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Riassunto: Lo scopo di questo lavoròe di proporre un modello per l’integrazione di dati
provenienti da reti eterogenee di monitoraggio al fine di valutare la qualità dell’aria. Per
esempio, la rete di monitoraggio del PM10 nel Nord Italiaè composta per la gran parte
da centraline che si basano su due sistemi di rilevamento, TEOM and LVG. Mentre i dati
rilevati con il metodo TEOM sottostimano il “vero” livello di PM10, le centraline LVG
sono pìu precise e per questo sono state scelte dalla Comunità Europea come “strumenti
di riferimento”. L’idea su cui si basa il lavoròe di utilizzare le concentrazioni giornaliere
dei PM10, misurate con gli strumenti più precisi, per correggere le misure meno esatte,
rilevate da centraline “non equivalenti” a quelle gravimetriche e che, non necessariamente
si trovano nella stessa zona in cui sono situati i primi. A tal fine, introduciamo un mod-
ello di calibrazione multivariato spazio temporale che abbiamo denominatoGeostatistical
Dynamical Calibration model(GDC). La principale ipotesi su cui si basa il modelloè che
entrambi gli strumenti siano contaminati da errori di misura e che le rilevazioni TEOM
siano distorte, rispetto alle “vere” concentrazioni, per un fattore addittivo ed uno molti-
plicativo. Si assume, inoltre, che “vero” livello diPM10 sia un processo spazio temporale
latente, rappresentato dall’equazione di stato nella formulazionestate space. Le stime dei
valori calibrati si ottengono dall’applicazione del filtro di Kalman. Questo approccio può
essere considerato un’estensione geostatistica del modello DDC (Dynamical Displaced
Calibration) di Fass̀o and Nicolis (2004).

Keywords: Calibration; spatio-temporal modelling; Kalman filter; Geostatistical Dynam-
ical Calibration model (GDC).

1. Introduction

In recent years, atmospheric pollution has been of great concern for many countries of
the world, as a result of studies that have verified the negative effects on human health.
This has carried some public institutions to invest in instruments of measure in order to
find the levels of concentrations, widening the monitoring net, and setting limit values for
assessing air quality standards (see, for example, C.D. (1996)).

The pollutants that have recently aroused greater worries are the fine particulate mat-
ters. These have often exceeded the limits of attention and alarm for human health es-
tablished by European legislation. Studies have shown (Gerrityet al. (1979)) that such

1Work partially supported by Italian MIUR grant, PRIN-Cofin 2004.
2Indirizzo per corrispondenza: Viale Marconi, 5, 24044 Dalmine (BG), Italy.
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particles can easily be inhaled into the upper human respiratory tract where they can re-
main for weeks or even months before being excreted. The smallest of these particles,
those with a diameter of 10 mm and 2.5 mm or less (i.e. PM2.5) are of even greater
concern since they penetrate deep into the lungs and leave any of the substances of which
they may be comprised.

Short term space-time statistical forecasting models for PM10 have been recently con-
sidered by Shaddick and Wakefield (2002) and by Sunet al. (2000) from the hierarchical
Bayesian point of view and, for PM2.5, by Kolenikov and Smith (2002) using a nonpara-
metric approach.

In this work, we consider the airborne particles with a diameter of 10 mm or less
(i.e. PM10 in mg/m3) in the North of Italy. The first instruments for monitoring PM10

were installed about ten years ago, but a network with a sufficient number of monitors for
doing geostatistical analysis has only recently been set up.

The method of reference for the sampling and the measurement of PM10 given by the
Italian D.M. (2002) is described in the European norm EN 12341 “Air quality - Deter-
mination of the PM10 fraction of suspended particulate matter. Reference method and
field test procedure to demonstrate reference equivalence of measurement methods”. The
measurement principle is based on the collection of the PM10 on a filter and the determi-
nation of its mass for gravimeter way. We denote by LVG (Low Volume Gravimeter) the
reference instrument.

In the North of Italy the monitoring networks are composed of different monitor types,
not always based on a gravimeter principle and it is often necessary to apply suitable
transformations to make the data equivalent to those gathered by the reference system
cited in EN 12341.

The aim of this work is to propose statistical calibration models to integrate heteroge-
neous networks in air quality monitoring. As a matter of fact, we have relatively dense
networks which are based on the well known automatic monitors based on a tapered ele-
ment oscillating microbalance (TEOM). These monitors are known to underestimate the
“true” PM10 level given by the reference method. However, the TEOM monitoring sys-
tem has many advantages consequent to automatic operations and can give hourly data.
A correction factor of 1.3 has been proposed, for example, by the APEG (1999) but some
preliminary results obtained on the data of the region Piemonte (Fassò and Nicolis (2004))
show that this method gives an overestimation “for low values” and an underestimation
“for high values”.

Since, in the same areas, we have some gravimeter monitors (LVG), often located
in different sites from the TEOM monitors, the idea of this paper is to use the PM10

concentrations from LVG monitors to perform a dynamical calibration of the spatially
displaced TEOM data. In particular, we introduce a Geostatistical Dynamical Calibration
model (GDC), based on a multivariate state - space approach.

There are several approaches to the statistical calibration (inverse linear regression,
nonparametric regression, non liner models, etc.) with applications in different fields
(see Osborne (1991), for a review). Recently, the state - space approach there has been
considerable interest in the calibration for the spatio-temporal measures (see, for example,
McBride and Clyde (2003) from the Bayesian point of view for the PM2.5 calibration and
Brownet al. (2001) for the calibration of the rainfall radar data).

The model that we propose in this paper is based on the hypothesis that both instru-
ments, LVG and TEOM, are affected by measurements errors. In particular, the TEOM
measures may be biased relative to the “true” concentrations by an additive and multi-
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plicative factor. The “true” measurement is an unobservable spatio temporal process and
represents the state equation of the model. The estimates of “calibrated” values are ob-
tained from the Kalman filtering procedure. Since we consider the spatial correlation
between data gathered by different monitors, this approach is a geostatistical extension
of the Dynamical Dispaced Calibration model of Fassò and Nicolis (2004). In order
to reduce the dimensionality of the model, we decompose the “true” process in theK
principal fields (Mardiaet al. (1998)) using the Empirical Orthogonal Function (EOF)
decomposition (Wikle and Cressie (1999), Wikle (2002)). The EOF analysis is used by
environmental and meteorological statisticians for several reasons, which can be summa-
rized as follows: it permits the extraction of information from the huge spatio-temporal
datasets, reducing dimensionality; it is able to account for multiscale dynamical variabil-
ity across different dynamical variables in space and time, account for various sources of
errors; it gives an optimal and separable orthogonal decomposition of a spatio-temporal
process (Wikle (2002)).

The paper is organized as follows. In Section 2, we describe the Geostatistical Dy-
namical Calibration Model both in the scalar and matrix form. In Sections 3-6 we discuss
the estimation procedure of the model: the preliminary analysis of data with the Empirical
Orthogonal functions, the estimation of the parameters via the maximum likelihood func-
tion and the estimation of the “calibrated values”. In Section 7 we show some preliminary
results. Section 8 concludes the paper with some comments and open problems.

2. Geostatistical Dynamical Calibration Model (GDC)

Let yG(t1, s1), ..., yG(tN , sp) denote the concentrations of PM10 measured by the LVG
monitor in µg/m3 at time points{t1, . . . , tN} at the stations{s1, ..., sp} , wheresi ∈
D, (i = 1, ...) with D some spatial domain ind-dimensional Euclidean space, while
yT (t1, sp+1), ..., yT (tN , sp+q) denote the PM10 measurements of the TEOM monitors at
the same time point, but in displaced stations{sp+1, ..., sp+q}. Assuming that both data
sets have a component error, the model can be expressed by the following measurement
equations

yG(t, sG) = µ(t, sG) + εG(t, sG), (1)

yT (t, sT ) = α(t) + βµ(t, sT ) + εT (t, sT ), (2)

where{sG : s1, ..., sp} and{sT : sp+1, ..., sp+q} are spatial points on the irregular grids,
MG andMT , respectively, so thatcard(MG) = p, card(MT ) = q andn = p + q is
the total number of stations considered. Additionally, we assume that the errors compo-
nentsεG(t, sG) andεT (t, sT ) are indipendently and Normally distributed with mean zero
and standard deviationsσεG

(for s1, ..., sp) andσεT
(for sp+1, ..., sp+q), respectively, with

E[εG(t, sG),εT (t, sT )] = 0. The componentµ(t, s) is an unobservable process that repre-
sents the “true”PM10 concentration on dayt at stations, {s : s1, ..., sn} while α(t) is a
dynamical temporal additive bias andβ is a parameter that represents the multiplicative
bias. In particular, we assume thatα(t) is generated by a first order latent Markovian
process

α(t) = τα(t− 1) + ς(t) (3)

with 0 ≤ τ ≤ 1 andς(t) is aiid process with mean zero and standard deviationσς .
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We assume that the unobservable processµ(t, s) can be written

µ(t, s) = µ0(t, s) + µk(t, s) (4)

whereµ0(t, s) is a component representing the small-scale spatial variation that does not
have a temporally dynamic structure, that isE[µ0(t, si), µ0(t, sj)] = C0(‖si − sj‖), for
si 6= sj. Following the approach of Mardiaet al.(1998) and Wikle and Cressie (1999) we
assume the componentµk(t, s) is a temporally dynamic component,

µk(t, s) =

∫
D

w(s)µk(t− 1, u)du + η(t, s)

whereη(t, s) is a spatially coloured error process andw(s) is a function representing the
interaction between the state process at locationu and timet − 1 andµk at locations
and timet (Wikle and Cressie (1999)). We assume thatη(t, s) ∼ N(0, σ2

η) andE[µk(t −
1, u), η(t, s)] = 0 for all u, s, t.

To reduce the dimensionality of the state equations (Mardiaet al. (1998)), the com-
ponentµk(t, s) can be decomposed intoK dominant components, known as principal
fields,

µk(t, s) =
K∑

k=1

φk(s)ak(t) (5)

where{ak(t) : k = 1, ..., K} are zero-mean time series, and{φk(s) : k = 1, ..., K} are
deterministic basis functions that are complete and orthonormal, that is∫

D
φk(s)φl(s) =

{
1 for k = l
0 otherwise.

Denoting byφ(s) = (φ1(s), ..., φK(s))′ anda(t) = (a1(t), ..., aK(t)),the temporal dy-
namical component can be written as

µk(t, s) = φ(s)′a(t) (6)

wherea(t) is assumed to evolve according to the state equation,

φ(s)a(t) = b(s)a(t− 1) + η(t, s) (7)

whereb(s) = (b1(s), ..., bK(s))′ are unknown but nonstochastic parameters. Substituting
(6) and (4) in equations (1) and (2) the measurements equations can be written as

yG(t, sG) = µ0(t, sG) + φ(sG)′a(t) + εG(t, sG), (8)

yT (t, sT ) = α(t) + β [µ0(t, sT ) + φ(sT )′a(t)] + εT (t, sT ). (9)

Assuming that we have a matrixm = n × N of observations at locations{s1, . . . , sn}
with n = p+q and at time points{1, . . . , N} , we can rewrite the measurement equations
in the matrix form

yG(t) = µ0G(t) + ΦGa(t) + εG(t) (10)

yT (t) = α(t) + βµ0T (t) + βΦTa(t) + εT (t) (11)
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while the state equations are

α(t) = τα(t− 1) + ς(t) (12)

Φa(t) = Ba(t− 1) + η(t) (13)

where

yG(t) =

 yG(t, s1)
...

yG(t, sp)

 ; yT (t) =

 yT (t, sp+1)
...

yT (t, sp+q)


are the observations for LVG and TEOM and

µ0G(t) =

 µ0(t, s1)
...

µ0(t, sp)

 ; µ0G(t) =

 µ0(t, sp+1)
...

µ0(t, sp+q)


are the small-scale components; we note that the matrices

ΦG = {φ(s1), ..., φ(sp)}′ andΦT = {φ(sp+1), ..., φ(sp+q)}′

are(p×K) and(q×K), respectively. The elements ofΦG andΦT are the basis functions
φ1, ..., φK evaluated at each TEOM and LVG location. CombiningΦG andΦT we obtain
the n × K matrix Φ = {φ(s1), ..., φ(sn)}′ . The coefficient of the state equations are
expressed by parameterτ and by the transition matrixB = {b(s1), ..., b(sn)}′ . In this
formulation the errors components have a Multinormal distribution:ε(t) ∼ Nn(0, Σε),
with Σε = diag(σ2

εG
, ..., σ2

εT
); µ0(t) ∼ Nn(0, Γ), is the small-scale component with a

spatial covariance andΓij = Cµ0(‖si − sj‖) for {si : s1, ..., sn} is the generic element of
the covariance matrixΓ; finally, η(t) ∼ NK(0, Ση), with Σε = diag(σ2

η1
, ..., σ2

ηK
).

The state equation (13) can be written as

a(t) = Ha(t− 1) + Jη(t) (14)

whereJ = (Φ′Φ)−1 Φ′ andH = JB.
Assuming that all the parameters of the model are known, determining the “calibrated”

values is the same as finding the optimal predictor in a state space model by the Kalman
filter, given observations up to and including timet.

3. Estimation

In order to estimate the parameters of the GDC model, it is convenient to express the
model in the following standard state-space form,

Y(t) = M(t) + Θ ·A(t) + ε(t) (15)

A(t) = Ψ ·A(t− 1) + J∗′ · η∗(t) (16)
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where

Y(t) =

(
yG(t)
yT (t)

)
;M(t) =

 µ0(t, s1)
...

βµ0(t, sn)

 ; ε(t) =

(
εG(t)
εT (t)

)
;

A(t) =

(
α(t)
a(t)

)
; η∗(t) =

(
ς(t)
η(t)

)
andJ∗ = (1,J∗) . The matrices of the measurement and state equations can be written as

Θ =

(
0p ΦG(s)
1q βΦT (s)

)
andΨ =

(
τ 0
0 H

)
.

The error components are distribuited as follows:ε(t) ∼ Nn(0, Σε), and η∗(t) ∼
NK+1(0, Ση∗), where

Ση∗ =

(
σ2

ς 0
0 Ση

)
andΣε =

(
ΣεG

0
0 ΣεT

)
are the variances for the errors of measurement and state equations, respectively.

The estimation procedure for the parameters of the model (15) can be divided into
three main steps:

1. first we compute the matricesΦG andΦT by EOF analysis, given LVB observations,
yG(t) (see Section 4);

2. by the optimization of the of maximum likelihood obtained by the Kalman filter
recursion, we estimate the parameters of the GDC model, given the matricesΦG

andΦT resulting from step 1 (see Section 5);

3. finally, the Kalman filter algorithm provides the estimates of the state equationA(t)
and the calibrated valueŝµ(t, si), for i = 1, ..n andt = 1, ..N , conditionally on the
matricesΦG andΦT and the parameter estimates (see Section 6).

4. EOF analysis

We denote byΦ then × K matrix including the basis function for the TEOM and LVG
data,

Φ =

(
ΦG

ΦT

)
.

The evaluation ofΦ is given by the Empirical Orthogonal Function (EOF) analysis of
the LVG data,yG. EOF analysis can be seen as the geophysicist’s manifestation of the
classic eigenvalue/eigenvector decomposition of a correlation (or covariance) matrix. In
its discrete formulation, EOF analysis is simply the Principal Component Analysis (PCA)
decomposition, while in the continuous framework, it is simply a Karhunen-Loéve (K-L)
expansion (see Wikle (2002)). Although the continuous K-L representation of EOFs is the
most realistic from a physical point-of-view, it is only rarely considered in applications
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due to the discrete nature of data observations and the added difficulty of solving the K-L
integral equation.

In general, in a discrete EOF analysis, if we knowµ(s, t) at each location{s : s1, ..., sn}
and time pointT = 1, ..., N , µ(s, t) = (µ(t, s1), ..., µ(t, sn))′, we can define thek-th EOF
(k = 1, ..., p) to beφk = (φk(s1), ..., φk(sn))′, whereφk is the vector in the linear com-
binationak(t) = φ′kµ(t, s). Furthermore,φ1 is the vector that allowsvar[a1(t)] to be
maximized subject to the constraintφ′1φ1 = 1. Thenφ2 is the vector that maximizes
var[a2(t)] subject to the constraintφ′2φ2 = 1 andcov [a1(t), a2(t)] = 0. Thus,φk is the
vector that maximizesvar[ak(t)] subject to the orthogonality constraintφ′kφk = 1 and
cov [ak(t), aj(t)] = 0 for all k 6= j. This is equivalent to solving the eigensystem

CµΦ = ΦΛ

whereCµ = E [µ(t), µ(t)], Φ = (φ1, ..., φn)′ with φk = (φk(s1), ..., φk(sp))
′,(k =

1, ..., n), Λ = diag(λ1, ..., λp) andvar [ai(t)] = λi, i = 1, ..., n. The solution is obtained
by a symmetric decomposition

Cµ = ΦΛΦ′.

Considering theK eigenvalues we obtain the truncated expansion of equation (6). Since
the EOF analysis depends on the decomposition of a covariance matrix, it is necessary
to estimate this matrix in practice. The traditional approach is based on the method of
moments estimation procedure (Wikle (2002)).

Since, in our model, the processµ(s, t) is unobservable, we estimate theCµ(si, sj)
using the observations deriving from the more accurate instrument, that is, the LVG data
yG. In practice, we use a simple space-time prediction scheme to obtain smooth predic-
tions ofµ(s, t), which we denote bỹµ(s, t), on a grid including then locations (LVG and
TEOM), given theyG data. So the estimate ofCµ(si, sj) is obtained evaluating the empir-
ical variance of̃µ(s, t). We then apply the singular value decomposition to the estimated
covariance matrix̂Cµ to obtain the estimation ofΦ and consequently the estimation of
ΦG andΦT . Choosing theK eigenvalues different from zero, the covariance function
becomes

ĈµK
(si, sj) =

∑K

k=1
λkφk(si)φk(sj).

We assume that the covariance model forµ̃(s, t) is composed of a traditional geostatisti-
cal model (stationary, isotropic) and a truncated EOF expansion (Nychka and Saltzman
(1998)),

Cµ̃(si, sj) = Cµ0(si, sj) + CµK
(si, sj) (17)

whereCµ0(si, sj) is an isotropic covariance function (such as exponential, Mathèrn, etc.),
characterized by the spatial parameter setθ. In practice, the parameter setθ can be esti-
mated preliminarily by the following difference

Ĉµ0(si, sj) = Ĉµ̃(si, sj)− Ĉµk
(si, sj)

or can be included in the parameter set of the Kalman filter maximum likelihood estimator.
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5. Estimation of the parameters

The GDC model described by equations (15)-(16) is estimated by the maximum likeli-
hood procedure. The parameters to be estimated in this model are the following: the
temporal parametersβ and τ ; the spatial parameter setθ; the variances of the mea-
surement and the state error componentsσ2

εG
, σ2

εT
, σ2

ς , the elements of the matrices
Ση = diag(σ2

η1
, ..., σ2

ηK
) andH. In Wikle and Cressie (1999), the matrixH is estimated

by a preliminary procedure based on assuming that the variances of error components
are known. Since, in our case, these components are estimated inside the model and
a1(t), ..., aK(t) are uncorrelated, we assume thatH has a diagonal structure, given by
H = diag(h1, ..., hK).

We denote byΩ the set of the unknown parameters of the model to be estimated,Ω =
(β, τ, h1, ...hK , θ, σ2

ς , σ
2
η1

, ..., σ2
ηK

, σ2
εG

, σ2
εT

). The maximum likelihood estimator uses the
zero mean prediction error and its covariance obtained by the Kalman filter recursion. Let
Â(t|t − 1) and Â(t|t) be estimates ofA(t − 1) andA(t) up to the timet − 1 and t,
respectively, with covariances given byP(t|t − 1) andP(t|t).The prediction equations
for the state equations of the Kalman filter are

Â(t|t− 1) = ΨÂ(t|t− 1)

P(t|t− 1) = ΨP(t− 1|t− 1)Ψ′ + J∗
′
Ση∗J

∗.

The one step prediction error is

ε̃(t|t− 1) = Y(t)−Θ ·A(t|t− 1) (18)

and its covariance is

Σ
eε(t|t− 1) = ΘP(t|t− 1)Θ′ + Σε + Σµ0 . (19)

By the updating equations of Kalman filter, we get the smoothed estimates of the states

Â(t|t) = Â(t|t− 1) + G(t)ε̃(t|t− 1)

= Â(t|t− 1) + G(t)
{
Y(t)−ΘÂ(t|t− 1)

}
(20)

and its covariance matrix,

P(t|t) = P(t|t− 1)−G(t)Σ
eε(t|t− 1)G(t)

= P(t|t− 1)−G(t)ΘP(t|t− 1) (21)

whereG(t) is the Kalman Gain and it is given by

G(t) = P (t|t− 1)ΘΣ
eε(t|t− 1)−1

= P (t|t− 1)Θ
{
Σε + ΣM + ΘP(t|t− 1)Θ′}−1

with ΣM = var(M). The log-likelihood forΘ is given by

ln LY (Ω) = −1

2

∑N

t=1
log |Σ

eε(t|t− 1)| − 1

2

∑N

t=1
ε̃(t|t− 1)′Σ

eε(t|t− 1)−1ε̃(t|t− 1).

(22)

Since (22) is non linear in the parameters, we need numerical algorithms to optimize it.
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Figure 1: Map of the PM10 monitoring network in the Piemonte region: low volume (LV
or LVB), TEOM, high volume (HV) and BETA monitors.
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Table 1: Principal Component Analysis: Standard Deviation, Proportion of Variance
Explained and Cumulative Proportion of Variance Explained.

C1 C2 C3 C4 C5 C6 C7 C8 C9
Std. Dev. 98.35 27.17 23.22 18.73 15.51 14.03 12.77 12.30 11.75
Prop. of Var. 0.75 0.06 0.04 0.03 0.02 0.02 0.01 0.01 0.01
Cum. Prop. 0.75 0.81 0.85 0.88 0.89 0.91 0.92 0.93 0.94

C10 C11 C12 C13 C14 C15 C16 C17 C18
Std. Dev. 11.25 10.51 10.05 9.53 8.74 8.20 7.83 7.17 6.23
Prop. of Var. 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00
Cum. Prop. 0.95 0.96 0.97 0.98 0.98 0.99 0.99 1.00 1.00
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Table 2: Principal Component Analysis: four principal components.

Centraline C1 C2 C3 C4
AL-Nuova Orti 0.23 -0.44 0.04 -0.14
Alba 0.26 -0.02 -0.12 0.25
Borgaro 0.22 0.14 -0.08 -0.10
Borgosesia 0.20 0.10 0.08 -0.01
Bra 0.27 0.07 0.04 -0.02
Buttigliera Alta 0.22 0.19 0.02 0.16
Buttigliera d’Asti 0.22 0.06 0.31 -0.02
Carmagnola 0.29 0.09 0.06 -0.04
Casale Monferrato 0.25 -0.23 0.07 -0.14
CN-P.II Regg.Alp. 0.14 0.34 0.35 0.44
Novi Ligure 0.24 -0.55 0.03 0.36
Pinerolo 0.18 0.23 0.11 0.23
TO-Piazza Rivoli 0.26 0.15 -0.43 0.00
TO-Via Consolata 0.32 0.17 -0.22 -0.17
TO-Via Gaidano 0.28 0.04 -0.50 -0.09
Tortona 0.21 -0.36 0.09 0.20
VC-Corso.Gastaldi 0.24 0.01 0.41 -0.63
Ponzone 0.12 0.12 0.25 0.07

6. The calibrated values

The estimation of the processµ(t, si) for i = (s1, ..., sn) is based on the Kalman filter
predictorÂ(t|t) of equation (20). Since

Â(t|t) =

(
α̂(t|t)
â(t|t)

)
with â(t|t) = (â1(t|t), ..., âK(t|t))′, the Kalman filter prediction of̂µ(t, si)

µ̂(t, si) = φ(si)
′â(t|t) + Cµ0(si)

′ (CyG

)−1
yG(t)

whereφ(si) = (φ1(si), ..., φK(si))
′, CyG

(si, sj) = cov {yG, yG} , and

Cµ0(si) = E {µ0(t, si), µ0(t)} = (Cµ0(si, s1), ..., Cµ0(si, sp))
′ .

We note thatCµ0(si, sj) is a spatial covariance structure (see Section 4) and the second
component of̂µ(t, s) is a type of simple kriging applied to the LVG spatial error term
µ0(t, sG) (Wikle and Cressie (1999)).

7. The case of the Piemonte region: some preliminary results

The PM10 monitoring network of the Piemonte region (in the North of Italy) is composed
by different measurement monitors (see Figure 1): low volume (LV or LVB), TEOM,
high volume (HV) and BETA monitors3 (Section 1). The data of this analysis consist

3The data considered in this work have been gathered by the Piemonte AriaWeb informative system that
is a branch of theSistema Regionale di Rilevamento della Qualità dell’Aria (SRQA).
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Table 3: Estimated paramters of a GDC model.

Log-likelihood: 25859.2
Value Std.Error t-value

α 41.1400 0.52870 77.82
h1 0.8624 0.02711 31.81
h2 0.7692 0.04077 18.87
β 0.5775 0.02200 26.26
ln(σ2

η1
) 7.8230 0.08312 94.11

ln(σ2
η2

) 5.4340 0.13970 38.91
ln(σ2

ε ) 5.2110 0.01898 274.50

of daily concentrations of PM10, measured by LVG monitors and TEOM monitors for
the period 1th January 2003 to 31th December 2003 (T = 365). Since some monitors
stations were composed by a large number of missing values, we only selected the sta-
tions with more than 90% of the validated data. In particular, we consider a number of
16 LVG monitors situated in the following sites:AL-Nuova Orti, Alba, Borgaro, Bor-
gosesia, Bra, Buttigliera Alta, Buttigliera d’Asti, Carmagnola, Casale Monferrato, CN-
Piazza.II.Reggimento Alpini, Novi Ligure, Pinerolo, TO-Piazza Rivoli, TO-Via Gaidano,
Tortona, VC-Corso Gastaldiand 2 TEOM monitors situated inTO-Via Consolataand
Ponzone.

In TO-Via Consolatawe also had the LVG readings, but we utilized them only for the
validation of the GDC model. The application of the GDC model to the Piemonte PM10

concentrations can be summarized into the followings steps: (i) the evaluation of the
principal components, that is, theΦ matrix; (ii) the estimation of the parameters and (iii)
the determination of the calibrated values. Since our aim was to obtain some preliminary
results, we considered a simplified model, in which we assume that theα parameter of
Equation (11) is constant, the small scale-variation is zero and the variance of LVG errors
(σ2

εG
) is equal to the variance of TEOM errors (σ2

εT
).

From the application of the principal component analysis to the LVG data we have
obtained the results shown in Table 1 and Table 2. Since we didn’t know the gravimeter
measure of the TEOM sites, we utilized, as a preliminary estimation, the TEOM readings
multiplied by 1.3 (see Section 1). From the results of Table 1, we can see that the first
two components sum up to more than 80% of the variance. The estimates of the GDC
model with two principal components are represented in Table 3. We denoted byh1

and h2 the elements of the matrixΨ. To avoid the problem of negative variances in
the estimation procedure, we considered the logarithm transformations. To estimate the
model we consider the LVG data, after removing a constant trend. It is interesting to
note the small standard deviations of each parameter estimate. Finally, we compared
the calibrated values for TO - Via Consolata with the LVG measures in the same site,
obtaining a R-square value of about 0.90.

8. Conclusions and further developments

In this work we have introduced a geostatistical state - space approach to the calibration
problem of PM10 data in the Piemonte region. The GDC model is able to correct the
TEOM data in each site by using the observations gathered in any other site of the LVG
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monitors and considering both temporal dynamics and spatial correlations. Thanks to the
EOF analysis, it is possible to reduce the dimensionality of the model. From preliminary
results, we can see that the GDC model produces significant parameter estimates. We
intend to apply the model to a large database including all monitors of the North of Italy
and considering the small-scale spatial component. However, we think that the model
could further be expanded to consider exogenous variables (for example, temperature and
wind direction) and different basis functions (wavelets, non parametric functions, etc.) in
the principal field decomposition.
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