superior 

TP rate identification. And for sufficient numbers of replicates (n ≥ 12), in order to ensure that 

the majority of the true SDE genes is captured it is important to minimize FPR. The slightly 

better performance of DESeq makes it the best tool of choice. Inversely, PoissonSeq, SAMSeq, 

DEGSeq, baySeq and cuffdiff all showed inferior performance compared to edgeR, DESeq and 

limma. 

Given the complexity of RNA-seq datasets, the frequency distribution of the read counts 

does not portray a clear distinction in two classes of genes. Therefore, it is difficult to decide 

whether low read counts are to be considered expressed genes or not. This problem is addressed 

by fitting a statistical model that assumes the data is from a mixture of two distributions (Gunter, 

Koryu & Vincent, 2013). A mixture model of exponential distribution for low read counts 

(transcripts from inactive genes) and Negative binomial distribution for actively transcribed 

genes was applied to a number of RNA-seq data sets and the researcher found that the model 

fitted the data very well (Gunter, Koryu & Vincent, 2013). Gunter, Koryu and Vincent compared 
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the calculated criterion used for distinguishing between expressed and non-expressed genes and 

found a consistent results among data sets, which suggests that genes with high TPM values 

(more than two transcripts per million transcripts) are highly likely from expressed genes. Hence, 

regression models can sufficiently detect the not actively expressed class of genes and thus, 

provides a practical criterion to separate genes in expressed and non-expressed groups, 

smoothing the interpretation of RNA-seq data. 

It is well known that the negative binomial distribution often has its largest mass not far 

from the mean, so, it is very unlikely that the counts follow a negative binomial distribution. If 

we still treat the distribution of counts as negative binomial, these large counts should be 

‘outliers’. There are possible reasons for outliers. A gene may be very highly expressed in one 

individual but not others. In this case, this high expression is a characteristic of this individual, 

and not related to the outcome. 

For univariate count data, zero-inflated negative binomial (ZINB) models have been well 

accepted and have greater capability than Poisson, zero-inflated Poisson, and negative binomial 

models in terms of handling augmented zeros and overdispersion. While negative binomial 

models have been extensively used for bulk RNA-seq data without much zero-inflation (Love et 

al., 2014, Robinson et al., 2010), ZINB models are typically used for scRNA-seq (single cell 

RNA-seq) data (van den Berge et al., 2018, Risso et al., 2018). 

RNA-seq data sets are not the only count data. In fact, counts data are found in many 

fields such as business, health, insurance, social sciences, etc. The initial motivation of this study 

came from an RNA-seq dataset with an excess of zeroes also known as zero inflated data. 

Models such as zero-inflated Poisson (ZIP) or zero-altered Poisson (or the hurdle model) have 

been used across several fields to handle excessive zeros in data sets. The difference between 
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ZIP and the hurdle models resides in how they the treat the types of zeros. The hurdle model 

assumes a zero-truncated Poisson, i.e. the distribution of the response variable cannot be null, 

whereas the count process of ZIP can result in zero (Zuur et al, 2009). One main assumption of 

Poisson regression is the equality of the mean and variance. In reality, this assumption does not 

always hold. Researchers often turn to Negative Binomial models when faced with over-

dispersion in their data even in the non-zero portion of the distribution. Unlike the Poisson 

distribution with a single parameter (μ), the Negative Binomial distribution contains an 

additional parameter to account for over-dispersion. Therefore, the zero-inflated negative 

binomial (ZINB) model and zero-altered negative binomial (ZANB) model are implemented to 

handle both zero-inflation and over-dispersion. 

Non-Parametric Methods for RNA-Seq Data 

Nonparametric methods are a way to finesse the difficulty of modelling counts. Without 

relying on underlying distributional assumptions, they can give reliable results on a vast variety 

of data sets. As Lehmann stated, because of this property, nonparametric statistics are good 

alternatives to parametric statistics under non-normal conditions. Although nonparametric tests 

are robust to departures from normality, they do still require the assumptions of independence of 

observations, random data selection, and a continuous distribution of data (Kerlinger & Lee, 

2000). 

As discussed above, existing methods assume an underlying parametric distribution. 

Issues with parametric distributions arise when the distributional assumptions do not hold which 

may have negative impact on the performance of the model, and that is often the case especially 

for large sample sizes where outliers usually exist (Li and Tibshirani, 2013). Yang, Arul and Hui 

proposed a non-parametric approach (rSeqNP) for testing DE genes and differential splicing 
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(DS) from RNA-seq data. rSeqNP is an R package that extends non-parametric approach for 

detecting DE (Li and Tibshirani, 2013) and aims at detecting both DE and DS. Using simulation 

methods, the authors found that their proposed method controlled Type I error rate and achieved 

good statistical power for moderate sample and effect sizes (Yang et al, 2015). In addition to not 

being subject to a parametric underlying distribution, rSeqNP is also flexible in handling various 

types of experimental designs. One possible limitation of rSeqNP is the fact that it relies on 

expression estimates for genes. However, the major drawback of rSeqNP is that it exhibits low 

power for small sample sizes (Yang et al, 2015). 

Permutation tests are not without pitfalls especially when sample sizes are unbalanced or 

data are skewed (Chihara and Hesterberg, 2011). In the case of two--sided hypothesis tests with 

an unbalance design, when the two treatment groups exhibit different spread, the permutation 

test is not robust (Chihara and Hesterberg, 2011). Unfortunately, crucial problems related to 

permutation tests are yet to be addressed, and there is an apparent absence of warnings in the 

literature about the combined effect of skewness and unbalanced designs (William and Brinljey, 

2022).
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CHAPTER 3. SIMULATING RNA-SEQ DATA USING MONTE CARLO SIMULATION 

In this chapter, we will describe the data generation process and method used to conduct 

our analysis as well as the results obtained from the Monte Carlo simulation. 

Methodology 

Data Simulation Overview 

Our main goal for conducting this simulation study is to demonstrate that simple 

permutation is a valid candidate for detecting differentially expressed genes in RNA-seq data 

sets when compared to the traditional parametric methods. We first started in our preliminary 

research by assessing Type I error and Power rates (more details are provided below) under 

various conditions. Afterward, we will be estimating True Positive (TP) and False Positive (FP) 

rates when the parametric methods’ underlying distributions are met. We will then violate the 

underlying distribution assumptions and obtain the corresponding estimated True Positive (TP) 

and False Positive (FP) rates. 

We simulated 5,000 genes with two groups each with equal sample sizes ranging from 7 

to 30. We then set twenty percent (20%) of the simulated genes to be differentially expressed 

(the two group means are different by a defined effect size) and the other eighty percent (80%) 

are equally expressed (the two groups have equal means). For clarity, we called the first group 

the Control group and the second the Treatment group. We used SAS for this simulation and 

considered four main data-generating distributions namely: Normal, Poisson, Zero Inflated 

Poisson and Negative Binomial distribution. By definition, the rejection rate is estimated by 

counting the number of times the null hypothesis was rejected and dividing it by 5000. 

Specifically, we simulated data from Normal, Poisson, Negative Binomial and Zero 

Inflated Poisson distribution with a mean equal to 30. For the normal distribution, we set the 
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standard deviation to be equal to 5. Moreover, Zero Inflated data was generating as a mixture of 

two data-generating processes: the Poisson and Uniform distributions. We chose a 20% level of 

zeroes in the data and then randomly assigned zero to a sample from the uniform distribution 

with 20% probability of success and the rest of the sample is from Poisson with mean 30. The 

process just described was carried out for varying levels of sampling effort for each gene. For 

our study, we are exploring a randomized balanced design (equal sample size for the Control and 

Treatment group) with sample size levels from 5, 7, 10, 12, 15, 20 and 30. 

The list of parameters used for our simulation study is provided in details below with 

their respective definitions: 

• Gene: the number of genes simulated for each underlying distribution; 5,000 genes 

were used in this study. 

• N_C: number of Control specimens. 

• N_T: number of Treatment specimens. 

• Lambda_C: Poisson parameter for the Control group. 

• Lambda_T: Poisson parameter for the Treatment group. 

• Mu_C: the mean of the normal distribution for the Control group. 

• Mu_T: the mean of the normal distribution for the Treatment Group. 

• Sigma_C: the standard deviation of Control gene population. 

• Sigma_T: the standard deviation of Treatment gene population 

• N_Perms: number of random permutations for the permutation test. 

Differential Gene Expression Assessment 

Whenever the observed difference or change in read counts or expression levels between 

the two conditions of an RNA-seq data set (assuming two groups Control and Treatment) is 
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statistically significant, the gene is declared to be differentially expressed (DE). Therefore, it is 

important to find the underlying distribution of the data when fitting a parametric method to 

identify differentially expressed genes. In practice, researchers do not always know the statistical 

distribution of the data and a violation could lead to an incorrect detection.  

In this present study, the focus is to investigate the differential gene expression analysis 

based on the permutation test and how it compares with traditional parametric method used for 

gene expression analysis. The framework for this simulation study is as follow: We simulated 

5,000 genes of two groups (control and Treatment) each of size n from the same underlying 

distribution. For our simulated data to exhibit the features of a true RNA-seq dataset, 80% of the 

data is set to be equally expressed while 20% is set to be differentially expressed. For the 

differentially expressed genes, we considered 0.5σ and 1σ effect sizes. By 0.5σ effect size we 

refer to the mean difference between a pair of gene in Control and Treatment is equal to half its 

standard deviation. For example, suppose that we have a µC = 30 and σC =5 for the Control 

group; a 0.5σ effect size will correspond to µT = µC - 0.5σ = 30 – 2.5 =27.5 and standard 

deviation σT =5 for the Treatment group such that µT - µC = 2.5. In general, as the effect sizes 

increase it becomes easier to detect any difference in means; namely, the detection rate of the test 

increases as well. 

To detect DE genes, we then fit the models (T-test, Poisson, Negative Binomial, 

Permutation test and Zero Inflated Poisson regression) to each gene and count the number of 

times the null hypothesis for the test below was rejected: 

H0: µC = µT 

Ha: µC ≠ µT 
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The rejection rate (rejection rate or p-value refer to how often the null hypothesis was 

rejected) for each underlying distribution is computed by dividing the total count of null 

hypothesis that was rejected by 5,000 (number of simulated genes). For a 5% significance level 

we computed the rejection rate for each combination of underlying distributions and sampling 

efforts. 

True Positive Rate 

The True Positive rate (TPR; power), also called sensitivity, is the probability that a gene 

that is declared to be differentially expressed is actually differentially expressed. The rate is 

computing by tallying the true DE genes from the list of genes declared to be DE genes by a 

fitted model over the total number of the simulated True DE genes (1000). The TPR was 

calculated as follow:  

𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

    

Where TP is true positive, FN is false negative 

False Positive Rate 

The False Positive rate, also often called Type I error in statistics, is when an equally 

expressed (EE) gene is falsely declared as DE gene by a fitted model. It is calculated as the ratio 

of the number genes wrongly classified as DE genes over the total number of actual negative 

events (EE genes).  

𝐹𝐹𝐹𝐹𝐹𝐹 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇
 

Where FP is false positive, TN is true negative 

We use the True Positive and False Positive rate to measure the accuracy of our fitted 

model. If the difference in True Detection rate is not too large, the model that minimizes the false 

positive rate may be of interest. This may vary from one field to another. For some researchers 
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and type of studies, controlling the false positive rate is a very important. Therefore, a model that 

consistently keeps the false positive rate very low is preferred. 

Proposed Test 

In this study, our main goal is to provide evidence that simple permutation test is a valid 

and comparable alternative for analyzing RNA-seq data. Permutation and Randomization are 

often interchangeable; however, the distinction between the two varies among the statistical 

community (Christensen & Zabriskie, 2021). Some authors consider randomization test as an 

approximate permutation test that takes only a random sample of all possible permutation 

(Christensen & Zabriskie, 2021). Others however, differentiate permutation as those based on the 

assumption of random sampling from two identical population distribution while randomization 

are based on the assumptions of random assignment of group labels (Onghena, 2018). We refer 

to permutation test regardless of: (i) whether groups are obtained by random assignment or 

random sampling, and (ii) whether the groups are obtained by taking full permutation or partial 

random sample (Christensen & Zabriskie, 2021). 

 We are simulating data from Normal, Poisson, Negative Binomial and Zero Inflated 

Poisson distribution and then fit traditional parametric methods used for the simulated genes and 

then compare the results to that of simple permutation test. We do not expect the permutation test 

to be superior; if the permutation test yields a power that is close enough to the gold standard 

then that is sufficient. Particularly, we are interested in how Permutation test compares to the 

traditional methods with respect to controlling the False Positive rate while yielding a 

competitive True Detection rate. 

For the simple permutation test, we defined the test statistic as follows: 

• When sampling from Normal, Poisson distribution and Negative Binomial 
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Consider our hypothesis: 

H0: µC = µT 

Ha: µC ≠ µT 

Where µC and µT represent the means of the control and treatment groups respectively 

and δ = µC - µT the true difference in the means. We define 𝐶𝐶̅ and 𝑇𝑇� the means obtained from the 

samples from the control group (C) and the treatment group (T). The test statistics for our test is 

given as: 

D = 𝐶𝐶̅ - 𝑇𝑇� 

Under the null hypothesis, the expected value of D E(D) = 0. Moreover, suppose that the 

test statistic from our sample is defined as d = 𝑐𝑐̅ - 𝑡𝑡̅. By definition, a two-tailed p-value based on  

𝐶𝐶̅ - 𝑇𝑇� is: 

p-value = Pr (| 𝐶𝐶̅ - 𝑇𝑇� | ≥ | 𝑐𝑐̅ - 𝑡𝑡̅| │H0 is true) = Pr (|D| ≥ |d| │H0 is true) 

       = Pr (D ≤ ─ |d| │H0 is true) + Pr (D ≥ |d| │H0 is true) 

For our simulation study, we sampled 5,000 genes with two groups (Control and 

Treatment). Unlike parametric models assuming known distribution, such as the Gaussian or 

Student’s t, to calculate p-value for the permutation test, we first build the sampling distribution 

for our test statistic D = 𝐶𝐶̅ - 𝑇𝑇� by aggregating all (or a sample of) possible  values of the test 

statistic obtained by rearranging the group labels associated with the observations. For small 

samples, less or equal to 10, we did a full permutation test whereas for large sample size, greater 

or equal to 12, we did a partial permutation (or randomized permutation) of B size. Here we set 

B level at 5000 randomly selected permutations. The p-value is then obtained by finding the 

proportion of the permutation distribution that is at least as extreme as the actual test statistic. 

Specifically, we first compute the test statistic from the original sample as d = 𝑐𝑐̅ - 𝑡𝑡̅. And then, 
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the reference distribution is built by computing the B permutation test statistics d1, …, dB where 

di = 𝑐𝑐𝚤𝚤�  - 𝑡𝑡𝚤𝚤� , and 𝑐𝑐𝚤𝚤�  and 𝑡𝑡𝚤𝚤� are the means of the control and treatment groups respectively when 

labels have been reassigned according to the ith permutation, or random shuffling, of the group 

labels. Our two-sided permutation test p-value is then calculated as: 

𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =  
∑ 𝐼𝐼(|𝑑𝑑𝑑𝑑|≥|𝑑𝑑|)
𝐵𝐵
1

𝐵𝐵
  

𝑃𝑃 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =  
∑ 𝐼𝐼(𝑑𝑑𝑑𝑑 ≤ −|𝑑𝑑|)
𝐵𝐵
1

𝐵𝐵
+ 
∑ 𝐼𝐼(𝑑𝑑𝑑𝑑 ≥|𝑑𝑑|)
𝐵𝐵
1

𝐵𝐵
 

Where I, the indicator function, is equal to 1 when the condition is true and 0 otherwise. 

• When sampling from Zero Inflated Poisson distribution 

For genes simulated from the Zero inflated distribution, we had to find a way to 

incorporate the zero in the mean estimation. We sampled 5,000 genes from a mixture of Poisson 

and Uniform distribution. We set the probability of success to 20% for the Uniform distribution. 

In other words, there is a 20% chance of observing a 1 from the Uniform distribution. If the 

event is 1 then we set y = 0 otherwise y = Pois (Lambda= λ). Now our random variable y follows 

a modified version of regular Pois (λ) distribution known as Zero Inflated Poisson (ZIP) 

distribution with a density function defined as:  

P(Y = k) = �
π + (1 –  π ) exp(−λ)                 if k =  0 

 (1 –  π)exp(−λ) λ
𝑘𝑘

k!
            if k ∈  {1, 2, . . . } 

 

Where 0 ≤ π ≤ 1 and λ ≥ 0. 

The parameter π gives the extra probability thrust at the value 0. When it vanishes, ZIP 

(π, λ) reduces to Pois (λ). 

The mean and variance of the ZIP are: 

E(Y) = (1 – π) λ 
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V(Y) = (1 – π) (1 + π λ) λ 

We can easily derive λ from the expected value of the ZIP as follow: 

λ =  
𝐸𝐸(𝑌𝑌)

(1 –  π)
  

From the simulated samples we can estimate the mean of the ZIP and the parameter π. 

Recall that π is the probability that y is 0. Therefore, we could estimate π by dividing the number 

of 0 by the sample size. 

The test statistics for the simple permutation test remains the same as described 

previously with a slight modification in the permutation process. We quickly realized that a 

simple full permutation or a partial permutation of the control and treatment group lead to a very 

poor Type I error. Both Control and Treatment contains 0 level at approximately 20% of their 

size. Shuffling the two groups could cause the data to be skewed with all the zeros or most of the 

zeros to be in one group and nothing or very few zeros in the other. After many trial and error, 

we proposed a modified permutation method. Instead of shuffling all the observations, we held 

the proportion of zero constant in each group and permuted only the non-zero observations. Once 

we obtained all the permuted samples from the modified permutation process, we then computed 

the means using the adjusted mean formula discussed above. 

The test statistic is computed in the same fashion as described above. The only difference 

here is the permutation procedure. When sampling from Normal Poisson and Negative Binomial 

distribution we shuffled all the data in Control and Treatment group. However, when sampling 

from Zero Inflated Poisson, we modified the permutation procedure by keeping the proportion of 

zero constant in each group and permuting only the non-zero values. 
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Zero Inflated Poisson 

Most popular statistical software such as SAS and STATA have implemented packages 

to fit ZIP and ZINB regression models. However, they are not yet available in SPSS. In SAS, 

one may use either PROC GENMOD or PROC COUNTREG for ZIP and ZINB models. For our 

simulation study, we chose to work with SAS and specifically we used the GENMOD procedure 

to fit the data. 

The ZIP model has two components, one component is to model the probability of being 

the structural zeros ρ using the logistic regression and the other component is to model the 

Poisson mean μ. Specifically we have the ZIP model defined as follow: 

Logit (ρi) = Ui
TβU, log (μi) = Vi

Tβv, 

where the subscript i indicates the ith observation, U and V (which may overlap) represent two 

sets of explanatory variables that will be linked to ρ and μ, respectively, in the ZIP model, 

and βU and βV are the vectors of parameters for the logistic and Poisson components. 

In the ZIP model above, the likelihood of structural zero is model by the logit link 

function; other link functions can also be used such as probit and complementary loglog. 

Therefore, the existence of structural zeros not only leads to a more complex distribution, but 

also provides an additional link function for modeling the effect of explanatory variables for the 

occurrence of such zeros. In other words, the ZIP model enables us to better understand the 

effect of covariates by distinguishing the effects of each specific covariate on structural zeros 

(likelihood for having no expression) and on the count response (mean of Poisson for a non-null 

expression). 
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Simulation Study Outline 

A synopsis of this simulation study is provided below in detail: 

1. Detection rate assessment with two groups: µC = µT

a) Four underlying distributions: Normal, Poisson, Negative Binomial and Zero Inflated

Poisson distribution.

b) Seven levels of sampling effort: nC = nT =5, nC = nT =7, nC = nT =10,  nC = nT =12,

nC = nT =15, nC = nT =20 and nC = nT =30 for each combination of treatments and

underlying distribution.

c) Fitted models: T-test, Permutation test, Poisson, NB, ZIP, ZINB.

d) Simulation was conducted taking 5,000 genes for each combination of parameters

defined above.

SAS Code 

The SAS and R code used for this simulation study is provided in Appendix C. We 

provided the SAS code for the simulation from one underlying distribution since to get the others 

we just changed the underlying distribution to the desired distribution and everything else 

remains the same. 

Monte Carlo Simulation Results 

In this section, we will first cover the results obtained from our preliminary research, and 

then discuss the results from the detection rate assessment as well as for the TP and FP rate 

comparison for each combination of underlying distribution, fitted model and sample sizes we 

considered in the case of two populations scenarios. 
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Preliminary Research Results 

In our preliminary study, we assessed the Type I error as well as the Power for of the 

fitted models for each underlying distribution we considered in the case of two populations 

scenarios. 

Type I error Assessment: µC = µT 

Type I error is defined as the probability of rejecting the null hypothesis when in fact it is 

true. For this simulation study we set our significance level alpha at α = 0.05 and expect the 

estimated Type I error to be in the neighborhood of 5%. 

We sampled two random groups (Control and Treatment) from underlying distribution 

using three different models (Normal, Poisson and ZIP). The estimated Type I error was obtained 

based on these random samples assuming equals sample sizes for both Control and Treatment. 

Furthermore, we set the mean of the two groups to be equals to 30 and explored different 

sampling effort from 5, 7, 10, 12, 15, 20 and 30. For the Normal distribution we set the variance 

to be equals to 25 and for the Zero Inflated Poisson we set π=0.2; the mean remains the same for 

all underlying distribution (mean=30). 

The estimated Type I error when sampling from Normal Distribution (Normal with mean 

30 and standard deviation 5 for both Control and Treatment) is summarized in Table 1 below. 

The results suggest that, for all combination of sampling efforts and fitted models (T test, 

Permutation, Poisson and NB), Type I error is maintained near the stated rate of alpha α = 0.05. 

Similar results are obtained when sampling from Poisson distribution. As shown in Table 2, 

Type I error is maintained near 0.05 significance level with the exception of the Permutation test 

being a little conservative for sample sizes equal to 5 and 7. 
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Table 1. Normal samples - rejection rates (%) for fitted models µC = µT = 30 

Sampling  
Efforts  

Fitted Models 
T test   Permutation  Poisson  Negative 

Binomial  
nC= nT=5  4.73  4.98  5.29  5.38  
nC= nT=7  4.37  4.70  4.60  4.71  
nC= nT=10  4.36  4.50  4.48  4.71  
 
Table 2. Poisson samples - rejection rates (%) for fitted models µC = µT = 30  

Sampling  
Efforts  

Fitted Models 
T test   Permutation  Poisson  Negative 

Binomial  
nC= nT=5  4.37  4.02  4.81  4.81  
nC= nT=7  4.55  4.18  4.86  4.95  
nC= nT=10  5.21  4.85  5.37  5.44  
 

Tables 3, 4, 5, 6, 7 and 8 below display estimated Type I error when sampling from 

Normal and Poisson distribution respectively for large samples (12, 15 and 20) at different 

random permutation sampling sizes. For small samples (nC = nT ≤ 10) we performed a full 

permutation on the simulated data set. However, when the sample size is very large (nC = nT ≥ 

12) permutation becomes overwhelming. In this case we performed a partial permutation on the 

simulated data set. For our study, we considered three permutation sizes for our simulated data 

set: B = 1000, 5000 and 10,000. 

For all combination of underlying distributions, sample sizes and number of permutation 

(B) and fitted models, as shown from table 3 to table 8, Type I error is maintained near the stated 

significance level of 0.05. Let us note here that for B = 10,000 and sample size of 12 and 15 

(Table 8) the permutation test was a little conservative. 

 

 



 

25 

Table 3. Normal samples - rejection rates (%) for fitted models µC = µT = 30, B=1K 

Sampling  
Efforts  

Fitted Models 
T test   Permutation  Poisson  Negative 

Binomial  
nC= nT=12  4.89  5.08  4.91  5.32  
nC= nT=15  4.87  5.01  4.93  5.20  
nC= nT=20  5.19  5.36  5.22  5.55  
 
Table 4. Poisson samples - rejection rates (%) for fitted models µC = µT = 30, B=1K  

Sampling  
Efforts  

Fitted Models 
T test   Permutation  Poisson  Negative 

Binomial  
nC= nT=12  4.90  4.67  5.05  5.13  
nC= nT=15  5.04  4.76  5.06  5.30  
nC= nT=20  5.34  5.09  5.38  5.51  
 
Table 5. Normal samples - rejection rates (%) for fitted models µC = µT = 30, B=5K  

Sampling  
Efforts  

Fitted Models 
T test   Permutation  Poisson  Negative 

Binomial  
nC= nT=12  5.08  5.08  5.14  5.41  
nC= nT=15  5.38  5.33  5.34  5.64  
nC= nT=20  5.28  5.28  5.28  5.58  
 
Table 6. Poisson samples - rejection rates (%) for fitted models µC = µT = 30, B=5K  

Sampling  
Efforts  

Fitted Models 
T test   Permutation  Poisson  Negative 

Binomial  
nC= nT=12  4.83  4.42  4.83  4.93  
nC= nT=15  5.16  4.82  5.21  5.43  
nC= nT=20  4.81  4.38  4.82  5.12  
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Table 7. Normal samples - rejection rates (%) for fitted models µC = µT = 30, B=10K  

Sampling  
Efforts  

Fitted Models 
T test   Permutation  Poisson  Negative 

Binomial  
nC= nT=12  5.19  5.39  5.31  5.57  
nC= nT=15  4.82  4.96  4.83  5.26  
nC= nT=20  5.18  5.23  5.14  5.62  
 
Table 8. Poisson samples - rejection rates (%) for fitted models µC = µT = 30, B=10K  

Sampling  
Efforts  

Fitted Models 
T test   Permutation  Poisson  Negative 

Binomial  
nC= nT=12  4.74  4.47  4.86  4.94  
nC= nT=15  4.75  4.46  4.78  4.99  
nC= nT=20  4.80  4.52  4.79  4.83  
 

For genes from the ZIP distribution, we only looked at large and B = 1000 number of 

permutations. From Table 9 below we can conclude that type I error is maintained near the stated 

alpha value of 0.05 for all fitted model with the exception of NB and ZINB being too 

conservative. 

Table 9. ZIP samples - rejection rates (%) for fitted models µC = µT = 30, B=1K  

Sampling  
Efforts  

 Fitted Models  
T test   Permutation  ZIP  Poisson Negative 

Binomial  
ZINB 

nC= nT=12  5.10  4.78  4.90  3.43  2.10 3.15 
nC= nT=15  4.41  4.59  5.07  3.41  2.43 3.29 
nC= nT=20  5.18 4.66 4.85 4.27 3.38 3.18 
nC= nT=30  5.32  4.94  5.14  4.66  4.04 3.64 
 

The results obtained from the Type I error assessment for each combination of sampling 

efforts and underlying distributions, suggest that all the models fitted (T test, Poisson, Negative 

Binomial, Zero Inflated Poisson, Zero Inflated Negative Binomial and Permutation Test) control 

the Type I errors. Therefore, each of the above models are valid candidates to test the null 
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hypothesis that the means are equal using RNA-seq data. We will next discuss the results from 

the power comparison to decide whether a particular model is preferred over the rest. 

Power Comparison: µC ≠ µT 

After ensuring that all models maintained Type I error at below or near the stated 

significance level of α=0.05, we then conducted a power comparison under various conditions to 

check whether certain models performed better than other did. We considered a 0.5σ effect size 

for the power comparison. By 0.5σ effect size, we refer to the mean difference between a pair of 

gene in Control and Treatment is equal to half its standard deviation. For example, suppose that 

we have a µC = 30 and σC =5 for the Control group; a 0.5σ effect size will correspond to µT = µC - 

0.5σ = 30 – 2.5 =27.5 and standard deviation σT =5 for the Treatment group such that µT - µC = 

2.5. In general, as the effect sizes increase it becomes easier to detect any difference in means; 

namely, the power of the test increases as well. 

• Effect size: half sigma (0.5σ) 

The power is defined as the probability of rejecting the null hypothesis when in fact it is 

false. Simulating our observations from two populations with different means and setting the null 

hypothesis as H0: µC = µT makes the null hypothesis false. Tallying the number of times each of 

the models correctly detect the difference in the two groups (rejecting H0 since there are in fact 

different and dividing it by 10,000 will give us our estimated powers). This process was repeated 

for each combination of underlying distribution.  

For small sample sizes (nC = nT ≤ 10), when sampling from Normal and Poisson 

distribution, all fitted models (T test, Permutation, Poisson and NB regression) yielded a 

comparable power rate as shown in Tables 10-11 and Figures 2-3 respectively. NB is a little bit 

higher than the other models but the difference is n negligible. 
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Table 10. Normal samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, µ=30) 

Sampling  
Efforts  

Fitted Models 
T test   Permutation  Poisson  Negative 

Binomial  
nC= nT=5  9.89  10.45 10.68  10.88  
nC= nT=7  13.47  14.02 14.04 14.32 
nC= nT=10  18.20  18.55  18.37 18.98 
 

 
Figure 2. Normal samples - rejection rates (%) for various models µC≠µT (Effect size=0.5σ, 
µ=30) 

Table 11. Poisson samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, µ=30) 

Sampling  
Efforts  

Fitted Models  
T test   Permutation  Poisson  Negative 

Binomial  
nC= nT=5  9.96  9.48 11.00 11.12 
nC= nT=7  14.19  13.47 14.73 14.88 
nC= nT=10  18.71  17.89  18.99 18.34 
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Figure 3. Poisson samples - rejection rates (%) for various models µC≠µT (Effect size=0.5σ, 
µ=30) 

For large samples (nC = nT ≥12) we performed a partial permutation for the permutation 

test (B=1K, 5K, 10K). When sampling from Normal and Poisson distribution, all fitted models 

(T test, Permutation, Poisson and NB regression) yielded a comparable power rate at all 

permutation sample sizes level as shown in Tables 12-17 and Figures 4-9. 

Table 12. Normal samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, 
µ=30), B=1K 

Sampling  
Efforts  

Fitted Models 
T test   Permutation  Poisson  Negative 

Binomial  
nC= nT=12   21.19 21.43 21.13  21.70 
nC= nT=15  26.10 26.42 26.08 26.78 
nC= nT=20   32.72  33.04  32.73 33.70 
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Figure 4. Normal samples - rejection rates (%) for various models µC≠µT (Effect size=0.5σ, 
µ=30, B=1K) 

Table 13. Poisson samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, 
µ=30), B=1K 

Sampling  
Efforts  

Fitted Models 
T test   Permutation  Poisson  Negative 

Binomial  
nC= nT=12   22.43 21.57 22.73  23.02 
nC= nT=15  27.49 26.63 27.73 28.01 
nC= nT=20   35.09  34.36  35.17 35.52 
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Figure 5. Poisson samples - rejection rates (%) for various models µC≠µT (Effect size=0.5σ, 
µ=30, B=1K) 

Table 14. Normal samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, 
µ=30), B=5K 

Sampling  
Efforts  

Fitted Models 
T test   Permutation  Poisson  Negative 

Binomial  
nC= nT=12   20.99 21.35 21.16  21.75 
nC= nT=15  26.45 26.63 26.43 27.15 
nC= nT=20   34.11  34.49  34.05 35.26 
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Figure 6. Normal samples - rejection rates (%) for various models µC≠µT (Effect size=0.5σ, 
µ=30, B=5K) 

Table 15. Poisson samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, 
µ=30), B=5K 

Sampling  
Efforts  

Fitted Models 
T test   Permutation  Poisson  Negative 

Binomial  
nC= nT=12   22.37 21.59 22.70  22.87 
nC= nT=15  27.05 26.15 27.13 27.61 
nC= nT=20   34.89  33.98  34.97 35.49 
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Figure 7. Poisson samples - rejection rates (%) for various models µC≠µT (Effect size=0.5σ, 
µ=30, B=5K) 

Table 16. Normal samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, 
µ=30), B=10K 

Sampling  
Efforts  

Fitted Models 
T test   Permutation  Poisson  Negative 

Binomial  
nC= nT=12   21.88 22.11 21.93  22.47 
nC= nT=15  25.59 25.88 25.65 26.49 
nC= nT=20   33.43  33.45  33.30 34.23 
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Figure 8. Normal samples - rejection rates (%) for various models µC≠µT (Effect size=0.5σ, 
µ=30, B=10K) 

Table 17. Poisson samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, 
µ=30), B=10K 

Sampling  
Efforts  

Fitted Models 
T test   Permutation  Poisson  Negative 

Binomial  
nC= nT=12   22.28 21.49 22.46  22.72 
nC= nT=15  26.47 25.59 26.73 27.20 
nC= nT=20   35.04  33.78  35.11 35.28 
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Figure 9. Poisson samples - rejection rates (%) for various models µC≠µT (Effect size=0.5σ, 
µ=30, B=10K) 

Table 18 below summarizes the power rate from all fitted model (T test, Permutation, 

Poisson and NB regression) when we sample from ZIP distribution. We can see that the 

permutation test and the ZIP yielded comparable power whereas T test, Poisson, Negative 

Binomial and ZINB displayed a poor power with T test exhibiting the lowest power rate. 

Table 18. ZIP Samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, µ=30, 
π=0.2), B=1K  

Sampling  
Efforts  

 Fitted Models  
T test   Permutation  ZIP  Poisson Negative 

Binomial  
ZINB 

nC= nT=12  7.65  17.39  20.36  6.09 4.56 14.46 
nC= nT=15  7.63  21.28 23.56 6.48  5.36 17.19 
nC= nT=20  8.80 28.00 30.29 7.78 6.91 22.80 
nC= nT=30  10.71  40.54 42.18 9.99  9.26 33.80 
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Figure 10. ZIP samples - rejection rates (%) for various models µC≠µT (Effect size=0.5σ, µ=30, 
π=0.2, B=1K) 

Differential Expressed Genes Assessment 

Whenever a fitted model detected a significant difference between the mean of the two 

conditions of our simulated RNA-seq data (Control vs Treatment), the gene is declared to be 

differentially expressed. The detection rate is then obtained by tallying the total DE genes over 

the simulation size (5000). 

We sampled two random groups (Control and Treatment) from underlying distribution 

using three different models (Normal, Poisson and Negative Binomial). The estimated detection 

rate, true positive and false positive rate were obtained based on these random samples under two 

different designs: Balanced (equal sample sizes for both Control and Treatment; n1=n2) and 

Unbalanced (unequal sample sizes for both Control and Treatment; n1≠n2). Furthermore, we set 

80% of the simulated data to be equally expressed (µ1=µ2=30) while the other 20% are set to be 

DE genes (µ1≠µ2) with a 1σ effect size. 

Various sample sizes were considered from 5, 7 to 30. Our early results suggested that 

permutation tests suffer from the granularity issue with relatively small sample sizes. Note that 
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the smallest possible value for the p-value is 1/N where N represents the number of permutation 

possible. We refer to 1/N as the granularity limit. For large sample sizes, since N is too large for 

the permutation test to be computationally achievable, we take a partial permutation B for our 

simulation and therefore the minimum value the p-value can take is 1/B. it is important to note 

that 1/B can much larger than the permutation limit 1/N. To obtain a small p value, a larger 

number of B may be required to an accurate estimate of it. Due to these issues, the results are 

very poor compared to the parametric methods regardless of the design. For the rest of the study 

we will focus on the following sample sizes: 10, 15, 20, 25 and 30. 

Balanced Design: n1=n2 

When sampling from Normal distribution (Normal with mean µ=30 and standard 

deviation σ=5) with a 1σ effect size, all fitted models (T test, Permutation, Poisson and NB 

regression) yielded a comparable detection rate as shown in Table 19. As the sample size 

increases, the number of genes declared to be differentially expressed increases as well. 

However, we are interested in the quality of the model to detect the True differentially expressed 

genes with minimal error. Negative Binomial tend to detect more DE genes compare the other 

models but the difference is very small. For instance, for sample sizes nC= nT=25, NB correctly 

detected 924 genes out of 1000, Poisson was second with 923 and Permutation was third with 

922 genes. The difference is about two extra genes. It appears that all fitted models perform 

relatively well when it comes to detecting True DE genes when the effect size is relatively large.  

The last column in Table 19 provides the false positive rate which indicate the proportion 

of genes that were incorrectly declared to be DE genes. Overall, permutation and Poisson 

consistently had a lower False Positive rate for all sample sizes compared to Negative Binomial 

as shown in Figure 11. Permutation and Poisson were somewhat similar, with Poisson slightly 
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lower when the sample sizes are 15 and 20. Permutation however, had a lower FP rate when the 

sample sizes are 25 and 30. So it was not consistent to decide which of Permutation and Poisson 

keep lower FP rate. But clearly both controlled FP rate lower than Negative Binomial. As 

expected, t-test on the other hand had the overall lower FP rate. This is expected as the 

underlying distribution is Normal but t-test also had relatively the smallest True Positive rate 

(slightly lower than the others). 

Table 19. Normal samples - detection rates (%) for fitted models 

Fitted Models Sampling 
Efforts 

Actual Detected True DE Gene True Positive rate 
(%) 

False Positive 
rate (%) 

T-test 

nC= nT=10 1000 722 546 54.60 4.40 
nC= nT=15 1000 968 763 76.30 5.13 
nC= nT=20 1000 1078 862 86.20 5.40 
nC= nT=25 1000 1119 921 92.10 4.95 
nC= nT=30 1000 1149 968 96.80 4.53 

Permutation 

nC= nT=10 1000 733 551 55.10 4.55 
nC= nT=15 1000 977 765 76.50 5.30 
nC= nT=20 1000 1080 866 86.60 5.35 
nC= nT=25 1000 1121 922 92.20 4.98 
nC= nT=30 1000 1146 967 96.70 4.48 

Poisson 

nC= nT=10 1000 725 543 54.30 4.55 
nC= nT=15 1000 968 761 76.10 5.18 
nC= nT=20 1000 1076 861 86.10 5.38 
nC= nT=25 1000 1124 923 92.30 5.03 
nC= nT=30 1000 1149 967 96.70 4.55 

Negative 
Binomial 

nC= nT=10 1000 748 557 55.70 4.78 
nC= nT=15 1000 1001 766 76.60 5.88 
nC= nT=20 1000 1091 864 86.40 5.68 
nC= nT=25 1000 1138 924 92.40 5.35 
nC= nT=30 1000 1180 966 96.60 5.35 
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Figure 11. Comparing FP rate across fitted model when sampling from Normal n1=n2 

Table 20 below summarizes the simulation results when the underlying distribution is 

Poisson (Poisson with mean lambda=30). We see similar pattern as normal distribution samples. 

The difference in true DE genes is very small across fitted models with Poisson and Negative 

Binomial closely detecting about the same number. As the sample sizes increase, the models 

detected more True DE genes and Permutation becomes very close in True detection rate to 

Poisson and Negative Binomial. The performance of permutation is very satisfying and 

competitive to its parametric counterparts. Interestingly, Permutation consistently had the lowest 

False Positive rate across all sample sizes with T-test second as displayed in Figure 12. This is in 

line with our early studies that showed that Permutation does a better job at controlling False 

Positive rates - lower than Poisson and Negative binomial. 
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Table 20. Poisson samples - detection rates (%) for fitted models 

Fitted Models Sampling 
Efforts 

Actual Detected True DE Gene True Positive rate 
(%) 

False Positive 
rate (%) 

T-test 

nC= nT=10 1000 768 578 87.80 4.75 
nC= nT=15 1000 987 778 77.80 5.23 
nC= nT=20 1000 1089 888 88.80 4.93 
nC= nT=25 1000 1167 958 95.80 5.23 
nC= nT=30 1000 1158 976 97.60 4.55 

Permutation 

nC= nT=10 1000 749 569 56.90 4.50 
nC= nT=15 1000 959 767 76.70 4.80 
nC= nT=20 1000 1078 888 88.80 4.75 
nC= nT=25 1000 1152 956 95.60 4.90 
nC= nT=30 1000 1151 974 97.40 4.43 

Poisson 

nC= nT=10 1000 780 582 58.20 4.95 
nC= nT=15 1000 990 775 77.50 5.38 
nC= nT=20 1000 1090 891 89.10 4.98 
nC= nT=25 1000 1170 959 95.90 5.28 
nC= nT=30 1000 1162 976 97.60 4.65 

Negative 
Binomial 

nC= nT=10 1000 781 581 58.10 5.00 
nC= nT=15 1000 988 775 77.50 5.33 
nC= nT=20 1000 1100 893 89.30 5.18 
nC= nT=25 1000 1173 955 95.50 5.45 
nC= nT=30 1000 1165 976 97.60 4.73 

 

 
Figure 12. Comparing FP rate across fitted model when sampling from Poisson n1=n2 
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however consistently kept the False Positive rate lower across all sample sizes (see Figure 13). 

Negative Binomial tends to overestimate probably due to a larger variation in the data which also 

lead to slightly higher False Positive rate. Thus far, Permutation not only appeared to be 

competitive when compared to Poisson and Negative Binomial regression but most importantly 

it consistently had a better control of the False Positive for all combination of sample sizes and 

underlying distribution with a few exceptions with Normal data where we saw Poisson slightly 

lower when the sample sizes were 15 and 20. 

Table 21. Negative Binomial samples - detection rates (%) for fitted models 

Fitted Models Sampling 
Efforts 

Actual Detected True DE Gene True Positive rate 
(%) 

False Positive 
rate (%) 

T-test 

nC= nT=10 1000 874 680 68.00 4.85 
nC= nT=15 1000 1042 845 84.50 4.93 
nC= nT=20 1000 1143 937 93.70 5.08 
nC= nT=25 1000 1164 969 96.90 4.88 
nC= nT=30 1000 1205 989 98.90 5.40 

Permutation 

nC= nT=10 1000 869 676 67.60 4.83 
nC= nT=15 1000 1032 841 84.10 4.78 
nC= nT=20 1000 1127 937 93.70 4.75 
nC= nT=25 1000 1155 967 96.70 4.70 
nC= nT=30 1000 1193 989 98.90 5.10 

Poisson 

nC= nT=10 1000 881 677 67.70 5.10 
nC= nT=15 1000 1036 834 83.40 5.05 
nC= nT=20 1000 1143 939 93.90 5.10 
nC= nT=25 1000 1167 967 96.70 5.00 
nC= nT=30 1000 1203 989 98.90 5.35 

Negative 
Binomial 

nC= nT=10 1000 882 674 67.40 5.20 
nC= nT=15 1000 1039 834 83.40 5.13 
nC= nT=20 1000 1143 937 93.70 5.15 
nC= nT=25 1000 1168 966 96.60 5.05 
nC= nT=30 1000 1204 989 98.90 5.38 
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Figure 13. Comparing FP rate across fitted model when sampling from NB n1=n2 

Unbalanced Design: n1≠n2 

Given the competitive performance of Permutation test and its capability to control False 

Positive rate in the samples balanced design scenario, we decided to run a few unbalanced data 

sets and assess Permutation performance compared to Poisson and Negative Binomial. The 

results obtained are summarized in Tables 22, 23, 24 when sampling from Normal, Poisson and 

Negative Binomial distribution respectively. We see similar trend as for the balanced scenario. 

All models exhibited comparable True DE genes detection rate. Referring to Figures 14, 15 and 

16, Permutation kept the False Positive the lowest overall. 
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Table 22. Normal samples - detection rates (%) for fitted models  
Fitted Models Sampling 

Efforts 
Actual Detected True DE Gene True Positive rate 

(%) 
False Positive 

rate (%) 

T-test 

nC=15 nT=10 1000 806 621 62.10 4.63 
nC=20 nT=10 1000 881 686 68.60 4.88 
nC=20 nT=15 1000 989 793 79.30 4.90 
nC=30 nT=15 1000 1081 872 87.20 5.23 

Permutation 

nC=15 nT=10 1000 811 628 62.80 4.58 
nC=20 nT=10 1000 894 707 70.70 4.68 
nC=20 nT=15 1000 989 794 79.40 4.88 
nC=30 nT=15 1000 1075 880 88.00 4.88 

Poisson 

nC=15 nT=10 1000 808 628 62.80 4.50 
nC=20 nT=10 1000 889 704 70.40 4.63 
nC=20 nT=15 1000 985 795 79.50 4.75 
nC=30 nT=15 1000 1074 877 87.70 4.93 

Negative 
Binomial 

nC=15 nT=10 1000 822 629 62.90 4.83 
nC=20 nT=10 1000 904 710 71.00 4.85 
nC=20 nT=15 1000 1002 796 79.60 5.15 
nC=30 nT=15 1000 1094 876 87.60 5.45 

 

 
Figure 14. Comparing FP rate across fitted model when sampling from Normal n1≠n2 
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Table 23. Poisson samples - detection rates (%) for fitted models 

Fitted Models Sampling 
Efforts 

Actual Detected True DE Gene True Positive rate 
(%) 

False Positive 
rate (%) 

T-test 
nC=15 nT=10 1000 929 723 72.30 5.15 
nC=20 nT=10 1000 1047 848 84.80 4.98 
nC=30 nT=15 1000 1086 892 89.20 4.85 

Permutation 
nC=15 nT=10 1000 900 706 70.60 4.85 
nC=20 nT=10 1000 1038 834 83.40 5.10 
nC=30 nT=15 1000 1070 893 89.30 4.43 

Poisson 
nC=15 nT=10 1000 910 711 71.10 4.98 
nC=20 nT=10 1000 1049 842 84.20 5.18 
nC=30 nT=15 1000 1076 894 89.40 4.55 

Negative 
Binomial 

nC=15 nT=10 1000 914 711 71.10 5.08 
nC=20 nT=10 1000 1049 834 83.40 5.38 
nC=30 nT=15 1000 1086 897 89.70 4.73 

 

 
Figure 15. Comparing FP rate across fitted model when sampling from Poisson n1≠n2 
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Table 24. Negative Binomial samples - detection rates (%) for fitted models  
Fitted Models Sampling 

Efforts 
Actual Detected True DE Gene True Positive rate 

(%) 
False Positive 

rate (%) 

T-test 
nC=15 nT=10 1000 942 739 73.90 5.08 
nC=20 nT=15 1000 1071 885 88.50 4.65 
nC=30 nT=15 1000 1142 925 92.50 5.43 

Permutation 
nC=15 nT=10 1000 950 750 75.00 5.00 
nC=20 nT=15 1000 1069 890 89.00 4.48 
nC=30 nT=15 1000 1131 931 93.10 5.00 

Poisson 
nC=15 nT=10 1000 948 743 74.30 5.13 
nC=20 nT=15 1000 1073 886 88.60 4.68 
nC=30 nT=15 1000 1145 932 93.20 5.33 

Negative 
Binomial 

nC=15 nT=10 1000 959 749 74.90 5.25 
nC=20 nT=15 1000 1079 889 88.90 4.75 
nC=30 nT=15 1000 1149 934 93.40 5.38 

 

 
Figure 16. Comparing FP rate across fitted model when sampling from NB n1≠n2 

Monte Carlo Simulation Conclusion 

Our simulation study using Monte Carlo simulation suggest that permutation is a valid 

competitive model for analyzing RNA-seq data. Most importantly, the results show for both 
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Poisson and Negative Binomial regression, but it consistently controlled the False Positive rate 

lower than its parametric counterparts.  

RNA-seq data are generally assumed to follow either Poisson or Negative Binomial 

distribution. And traditional models developed for analyzing such data assume these distributions 

without providing a way to check whether the underlying assumption are met or not. A slight 

violation could lead to a substantial wrong estimate. Our theoretical studies provide evidence that 

for both Poisson and Negative Binomial samples, Permutation is robust and offer a good control 

of the False Positive rate.  

Before we generalize our theoretical findings, in the next chapters we will now simulate 

RNA-seq data using SimSeq. Recent development in RNA-seq data simulation suggest that 

given the complexity of RNA-seq data, a simulation method that conserves such complexity is 

advisable. Our expectation is that the results from SimSeq data will be consistent with Monte 

Carlo simulation results. 
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CHAPTER 4. SIMULATING RNA-SEQ DATASET USING SIMSEQ 

In this chapter, we will discuss the data generation process and method used to conduct 

our analysis as well as the results obtained from the SimSeq procedure. 

Simseq Simulation Overview 

SimSeq is a nonparametric simulation algorithm approach proposed by Benidt and 

Nettleton for the construction of RNA-seq dataset with two independent treatment groups 

(Benidt & Nettleton, 2015). 

The Simseq Algorithm 

The SimSeq algorithm is available as an R package to simulate matrix of RNA-seq read 

counts. To create differential expression, it subsamples columns from a large existing RNA-seq 

dataset and then swaps single read counts within genes adjusted by a correction factor (Benidt & 

Nettleton, 2015). 

The SimSeq algorithm takes essentially three main sets of inputs: a large RNA-seq 

dataset Y with two independent treatment groups (Control & Treatment); a vector c of computed 

normalization factors with one element for each column of the source dataset; the number of 

equally expressed (EE) genes G0 and differentially expressed (DE) genes G1 in the simulated 

dataset where G0+G1≤G and the number of columns n in each of the two treatment groups 

(Control & Treatment) in the simulated matrix where n ≤ {N1,⌊𝑁𝑁2/2⌋} where ⌊∙⌋ is the floor 

function.  The SimSeq algorithm outputs a dataset of RNA-seq read counts with G0 EE genes 

and G1 DE genes with n columns in each of two independent treatment groups (Control & 

Treatment) (Benidt & Nettleton, 2015). The simulation procedure algorithm as described by 

Benidt and Nettleton (Benidt & Nettleton, 2015) is given below: 
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1. For each g ϵ G, calculate a P value from a test of differential expression using the 

Wilcoxon Rank Sum test. 

2. Given the set of calculated P values, calculate the local false discovery rate (fdr) for each 

gene (Strimmer, 2008a, b) using the fdr package. 

3. A vector of probability sampling weights w is computed as one minus the local fdr for 

each gene g scaled to sum to unity. 

4. Randomly select G1 genes to be DE from G without replacement according to the vector 

of probability sampling weights w and denote this set G1. 

5. Randomly select G0 genes to be EE from G/G1 without replacement according to equal 

weights and denote this G0. Let G* ≡ G0 ∪G1 be the set of all EE genes and DE genes 

chosen in steps 1 and 2. 

6. Randomly select one column y without replacement from the first treatment group of Y. 

Subset y down to the set of genes G* to create the column x1. Assign x1 to simulated 

treatment group 1. 

7. Randomly select one column without replacement from each treatment group in Y and 

denote these two columns as Y1 and Y2. Let c1 and c2 be their corresponding 

multiplicative normalization factors from c. 

8. Subset the two columns Y1 and Y2 to the set of genes G* 

9. Create the column x2 in the following way. For each gene g ϵ G* 

Let 

x2𝑔𝑔= �
𝑦𝑦1𝑔𝑔                            𝑖𝑖𝑖𝑖 𝑔𝑔 ϵ G0

�𝑦𝑦2𝑔𝑔 ∗
𝑐𝑐1
𝑐𝑐2

+ 0.05�     𝑖𝑖𝑖𝑖 𝑔𝑔 ϵ 𝐺𝐺1  
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Where ⌊∙⌋ is the floor function, so that y2g * c1/c2 is rounded to the nearest integer. Let x2 

be the vector whose entries are {x2𝑔𝑔: g ϵ G*}. Assign  x2 to simulated treatment group 2. (Note 

that c1/c2 is a correction factor to allow the read counts in x2 to have a consistent normalization 

factor.) 

1. Repeat steps 6-9 a total of n times with columns sampled without replacement across 

each iteration. 

Source Dataset 

We used the GTEx dataset as our source dataset. It contains 17382 genes and about 54 

tissues. We retrieve the Pancreas and Stomach tissues and test whether genes are differentially 

expressed between these two tissues. In the SimSeq simulation algorithm (R package), we 

simulated 5000 genes and set 20% of the simulated data to be DE genes. 

Differential Gene Expression Assessment 

For parametric methods, it is crucial to find a distribution to approximate the nature of the 

differential gene expression data. The traditional R packages generally used to assess DE genes 

in RNA-seq dataset often assume a Poisson or Negative Binomial underlying distribution. A 

slight variation could lead to wrong estimates thus inflating the False Positive rate. In this 

section, we are comparing the performance of popular RNA-seq data DE genes analysis tools 

namely: edgeR, DESeq2, Limma, Voom and LFC to our proposed Permutation test. Note that 

edgeR, DESEq2, Limma, Voom and LFC are all available as R package.  

edgeR is a Bioconductor software package proposed by Robinson et al. (2010) for 

analyzing differential expression of replicated count data. It uses an overdispersed Poisson model 

to account for both biological and technical variability. To improve the reliability of inference, 

empirical Bayes approach are used to estimate gene specific dispersion parameters. DESeq2, a 
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successor to DESeq, is very similar to edgeR with a slight difference. DESeq2 is an R package 

for differential analysis of count data; it uses shrinkage estimation for dispersions and fold 

changes to improve stability and interpretability of estimates. Deseq2 focuses on the strength 

rather than the simple presence of differential expression. Limma, another R package for 

analyzing gene expression. Limma is an acronym for “linear models for microarray data” and 

comprises functionalities for fitting a larger class of statistical models called: linear models.  

We used SAS to run our Permutation test by importing the simulated dataset obtained 

from SimSeq in R into a csv file and then read the csv file in SAS. Note that we are first filtering 

the data in R and then use the filtered data for the permutation test to ensure that all considered 

models are fitted on the same genes. 

False Discovery Rate Control 

When conducting multiple hypothesis tests there is an increase in the chance of making a 

False Positive. The higher the number of tests, the higher the probability of making a type I error. 

In this case the False Discovery Rate (FDR) is preferable error rate measure. FDR is defined as 

the rate of true nulls among the rejected hypotheses. An α FDR rate implies that on average, the 

proportion of false discoveries among all discoveries is at most α. Hypothesis testing procedures 

aiming to control FDR tend to be considerably more powerful than procedures aiming to control 

Family Wise Error such as Bonferroni. For this study we controlled FDR rate at 10%. 

SimSeq Simulation Results 

Table 25 below summarizes the results obtained from our fitted model when sampling 

from SimSeq. When the sample sizes are 10 and 15, DESEq2 has the highest True Detection rate 

second by LFC. Permutation has a comparable detection rate to Voom. For sample sizes greater 

than 15, DESEq2 still has the highest True Detection rate however, the difference is very small 
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compared to Permutation. Permutation, however, exhibited a competitive detection rate 

compared to edgeR, Limma, and Voom. 

The last column of Table 25 provides the False Positive rate for each combination of 

fitted models sample sizes. As illustrated on Figure 17, Permutation consistently displayed the 

lowest False Positive Rate across all fitted models and sample sizes. DESEq2 has the highest 

False Positive rate with LFC the second highest overall. 

Although DESEq2 had the highest True Detection rate, it also had the highest False 

Positive Rate. Permutation not only did turn out to be competitive compared to edgeR, Limma 

and Voom but it also consistently kept the False Positive very low. 
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Table 25. SimSeq dataset - detection rates (%) for fitted models 
Fitted Models Sampling 

Efforts 
Actual Detected True DE Gene True Positive rate 

(%) 
False Positive 

rate (%) 

Permutation 

nC= nT=10 1000 663 645 64.50 0.45 
nC= nT=15 1000 695 678 67.80 0.43 
nC= nT=20 1000 816 809 80.90 0.18 
nC= nT=25 1000 846 841 84.10 0.13 
nC= nT=30 1000 895 884 88.40 0.28 

edgeR 

nC= nT=10 1000 795 727 72.70 1.70 
nC= nT=15 1000 817 749 74.90 1.70 
nC= nT=20 1000 852 820 82.00 0.80 
nC= nT=25 1000 926 828 82.80 2.45 
nC= nT=30 1000 976 859 85.90 2.93 

DESEq2 

nC= nT=10 1000 1017 884 88.40 3.33 
nC= nT=15 1000 995 894 89.40 2.53 
nC= nT=20 1000 989 952 95.2 0.93 
nC= nT=25 1000 1056 939 93.90 2.93 
nC= nT=30 1000 1118 964 96.40 3.85 

Limma 

nC= nT=10 1000 766 706 70.60 1.50 
nC= nT=15 1000 774 733 73.30 1.03 
nC= nT=20 1000 848 835 83.5 0.33 
nC= nT=25 1000 892 845 84.50 1.18 
nC= nT=30 1000 938 877 87.70 1.53 

Voom 

nC= nT=10 1000 747 691 69.10 1.40 
nC= nT=15 1000 755 710 71.00 1.13 
nC= nT=20 1000 838 826 82.60 0.30 
nC= nT=25 1000 874 838 83.80 0.90 
nC= nT=30 1000 941 872 87.20 1.73 

 
 
LFC 
 
 

nC= nT=10 1000 929 858 85.80 1.78 
nC= nT=15 1000 930 870 87.00 1.50 
nC= nT=20 1000 1004 939 93.90 1.63 
nC= nT=25 1000 935 877 87.70 1.45 
nC= nT=30 1000 987 926 92.60 1.53 
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Figure 17. Comparing FP rate across fitted model when sampling SimSeq 
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CHAPTER 5. CASE STUDY 

We obtained a raw RNA-seq dataset using GTEX data. The data comprises 10000 genes 

from two groups of tissues (pancreas and stomach) each with 15 replicates. Our goal is to test 

whether genes are differentially expressed between the two tissues. We will fit permutation tests, 

edgeR, DESeq2 and Limma. 

The table below summarizes the results from each fitted model. Out of 10000 genes, 

DESeq2 detected 3039 to be DE followed LFC with 2662 DE genes and Permutations detected 

2554 DE genes. From the Venn diagram in Figure 18, all the fitted models together detected 

1967 DE genes. Permutation tests and DESeq2 jointly detected 2252 DE genes; edgeR and 

Permutation tests jointly detected 2010 DE genes; Limma and Permutations tests detected jointly 

2029 DE genes; DESeq2 and edgeR jointly detected 2322. 

The results obtained from permutation tests are satisfying. Although DESeq2 detected 

more DE genes, our simulation study suggests that permutation tests consistently minimize FPR 

and DESeq2 sometimes tends to overestimate. 

Table 26. DE genes per fitted models 

 Fitted models 
Perm DESeq2 edgeR Limma LFC 

DE genes 2554 3039 2504 2472 2662 
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Figure 18. Venn Diagram of DE genes per fitted model
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CHAPTER 6. GENERAL CONCLUSION 

This dissertation explored two distinct simulation methods for RNA-seq data to compare 

the performance of Permutation test to traditional models used for analyzing differential gene 

expression in RNA-seq datasets under different scenarios. We first simulated in Chapter 3 RNA-

seq datasets using Monte Carlo simulation in SAS assuming several theoretical distributions 

namely: Normal (µ=30, σ=5), Poisson (λ=30) and Negative Binomial (µ=30, σ=8). Though 

many researchers suggest that theoretical distributions are not representative of the complex 

nature of RNA-seq data, they do provide a reference to which we can test the assumptions made 

by models developed for analyzing RNA-seq data. Generally, methods used to assess differential 

gene expression in RNA-seq data assumed a Poisson or Negative Binomial underlying 

distribution. However, researchers do not always check whether the underlying assumptions of 

the distribution are met and this could cause biased results with unknown consequences. 

For the two sample balanced design case, our preliminary research suggests that all fitted 

models maintained Type I error near the stated value of 5% with Permutation being conservative 

for small sample sizes (5 & 7) when sampling from Poisson. Furthermore, we found that 

permutation exhibited comparable power with Negative binomial being slightly higher. 

Moreover, the theoretical approach using Monte Carlo simulation suggests that when sampling 

from a Normal distribution, the true detection rate increases as we increase the sample sizes as 

well. However, the False positive rate is not always controlled equally the same. Negative 

Binomial exhibited the highest False Positive rate while Permutation, Poisson and T-test had the 

lowest False Positive rate with T-test slightly lower than the former two. When sampling from 

Poisson and Negative Binomial, all fitted models had comparable True Detection rate. 

Permutation however performed slightly better when sampling from negative Binomial as the 
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sample sizes increase. Furthermore, Permutation consistently displayed lower False Positive 

rates compared across all sample sizes. Revisiting our research questions: 

• How do True Positive rate and False Positive (FP) rates compare across T-test, 

Permutation, Poisson, Negative Binomial, EdgeR, Limma-Voom and DESeq when 

applied to RNA-Seq data?  

• Does the sample size from the permutation impact the quality of the results obtained?  

From the theoretical simulation, we can deduct that Permutation is a competitive 

alternative to its parametric counterpart used for gene expression analysis. Additionally, we 

found that all fitted model controlled false positive rate at 10% with permutation tests being 

somewhat conservative. It is worthwhile to note that we are only considering sample sizes 10, 

15, 20, 25 and 30 as our preliminary results suggested that Permutation suffers from granularity 

issues with small samples (n<10). As the sample sizes increased the performance also improved. 

For the two sample unbalanced design, our theoretical results suggest similar outcome 

observed in the balance design scenario with a slight difference. We considered the following 

unequal sample sizes: nC=15 & nT=10, nC=20 & nT=10, nC=20 & nT=15, nC=30 & nT=15 when 

sampling from Normal and nC=15 & nT=10, nC=20 & nT=10, nC=30 & nT=15 when sampling from 

Poisson and Negative Binomial. All fitted models exhibited comparable true detection rate with 

Negative Binomial slightly higher and Permutation slightly lower when sampling from Poisson 

distribution. When sampling from Normal, Permutation and Poisson had comparable false 

positive rate but lower than Negative Binomial .When sampling from Poisson distribution, 

Permutation controlled best the False Positive rate except for sample sizes nC=20 & nT=10 where 

T-test had a slight lower False positive rate. When sampling from Negative Binomial, 

Permutation’s False Positive rate was consistently the lowest for all sample sizes considered. 
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Overall, Permutation test was not always competitive for detection of DE genes but 

controlled the false positive rate at 10% for the unbalance scenario. We also saw a positive 

correlation between the sample sizes and the performance. Specifically, larger sample sizes are 

encouraged for permutation tests in both two-sample balanced and unbalanced scenarios. 

In Chapter 4, we used SimSeq; a data based simulation method proposed by Benidt and 

Nettlton for simulating RNA-seq dataset from a large source RNA-seq data. Data based 

simulation methods such SimSeq among many simulate dataset that closely match the complex 

structure of real RNA-seq data (Benidt & Nettleton, 2015). 

The results obtained from the SimSeq dataset under two-sample balance design scenario 

suggest that overall DESEq2 has the highest True Detection rate second by LFC for all sample 

sizes considered. For sample sizes 10 and 15, Permutation had the lowest True Detection rate, 

roughly about 6% lower than DESEq2 and 5% lower than edgeR and Limma and about 3% 

lower than Voom. When we increase the sample sizes to 20, 25 and 30, Permutation became 

very competitive. In fact, permutation had a comparable detection rate with Limma and Voom 

for sample sizes equal to 20 and 25 and slightly higher true detection rate when the sample size 

was 30. Moreover, Permutation was slightly higher than edgeR for sample sizes 25 and 30. The 

False Positive however is consistently the lowest for permutation test for all sample sizes with 

Negative Binomial having the highest FP rate except when sample size was 20 LFC was higher. 

From both simulation methods (standard Monte Carlo and SimSeq), we can state that 

permutation controls fairly well the false positive at 10% and was somewhat conservative for all 

sample sizes. As we increased the sample sizes permutation had an improved performance and 

became very competitive at detecting true DE genes. For a researcher concerned with controlling 
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false positive rate, we will strongly recommend consideration of the permutation test given 

sufficient sample sizes (n≥10). 

It is noteworthy to point out that during our simulation study we ran into few issues that 

restricted our ability to control some of the parameters of interest. With Monte Carlo simulation, 

we were able to control the underlying distributions, the proportion of zeroes present in each 

sample as well as the effect size. However, RNA-seq data are much more complex and samples 

obtained from the Monte Carlo simulation do not necessarily mimic such complexity. Therefore, 

we decided to use SimSeq, which simulate data by subsampling from a larger real RNA-seq 

dataset. Although SimSeq conserve the complex nature of RNA-seq data, it does present some 

limitations. With SimSeq, we were unable to control the effect sizes of simulated DE genes as it 

depends on the presence of available indicator that already indicates differential expression in 

real dataset. In addition, we were unable to specify the proportion of zeroes in each sample sizes. 

Furthermore, genes declared to be DE using the SimSeq algorithm are not guaranteed to actually 

be DE genes as this depend on the quality of the indicator variable. SimSeq works better with 

homogenous dataset and very poorly with heterogeneous data. We were unable to explore 

unbalance sample sizes. Despite these limitations, our proposed method outcomes from the 

Monte Carlo Simulation and the SimSeq were consistent. 
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APPENDIX A. WHEN SAMPLING RNA-SEQ FROM MONTE CARLO SIMULATION 

Two-Treatments Balance Design n1=n2 

 
Figure A1. Detection rate when sampling from Normal n1=n2=10 
Each simulation contains 5000 genes and 1000 of them are DE – the red line at 1000 represent 
the True DE genes; the grey bar represent the total detected genes as DE by a model; the dark bar 
represent the true detected DE genes; the difference between the grey bar and dark bar represent 
the false positive. 

 
Figure A2. Detection rate when sampling from Normal n1=n2=15 
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Figure A3. Detection rate when sampling from Normal n1=n2=20 

 
Figure A4. Detection rate when sampling from Normal n1=n2=25 
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Figure A5. Detection rate when sampling from Normal n1=n2=30 

 
Figure A6. Detection rate when sampling from Poisson n1=n2=10 
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Figure A7. Detection rate when sampling from Poisson n1=n2=15 

 
Figure A8. Detection rate when sampling from Poisson n1=n2=20 
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Figure A9. Detection rate when sampling from Poisson n1=n2=25 

 
Figure A10. Detection rate when sampling from Poisson n1=n2=30 
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Figure A11. Detection rate when sampling from NB n1=n2=10 

 
Figure A12. Detection rate when sampling from NB n1=n2=15 
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Figure A13. Detection rate when sampling from NB n1=n2=20 

 
Figure A14. Detection rate when sampling from NB n1=n2=25 
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Figure A15. Detection rate when sampling from NB n1=n2=30 

Two-Treatments Unbalance Design n1≠n2 

 
Figure A16. Detection rate when sampling from Normal n1=15 n2=10 
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Figure A17. Detection rate when sampling from Normal n1=20 n2=10 

 
Figure A18. Detection rate when sampling from Normal n1=20 n2=15 
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Figure A19. Detection rate when sampling from Normal n1=30 n2=15 

 
Figure A20. Detection rate when sampling from Poisson n1=15 n2=10 
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Figure A21. Detection rate when sampling from Poisson n1=20 n2=10 

 
Figure A22. Detection rate when sampling from Poisson n1=30 n2=15 

0

200

400

600

800

1000

1200

T test Perm Poisson NB

Detected True Positive Actual

0

200

400

600

800

1000

1200

T test Perm Poisson NB

Detected True Positive Actual



 

74 

 
Figure A23. Detection rate when sampling from NB n1=15 n2=10 

 
Figure A24. Detection rate when sampling from NB n1=20 n2=10 
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Figure A25. Detection rate when sampling from NB n1=30 n2=15 
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APPENDIX B. WHEN SAMPLING RNA-SEQ FROM SIMSEQ 

Two-Treatments Balance DESIGN n1=n2 

 
Figure B1. Detection rate when sampling from SimSeq n1=n2=10 

 
Figure B2. Detection rate when sampling from SimSeq n1=n2=15 
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Figure B3. Detection rate when sampling from SimSeq n1=n2=20 

 
Figure B4. Detection rate when sampling from SimSeq n1=n2=25 

0

200

400

600

800

1000

1200

Perm edgeR DESEq2 Limma Voom LFC

Detected Actual Actual

0

200

400

600

800

1000

1200

Perm edgeR DESEq2 Limma Voom LFC

Detected True Positive Actual



 

78 

 
Figure B5. Detection rate when sampling from SimSeq n1=n2=30 

 
 
 

0

200

400

600

800

1000

1200

Perm edgeR DESEq2 Limma Voom LFC

Detected True Positive Actual



 

79 

APPENDIX C. SAS CODE 

Full Permutation 

options ls=80 ps=65formchar="|----|+|---+=|-/\<>*"; 
options mprint symbolgen; 
 
dm 'log;clear;output;clear;'; 
 
title1 'Sampling from Normal mu=30, sigma=5, effect size= 1 sigma'; 
 
%macro ODSOff();     *** Call prior to BY-group processing ***; 
ods graphics off; 
ods exclude all; 
ods noresults; 
%mend; 
 
%macro ODSOn();         *** Call after BY-group processing ***; 
ods graphics on; 
ods exclude none; 
ods results; 
%mend; 
 
************************************************************* 
***** Simgene Macro parameters are:                     ***** 
*****   NC=number of Control mice                       ***** 
*****   MuC=Average for Control Gene Population         ***** 
*****   SD_C=SD for Control Gene Population             ***** 
*****   NT=number of Treatment mice                     ***** 
*****   MuT=Average for Treatment Gene Population       ***** 
*****   SD_T=SD for Treatment Gene Population           ***** 
*************************************************************; 
%let NumGene=4000; 
%let NumGeneDE=1000; 
%let TGenes=5000; 
 
libname norm "C:\Users\bm4817gu\OneDrive for 
Business\Desktop\PhD_Project\Power\1_sigma\Normal_m30_s5\DE"; 
 
%macro simgene(N_Genes,N_GenesDE,Nmice_C,Mu_C,Sigma_C,NMice_T,Mu_T,Sigma_T); 
 
data generate; 
  call streaminit(0);     *** Start Random Number Stream. ***; 
  do Gene=1 to &N_Genes;  ***    Loop creating genes.     ***; 
   
   ***** Control Group Loop to generate expression data. ****; 
   do Mouse=1 to &Nmice_C; 
      Src='C'; 
   True_DE=0; 
      Y=RAND('NORMAL',&Mu_C,&Sigma_C); 
      output; 
   end; 
   ***** Treatment Group Loop to generate expression data. **; 
   do Mouse=(&Nmice_C+1) to (&Nmice_C+&Nmice_T); 
      Src='T'; 
   True_DE=0; 



 

80 

      Y=RAND('NORMAL',&Mu_C,&Sigma_C); 
      output; 
   end; 
   end; 
   **** DE Genes ******; 
   do Gene=&N_Genes+1 to &N_Genes+&N_GenesDE;  ***    Loop creating genes.     
***; 
   ***** Control Group Loop to generate expression data. ****; 
   do Mouse=1 to &Nmice_C; 
      Src='C'; 
   True_DE=1; 
      Y=RAND('NORMAL',&Mu_C,&Sigma_C); 
      output; 
   end; 
   ***** Treatment Group Loop to generate expression data. **; 
   do Mouse=(&Nmice_C+1) to (&Nmice_C+&Nmice_T); 
      Src='T'; 
   True_DE=1; 
      Y=RAND('NORMAL',&Mu_T,&Sigma_T); 
      output; 
   end; 
   
  end; ***************** End the Gene Loop. *****************; 
  run; 
 
*ods graphics off; 
proc univariate data=generate noprint; 
  class Src; 
  var Y; 
  histogram Y / normal(color=black); 
  title2 "Comparison of Control and Treatment Populations"; 
  title3 "NC:&Nmice_C, MuC:&Mu_C, SD_C:&Sigma_C"; 
  title4 "NT:&Nmice_T, MuT:&Mu_T, SD_T:&Sigma_T";  
  run; 
 
proc sort data=generate; 
  by Gene; 
  run; 
proc transpose data=generate 
     out=Src_MV(where=(_Name_='Y') 
         rename=(Col1=C1 Col2=C2 Col3=C3 Col4=C4 Col5=C5 Col6=C6 Col7=C7 
Col8=C8 Col9=C9 Col10=C10 
                 Col11=T1 Col12=T2 Col13=T3 Col14=T4 Col15=T5 Col16=T6 
Col17=T7 Col18=T8 Col19=T9 Col20=T10)); 
  by Gene; 
  run; 
%mend simgene; 
 
***** N_Genes,Nmice_C,Mu_C,Sigma_C,NMice_T,Mu_T,Sigma_T *****; 
%simgene(&NumGene,&NumGeneDE,10,30,5,10,25,5); 
 
  ods graphics on; ods exclude none; ods results; 
proc transpose data=generate out=raw_data (where=(_name_='Y')); 
  by Gene True_DE; 
run; 
 
Data norm.raw_data10; 
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 set raw_data; 
 keep Gene True_DE; 
run; 
 
data generate; 
 set generate; 
 if Y=0 then D=0; else D=1; 
run; 
 
data Src_MV; 
  set Src_MV; 
    Chk_C=C1+C2+C3+C4+C5+C6+C7+C8+C9+C10; *** Create flag for all zeroes for 
Cont. *; 
    Chk_T=T1+T2+T3+T4+T5+T6+T7+T8+T9+T10; *** Create flag for all zeroes for 
Test. *; 
     
    *** Remove obs without any signal. ***; 
    if (Chk_T=0) and (Chk_C=0) then delete; 
     
    
C_bits=compress((C1>0)||(C2>0)||(C3>0)||(C4>0)||(C5>0)||(C6>0)||(C7>0)||(C8>0
)||(C9>0)||(C10>0)); 
    
T_bits=compress((T1>0)||(T2>0)||(T3>0)||(T4>0)||(T5>0)||(T6>0)||(T7>0)||(T8>0
)||(T9>0)||(T10>0)); 
 
    
C_sum=(C1>0)+(C2>0)+(C3>0)+(C4>0)+(C5>0)+(C6>0)+(C7>0)+(C8>0)+(C9>0)+(C10>0); 
    
T_sum=(T1>0)+(T2>0)+(T3>0)+(T4>0)+(T5>0)+(T6>0)+(T7>0)+(T8>0)+(T9>0)+(T10>0); 
     
    if  (T_bits='1111111111' and C_bits='1111111111'); *** Select subset ***; 
  run; 
proc sort; 
  by Gene; 
run; 
   
proc iml;  
  start permtst; 
    alldata = Con || Trt;     /* stack data in a single vector */ 
    N1 = ncol(Con); 
    N = N1 + ncol(Trt); 
 
    /** First row of XControl is Observed --- gives obsdiff */ 
    XControl = allcomb(N, N1);   /* create all combinations */ 
    NRepl=nrow(XControl);   /* Get number of Combs for Loop */ 
    XCRef=1:N;                   /* Create reference vector */ 
  * print Con Trt; 
  * print N1 N XCRef; 
 
    nulldist = j(NRepl,1);    /* allocate vector for results */ 
    do k = 1 to NRepl; 
       C_ids=Xcontrol[k,];  /* Select kth row of comb matrix */ 
       T_ids=setdif(XCRef,C_ids);     /* Select kth anti-row */ 
     * print C_ids T_ids; 
       Control=alldata[,C_ids];   /* Select control elements */ 
       Treat=alldata[,T_ids];   /* Select treatment elements */ 
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     * print Control Treat; 
       /* difference of means */ 
       nulldist[k] = mean(T(Control)) - mean(T(Treat)); 
    end; 
  
    * print nulldist; 
    title2 "Histogram of Null Distribution"; 
    pval = (sum(abs(nulldist) >= abs(obsdiff))) / (NRepl); 
    * print pval; 
  finish; 
   
*** Main starts here ***************************************   
************************************************************; 
  use Src_MV; 
  nullp = j(&TGenes,1);    /* allocate vector for results */ 
 
  *** Each Gene: Con=Control, Trt=Treatment ***; 
  do i=1 to &TGenes; 
     read point i var{C1 C2 C3 C4 C5 C6 C7 C8 C9 C10} into Con; 
     read point i var{T1 T2 T3 T4 T5 T6 T7 T8 T9 T10} into Trt; 
 
     obsdiff = mean(T(Trt)) - mean(T(Con)); 
   * print obsdiff; 
 
     run permtst; 
 
     nullp[i]=pval; 
      
  end; 
   
* print nullp; 
  create p_results(rename=(col1=pvalue)) from nullp; 
  append from nullp; 
   
  quit; 
   
data perm_p; 
  set p_results; 
  file 'perm_p.txt'; 
  put pvalue; 
  run; 
    
%ODSOff; 
ods output TTests=sample_ts; 
proc ttest data=generate; 
  by Gene; 
  class Src; 
  var Y; 
  run; 
%ODSOn; 
 
proc print data=sample_ts(obs=100); 
  run; 
   
data ts (keep=Gene tValue Probt); 
  set sample_ts; 
  if method='Satterthwaite'; *** Assume unequal variances. **; 
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  file 't_pvals.txt'; 
  put Gene '09'x Probt; 
  format Probt 10.8; 
  run; 
 
 
data t_p; 
  infile 't_pvals.txt' missover dlm='09'x dsd; 
  input Gene T_pval; 
  run; 
   
data perm_p; 
  infile 'perm_p.txt'; 
  input P_pval; 
  run; 
   
data tvsp; 
  merge t_p perm_p;  *** 1-1 merge on presorted data ***; 
  diff_p=T_pval-P_pval; 
  run; 
   
ods graphics on; 
proc univariate; 
  var T_pval P_pval diff_p; 
  histogram T_pval P_pval diff_p; 
  run; 
 
data ttest_p (keep=Gene ProbF); 
 set tvsp; 
 rename T_pval=ProbF; 
run; 
 
data permut_p (keep=Gene ProbF); 
 set tvsp; 
 rename P_pval=ProbF; 
run; 
 
************************************************************* 
******* Generalized Linear Model Approach - Poisson Y ******* 
*************************************************************; 
%ODSOFF 
ods output FitStatistics=PFitStats; 
ods output ParameterEstimates=PParmEsts; 
ods output Tests3=PFixed3; 
ods output LSMeans=PLSMns; 
ods output Diffs=PDiffsMns; 
 
proc glimmix data=generate; 
  by Gene; 
  class Src; 
  model Y=Src / d=poisson solution ddfm=kr; 
  random _residual_; 
  lsmeans Src / diff ilink; 
  title2 'Generalized Linear Model Approach'; 
  run;  
%ODSON 
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************************************************************* 
******* Generalized Linear Model Approach - NB Y ******* 
*************************************************************; 
 
%ODSOff 
ods output FitStatistics=NBFitStats; 
ods output ParameterEstimates=NBParmEsts; 
ods output Tests3=NBFixed3; 
ods output LSMeans=NBLSMns; 
ods output Diffs=NBDiffsMns; 
 
proc glimmix data=generate method=rmpl initglm; 
  by Gene; 
  class Src; 
  model Y=Src / d=NB solution ddfm=kr; 
  nloptions tech=nrridg; 
  random _residual_; 
  lsmeans Src / diff ilink; 
  title2 'Generalized Linear Model Approach - Negative Binomial'; 
  run; 
%ODSON 
 
data norm.AllFixed10 (keep=Gene ProbF Approach); 
  set PFixed3  (in=in1) 
   NBFixed3 (in=in2) 
   ttest_p  (in=in3) 
   permut_p (in=in4); 
  if in1 then Approach='Poisson'; 
  else if in2 then Approach='NB'; 
  else if in3 then Approach='T_test'; 
  else if in4 then Approach='Perm'; 
  run; 
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Partial Permutation 

options ls=80 ps=65 formchar="|----|+|---+=|-/\<>*"; 
options mprint symbolgen; 
dm 'log;clear;output;clear;'; 
%let t0 = %sysfunc(datetime()); *** Collect timing data. ***; 
*ods rtf file='Normal_10k_genes_B5k_c30t30.rtf'; 
title1 'Sampling from Normal mu=30, sigma=5, effect size= 1 sigma'; 
 
%macro ODSOff();     *** Call prior to BY-group processing ***; 
ods graphics off; 
ods exclude all; 
ods noresults; 
%mend; 
 
%macro ODSOn();         *** Call after BY-group processing ***; 
ods graphics on; 
ods exclude none; 
ods results; 
%mend; 
 
************************************************************; 
***** Simulation Macro parameters are:                 *****; 
*****                                                  *****; 
%let N_Genes=4000;      *** Number of genes to simulate. ***; 
%let N_GenesDE=1000; *** Number of DE genes to simulate. ***; 
%let Nmice_C=30;        *** Number of Control mice.    *****; 
%let Mu_C=30;     *** Mean of Control Gene Population. *****; 
%let Sigma_C=5;     *** SD of Control Gene Population. *****; 
%let NMice_T=30;        *** Number of Treatment mice.  *****; 
%let Mu_T=25;     *** Mean of Treatment Gene Population. ***; 
%let Sigma_T=5;     *** SD of Treatment Gene Population. ***; 
%let N_Perms=5000;  *** # random permutations for permtest.*; 
************************************************************; 
libname norm "C:\Users\bm4817gu\OneDrive for 
Business\Desktop\PhD_Project\Power\1_sigma\Normal_m30_s5\DE"; 
data Generate; 
  call streaminit(0);     *** Start Random Number Stream. ***; 
  do Gene=1 to &N_Genes;  ***    Loop creating genes.     ***; 
   
   ***** Control Group Loop to generate expression data. ****; 
   do Mouse=1 to &Nmice_C; 
      Src='C'; 
   True_DE=0; 
      Y=RAND('NORMAL',&Mu_C,&Sigma_C); 
      output; 
   end; 
   ***** Treatment Group Loop to generate expression data. **; 
   do Mouse=(&Nmice_C+1) to (&Nmice_C+&Nmice_T); 
      Src='T'; 
   True_DE=0; 
      Y=RAND('NORMAL',&Mu_C,&Sigma_C); 
      output; 
   end; 
   end; 
   **** DE Genes ******; 
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   do Gene=&N_Genes+1 to &N_Genes+&N_GenesDE;  ***    Loop creating genes.     
***; 
   ***** Control Group Loop to generate expression data. ****; 
   do Mouse=1 to &Nmice_C; 
      Src='C'; 
   True_DE=1; 
      Y=RAND('NORMAL',&Mu_C,&Sigma_C); 
      output; 
   end; 
   ***** Treatment Group Loop to generate expression data. **; 
   do Mouse=(&Nmice_C+1) to (&Nmice_C+&Nmice_T); 
      Src='T'; 
   True_DE=1; 
      Y=RAND('NORMAL',&Mu_T,&Sigma_T); 
      output; 
   end; 
  end; ***************** End the Gene Loop. *****************; 
  run; 
 
ods graphics on; ods exclude none; ods results; 
proc transpose data=generate out=raw_data (where=(_name_='Y')); 
  by Gene True_DE; 
run; 
 
Data norm.raw_data30; 
 set raw_data; 
 keep Gene True_DE; 
run; 
 
ods graphics off; 
proc univariate data=Generate; 
  class Src; 
  var Y; 
  histogram Y / normal(color=black); 
  title2 "NC:&Nmice_C, MuC:&Mu_C, SD_C:&Sigma_C"; 
  title3 "NT:&Nmice_T, MuT:&Mu_T, SD_T:&Sigma_T";  
  run; 
 
ods graphics off; ods exclude all; ods noresults; 
***** Get permutation means for each group by gene. *****; 
proc means data=Generate; 
  by Gene; 
  class Src; 
  ways 1; 
  output out=Gene_Mns_UV mean=Observed_mn_Y; 
  var Y; 
run; 
 
ods graphics on; ods exclude none; ods results; 
proc transpose data=Gene_Mns_UV out=Gene_Mns_MV 
(where=(_name_='Observed_mn_Y')); 
  by Gene; 
run; 
 
data Gene_Mns_MV (drop=_Name_); 
  set Gene_Mns_MV; 
  Observed_Diff_Mns = Col1 - Col2; 
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  rename Col1=Observed_mn_C Col2=Observed_mn_T; 
  run; 
 
 
***** Select &N_Perms Random Permutations from each Gene. ***; 
proc surveyselect data=Generate 
  method = SRS 
  reps = &N_Perms 
  seed = 0 
  N = &Nmice_C 
  out = RandomPerms 
  outall; 
  strata Gene; 
run; 
 
ods graphics off; ods exclude all; ods noresults; 
***** Get permutation means for each group by gene. *****; 
proc means data=RandomPerms; 
  by Gene Replicate; 
  class Selected; 
  ways 1; 
  output out=Gene_Perm_Mns_UV mean=mn_Y; 
  var Y; 
  run; 
ods graphics on; ods exclude none; ods results; 
 
proc transpose data=Gene_Perm_Mns_UV  
                 out=Gene_Perm_Mns_MV (where=(_name_='mn_Y') 
                                       rename=(Col1=mn_C Col2=mn_T)); 
  by Gene Replicate; 
  run; 
   
data p_results; 
  merge Gene_Perm_Mns_MV  Gene_Mns_MV; 
  by Gene; 
  Diff_Mns = mn_C - mn_T; 
  if first.Gene then Reject_Count=0; 
  if abs(Diff_Mns) >= abs(Observed_Diff_Mns) 
    then Reject_Count+1; 
  if last.Gene then do; 
    pvalue=Reject_Count/(&N_Perms+1); 
    output; 
    end; 
  run; 
 
ods graphics off; ods exclude all; ods noresults; 
ods output TTests=sample_ts; 
proc ttest data=generate; 
  by Gene; 
  class Src; 
  var Y; 
  run; 
ods graphics on; ods exclude none; ods results; 
   
data ts (keep=Gene tValue Probt); 
  set sample_ts; 
  if method='Satterthwaite'; *** Assume unequal variances. **; 



 

88 

  run; 
   
data tvsp; 
  merge ts p_results;  *** 1-1 merge on presorted data ***; 
  rename Probt=T_pval   
         pvalue=P_pval; 
  diff_p=Probt-pvalue; 
  run; 
    
ods graphics on; 
proc univariate; 
  var diff_p; 
  histogram diff_p; 
  run; 
 
data ttest_p (keep=Gene ProbF); 
 set tvsp; 
 rename T_pval=ProbF; 
run; 
 
data permut_p (keep=Gene ProbF); 
 set tvsp; 
 rename P_pval=ProbF; 
run; 
 
************************************************************* 
******* Generalized Linear Model Approach - Poisson Y ******* 
*************************************************************; 
%ODSOFF 
ods output FitStatistics=PFitStats; 
ods output ParameterEstimates=PParmEsts; 
ods output Tests3=PFixed3; 
ods output LSMeans=PLSMns; 
ods output Diffs=PDiffsMns; 
 
proc glimmix data=generate; 
  by Gene; 
  class Src; 
  model Y=Src / d=poisson solution ddfm=kr; 
  random _residual_; 
  lsmeans Src / diff ilink; 
  title2 'Generalized Linear Model Approach'; 
  run;  
%ODSON 
 
************************************************************* 
******* Generalized Linear Model Approach - NB Y ******* 
*************************************************************; 
 
%ODSOff 
ods output FitStatistics=NBFitStats; 
ods output ParameterEstimates=NBParmEsts; 
ods output Tests3=NBFixed3; 
ods output LSMeans=NBLSMns; 
ods output Diffs=NBDiffsMns; 
 
proc glimmix data=generate method=rmpl initglm; 
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  by Gene; 
  class Src; 
  model Y=Src / d=NB solution ddfm=kr; 
  nloptions tech=nrridg; 
  random _residual_; 
  lsmeans Src / diff ilink; 
  title2 'Generalized Linear Model Approach - Negative Binomial'; 
  run; 
%ODSON 
 
data norm.AllFixed30 (keep=Gene ProbF Approach); 
  set PFixed3  (in=in1) 
   NBFixed3 (in=in2) 
   ttest_p  (in=in3) 
   permut_p (in=in4); 
  if in1 then Approach='Poisson'; 
  else if in2 then Approach='NB'; 
  else if in3 then Approach='T_test'; 
  else if in4 then Approach='Perm'; 
run; 
 
*ods rtf close; 
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Summarizing Simulation Results 

libname norm "C:\Users\bm4817gu\OneDrive for 
Business\Desktop\PhD_Project\Power\1_sigma\Normal_m30_s5\DE"; 
ods pdf file="Normal_mu30_sig5_effect_1sig.pdf"; 
proc format; 
  value sig  0-.05 = 'Reject' 
            .05<-1 = 'DNR'; 
  value gen       1='DE' 
                  0='EE'; 
  run; 
************************************************************* 
************************************************************* 
*******                   n1=n2=10                    ******* 
************************************************************* 
*************************************************************; 
 
************************************************************* 
************************************************************* 
******* Get Rejection Rates (Row 1 Table 11.1 Stroup) ******* 
************************************************************* 
*************************************************************; 
title1 'Sampling from Normal mu=30, sigma=5, effect size= 1 sigma'; 
proc freq data=norm.AllFixed10; 
  tables Approach*ProbF / nopct nocol; 
  format ProbF sig.; 
  title2 'Compare Rejection Rates Across Approaches when n1=n2=10 when 
n1=n2=10'; 
run; 
 
************************************************************* 
************************* DE genes ************************** 
*************************************************************; 
data DEgenes10; 
 set norm.AllFixed10; 
 where ProbF<=0.05; 
 if Approach="Poisson" then Pois_DE=1; else Pois_DE=0; 
 if Approach="NB" then NB_DE=1; else NB_DE=0; 
 if Approach="T_test" then Ttest_DE=1; else Ttest_DE=0; 
 if Approach="Perm" then Perm_DE=1; else Perm_DE=0; 
run; 
 
proc sort data=DEgenes10; 
by Gene; 
run; 
 
data perm10(keep=Gene Perm_DE) tt10(keep=Gene Ttest_DE) pois10(keep=Gene 
Pois_DE) bin10(keep=Gene NB_DE); 
 set DEgenes10; 
 if Approach='Poisson' then output pois10; 
 else if Approach='NB' then output bin10; 
 else if Approach='Perm' then output perm10; 
 else if Approach='T_test' then output tt10; 
run; 
 
data comb_de10; 
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 *drop ProbF Approach; 
 merge norm.raw_data10 perm10 tt10 pois10 bin10; 
 by Gene; 
run; 
 
data comb_de10; 
   set comb_de10; 
   array NumVar _numeric_; 
   do over NumVar; 
      if NumVar=. then NumVar=0; 
   end; 
run; 
 
ods output SenSpec=senspec10; 
proc freq data=comb_de10 order=formatted; 
  tables Perm_DE*True_DE Pois_DE*True_DE NB_DE*True_DE Ttest_DE*True_DE/ 
senspec; 
  format True_DE Perm_DE Pois_DE NB_DE Ttest_DE gen.; 
  title2 'True Rejection, Model Accuracy when n1=n2=10'; 
run; 
 
data stat10; 
  set senspec10; 
  if Table="Table Perm_DE * True_DE" then table="Permutation"; 
  else if Table="Table Pois_DE * True_DE" then table="Poisson"; 
  else if Table="Table NB_DE * True_DE" then table="Neg Binomial"; 
  else if Table="Table Ttest_DE * True_DE" then table="T test"; 
  if Statistic="Specificity" then FP=1-Estimate; 
run; 
 
proc sort data=stat10; 
  by Table; 
run; 
 
data sens10 (rename=(Estimate=Sensitivity)) spec10 
(rename=(Estimate=Specificity)); 
  set stat10; 
  if Statistic="Sensitivity" then output sens10; 
  if Statistic="Specificity" then output spec10; 
run; 
 
data stats10; 
  merge sens10 spec10; 
  by Table; 
  keep Table Sensitivity Specificity FP; 
run; 
 
proc print data=stats10; 
  title2 'Model Sensitivity, Specificity and False Positive Rate when 
n1=n2=10'; 
run; 
 
proc sgplot data=stats10; 
  vbar Table/response=Sensitivity; 
  title2 'Comparing Model Sensitivity when n1=n2=10'; 
run; 
 



 

92 

proc sgplot data=stats10; 
  vbar Table/response=Specificity; 
  title2 'Comparing Model Specificity when n1=n2=10'; 
run; 
 
proc sgplot data=stats10; 
  vbar Table/response=FP; 
  title2 'Comparing Model False Positive Rate when n1=n2=10'; 
run; 
************************************************************* 
************************************************************* 
*******                   n1=n2=15                    ******* 
************************************************************* 
*************************************************************; 
 
************************************************************* 
************************************************************* 
******* Get Rejection Rates (Row 1 Table 11.1 Stroup) ******* 
************************************************************* 
*************************************************************; 
 
proc freq data=norm.AllFixed15; 
  tables Approach*ProbF / nopct nocol; 
  format ProbF sig.; 
  title2 'Compare Rejection Rates Across Approaches when n1=n2=15'; 
run; 
 
************************************************************* 
************************* DE genes ************************** 
*************************************************************; 
data DEgenes15; 
 set norm.AllFixed15; 
 where ProbF<=0.05; 
 if Approach="Poisson" then Pois_DE=1; else Pois_DE=0; 
 if Approach="NB" then NB_DE=1; else NB_DE=0; 
 if Approach="T_test" then Ttest_DE=1; else Ttest_DE=0; 
 if Approach="Perm" then Perm_DE=1; else Perm_DE=0; 
run; 
 
proc sort data=DEgenes15; 
by Gene; 
run; 
 
data perm15(keep=Gene Perm_DE) tt15(keep=Gene Ttest_DE) pois15(keep=Gene 
Pois_DE) bin15(keep=Gene NB_DE); 
 set DEgenes15; 
 if Approach='Poisson' then output pois15; 
 else if Approach='NB' then output bin15; 
 else if Approach='Perm' then output perm15; 
 else if Approach='T_test' then output tt15; 
run; 
 
data comb_de15; 
 *drop ProbF Approach; 
 merge norm.raw_data15 perm15 tt15 pois15 bin15; 
 by Gene; 
run; 
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data comb_de15; 
   set comb_de15; 
   array NumVar _numeric_; 
   do over NumVar; 
      if NumVar=. then NumVar=0; 
   end; 
run; 
 
ods output SenSpec=senspec15; 
proc freq data=comb_de15 order=formatted; 
  tables Perm_DE*True_DE Pois_DE*True_DE NB_DE*True_DE Ttest_DE*True_DE/ 
senspec; 
  format True_DE Perm_DE Pois_DE NB_DE Ttest_DE gen.; 
  title2 'True Rejection, Model Accuracy when n1=n2=15'; 
run; 
 
data stat15; 
  set senspec15; 
  if Table="Table Perm_DE * True_DE" then table="Permutation"; 
  else if Table="Table Pois_DE * True_DE" then table="Poisson"; 
  else if Table="Table NB_DE * True_DE" then table="Neg Binomial"; 
  else if Table="Table Ttest_DE * True_DE" then table="T test"; 
  if Statistic="Specificity" then FP=1-Estimate; 
run; 
 
proc sort data=stat15; 
  by Table; 
run; 
 
data sens15 (rename=(Estimate=Sensitivity)) spec15 
(rename=(Estimate=Specificity)); 
  set stat15; 
  if Statistic="Sensitivity" then output sens15; 
  if Statistic="Specificity" then output spec15; 
run; 
 
data stats15; 
  merge sens15 spec15; 
  by Table; 
  keep Table Sensitivity Specificity FP; 
run; 
 
proc print data=stats15; 
  title2 'Model Sensitivity, Specificity and False Positive Rate when 
n1=n2=15'; 
run; 
 
proc sgplot data=stats15; 
  vbar Table/response=Sensitivity; 
  title2 'Comparing Model Sensitivity when n1=n2=15'; 
run; 
 
proc sgplot data=stats15; 
  vbar Table/response=Specificity; 
  title2 'Comparing Model Specificity when n1=n2=15'; 
run; 
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proc sgplot data=stats15; 
  vbar Table/response=FP; 
  title2 'Comparing Model False Positive Rate when n1=n2=15'; 
run; 
************************************************************* 
************************************************************* 
*******                   n1=n2=20                    ******* 
************************************************************* 
*************************************************************; 
 
************************************************************* 
************************************************************* 
******* Get Rejection Rates (Row 1 Table 11.1 Stroup) ******* 
************************************************************* 
*************************************************************; 
 
proc freq data=norm.AllFixed20; 
  tables Approach*ProbF / nopct nocol; 
  format ProbF sig.; 
  title2 'Compare Rejection Rates Across Approaches when n1=n2=20'; 
run; 
 
************************************************************* 
************************* DE genes ************************** 
*************************************************************; 
data DEgenes20; 
 set norm.AllFixed20; 
 where ProbF<=0.05; 
 if Approach="Poisson" then Pois_DE=1; else Pois_DE=0; 
 if Approach="NB" then NB_DE=1; else NB_DE=0; 
 if Approach="T_test" then Ttest_DE=1; else Ttest_DE=0; 
 if Approach="Perm" then Perm_DE=1; else Perm_DE=0; 
run; 
 
proc sort data=DEgenes20; 
by Gene; 
run; 
 
data perm20(keep=Gene Perm_DE) tt20(keep=Gene Ttest_DE) pois20(keep=Gene 
Pois_DE) bin20(keep=Gene NB_DE); 
 set DEgenes20; 
 if Approach='Poisson' then output pois20; 
 else if Approach='NB' then output bin20; 
 else if Approach='Perm' then output perm20; 
 else if Approach='T_test' then output tt20; 
run; 
 
data comb_de20; 
 *drop ProbF Approach; 
 merge norm.raw_data20 perm20 tt20 pois20 bin20; 
 by Gene; 
run; 
 
data comb_de20; 
   set comb_de20; 
   array NumVar _numeric_; 
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   do over NumVar; 
      if NumVar=. then NumVar=0; 
   end; 
run; 
 
ods output SenSpec=senspec20; 
proc freq data=comb_de20 order=formatted; 
  tables Perm_DE*True_DE Pois_DE*True_DE NB_DE*True_DE Ttest_DE*True_DE/ 
senspec; 
  format True_DE Perm_DE Pois_DE NB_DE Ttest_DE gen.; 
  title2 'True Rejection, Model Accuracy when n1=n2=20'; 
run; 
 
data stat20; 
  set senspec20; 
  if Table="Table Perm_DE * True_DE" then table="Permutation"; 
  else if Table="Table Pois_DE * True_DE" then table="Poisson"; 
  else if Table="Table NB_DE * True_DE" then table="Neg Binomial"; 
  else if Table="Table Ttest_DE * True_DE" then table="T test"; 
  if Statistic="Specificity" then FP=1-Estimate; 
run; 
 
proc sort data=stat20; 
  by Table; 
run; 
 
data sens20 (rename=(Estimate=Sensitivity)) spec20 
(rename=(Estimate=Specificity)); 
  set stat20; 
  if Statistic="Sensitivity" then output sens20; 
  if Statistic="Specificity" then output spec20; 
run; 
 
data stats20; 
  merge sens20 spec20; 
  by Table; 
  keep Table Sensitivity Specificity FP; 
run; 
 
proc print data=stats20; 
  title2 'Model Sensitivity, Specificity and False Positive Rate when 
n1=n2=20'; 
run; 
 
proc sgplot data=stats20; 
  vbar Table/response=Sensitivity; 
  title2 'Comparing Model Sensitivity when n1=n2=20'; 
run; 
 
proc sgplot data=stats20; 
  vbar Table/response=Specificity; 
  title2 'Comparing Model Specificity when n1=n2=20'; 
run; 
 
proc sgplot data=stats20; 
  vbar Table/response=FP; 
  title2 'Comparing Model False Positive Rate when n1=n2=20'; 
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run; 
************************************************************* 
************************************************************* 
*******                   n1=n2=25                    ******* 
************************************************************* 
*************************************************************; 
 
************************************************************* 
************************************************************* 
******* Get Rejection Rates (Row 1 Table 11.1 Stroup) ******* 
************************************************************* 
*************************************************************; 
 
proc freq data=norm.AllFixed25; 
  tables Approach*ProbF / nopct nocol; 
  format ProbF sig.; 
  title2 'Compare Rejection Rates Across Approaches when n1=n2=25'; 
run; 
 
************************************************************* 
************************* DE genes ************************** 
*************************************************************; 
data DEgenes25; 
 set norm.AllFixed25; 
 where ProbF<=0.05; 
 if Approach="Poisson" then Pois_DE=1; else Pois_DE=0; 
 if Approach="NB" then NB_DE=1; else NB_DE=0; 
 if Approach="T_test" then Ttest_DE=1; else Ttest_DE=0; 
 if Approach="Perm" then Perm_DE=1; else Perm_DE=0; 
run; 
 
proc sort data=DEgenes25; 
by Gene; 
run; 
 
data perm25(keep=Gene Perm_DE) tt25(keep=Gene Ttest_DE) pois25(keep=Gene 
Pois_DE) bin25(keep=Gene NB_DE); 
 set DEgenes25; 
 if Approach='Poisson' then output pois25; 
 else if Approach='NB' then output bin25; 
 else if Approach='Perm' then output perm25; 
 else if Approach='T_test' then output tt25; 
run; 
 
data comb_de25; 
 *drop ProbF Approach; 
 merge norm.raw_data25 perm25 tt25 pois25 bin25; 
 by Gene; 
run; 
 
data comb_de25; 
   set comb_de25; 
   array NumVar _numeric_; 
   do over NumVar; 
      if NumVar=. then NumVar=0; 
   end; 
run; 
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ods output SenSpec=senspec25; 
proc freq data=comb_de25 order=formatted; 
  tables Perm_DE*True_DE Pois_DE*True_DE NB_DE*True_DE Ttest_DE*True_DE/ 
senspec; 
  format True_DE Perm_DE Pois_DE NB_DE Ttest_DE gen.; 
  title2 'True Rejection, Model Accuracy when n1=n2=25'; 
run; 
 
data stat25; 
  set senspec25; 
  if Table="Table Perm_DE * True_DE" then table="Permutation"; 
  else if Table="Table Pois_DE * True_DE" then table="Poisson"; 
  else if Table="Table NB_DE * True_DE" then table="Neg Binomial"; 
  else if Table="Table Ttest_DE * True_DE" then table="T test"; 
  if Statistic="Specificity" then FP=1-Estimate; 
run; 
 
proc sort data=stat25; 
  by Table; 
run; 
 
data sens25 (rename=(Estimate=Sensitivity)) spec25 
(rename=(Estimate=Specificity)); 
  set stat25; 
  if Statistic="Sensitivity" then output sens25; 
  if Statistic="Specificity" then output spec25; 
run; 
 
data stats25; 
  merge sens25 spec25; 
  by Table; 
  keep Table Sensitivity Specificity FP; 
run; 
 
proc print data=stats25; 
  title2 'Model Sensitivity, Specificity and False Positive Rate when 
n1=n2=25'; 
run; 
 
proc sgplot data=stats25; 
  vbar Table/response=Sensitivity; 
  title2 'Comparing Model Sensitivity when n1=n2=25'; 
run; 
 
proc sgplot data=stats25; 
  vbar Table/response=Specificity; 
  title2 'Comparing Model Specificity when n1=n2=25'; 
run; 
 
proc sgplot data=stats25; 
  vbar Table/response=FP; 
  title2 'Comparing Model False Positive Rate when n1=n2=25'; 
run; 
 
************************************************************* 
************************************************************* 
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*******                   n1=n2=30                    ******* 
************************************************************* 
*************************************************************; 
 
************************************************************* 
************************************************************* 
******* Get Rejection Rates (Row 1 Table 11.1 Stroup) ******* 
************************************************************* 
*************************************************************; 
 
proc freq data=norm.AllFixed30; 
  tables Approach*ProbF / nopct nocol; 
  format ProbF sig.; 
  title2 'Compare Rejection Rates Across Approaches when n1=n2=30'; 
run; 
 
************************************************************* 
************************* DE genes ************************** 
*************************************************************; 
data DEgenes30; 
 set norm.AllFixed30; 
 where ProbF<=0.05; 
 if Approach="Poisson" then Pois_DE=1; else Pois_DE=0; 
 if Approach="NB" then NB_DE=1; else NB_DE=0; 
 if Approach="T_test" then Ttest_DE=1; else Ttest_DE=0; 
 if Approach="Perm" then Perm_DE=1; else Perm_DE=0; 
run; 
 
proc sort data=DEgenes30; 
by Gene; 
run; 
 
data perm30(keep=Gene Perm_DE) tt30(keep=Gene Ttest_DE) pois30(keep=Gene 
Pois_DE) bin30(keep=Gene NB_DE); 
 set DEgenes30; 
 if Approach='Poisson' then output pois30; 
 else if Approach='NB' then output bin30; 
 else if Approach='Perm' then output perm30; 
 else if Approach='T_test' then output tt30; 
run; 
 
data comb_de30; 
 *drop ProbF Approach; 
 merge norm.raw_data30 perm30 tt30 pois30 bin30; 
 by Gene; 
run; 
 
data comb_de30; 
   set comb_de30; 
   array NumVar _numeric_; 
   do over NumVar; 
      if NumVar=. then NumVar=0; 
   end; 
run; 
 
ods output SenSpec=senspec30; 
proc freq data=comb_de30 order=formatted; 
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  tables Perm_DE*True_DE Pois_DE*True_DE NB_DE*True_DE Ttest_DE*True_DE/ 
senspec; 
  format True_DE Perm_DE Pois_DE NB_DE Ttest_DE gen.; 
  title2 'True Rejection, Model Accuracy when n1=n2=30'; 
run; 
 
data stat30; 
  set senspec30; 
  if Table="Table Perm_DE * True_DE" then table="Permutation"; 
  else if Table="Table Pois_DE * True_DE" then table="Poisson"; 
  else if Table="Table NB_DE * True_DE" then table="Neg Binomial"; 
  else if Table="Table Ttest_DE * True_DE" then table="T test"; 
  if Statistic="Specificity" then FP=1-Estimate; 
run; 
 
proc sort data=stat30; 
  by Table; 
run; 
 
data sens30 (rename=(Estimate=Sensitivity)) spec30 
(rename=(Estimate=Specificity)); 
  set stat30; 
  if Statistic="Sensitivity" then output sens30; 
  if Statistic="Specificity" then output spec30; 
run; 
 
data stats30; 
  merge sens30 spec30; 
  by Table; 
  keep Table Sensitivity Specificity FP; 
run; 
 
proc print data=stats30; 
  title2 'Model Sensitivity, Specificity and False Positive Rate when 
n1=n2=30'; 
run; 
 
proc sgplot data=stats30; 
  vbar Table/response=Sensitivity; 
  title2 'Comparing Model Sensitivity when n1=n2=30'; 
run; 
 
proc sgplot data=stats30; 
  vbar Table/response=Specificity; 
  title2 'Comparing Model Specificity when n1=n2=30'; 
run; 
 
proc sgplot data=stats30; 
  vbar Table/response=FP; 
  title2 'Comparing Model False Positive Rate when n1=n2=30'; 
run; 
 
ods pdf close; 
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SimSeq Simulation 

#if (!requireNamespace("BiocManager", quietly = TRUE)) 

  install.packages("BiocManager") 

#BiocManager::install(c("edgeR","DESeq2","tweeDEseqCountData","tweeDEseqCount

Data")) 

BiocManager::install("DescTools") 

setwd("X:/Desktop/PhD_Project/PhD_Project/proposal/Recom_reading/Rcode/LFC2/n_

10") 

### Load Bioconductor Packages 

require(DESeq2) 

require(edgeR) 

require(limma) 

require(tweeDEseqCountData) 

library(NOISeq) 

### Load CRAN Packages 

require(QuasiSeq) 

require(samr) 

require(fdrtool) 

require(SimSeq) 

library(fdrtool) 

library(DescTools) 
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filter.mean <- 10 # lower bound of average read count for simulated genes 

filter.nonzero <- 2 # lower bound for nonzero read counts for simulated genes 

 

#data 

data<-readRDS("C:/Users/bm4817gu/OneDrive for 

Business/Downloads/GTEx.StoPan.rds") 

genes<-data[,"Gene"] 

counts <-subset(data, select = -Gene )  # Matrix of read counts from KIRC dataset 

rownames(counts)<-genes 

replic <- names(counts) # Replic vector indicating paired columns 

treatment <- c(rep("Pan",328),rep("Sto",359)) # Treatment vector indicating Non-Tumor 

or Tumor columns 

### Remove low count genes 

keep.counts <- ( rowMeans(counts) >= filter.mean ) & ( rowSums(counts > 0) >= 

filter.nonzero ) 

counts <- counts[keep.counts, ] 

dim(counts) 

### Compute normalization factors to use in SimData function 

### from calcNormFactors 

lib.sizes <- apply(counts, 2, sum) 

nf <- calcNormFactors(counts) * lib.sizes 
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### Calculate weights vector beforehand to save run time in 

### repeated simulations 

sort.list <- SortData(counts = counts, treatment = treatment, replic = NULL, 

                      sort.method = "unpaired", norm.factors = nf) 

counts <- sort.list$counts 

 

replic <- sort.list$replic 

treatment <- sort.list$treatment 

nf <- sort.list$norm.factors 

probs <- CalcPvalWilcox(counts, treatment, sort.method = "unpaired", 

                        sorted = TRUE, norm.factors = nf, exact = FALSE) 

weights <- 1 - fdrtool(probs, statistic = "pvalue", plot = FALSE, verbose = FALSE)$lfdr 

 

### Simulate matrix with DE genes having log base 2 fold change greater than 1 

# add one to counts matrix to avoid infinities when taking logs 

Pan.mean <- rowMeans(log2((counts[, treatment == "Pan"] + 1) %*% 

                            diag(1/nf[treatment == "Pan"]))) 

Sto.mean <- rowMeans(log2((counts[, treatment == "Sto"] + 1) %*% 

                            diag(1/nf[treatment == "Sto"]))) 

lfc <- Pan.mean - Sto.mean 

weights.zero <- abs(lfc) < 1 

weights[weights.zero] <- 0 
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data.sim <- SimData(counts = counts, replic = replic, treatment = treatment, 

                    sort.method = "unpaired", k.ind = 10, n.genes = 5000, n.diff = 1000, 

                    weights = weights, norm.factors = nf) 

 

counts.simseq <- data.sim$counts # Simulated Count matrix from SimSeq 

genes.samp <- data.sim$genes.subset # Genes sampled from source matrix 

de.genes <- data.sim$DE.genes # DE genes sampled from source matrix 

ee.genes <- genes.samp[ ! (genes.samp %in% de.genes) ] # EE genes sampled from 

source matrix 

samp.col <- data.sim$col # Columns sampled in SimSeq algorithm 

de.genes.sim <- data.sim$genes.subset %in% de.genes # logical vector giving which 

genes are DE in simulted matrix 

trt<-data.sim$treatment 

 

ee.genes <- sample(which(!de.genes.sim)) 

de.genes <- sample(which(de.genes.sim)) 

DE<-counts.simseq[de.genes, ] 

counts.simseq_10 <- counts.simseq[c(ee.genes, de.genes), ] 

########################################################################

## 

write.csv(counts.simseq_10, file = "data.sim_n10.csv") 

write.csv(DE, file = "de_genes.sim_n10.csv") 
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DE Genes Assessment Using R packages 

########################################################################

########################3 

#if (!requireNamespace("BiocManagerBiocManager", quietly = TRUE)) 

#  install.packages("BiocManager") 

#BiocManager::install("edgeR") 

#BiocManager::install("tweeDEseqCountData") 

#install.packages("statmod") 

#BiocManager::install("DESeq2", type="source") 

#BiocManager::install("GenomeInfoDbData", type="source") 

#BiocManager::install("tibble", type="source") 

#BiocManager::install("apeglm") 

setwd("X:/Desktop/PhD_Project/PhD_Project/proposal/Recom_reading/Rcode/LFC2/n_

10") 

library(edgeR) 

library(statmod) 

library(tweeDEseqCountData) 

library(apeglm) 

library(GenomeInfoDbData) 

library(tibble) 

library(DESeq2) 

library(limma) 
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########################################################################

## 

count_10<-read.csv("data.sim_n10.csv",header=TRUE, sep = ',') 

gene_10<-count_10[,"X"] 

count_10<-count_10[,-1] 

rownames(count_10)<-gene_10 

head(count_10) 

dim(count_10) 

 

group<-matrix(c(rep("Pan",10),rep("Sto",10)),ncol=1) 

design<-model.matrix(~group) 

colnames(design)<- c("Pan","Sto") 

 

########################################################################

## 

### edgeR Analysis 

##### DGEList 

 

y <- DGEList(counts=count_10, genes=gene_10,group=group) 

head(y$count) 

head(y$samples) 

head(y$genes) 
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##Determine which genes are expressed in a worthwhile number of samples. 

isexpr <- filterByExpr(y,group=group) 

table(isexpr) 

 

##Keep only expressed genes with defined annotation and  

##recompute library sizes 

y <- y[isexpr, keep.lib.sizes=FALSE] 

dim(y$count) 

head(y$count) 

head(y$samples) 

 

##Create barplot of library sizes 

barplot(y$samples$lib.size*1e-6, names=1:20, ylab="Library size (millions)") 

 

##Apply TMM normalization 

y <- calcNormFactors(y) 

head(y$samples) 

 

##Estimate dispersion parameters 

y <- estimateDisp(y) 

 

##Perform exact test 

et <- exactTest(y) 
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padj<-topTags(et, n=dim(y$count)[1])$table[,-2:-3] 

head(padj) 

 

#saveRDS(padj,"fdr_edgeR10.RDS") 

 

## genes that are DDE when controlling FDR at 5%. 

sum(padj$FDR<.05, na.rm=TRUE) 

padj<-na.omit(padj) 

write.csv(padj, file = "fdr_edgeR10.csv") 

DDE<-padj[padj$FDR<0.05,] 

name1<-rownames(DDE) 

head(name1) 

 

## genes that are DDE when controlling FDR at 10%. 

sum(padj$FDR<.1, na.rm=TRUE) 

DDE<-padj[padj$FDR<.1,] 

de.edgeR<-rownames(DDE) 

head(name1) 

########################################################################

## 
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### DESeq2 Analysis 

##using the DESeq2 procedure with no LFC cutoff. 

dim(count_10) 

 

dds <- DESeqDataSetFromMatrix(countData=count_10, colData=group, design=design) 

dds 

 

##perform DESeq2 method 

dds2 <- DESeq(dds) 

 

##get results 

res <- results(dds2) 

resultsNames(dds2) 

summary(res) 

names(res) 

presadj<-res[,-1:-4] 

 

#saveRDS(presadj,"fdr_DESeq210.RDS") 

#get genes that are DDE 

sum(presadj$padj<.1, na.rm=TRUE) 

presadj<-na.omit(presadj) 

write.csv(presadj, file = "fdr_DESeq210.csv") 

DDE3<-presadj[presadj$padj<0.1,] 
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dim(DDE3) 

de.desq2<-rownames(DDE3) 

head(de.desq2) 

 

res1 <- res 

########################################################################

## 

##shrink log fold change estimates 

res <- lfcShrink(dds2, coef="Sto", type="apeglm") 

summary(res) 

 

 

##get results for an LFC cutoff of 1 

resLFC <- lfcShrink(dds2, coef="Sto", lfcThreshold=1, type="apeglm") 

summary(resLFC) 

pLFCadj<-resLFC[,-2:-3] 

 

#get genes that are DDE 

sum(pLFCadj$svalue<.1, na.rm=TRUE) 

pLFCadj<-na.omit(pLFCadj) 

write.csv(pLFCadj, file = "fdr_LFC10.csv") 
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DDE4<-pLFCadj[pLFCadj$svalue<0.1,] 

de.lfc<-rownames(DDE4) 

head(de.lfc) 

########################################################################

## 

##Plot results 

plotMA(res1) 

plotMA(res) 

plotMA(resLFC) 

########################################################################

## 

### Limma Voom Analysis 

 

### Limma Voom Analysis 

 

y <- DGEList(counts=count_10, genes=gene_10,group=group) 

isexpr <- filterByExpr(y,group=group) 

table(isexpr) 

y <- y[isexpr, keep.lib.sizes=FALSE] 

y <- calcNormFactors(y) 

 

##limma trend 

##calculate logCPM values 
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##(edgeR function) 

lcpm <- cpm(y, log=TRUE) 

 

##perform limma trend 

##(limma functions) 

fitt <- lmFit(lcpm, design) 

efitt <- eBayes(fitt, trend=TRUE) 

 

##p-values for testing difference in gene expression 

##between males and females 

head(efitt$p.value) 

ltp <- efitt$p.value[,2] 

 

##plot mean-variance trendline 

plotSA(efitt, ylab="(Standard Deviation)^(1/2)", cex.lab=1.5) 

 

##Get top 10 results 

topTable(efitt, coef=2, n=10) 

summary(decideTests(efitt)) 

 

#get genes that are DDE 

limma.Pvalu<-topTable(efitt, coef=2, n=dim(y$count)[1])[,4:5] 

sum(limma.Pvalu$adj.P.Val<.1, na.rm=TRUE) 
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limma.Pvalu<-na.omit(limma.Pvalu) 

write.csv(limma.Pvalu, file = "fdr_limma10.csv") 

 

######################################## 

######################################## 

##voom 

v <- voom(y, design, plot=TRUE) 

fitv <- lmFit(v, design) 

efitv <- eBayes(fitv) 

 

##p-values for testing difference in gene expression 

##between males and females 

head(efitv$p.value) 

lvp <- efitv$p.value[,2] 

 

##plot mean-variance trendline 

plotSA(efitv, ylab="(Standard Deviation)^(1/2)", cex.lab=1.5) 

 

##Get top 10 results 

topTable(efitv, coef=2, n=10) 

summary(decideTests(efitv)) 
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voom.pv<-topTable(efitv, coef=2, n=dim(y$count)[1])[,5:6] 

sum(voom.pv$adj.P.Val<.1, na.rm=TRUE) 

voom.pv<-na.omit(voom.pv) 

write.csv(voom.pv, file = "fdr_voom10.csv") 
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