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We present a theory of scanning local optical spectroscopy in quantum structures taking into ac-
count structural disorder. The calculated spatially resolved spectra show the individual spectral
lines from the exciton states localized by the disordered potential as well as the quasicontinua
spectra at positions close to the potential barriers in agreement with the experimental findings.

Static structural disorder on mesoscopic length scale is an unavoidable feature of low-
dimensional semiconductor structures such as quantum wells (QWs) and quantum wires
(QWRs). These structures exhibit, in addition to the impurities, lattice imperfections,
etc., which are also present in homogeneous bulk crystals, interface imperfections which
can involve different components with different length scales. Disorder in these quan-
tum structures results in an effective 2D (QWs) or 1D (QWRs) potential with spatial
correlation which tends to localize the center of mass motion of excitons. The optical
spectra of semiconductor nanostructures, which near the absorption edges are domi-
nated by excitons, yield valuable information on the quality of the interfaces and the
growth process [1, 2]. In order to investigate in detail the optical properties and the
effects of disorder on the individual electronic quantum states, optical probes combin-
ing very high spatial and spectral resolutions are required [3–6].
Theoretical approaches modeling the interaction of quantum structures with highly inho-

mogeneous light fields have been recently presented [7–13]. Here we present theoretical
calculations of local optical spectroscopy in QWs and in QWRs taking into account struc-
tural disorder. Excitons, produced by a low-optical excitation behave as an effective quan-
tum particle of mass M whose wave-function runs at mesoscopic dimensions over many
atomic units. These calculations show how local optical probes can partially map these me-
soscopic wave-functions. The theoretical calculations consist of two steps in close analogy
with real experiments. The first step is the growth of the sample. Each sample corresponds
to a single realization of disorder with prescribed statistical properties. Once obtained the
samples, we calculate the spectra, each spectrum obtained with the probe tip fixed at a
point on the QWplane or along the wire free axis is a single complete calculation.
In reasonable good quality structures, the amplitudes of the confinement energy fluc-

tuations are typically one order of magnitude smaller than the binding energy of the 1S
exciton [14]. In this limit the relative exciton motion described by the effective wave-
function f1SðqehÞ may be assumed undistorted by disorder. So disorder affects signifi-
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cantly only the centre of mass (COM) motion through an effective potential VðrÞ. In
the following we describe the highly inhomogeneous light field by assuming a Gaussian
profile gRðrÞ centered around the beam position R. The total absorption under local
illumination is proportional to [10–12]

agðR;wÞ / Im hgRj½w� id� ĤH��1j gRi ; ð1Þ
where the Hamiltonian ĤH describes the exciton COM motion and, in the coordinate
representation, is given by ĤHr ¼ �ð�h2=2MÞr2 þ VðrÞ þ �hw0, where �hw0 is the 1S exci-
ton energy level in the ideal (disorder free) structure, r is the coordinate along the QW
plane or the wire free axis, and VðrÞ is the effective disorder potential felt by excitons.
The degree of local information on the excitonic wave functions provided by agðR;wÞ
is determined by the comparison between the scale of the spatial variations of the
wavefunction and the spatial extension of the beam [10]. For example, for a spatially
homogeneous light field, agðR;wÞ is proportional to the square modulus of the spatial
integral of the excitonic wave function. For a infinitely narrow probe beam agðR;wÞ is
proportional to the square modulus of the wavefunction calculated at R. Although not
direct, significative information on absorption under local illumination can also be ob-
tained by subwavelength excitation spectroscopy [6, 15].
We model the random potential VðrÞ felt by the excitons as a zero mean, Gauss

distributed and spatially correlated process [16] defined by the property
VðrÞVðr0Þh i ¼ v20 e

� r�r0j j2=2x2 ; where . . .h i denotes ensemble average over random config-
urations, v0 is the width of the energy distribution, and x is the correlation length char-
acterizing the potential fluctuations. This effective potential is a result of the convolu-
tion of the actual disorder potential felt by electrons and holes with the 1S exciton
wave function fðqehÞ. In our simulation, after a single realization of disorder, the
growth of the sample, calculations are carried out in real space mapping, on a fine mesh
of points, Hr, which is then tridiagonalized by using the Lanczos algorithm starting
from the normalized initial state gRj i. The relevant spectrum comes from the inversion
of the resolvent matrix ðwþ id�HÞ�1 which is very fast in the tridiagonal form of the
Hamiltonian H [11]. For both the structures taken in examination, we adopt an exciton
kinetic mass of m ¼ 0:25m0 typical for AlAs/GaAs quantum wells.
For calculations on QWRs we have considered a system size of L ¼ 6 mm which has

been divided into n ¼ 3000 steps, d ¼ 80 meV.
Figure 1 (1D) displays the specific potential reali-

zation of the sample (in the investigated region)
which has been obtained using the specific correla-
tion length x ¼ 30 nm and a strength v0 ¼ 1:73 meV.
The calculations yield a two-dimensional matrix of
data agðZ;wÞ.
Figure 2 displays spatially resolved spectra

agðZ;wÞ, obtained by using beams with different
spatial extension, as a function of photon energy w
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Fig. 1. Realizations of disorder potential with correlation
length x ¼ 30 nm for a QWR (1D) and a QW (2D)



and beam position Z along the free z-axis of the wire. At high spatial resolution (a, b) it is
possible to observe sharp and spatially narrow structures from the individual eigenstates
of the quantum system that provide detailed information on the spatial extension of the
optically active quantum states. In agreement with experiments [17], we can observe at
low energy structures fully localized inside only one potential well and, increasing the
energy, extended structures arising from tunneling states between wells. Lowering spatial
resolution the structures broaden, information on the potential profile is partially lost
and, owing to the nonlocal character of light-matter interaction in semiconductors, cancel-
lation effects can be observed due to destructive spatial interference of the corresponding
quantum state [10, 12]. However we notice that, even when using a beam extension
s ¼ 300 nm well beyond the spatial correlation of the disorder potential, a number of
individual structures remain visible in agreement with experimental findings [5].
The local spectra in QWs have been calculated by considering a square region of

4 mm2 which has been reproduced with a 500� 500 mesh. Periodic boundary conditions
have been adopted. For all the calculated spectra we used a homogeneous broadening
d ¼ 60 meV. The calculations yield a three-dimensional matrix of data agðx; y;wÞ. Fig-
ure 1 (2D) displays a 2D gray scale image of the region of the specific realized sample
where local spectra have been calculated. The disordered potential has been obtained
by using a correlation length x ¼ 30 nm and a strength v0 ¼ 1:5 meV. Figure 3i displays
a spectrum calculated with a beam with s ¼ 250 nm and centered in the middle of the
windows in Fig. 1 (2D). Figures 3a–h show five 2D images generated by sectioning the
data agðx; y;wÞ in planes of constant energy w indicated by letters in Fig. 3i. The
images, calculated using a beam with s ¼ 40 nm, show the different behaviour of two-
dimensional excitons when varying the excitation energy and give information on the
spatial extension of the quantum states which determine the sharp peaks in Fig. 3i. At
low energy the images (Figs. 3a–e) display the lowest states of the exciton centre of
mass motion located at the individual potential minima. Increasing the excitation en-
ergy, tunneling starts and we find an increasing number of structures which origin from
excited states shared by different potential minima. An analogous behaviour has been
observed in experimental spectroscopic images [3, 15].
In summary we have presented a theoretical formulation of scanning local optical

spectroscopy in disordered quantum structures. We have performed calculations for a
QWR and for a QW with interfacial roughness. We have reported calculations obtained
for the specific disorder realization. We point out that the method presented here is
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Fig. 2. Local absorption agðZ;wÞ as a func-
tion of beam position Z and photon energy
along the free z-axis of the wire, obtained
for the sample in Fig. 1 (1D)) and by using
different spatial resolutions: a) s ¼ 20 nm, b)
40, c) 80, d) 120, e) 210, f) 300 nm. The line
in the bottom of Fig. 3e measures 100 nm.
The energy range on the vertical axis is be-
tween �4 and 6 meV for all the panels



general and can be applied for arbi-
trary disorder configurations. The
images presented here show that our
theoretical simulations can give a use-
ful contribution to the interpretation
of experimental investigations and
characterizations. Furthermore the di-
rect comparison of spectroscopic
images with the realized disorder po-
tential shown here, puts forward the

correlation between structural disorder and spectroscopic near field images in QWs and
QWRs. Moreover, these results have been obtained assuming that disorder does not
perturb the e–h relative motion. This is not true in narrow quantum structures where
this approximation becomes questionable. Work is in progress in order to relax this
approximation and in order to include more realistic disorder potentials.
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Fig. 3. a)–h) 2D images generated by sec-
tioning the data SIgðx; y;wÞ in planes of
constant energy indicated by letters in
Fig. 3i. i) Spectrum obtained using a Gaus-
sian beam with s ¼ 250 nm centered in
the middle of the image in Fig. 1 (2D)


