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Abstract
Currently, Unmanned Aerial Vehicles (UAVs) have been used in the most diverse appli-
cations in both the civil and military sectors. In the civil sector, aerial inspection services
have been gaining a lot of attention, especially in the case of inspections of high voltage
electrical systems transmission lines. This type of inspection involves a helicopter carrying
three or more people (technicians, pilot, etc.) flying over the transmission line along its
entire length which is a dangerous service especially due to the proximity of the transmis-
sion line and possible environmental conditions (wind gusts, for example). In this context,
the use of UAVs has shown considerable interest due to their low cost and safety for
transmission line inspection technicians. This work presents research results related to the
application of UAVs for transmission lines inspection, autonomously, allowing the identifi-
cation of invasions of the transmission line area as well as possible defects in components
(cables, insulators, connection, etc.) through the use of Convolutional Neural Networks
(CNN) for fault detection and identification. This thesis proposes the development of an
autonomous system to track power transmission lines using UAVs efficiently and with low
implementation and operation costs, based exclusively on rea-time image processing that
identifies the structure of the towers and transmission lines durin the flight and controls
the aircraft´s movements, guiding it along the closest possible path. A sumary of the work
developed will be presented in the next sections.

Keywords: UAV Application; Convolutional Neural Network; Aerial Inspection.



Resumo
Atualmente, os Veículos Aéreos Não Tripulados – VANTs têm sido utilizados nas mais
diversas aplicações tanto no setor civil quanto militar. No setor civil, os serviços de in-
speção aérea vêm ganhando bastante atenção, principalmente no caso de inspeções de
linhas de transmissão de sistemas elétricos de alta tensão. Este tipo de inspeção envolve
um helicóptero transportando três ou mais pessoas (técnicos, pilotos, etc.) sobrevoando a
linha de transmissão em toda a sua extensão, o que constitui um serviço perigoso princi-
palmente pela proximidade da linha de transmissão e possíveis condições ambientais (ra-
jadas de vento, por exemplo). Neste contexto, a utilização de VANTs tem demonstrado
considerável interesse devido ao seu baixo custo e segurança para técnicos de inspeção
de linhas de transmissão. Este trabalho apresenta resultados de pesquisas relacionadas à
aplicação de VANTs para inspeção de linhas de transmissão, de forma autônoma, per-
mitindo a identificação de invasões da área da linha de transmissão bem como possíveis
defeitos em componentes (cabos, isoladores, conexões, etc.) através do uso de Convolu-
cional. Redes Neurais - CNN para detecção e identificação de falhas. Esta tese propõe
o desenvolvimento de um sistema autônomo para rastreamento de linhas de transmissão
de energia utilizando VANTs de forma eficiente e com baixos custos de implantação e
operação, baseado exclusivamente no processamento de imagens em tempo real que iden-
tifica a estrutura das torres e linhas de transmissão durante o voo e controla a velocidade
da aeronave. movimentos, guiando-o pelo caminho mais próximo possível. Um resumo do
trabalho desenvolvido será apresentado nas próximas seções.

Palavras-chaves: Aplicações com VANT; Rede Neural Convolucional; Inspeção Aérea;
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1 Introduction

1.1 Context and Motivation
Electric power transmission are huge infrastructures with great importance for the elec-
tricity supply of a country, as they support the cables that transmit energy from the
generation site to the final consumer. Distribution reliability continues to be one of the
most important topics in the electric power sector, due to the direct correlation with cus-
tomer satisfaction. The rupture or even damage of these structures can have significant
consequences for the economy (KIRTLEY JAMES L, 2020).

Transmission Lines (TLs) carry electric power at high voltages. Typically transmission
voltage is more than 69kV, whereas distribution lines generally operate at lower voltage
(less than 69kV). These voltages may pose life threatening hazards to anyone nearby a
Transmission Line (TL) and TLs towers. For example, the National Grid Corporation
of the Philippines, previously launched a campaign stressing the dangers of various ac-
tivities such as kite flying, planting trees, or parking vehicles near transmission towers
(GONZALES, 2013).

TLs also distribute electricity over long distances, supplying electricity from big power
plants to smaller power distribution lines to end users and any attacks such on infrastruc-
ture could cause a nationwide harm and/or distress (HARRELL, 2016).

In 2016, the European Commission under the Horizon (H2020) framework initiated a Call
for Proposals (H2020-CIP-01) towards the protection of critical infrastructures including,
but not limited, to Energy Infrastructure (COMMISSION, 2017).

According to the Brazilian National Electric System Operator (ONS), in 2025 the exten-
sion of the length of electricity transmission, using high voltage lines, in Brazil, will reach
184,054km in length, with the current number being 145,600km. Electricity consump-
tion in Brazil totaled 474,231GWh in 2020, an increase of 38% compared to the previous
10 years, according to Energy Research Company (EPE) (MACHADO G, 2021). Fur-
thermore, Minas Gerais State Energy Company (CEMIG) will count on a government
investment from the Program More Energy worth 5 billion Brazilian Reals, creating 200
new energy distribution substations, increasing to 615 units and 3,100 kilometers of new
high voltage lines by 2027 in Minas Gerais state (BIANCHETTI, 2021).

Aerial Inspection of TLs have several challenges such as covering predefined and known
areas, avoiding obstacles, recognizing objects of interest, identifying faults in transmission
line components, identifying risks of erosion or landslides, identifying unauthorized oc-
cupation on the ground etc. In all these cases, corrective actions for identified anomalies
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will be defined and planned by technicians involved in the inspection process according
to their degree of severity.

In order to guarantee the continuity and quality of this complex system, maintenance and
inspection activities are regulated by the ONS and supervised by Brazilian National Elec-
tric Energy Agency (ANEEL), which determines a minimum plan of action and frequency
(DANTAS, 2021).

These measures are necessary because transmission structures that are long in length are
subject to damage caused by nature and aging, therefore requiring thorough checks peri-
odically or after major environmental catastrophes. Furthermore, it is the responsibility
of the concessionaires to put together an inspection plan for these cases, so that mainte-
nance occurs regularly in a specialized preventive and predictive way, and according to
the characteristics of their structures. Preservation strategies can be Time-Based Main-
tenance (TBM), defined by fixed calendar intervals, operating hours or operating cycles,
or Condition Based Maintenance (CBM), which is an extension of the TBM strategy and
use non-invasive testing techniques to assess the condition of the equipment (KIRTLEY
JAMES L, 2020). Figure 1.1 presents real examples of the occurrence of some of these
problems.

Figure 1.1 – Common faults in power transmission line structures
(a) Loose wire structure, (b) Corroded structure, (c) Cable damaged by shock absorber, (d) Corroded

cable, (e) Loose and damaged cable and (f) Broken cable.
Sources: (ADAMI, 2008; RIBEIRO, 2019)

Problems related to the structure can be identified during regular inspections and main-
tenance. They consist of occurrences in the environment that pose future risks to people
nearby or to the regular operation of power transmission, problems that can be presented
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by: trees close to the structure or conductors, irregular suppression on half a slope, undue
invasions in the right-of-way, natural erosion or removal to landfill, among others. Fig-
ure 1.2 shows the most common situations that can compromise structures or people’s
safety.

Figure 1.2 – Occurrences in the transmission line area.
(a) Trees close to the lines; (b) Erosion on the ground; and (c) Intrusions into the service lane.

Sources: (SILVA, 2011; G1, 2021; GLOBO, 2019)

In general, simple routine inspections can be carried out with a pedestrian patrol or land
vehicle, composed of a group of electricians, located on on-site platforms with the aid
of forklift trucks, or on isolated platforms with the aid of binoculars. The more specific
inspections are carried out by a conventional helicopter containing sensors for data acqui-
sition, flying parallel to the transmission line and an operator filming the line (SILVA G.
C. DA; MUNARO, 2008). These methods, although functional, have many disadvantages:
the first is restricted due to the limitation of the observation point and equipment, while
the second due to the availability of the equipment and vehicles used. Both solutions
require high investment per course and also pose a high risk of accidents to operators
(SILVA G. C. DA; MUNARO, 2008; RESENDE, 2017a).

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have already been suc-
cessfully used in many traditional civil and military applications. Recently, UAVs have
been used in inspections of TLs in a manual and reduced way, to the detriment of their
limitation in terms of restricted field of vision, scarcity of specialized operators and oper-
ating time (BRITO, 2019).

An emerging application is the replacement of traditional means of inspecting power
transmission lines with autonomous UAVs, however new questions are raised, including
how to operate with lower cost, better performance and greater safety, in compliance with
current legislation. Therefore, the use of UAVs to track the path of a power transmission
line is currently carried out by a highly trained pilot or by simple programmed missions,
using way-points based on Inertial Measurement Unit (IMU) coupled to the aircraft, such
as accelerometers, gyroscopes , compass, in addition to Global Positioning System (GPS)
coordinates with prior knowledge of the environment to carry out the mission (PAUL,
2006). Figure 1.3 shows some kind of TLs used nowadays.
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Figure 1.3 – TL Inspection currently.
(a)With helicopters, (b) Visual and (c) Using drones.

Sources: (RESENDE, 2017b; RANGEL; KIENITZ; BRANDÃO, 2009)

Identifying elements to assist in inspection using a navigation and altitude control en-
vironment accurately is a major challenge for this application, especially in situations
where the GPS signal and IMU data may not be reliable, or the operator’s driving may
be affected. Precision failures in measuring instruments, external interference, such as the
level of absorption of electromagnetic energy, South Atlantic Magnetic Anomaly (SAA)
and adverse weather conditions are common. The limitation of the operator’s perspective,
limited or incorrect information on the coordinates of TLs towers, particular characteris-
tics characteristics of the soil and structure also make the use of this technique difficult.
Achieving a low-cost, broad, efficient and safe solution, especially in a country with large
areas and limited financial resources in infrastructure, is a major challenge (TRIVEDI,
2005).

In addition to the issues raised, TLs structures are installed in different environments,
and there may be corridors in urban centers, mountainous regions, bridges, rivers, among
others. Similarly, it is common for these structures to intersect with other power line
corridors, which can be of different categories and formats. Figure 1.4 shows areas related
to photo and video collection.
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Figure 1.4 – Areas related to photo and video collection.
Source: (DANTAS, 2021)

With this background we believe that here is an increased need for protection against any
encroachment or unauthorized activity nearby TLs.

1.2 Objectives and Scope of Work
The main hypothesis that led the authors to carry out this work was: is the integration of
cooperative swarm algorithms with image inferences using deep learning for autonomous
power TL tracking possible?

In order to prove the aforementioned hypothesis, this work begins with the objective
to provide a detailed analysis of the use of autonomous and cooperative UAV in the
inspection of TLs, with an emphasis on aircraft trajectory control during flight, using
exclusively monovision, in simulated and real environments. To meet the main objective
of this thesis it is necessary that the following specific objectives are achieved.

• Know and master the ways of recognizing objects using monovision;

• Know and master the ways of tracking objects, specifically TLs;

• Know and master the ways of processing images in real time;
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• Know and master the ways of controlling the trajectory of groups of UAVs;

• Present the different components of a UAV;

• Simulate UAVs flights;

• Implement a simulated UAVs environment containing TLs that can be tracked;

• Propose and implement a solution for controlling the trajectories of groups and UAVs
using exclusively monovision;

• Verify the efficiency of the proposed solution through simulations.

1.3 Literature review
For this research, 184 academic works, books, websites and other sources published in the
period from 1982 to 2023 were consulted, a range of 4 decades, with the most of sources
(61.41%) up to five years of publication, with 44.24% of these being from last two years
(Figure 1.5).

Figure 1.5 – Number of references per year of publication
Source: Author

This thesis produced a Systematic Literature Review (SLR) (MARTINS et al., 2020) that
considered scientific works that answered the research questions (Table 1.1) on techniques
used for the use of autonomous UAV in the inspection of TLs, identifying the materials
and methods used.

To answer these questions the search expression (“Autonomous” OR “Self-navigation”
OR “Self navigation” OR Automatic OR Autopilot) AND (“Remotely Piloted” OR “RPA”
OR “Aerial Unmanned” OR “UAV” OR “DRONE” OR “Airplane”) AND (“Image” OR
“Inspection” OR “Maintenance”) AND (“Transmission Power” OR “Transmission Line”
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N. Research Question
1 What is the cost of implementing the materials and techniques used to inspect

TLs using UAV?
2 What is the computational and energy efficiency of the techniques used to guide

the UAV?
3 What is the level of security and location of the solutions implemented for tracking

TLs using UAV?

Table 1.1 – SLR’s Research Question

OR “Power Grid” OR “Power Line”) (Table 1.2) in online search engines in the IEEE,
Scopus and Compendex databases.

After applying some inclusion criteria (Table 1.3) and exclusion criteria (Table 1.4) to the
articles found, the quantitative result is shown in Table 1.5.

The quality of the proposals presented in the articles evaluated by SLR was measured
according to the criteria listed in Table 1.6.

The systematic mapping resulting from SLR containing evidence from the 15 selected and
evaluated studies, is presented in Table 1.7.

N. Link String Link
1 Autonomous OR
2 Self-Navigation OR
3 Self Navigation OR
4 Automatic OR
5 AutoPilot
6 AND
7 Remotely Piloted OR
8 RPA OR
9 Unmanned aerial OR
10 UAV OR
11 UAS OR
12 DRONE OR
13 Airplane
14 AND
15 Imaging OR
16 Inspection OR
17 Maintenance
18 AND
19 Transmission Power OR
20 Transmission Line OR
21 Power Network OR
22 Power Line

Table 1.2 – SLR’s Search Expression
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N. Selected Publication
1 Use unmanned aircraft to inspect TLs autonomously.
2 Have different techniques for autonomous tracking of TLs.

Table 1.3 – Criteria adopted in SLR for inclusion of articles

N. Discarded publications
1 Do not contain the exact keywords of the search phrase or its variations.
2 Do not use unmanned aircraft.
3 Do not aim to inspect TLs.
4 Do not use autonomous mode.
5 Do not describe all the processes used in the proposed solution.
6 Have not been applied at least in the simulation environment.

Table 1.4 – Criteria adopted in SLR for excluding articles

Articles Duplicate Included Excluded
N. Phase Found Articles Articles Articles
1 Search 223 85 140
2 Selection 30 110
3 Evaluation 4 15 10

Table 1.5 – Result of the SLR article selection process

N. Quality criterion
1 Was the study described clearly and adequately?
2 Were the methods or techniques used clearly reported?
3 Was the virtual environment used clearly reported?
4 Has the proposed solution been evaluated/validated?
5 Were the results stated clearly?

Table 1.6 – Criteria adopted in SLR to measure the quality of the proposed solutions.
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Table 1.7: Features identified in other solutions

1 (ZHANG et
al., 2016)

Laser DL
Binocular
vision

Real
flight

Uni4 Ave-
rage

4.0

2 (HUI et al.,
2019)

Camera DL KCF
Tracking

Real
flight

Multirotor Low 5.0

3 (LUQUE-
VEGA et al.,
2014)

Infrared
camera

GCS
GPS

Real
flight

Multirotor Ave-
rage

4.0

4 (ZORMPAS
et al., 2018)

Camera Edge de-
tection5

Real
flight

Multirotor Very
low

3.0

5 (DENG et
al., 2016)

Laser Adaptive
algo-
rithm6

Labora-
tory

Multirotor Ave-
rage

4.0

6 (HAMELIN
et al., 2019)

Camera
and
lidar

Discrete
Time
Control

Real
flight

Hybrid
multiro-
tor7

Ave-
rage

4.5

N Reference Material Methods Tests1 UAV Cost2 QLT3

Continued on next page
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Table 1.7: Features identified in other solutions (Continued)

7 (WU et al.,
2019)

Magnetic
sensors

Meta-
heuristic
algo-
rithm

Labora-
tory

Multirotor Ave-
rage

4.5

8 (ZHOU et
al., 2016)

Camera Edge de-
tection5

Real
flight

Multirotor Low 4.5

9 (XIE et al.,
2017)

Manifold Multi-
sensor
ajust-
ment

Real
flight

Helicopter Very
high

4.5

10 (DENG(B)
et al., 2014)

GPS
IMU

Adjust-
able
way-
points

Real
flight

Fixed wing
and multi-
rotor

Low 3.0

11 (MENENDEZ
et al., 2016)

Camera Edge de-
tection5

Labora-
tory

Uni4 Ave-
rage

4.5

12 (GERKE;
SEIBOLD,
2014)

Camera Edge de-
tection5

Labora-
tory

Airship Low 3.0

13 (ARAAR;
AOUF, 2014)

Camera Visual
servoing8

Labora-
tory

Multirotor Low 4.5

14 (GAO et al.,
2018)

Magnetic
sensors

Inverse
model al-
gorithm9

Simula-
tion

Uni4 Low 3.0

15 (CHANG et
al., 2017)

Laser Adaptive
algo-
rithm6

Labora-
tory

Hybrid
multiro-
tor7

High 4.5

N Reference Material Methods Tests1 UAV Cost2 QLT3
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1Test environment.
2Costs reported subjectively by the authors of the articles, making it not possible to
compare them with each other.
3Quality measured according to criteria listed in the Table 1.6
4Uni: uninformed
5Edge detection includes mathematical methods that aim at identifying edges, defined as
curves in a digital image.
6Adaptive algorithms is an algorithm that changes its behavior at the time it is run, based
on information available and on a priori defined reward mechanism (or criterion) (GUI;
LI; FANG, 2023).
7A hybrid multirotor combines the advantages of both fixed-wing (airplane) and rotary-
wing (multirotor) systems in one and the same UAV
8Visual Servoing, also known as Vision-based Robot Control (VS), is a technique which
uses feedback information extracted from a vision sensor to control the motion of a
robot (CENTER; AGIN, 1979).
9Inverse modeling with deep learning algorithms involves training a deep architecture to
predict device parameters from its static behavior. Inverse device modeling is suitable
for reconstructing changed physical parameters of temporarily degraded devices or for
recovering the physical configuration (SPATA et al., 2023).

An unmanned aerial system based on a quadcopter for TLs inspection is proposed by
(LUQUE-VEGA et al., 2014), where the main interest, according to the authors, is to
equip the quadcopter with the necessary payload to be able to carry out a qualitative
inspection, and the hardware architecture of the aerial robotic system was presented.

(ZHANG et al., 2016) developed an embedded navigation system based on binocular
laser vision (or binocular stereo vision), when two laser beams work at the same time.
The binocular stereo vision system is based on bionic theory. Just like a person’s two eyes,
two devices are installed in a UAV. The distance between the laser camera and the object
can be calculated based on the optical laws between the images taken by the left and
right cameras. The distance and direction of the object can then be determined. In this
work, during the UAV flight, the distance between the TLs and the onboard binocular
ranging device and the angle between the yaw direction and the line direction could be
obtained, functioning as auxiliary navigation for the UAV and improving the success
rate of landing. Once the distance is obtained, the angle between the UAV yaw direction
and the line direction can be calculated using a simple mathematical model. The results
showed that the relative error of binoculars measuring distance was 2 – 3%.

A hardware and software system design for UAV-based TL inspection is proposed by



Chapter 1. Introduction 35

(DENG et al., 2016) using real-time data processing and Kalman filter for TL detection
and tracking. In the work, the authors apply the solution in a real environment.

(ZHOU et al., 2016) use specific knowledge about TLs to build a model that achieves
predictive and continuous parameters of selection so that the best limits are selected
when there are changes in the scenarios. According to the authors, experimental studies
show that the proposed solution is much better than existing ones. They would have built
the first fully automated UAV that successfully tracks TL in the real world.

(XIE et al., 2017) present a multi-sensor solution for the inspection of TLs based on the
use of a large unmanned helicopter, where multiple sensors can perform synchronized
inspection on all components of the TL and surrounding objects. The authors present
in detail the planning method for the unmanned helicopter flight path and sensor tasks
before inspecting the TLs, and the method used to automatically track power lines and
insulators during the inspection process. According to the authors, the results obtained
show that the proposed method is effective for inspection of TLs.

(ZORMPAS et al., 2018) examined the effectiveness of using TL image processing acquired
by a UAV and proposed two methodologies differing in the pre-processing required to
detect the location of lines in video images. Both proposed methodologies were tested
in real-world cases, with the image background in each case being characterized by non-
uniform texture, i.e. natural rough terrain in some places, wooded terrain in others and
roads. According to the authors, the experiment was successful and the proposed work
offers a robust and low-cost way to inspect TLs, being able to locate where a cable failure
occurred.

The work of (HUI et al., 2019) presents a monocular (one camera) vision-based navigation
approach for continuous inspection by a UAV along one side of the TL. Object detection
based on deep learning and a fast and smooth tracking algorithm based on kernelized
correlation filter were combined to locate the transmission tower. The distance between
the UAV and the transmission tower was measured by triangulation in multiple views. The
proposed navigation approach and the designed UAV platform were tested in a real-world
environment.

(WU et al., 2019) propose a new parameter reconstruction method for TL overloading,
which deals with the challenge as a non-linear optimization problem, building an algorithm
that combines metaheuristic algorithm and interior point method, where the position and
the current parameters of the lines were reconstructed from the magnetic field data.

(HAMELIN et al., 2019) present the design of a discrete-time control algorithm system for
the TL tracking and assisted landing of the Hydro-LineDrone robot, a UAV designed to
land and traverse energized power lines. The algorithm automatically aligns the UAV with
the cable while the pilot remains in control of the vertical and longitudinal positions, thus
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facilitating landing by having fewer degrees of freedom on which the pilot must focus. The
emphasis of the project is placed on the discrete time control law. The proposed control
system is also designed to meet the requirements for operation near lines, which means
the system is immune to electromagnetic interference. The proposed control algorithm is
experimentally validated on the LineDrone hybrid UAV under real outdoor conditions.

In addition to the work handled by SLR, others that deal with the inspection of TLs or
the control of groups of drones will be described below.

(MAZA et al., 2010) present a work on cooperation and control of multiple UAVs capable
of detecting and acting using an architecture to carry out cooperative missions where
interactions between UAVs are not only exchanges of information, but also physical cou-
plings necessary for the joint transport of a single charge. The work also presents a control
system for transporting suspended cargo using one or more helicopters, as well as results
from cargo transport experiments with one and three helicopters.

A multi-layer control model comprised of an interplay of decentralized algorithms for per-
ception and swarming that enables information propagation and multitasking in swarms
using only local interactions and without explicit communication or prescribed forma-
tions, causing variations in individual speed to be implicitly propagated through the
swarm, causing a change in the group’s direction almost immediately, was proposed by
(AL-ABRI; MAXON; ZHANG, 2019).

Three algorithms to select the best option in a framework for allocating swarms of UAV
for delivery services known as Swarm-based Drone-as-a-Service (SDaaS), in order to guar-
antee a minimum cost (or maximum profit) for UAV swarm suppliers meeting the require-
ment of shorter response time, were presented and evaluated by (ALKOUZ; BOUGUET-
TAYA, 2021a).

In a scenario where a swarm of UAVs must visit some locations and build a map in
a disaster area, assuming that UAVs can only communicate with their neighbors and
manage partial mission information, a work proposed by (ALKOUZ; BOUGUETTAYA,
2021b) analyzes two game theoretical algorithms: one competitive and one cooperative.
The competitive algorithm proposes games between each UAV and its neighbors and seeks
the Nash Equilibrium, while the cooperative one defines electoral systems in which UAVs
vote on their preferred task allocations to their neighbors. After the experiments, the
authors conclude that, in a swarm, robots must cooperate and not compete.

A 4D path planning for swarm-based drone operations is proposed by (WU et al., 2021),
applying 3D path planning for a single drone and inter-drone conflict resolution. A Cluster-
enhanced Ant-colony Optimization Algorithm (CIACO) is employed to solve the multi-
path planning problem.

(LI et al., 2021) states that currently the method of using UAVs with traditional navigation
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equipment to inspect TLs has the limitations of expensive sensors, difficult data processing
and vulnerable to climatic and environmental factors, which cannot guarantee the safety
of aircraft and energy systems. To minimize these problems, it presents a mathematical
model of spatial distribution of TLs to study the field intensity distribution information
around the TLs. Based on this, it suggests a navigation and positioning algorithm where
data collected by the positioning system are inserted into the mathematical model to
complete the identification, positioning and diagnosis of the field source safety distance.
The detected data and processing results can provide reference for obstacle avoidance
navigation and UAV security warnings.

(LI; CHEN, 2022) proposes a solution for Multi-task Distributed Scheduling (MTDS)
in the form of an improved Performance Impact (PI) algorithm integrating a new task
removal strategy and inclusion conflict prediction.

Other topics of interest in this thesis are image recognition and obstacle avoidance, as they
pose challenges to be overcome in the inspection of TLs and in controlling the trajectory
of UAVs.

A navigation system for indoor UAVs, using computer vision, was proposed by (JONES;
ANDRESEN; CROWLEY, 1997). The system required advance knowledge of the environ-
ment being flown over. This knowledge was provided through images acquired and stored
previously to be processed during the flight. In this type of solution, the images captured
by UAV are compared with those in the stored image database. The algorithm seeks to
identify common points (anchors) in the images that may indicate the location of the
aircraft, acting as physical spatial references (SHIGUEMORI; MARTINS; MONTEIRO,
2007).

A real-time solution using stereo computer vision (using two cameras) was developed by
(NISTER; NARODITSKY; BERGEN, 2006). The solution applied to the autonomous
navigation of a terrestrial robot, locating and making the robot avoid objects in its path.
This solution used an algorithm to detect the contours of images and identify obstacles
and options for avoiding these obstacles in the robot’s path.

Another solution for autonomous obstacle avoidance is proposed by (SAUNDERS; BEARD;
MCLAIN, 2007), using several circular paths, obtained using a laser that, combined, de-
fined the presence or absence of obstacles in the environment and measured the distance
between the robot and the obstacles identified.

A solution using Python programming language is proposed by (HERMíNIO et al., 2010).
A small mobile prototype traveled a pre-defined route, avoiding obstacles using a video
camera from an on-board cell phone. The images were transmitted in real time to a
computer, via the wi-fi network, which processed them and sent movement commands to
a microcontroller embedded in the prototype.
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The use of several sensors is the solution proposed by (WAGSTER et al., 2012) to make a
UAV avoid obstacles flying at a constant speed through the environment. The combination
of multiple sensors increases efficiency in pose definition (aircraft positioning) and object
identification and location.

The use of UAV to scan building facades, using a high-resolution digital camera, is pre-
sented by (ESCHMANN et al., 2012). In this solution, initially 2D images are acquired
by UAV in horizontal and vertical flights. Afterwards, the collected images are joined and
looked for signs of cracks. Similar work to detect cracks using 3D images was presented
by (TOROK; GOLVARPAR-FARD; KOCHERSBERGER, 2014).

A solution for avoiding obstacles through a UAV using graphs was proposed by (WEISS
et al., 2014). Connectivity between nodes indicated the presence or absence of obstacles.

A solution that uses onboard GPS and a laser device is created by (STUBBLEBINE et
al., 2015) to make a UAV avoid obstacles in real time.

According to (NETO, 2016), one of the sectors of the Brazilian economy that can take
great advantage of UAV technology with computer vision capable of carrying out some
programmed tasks is commercial agriculture, as with the use of aircraft it is possible to
map cultivated soil, verify which individuals (plants) need more nutrients and also check
their health. In his solution, (NETO, 2017) used monovision to guide a ground robot
around obstacles.

Obstacle avoidance in real time by UAVs finds applications in the inspection of urban
areas, as proposed by (MOTA et al., 2014) and (FELIZARDO; RAMOS; CAMINO, 2015),
including the inspection of TLs. An analysis of the effectiveness of using mini-helicopters
for this purpose was presented by (HRABAR; MERZ; FROUSHEGER, 2010).

In the oceanic area, autonomous obstacle avoidance has also been explored, as in work
to control the trajectory of unmanned underwater vehicles (Underactuated Unmanned
Underwater Vehicle (UUV)) (YAN et al., 2015) including multiple vehicles (CAI; ZHANG;
ZHENG, 2017), and can be applied to inspections of cables and submerged oil pipelines
(YAN et al., 2018).

(LUO; BAI; ZHANG, 2021) proposed a novel formation control strategy to address the
target tracking and circumnavigating problem of multi-UAV formation, using two sets of
definitions, space angle definition and space vector definition, to describe the flight state
and construct the desired relative velocity establishing the moving target by the relative
kinematic model between the UAV and the moving target.

The problem of cooperative circular formation with limited target information for multi-
ple UAV systems is addressed in (HUO; DUAN; FAN, 2021). A pigeon-inspired circular
formation control method is proposed to form the desired circular distribution in a plane
based on the intelligent behavior of the pigeon during hovering flight. Each UAV rotates
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around a specified circle at the same angular speed using only the relative position between
the UAV and the target.

(LUO et al., 2023) proposed a Ultra-small Screw Defect Detection Model (UBDDM)
based on a Deep Convolutional Neural Network (DCNN), including a Ultra-small Object
Perception Module (UOPM) and a Local Screw Detection Module (LBDM) to structure
inspections using UAV.

(OLSSON, 2023) investigated an approach of using a swarm/team of drones, able to
cooperate, to autonomously deal with unauthorized trespassing of a restricted area. In
that instance, the critical infrastructure object was set to be an aircraft hangar such as a
part of a Forward Operating Airbase (FOB). And the area was continuously patrolled in
search for trespassing objects by a single drone equipped with high performance camera
and processing equipment.

1.4 Thesis Structure
This work is organized as follows.

Chapter 1 presents the context of the problem addressed by this thesis and the motivation
for investing efforts in solving it. It presents a review on the typical TLs inspection
approach using autonomous UAVs, briefly describes the main technique of this thesis
and lists some relevant works in which it stood out. It also presents the objectives and
scope of the work.

Chapter 2 presents the concept and formal definitions of RPA in Brazil according to
official control and aviation bodies.

Chapter 2.3 presents the concept of swarm and RPA group.

Materials and Methods are presented in Chapter 3.

The results obtained from this work are discussed in Chapter 4.

Chapter 5 presents the conclusions, difficulties, and contributions.

Finally, Chapter 6 proposes future works.
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2 Remotely Piloted Aircraft - RPA

2.1 Introduction
Although the term Unmanned Aerial Vehicle (UAV) is the most used around the world,
according to the official Brazilian bodies use the term Remotely Piloted Aircraft (RPA).

RPAs are small aircraft that, without any direct physical contact, have the ability to
perform tasks such as monitoring, mapping, among others (MEDEIROS, 2017). According
to (MEDEIROS, 2017), these aircraft are characterized by two basic aspects: not having
a pilot on board and carrying equipment, usually sensors, that allow them to carry out
certain missions. These RPAs are piloted or controlled remotely through electronic and
computational means, supervised by humans. Currently, more than 40 (forty) countries
are working on the development of RPAs aimed at different markets (JORGE, 2001).

This intends to present the concept and formal definitions of this term in Brazil according
to these official control and aviation bodies.

2.2 Official Definition of ARP in Brazil
This section presents the official definitions of the term RPA according to the official
Brazilian regulatory bodies, Agência Nacional de Aviação Civil (ANAC) and Departa-
mento de Controle do Espaço Aéreo (DECEA).

2.2.1 Definition of RPA According to ANAC

Agência Nacional de Aviação Civil (ANAC) published in May 2017 a special regulation
with general rules for the civil use of unmanned aircraft in Brazil and published it in
the form of Guidelines for Drone Users (ANAC, 2020), where it defines Remotely Pi-
loted Aircraft (RPA) as an unmanned aircraft used for purposes other than recreation
(commercial, corporate or experimental use) (Table 2.1).

ANAC also defines, in this same regulation, the figures of the Remote Pilot and the
Observer (Table 2.2) and the types of operations with RPAs (Table 2.3 and Figure 2.1).

Regarding the definition of RPA, ANAC also, on its online page (ANAC, 1999), provides
two other definitions for Remotely Piloted Aircraft:

• Definition 01: ”It is one in which the pilot is not on board, but controls the aircraft
remotely through an interface (computer, simulator, digital device, remote control,
etc.). Unlike another subcategory of UAVs, the so-called ’Autonomous Aircraft’,
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N. Term Definition
1 Drone Popular name for unmanned aircraft
2 Model Aircraft Unmanned aircraft used for recreation
3 Remotely Piloted Air-

craft (RPA)
Unmanned aircraft used for purposes other than recreation
(commercial, corporate, or experimental use)

4 Remotely Piloted Air-
craft (RPA)s

Set formed by the aircraft (RPA), the Remote Piloting Sta-
tion (RPS), the command and control link and any other
component that is part of the aircraft design

Table 2.1 – Glossary of technical terms about RPAs (ANAC, 2020).

N. Actor Definition
1 Pilot Person who manipulates the controls and directs the flight of an air-

craft
Remote unmanned

2 Observer Person who, without the aid of equipment, assists the remote pilot in
safely conducting the flight by maintaining direct visual contact with
the UAV

Table 2.2 – ANAC definition for people involved in a flight with UAV. Source: Author
with data obtained in (ANAC, 2020)

N. Operating Definition
1 BVLOS Operation in which the pilot is unable to keep the UAV within his

visual range, even with the help of an observer.
2 VLOS Operation in which the pilot maintains direct visual contact with UAV

(without the aid of lenses or other equipment)
3 EVLOS Operation in which the remote pilot is only able to maintain direct

visual contact with the UAV with the aid of lenses or other equipment
and RPA observers.

Table 2.3 – Types of flight with UAV in relation to the remote pilot’s and observer’s
vision (ANAC, 2020).

which, once programmed, does not allow external intervention during the flight and
which in Brazil has its use prohibited. The so-called RPA1 , Finally, it is the correct
terminology when we refer to non-recreational remotely piloted aircraft”;

• Definition 02: ”Unmanned aircraft, flown from a remote pilot station”.

2.2.2 Definition of ARP According to DECEA

Brazilian Departamento de Controle do Espaço Aéreo (DECEA), organization responsible
for controlling Brazilian airspace, provider of air navigation services that enable flights
and the ordering of air traffic flows in the country (DECEA, 2023b), offers the following
definitions applicable to the concept of RPAs:
1 ANAC assigns the acronym RPA to designate ’Remotely Piloted Aircraft’ even when, in Portuguese,

it would be ARP, an acronym for Remotely Piloted Aircraft.(sic) (ANAC, 1999).
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Figure 2.1 – Types of Operation with UAVs.
Source: (ANAC, 2020)

• UNMANNED AIRCRAFT: "Any device that can sustain itself in the atmosphere,
based on air reactions other than air reactions against the earth’s surface, and which
is intended to operate without a pilot on board";

• AUTONOMOUS UNMANNED AIRCRAFT: ”Unmanned aircraft that does not al-
low pilot intervention in flight management”;

• REMOTELY PILOTED AIRCRAFT: ”Subset of Unmanned Aircraft, piloted from
a remote piloting station, with purposes other than recreation, that is capable of
interacting with Air Traffic Control in real time”.

While ANAC uses the acronym RPA to refer to Remotely Piloted Aircraft (Aeronave
Remotamente Pilotada, in portguese), DECEA uses two acronyms, ARP and UA (Un-
manned Aircraf).

In accordance with Instrução de Aviação Civil (IAC) 100-40/2023 - ”Unmanned Aircraft
and Access to Brazilian Airspace” (DECEA, 2023a), Unmanned Aircraft Systems (UAS)
are a new component of global aviation that operators, industry and several international
organizations are studying and working to understand, define and, finally, promote their
complete integration into Airspace.

In Brazil, Unmanned Aircraft are still widely known as drones, UAV, or RPA.

According to the International Civil Aviation Organization (ICAO), UA, covers a wide
spectrum of aircraft, from unmanned free balloons and model aircraft to highly complex
aircraft. According to DOC 100-19, UAs are subdivided into: Remotely Piloted Aircraft
(RPA), Small Unmanned Aircraft, Model Aircraft and Autonomous Aircraft. The first
three have similar characteristics, as they are Unmanned Aircraft and flown from a remote
pilot station. Unmanned and Definitive Aircraft as Innovative have the characteristic of
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not allowing human intervention, once the flight has started. With the publication of
the Brazilian Special Civil Aviation Regulation nº 94, A basic difference was established
between Remotely Piloted Aircraft and Model Aircraft, the latter being used only for
recreational purposes. and define:

• MODEL AIRCRAFT: Unmanned aircraft, used for exclusively recreational purposes;

• AIRCRAFT: Any device that can sustain itself in the atmosphere from air reactions
other than air reactions against the earth’s surface;

• UNMANNED AIRCRAFT: Any device that can sustain itself in the atmosphere,
based on air reactions other than air reactions against the earth’s surface, and that
is intended to operate without a pilot on board;

• AUTONOMOUS UNMANNED AIRCRAFT: Unmanned aircraft that does not allow
pilot intervention in flight management;

• REMOTELY PILOTED AIRCRAFT: Subset of Unmanned Aircraft, piloted from
a remote piloting station, with purposes other than recreation, that is capable of
interacting with Air Traffic Control in real time;

• REMOTE PILOT STATION: Component of the Unmanned Aircraft system that
contains the equipment used to pilot the aircraft;

• AUTOMATED OPERATION: Operation in which the unmanned aircraft automat-
ically fulfills the programmed flight plan and during which, under normal operating
conditions of the UAS components, it is possible for the Remote Pilot to intervene
in the conduct of the operation in all its phases.
NOTE: Under normal conditions, the Remote Pilot must be able to interfere in the
flight of the unmanned aircraft, the piloting of which is under his responsibility and
supervision;

• OPERATION AROUND A STRUCTURE: Operation carried out around any struc-
ture or obstacle, whether artificial or natural, limited vertically to 5 m (five meters)
above the height of the structure or obstacle and horizontally distanced up to 30 m
(thirty meters ) of this;

• SMALL UNMANNED AIRCRAFT: Subset of Unmanned Aircraft with maximum
takeoff weight (PMD) less than or equal to 25kg;

• RPA: Remotely Piloted Aircraft;

• RPAS: Remotely Piloted Aircraft System;

• UNMANNED AIRCRAFT SYSTEM: System composed of the Aircraft and its as-
sociated elements, which can be remotely piloted or fully autonomous;

• REMOTELY PILOTED AIRCRAFT SYSTEM: Subset of the Unmanned Aircraft
System, which is capable of interacting with Air Traffic Control in real time, consist-
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ing of the remotely piloted aircraft (RPA), its remote piloting station(s), the piloting
link and any another component associated with its operation;

• UA: Unmanned Aircraft;

• UAS: Unmanned Aircraft System;

• UAV: Unmanned Aerial Vehicle (obsolete term)

2.3 RPA Swarm
The term swarm was introduced by Beni and Wang in their studies on Cellular Robotic
Systems (ZAVALA-RIO; SOERENSEN, 2013; SAHIN, 2004).

Multi-Robot Systems (MRS) allow members of a group of robots to cooperate with each
other to complete a given task more quickly than a single robot would be able to do, and
with greater tolerance to failures due to robot redundancy (GUZZONI et al., 1997).

A group of robots is not just a group, but has some special characteristics that are found
in swarms of insects such as decentralized control, lack of synchronization and having
simple and almost identical members (BENI; WANG, 1993).

Swarm robotics is the study of how large numbers of relatively simple, physically em-
bedded agents can be designed so that a desired collective behavior emerges from local
interactions between the agents and between the agents and the environment (SAHIN,
2004; ZAVALA-RIO; SOERENSEN, 2013).

One of the largest swarms brought together 1,024 microrobots, just a few centimeters
tall and wide, called kilobots, and was presented at the Wyss Institute for Biological
Inspection Engineering at Harvard University, in the United States, and was published in
Science magazine in 2014 (JÚNIOR; NEDJAH, 2016).

The study of drones grouped cooperatively to perform a specific task is often based on the
observation of biological systems, such as flocks of birds and schools of fish, that operate
collectively to achieve objectives. The idea is that multiple drones operating together can
overcome challenges that would be difficult or impossible for a single drone (FLOREANO
D., 2015).

Swarm optimization approaches seek to apply known Particle Swarm optimized solutions
(KENNEDY; EBERHART, 1995).

Producing a system made up of several autonomous aircraft that come together as a
cohesive group to perform a certain task is challenging. In this type of system, each
individual needs to take care of themselves in order to achieve their individual goals; avoid
colliding with obstacles in the environment, including other members of the group and not
becoming an obstacle to others; collaborate with the group’s mission; signal at all times
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your position and where you are in your specific mission; everyone has an understanding of
where the group’s mission is; obtain and process data from the environment and the group
itself, decide what actions to take and act in accordance with these decisions; produce
and transmit data in real time in a scenario called swarm intelligence.

The technological capacity to control a vehicle in a constantly uncertain environment
has always been a limiting factor in the construction of unmanned systems (SHIMA;
RASMUSSEN, 2009).

Different approaches can be found in the literature, combining software and hardware
solutions, applied to simulated and real environments. Behavior-based approaches inspired
by nature allow drones to operate based on simple rules, which combined result in complex
and cohesive group behavior (BAYıNDıR, 2016) of aircraft, such as avoiding collisions
between individuals in the group and possible obstacles during flight.

Despite these challenges, swarm intelligence and bioinspired computing have become very
popular in recent years, providing the basis for modern solutions in different applications
(MATARIĆ, 2007).

Swarm Intelligence (SI) can be defined, from the point of view of Robotics and AI, as a col-
lection of Evolutionary Algorithms based on populations of individuals cooperating with
each other, inspired by groups of animals observed in nature, which have improved their
behavior over time generations thanks to continuous training, adaptations and learning
(GOLDBERG; HOLLAND, 1988a; PANIGRAHI; SHI; LIM, 2011).

Research on SI is divided into three categories: Algorithms, Challenges and Applications
(PANIGRAHI; SHI; LIM, 2011). In SI algorithms, there are studies to create or mod-
ify solutions for use in groups of robots, such as Particle Swarm Optimization (PSO)
algorithms, which are easy to implement computationally compared to other population
algorithms inspired by nature (SILVA; LEMONGE; LIMA, 2014) and its classic vari-
ants (GOLDBERG; HOLLAND, 1988a) or others arising from these studies (SMITH;
SIMONS, 2013). Challenges in SI in turn, deal with the types of problems that these
algorithms, originally designed for single and unrestricted objectives, would be capable
of solving when applied to multi-objective optimizations with constraints such as com-
binatorial optimization problems and others. A trend of swarm intelligence research is
on hybrid algorithms (GOLDBERG; HOLLAND, 1988b). Evolutionary Algorithms are
based on biological evolution as Genetic Algorithms have been extensively investigated
in this context due to their ability to solve complex optimization problems by working
efficiently in evaluating specific variations of the problems studied (GOLDBERG; HOL-
LAND, 1988b). Among the most used evolutionary algorithms are those based on Darwin’s
theories on natural selection, genetic reproduction and evolution of species. We can also
mention Memetic Algorithms, which combine concepts such as search based on popula-
tions of evolutionary algorithms and local improvement, as in gradient tracking techniques
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(MOSCATO, 2003), Artificial Immune Systems (AIS) a branch of Computational Intel-
ligence oriented mainly by mammalian immunology, which evolved from the proposition
of using theoretical immunological models for machine learning and automated problem
solving (BORUAH, 2023) and Ant Colony, a popular meta-heuristic based on ant behav-
ior that is used to solve traveling salesman problems (THONG-IA; CHAMPRASERT,
2023).

Finally, all research on AI applied to solving a wide variety of real-world problems would
be Applications in SI, which would be, according to (PANIGRAHI; SHI; LIM, 2011),
”very difficult, if not impossible , for traditional algorithms to solve”, and which would be
attracting the attention of engineers in all areas to the successful applications of swarm
intelligence algorithms in the real world.

Autonomous obstacle perception and avoidance also have applications in swarms of RPAs,
where several aircraft fly together cooperatively to perform tasks, as (BRAGA et al.,
2018a) proposes, in an approach in which aircraft constantly attract each other (to main-
tain formation) and retract (to avoid collisions) through calculations resulting from vec-
tors of weighted virtual physical forces, without losing focus on the task to be performed
together.
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3 Materials and Methods

The next sections present the resources used to develop the research, in particular, the
hardware, that is, the drone and the sensors and electronic devices necessary for mapping
the TL; as well as the software used for monitoring, trajectory control and identification
of objects of interest.

3.1 The Proposed Hardware
The performance of any field test flight must be in line with the current regulatory frame-
work, presented in the legislation for access to Brazilian airspace. Initially, it is necessary
to have exclusive documentation for the UAV duly registered in the Unmanned Aircraft
System (SISANT), where information on the characteristics of the aircraft will be defined,
and explicitly indicates the suitability for carrying out non-recreational flights, with the
specific branch of activity for training, research and development. For this study, radio
frequency equipment was used that has a large market in Brazil, and is approved by the
Brazilian National Telecommunications Agency (Anatel).

The missions carried out for this study always operated in a TL system under construction,
therefore de-energized. The flight missions took place outside the delimitation around the
structure and above 5 meters in height and 30 meters from the surroundings, thus also
avoiding the action of the electromagnetic field produced by the transmission lines, as
represented in Figure 1.4.

The flights reached a maximum height of 130 feet above the ground, and always in Visual
Line Of Sight (VLOS) conditions. Specific issues of proximity to aerodromes are not
addressed as they do not exist in proximity to Federal University of Itajubá (UNIFEI),
however this and other variables can directly influence the deadline and decision for flight
authorization by Departamento de Controle do Espaço Aéreo (DECEA). The conditions
presented here for this study are in accordance with the Instrução de Aviação Civil (IAC)
100-40 standard.

With the rapid development of technology, autonomous vehicle projects are highlighted
in the computational academic research scene, and have made rapid progress in the last
decade. For UAVs, the possibilities are great considering their dynamics, depending on
the application it is possible to use multirotors or fixed wings autonomously and safely
(MAANYU K. N.; RAJ, 2020).

One of the proposals is to build a small UAV with enough hardware to complete the
flight proposal, and at the lowest possible cost (FILHO A. J. D.; RAMOS, 2020). Using
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data from manufacturers and calculations based on information about motors, batteries,
maximum climbing speed, battery time in stationary mode and average price units (con-
sidering US$1,000) were organized in Table 3.1, comparing with other types and costs of
UAVs of different structures.

Table 3.1 – Characteristics and costs of the drones.

Structure Maximum
Load (g)

Ascending
Speed (m/s)

Baterry
Time(s)

Price (US$)

Q250 1,000 5 720 200
F450 1,600 4 880 200

Glider 300 2 3,110 1,000
Mavic 900 4 1,440 1,000

The UAV used in the research was an F450 quadcopter (45 cm), which encompasses the
mini UAV category, weighing between 2 and 25 kg (GUPTA, 2013). It was chosen due
to the low cost of construction material, load capacity of up to 1,600g free, low battery
consumption, ease of maintenance, total freedom of movement, good stability, speed and
flight time autonomy when compared to other similar UAVs.

Figure 3.1 shows the Euler angles, movements in relation to space and coordinate orien-
tations, in North, East and Down (NED) in relation to UAV (MAANYU K. N.; RAJ,
2020).
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Figure 3.1 – A F450 drone frame used in the research.
Source: Author

Two or more independent UAVs generally are called swarms, and can act at the same
time carrying out different tasks, with a final global objective that would be difficult to
execute individually. Swarms are highly scalable and self-organizing (SHRIT, 2017). In
this study, a swarm subdivided into a pair of well-defined tasks was used.

Another important issue in the construction of UAVs is stabilization, which is why calibra-
tion modes and adjustments will be evaluated Proportional Integral Derivative Controller
(PID). For image stabilization generally a gimbal stabilizer installed at the bottom of the
frame structure. However, to save money, it is possible to install fixed directional cameras
with impact absorbers.

The main ground controller operating system can be easily changed to an on-board com-
puter in this type of UAVs, for example Raspberry Pi, for algorithm processing. Figure 3.2
below presents the architecture of the system as a whole, detailing its communications
and integrations between the main components.
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Figure 3.2 – Hardware and communication architectures.
Source: Author

3.2 Control Flight System
To guarantee flight stability, it is necessary to use a range of sensors that detect the
movement of the UAV and the environment in which it is inserted, such as the IMU, so
that they converge, applied to a data processing algorithm. This function is performed
by the Autopilot Flight Controller (FC), which is a circuit board, which in addition
to ensuring flight stability also records user parameters and commands. The low-cost
Autopilot analyzed was determined by availability in the research laboratory, their details
described below, and also presented in Figure 3.3.
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Figure 3.3 – Low cost Autopilots.
(a) Pixhawk, (b) Arducopter, and (c) DJI Naza.

Source: Author

The Pixhawk 4 FC board (a) contains, in addition to the common components for UAV
stabilization, an FMU-STM32F765 main processor that also allows programming of pa-
rameters and movement commands flexibly. Pixhawk is one of the most stable and low-cost
controllers, has open code, protocols and standards, in addition to continuous interaction
with the community of professional computer and aeronautical engineers, ensuring quality,
safety and efficiency of products for modern autonomous systems. According to analyses
carried out by (YANG Z.; LIN, 2016) and the facts presented previously, Pixhawk 4 was
the choice for this research.

Arducopter (b) is one of the pioneering autopilots to enable the use of reliable autonomous
vehicle systems. It has a basic set of tools suitable for almost any vehicle and application. It
has an extensive community to support open source implementations, but was disregarded
in the study due to its limited, outdated hardware and recurring firmware problems.

The NAZA-M Lite (c) FC system has high reliability and stability, the autopilot contains
internal damping, controllers, 3-axis gyroscope, 3-axis accelerometer and barometer. It
also has an advanced attitude stabilization algorithm, hovering accuracy is approximately
2.5 m horizontally and 0.8 m vertically (DJI, 2019). However, it is poorly adaptable to
GPS failures, thus being dependent on its sensors and significantly increasing the error
rate. It has a certain limitation in accessing parameters and sending commands to the
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aircraft, requiring the use of specific software, and was therefore disregarded from the
study.

3.3 Frameworks
Control frameworks are tools that help in programming algorithms and organizing pack-
ages, versions, sharing, among other facilities, Control frameworks are tools that help in
programming algorithms and organizing packages, versions, sharing, among other facili-
ties, the frameworks used in this project were chosen based on the authors’ affinity.

Once the control algorithms for the drone swarm systems were developed, computer sim-
ulations of the operation of these systems began. For this purpose, the authors choose
the MAVSDK because it is a Software Development Kit (SDK) originally implemented
in C++, but currently has a collection of libraries for integration with other languages,
such as Python. It is easy to adapt to Pixhawk and interact with MAVLink (OES, 2019).

The data stream is also published as peer-to-peer topics with relay. The way vehicles are
managed in MAVSDK is through a simple Application Programming Interface (API),
with easy and intuitive access, enabling faster implementation.

3.4 Graphical User Interface
FC software for UAVs assists in configuring, obtaining data, planning, and executing a
flight plan, thus optimizing time and reducing costs. The Ground Control Station (GCS)
is a ground FC center that provides these functions, this allows greater monitoring of
the actions being carried out both in real time and offline (WILLEE, 2019). Therefore, a
GCS must contain: mission planning, display of equipment data, telemetry schedule, data
terminal on the ground, communication equipment and its protection device, possibility
of PID adjustment, and integration with other sensors and equipment. All of this using a
Graphical User Interface (GUI) (HAQUE S. R.; KORMOKAR, 2017).

The QgroundControl (Figure 3.4) is a GCS compatible with Ardupilot and Pixhawk, is
open source and has integration with various systems such as Windows, Mac OSX, Linux,
iOS and Android. Allows complete modifications to the PID controller even with UAV in
the air. Enables the integration of multiple UAVs for easy configuration or use in parallel.
This GCS was defined for this study due to its versatility in terms of interface, being the
most intuitive of those analyzed. In this way, it serves both beginners offering a great
GUI, and also, for the more experienced, it allows total modification of the parameters
and the software as a whole.
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Figure 3.4 – QgroundControl interface.
Source: (QGC, 2023)

3.5 Simulation
Simulation plays a fundamental role during research, it allows tests to be carried out on
different algorithm models that would be carried out in the field, but safely and quickly.
Tests in real environments must first go through a simulation with the greatest possible
similarity. In the case of using a real UAV in tests in a real environment, if there is any
complication, an accident for example, the costs increase considerably.

The environment simulators considered for analysis have open source, compatibility with
previously defined tools, proximity to real-world physics with regard to the position of
the ground and objects, applied angular and linear forces, lighting, collisions, and visual
proximity. Furthermore, it is necessary that all these characteristics are controllable and
auditable to collection and subsequent analysis of data.

The AirSim simulator (Figure 3.5) was defined for use in this study, because it is a
photorealistic simulator developed exclusively for machine learning development, it is
available for Windows and Linux, and was developed by the Microsoft research team.
The graphic is based on Unreal Engine 4, is previously interconnected with the Mavlink
interface, making it possible to run Hardware in the Loop (HIL) Simulation (SHAH,
2018).
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Figure 3.5 – AirSim simulator.
Source: (MICROSOFT, 2019)

It has its own APIs with a modular design for retrieving data and controlling vehicles
easily and independently with various sensors such as monocular and depth cameras.
Although APIs are limited, they are sufficient for most machine learning simulations, and
accessible through several programming languages, including C++, C#, Python and Java
(HENTATI, 2018).

3.6 Convolutional Neural Networks
This research work used a Convolutional Neural Network (CNN) (Figure 3.6), that is a
variation of Multi layer Perceptron (MLP) biologically inspired Artificial Neural Network
(ANN), for image processing, in this way, several classes of different layers of deep neural
networks apply filters at various levels to manage, extract, and classify visual information
from a digital source (BRITO, 2019).
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Figure 3.6 – Convolutional Neural Network simplified architecture.
Source: (VARGAS, 2016)

The CNN architecture can have different combinations of layers according to the pro-
posed solution. The initial and middle layers generally have a convolution function, where
neurons are mapped according to a subdivided kernel and an operation on a group of
pixels within the image. The image is then filtered and classified according to important
features and condensed to process the current set and increase network speed. Finally,
the fully connected layers provide the network output (ZEILER M. D.; FERGUS, 2014).

3.7 Transmission Line Tracking
To track power TLs in detail, it is necessary to obtain images as close as possible to
the structure and line segment, avoiding collisions and respecting legislation, thus allow-
ing a detailed inspection of the target elements. For this purpose, the planning of ideal
trajectories for continuous tracking was determined.

From the Figure 3.7 it can be seen the UAV trajectories, let be p the position in relation to
the view of two or more towers by an external observer, b the distance in meters from two
points between two segments defined between two towers, and s the line segment between
two towers. Assuming an image parallel to the plane, the horizontal distance between the
UAV trajectory (in the upper position) and the center of the two towers must be as small
as possible, Equation 3.1 refers to the central tracking of the power transmission lines
between the towers.

𝑑1𝑝1 = 𝑠1 (3.1)
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Figure 3.7 – Proposed tracking solution.
Source: Author

Likewise, assuming an image perpendicular to the plane, the distance between the UAV
in the lateral position and the line segments must be centered at Equation 3.2, which is
responsible for viewing all the wires on one side of the power transmission towers.

𝑑2𝑝2 = (𝑠2 − 𝑠3)/2 (3.2)

The other distances require a constant c so that current legislation is met and a complete
view of the wires is obtained. In Equations 3.3 and 3.4 the upper and lateral distances
from the UAV are presented respectively.

𝑑2𝑝1 = 𝑐1.𝑠1 (3.3)

𝑑1𝑝2 = 𝑐2.𝑠1 (3.4)

After determining the values, if necessary, a simple correction process begins for the UAV
trajectory in relation to the difference obtained by these distances. To guarantee this
situation, UAVs must be equipped with a camera guide and stabilizer, known as a gimbal,
as the movement of the UAV is not constant, and this can influence the results. For
the purpose of comparing model results, a camera orientation and 3 movements will be
considered for the following two positions of the UAV:

1. Drone above the lines: Forward Yaw (+Y) and YAW Turn in both directions, with
camera facing downwards (+90º First Person View (FPV) in PITCH);

2. Drone from the side of the lines: Forward yaw (+Y) and Z axis in both directions,
with camera oriented sideways (+90º left or -90º right FPV in YAW)

Both UAVs will act simultaneously and can also be used in a mirrored position, totaling
four collaborative UAVs with different activities. Acting together and in constant com-
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munication, the movement decisions of each intelligent agent specializing in their actions
can be shared between them in a collaborative way. Furthermore, it is possible to pro-
vide complete coverage of the structure and obtain more detailed images for inspection
of specific points.

3.8 TL Tracking Algorithm
To track the TLs, initially, the parameters of the UAVs initial position, availability and
frequency of obtaining images, length of the path to be covered, and standard speed of
defined movements are defined. After obtaining the first image, resizing is carried out
to convert the image to shades of gray, thus allowing the optimization of subsequent
processes that involve the use of the following three algorithms:

1. The Hough Transform (HT), that is an algorithm that receives a binary image with
candidates that can belong to a certain straight line, in this way it is possible to
find contours that can be parameterized by a well-defined equation as straight lines
(BELTRAMETTI M.C., 2021). Representing the perpendicular distance from the
straight line to the origin of the image coordinate system and its inclination, based
on a predefined number of curve intersections between two different points intersect-
ing in a plane, it is possible to conclude that both points belong to the same line
(HUAMÁN, 2019).

2. The Probabilistic Hough Transform (PHT), is more efficient in solutions that need
to consider the image as a whole, because its output is the extremes of the lines
detected in relation to the dimensions of the image (KIRYATI N.; ELDAR, 1991).

3. The Line Segment Detector (LSD), was designed to work with few external param-
eters, automatically adjusting the number of false detections. This technique uses a
validation approach in reverse. LSD has a execution time proportional to the num-
ber of pixels in the image, that is, its detection takes linear time to return accurate
results to the subpixel (GIOI R. G. VON; JAKUBOWICZ, 2012).

An image processing determined to be closest to the ideal for the general situation is
carried out to facilitate the identification of straight line segments according to the images
obtained, thus, the noise filter with a kernel size of 3 or 5 is applied for experiments. In
edge detection, a threshold of [50,300] is used to classify any gradient edges with this
range as valid (MARTINS, 2020).

After these processes, all sets of accepted parallel lines are found. This restriction is defined
by the minimum size defined by the average of the results obtained, to disregard small
lines belonging to towers or external elements.



Chapter 3. Materials and Methods 58

If none are found, the process must be restarted, the selected set is the one with the largest
straight line segment sizes. This value is used to determine the direction of rotation, or,
ascent and descent to be carried out by the upper or lateral UAV respectively.

𝐴𝑐𝑡𝑖𝑜𝑛(𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑙𝑒𝑓𝑡 𝑖𝑓(0 < 𝑥 < 1/3)

𝑐𝑒𝑛𝑡𝑒𝑟 𝑖𝑓(1/3 ≤ 𝑥 ≤ 2/3)

𝑟𝑖𝑔ℎ𝑡 𝑖𝑓(2/3 ≤ 𝑥 ≤ 1)

⎫⎬⎭, 𝑤ℎ𝑒𝑟𝑒𝑥 = 𝑃𝑖𝑠𝑜(Θ∝ −Θ𝑙𝑎𝑠𝑡),∀ ∝ 𝜖𝐴 (3.5)

The angle formed between the central axis of the image with the central space of the
parallel lines is obtained through the hyperbolic tangent function, it was chosen because
it has a stable behavior to obtain a unique angle in the calculation from a point, in this case
the end of the straight line. According to equation 5, if there is more than one adjustment
angle ∝ identified in set A, related to the results of left, center or right movements of the
UAV, the value is defined based on the smallest value of the difference with the previous
Θ𝑙𝑎𝑠𝑡.

As a result with a discrete variable, this value must be defined in the range of the most
significant third of the total viewing angle, thus determining the action that will transform
into the movements of the UAVs.
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4 Results

This chapter presents the results obtained by simulated test scenarios and real tests
carried out in accordance with current flight regulations and permissions. An analysis of
the experiments is performed with each study solution to select the best of each technique.

Finally, with the intention of validating the solutions obtained in this study, some ex-
periments were also analyzed with the execution of the route in the synthetic Airsim
environment, and in real images collected from energy transmission towers.

4.1 Object Recognition Result
Image classification involves assigning a class label to an image, whereas object localization
involves drawing a bounding box around one or more objects in an image. Object detection
is more challenging and combines these two tasks and draws a bounding box around each
object of interest in the image and assigns them a class label. Together, all of these
problems are referred to as object recognition (BROWNLEE, 2021).

So that the intelligence of UAVs during flight can identify the objects involved in the
inspection of TLs, four classes of objects were defined: people, insulators, towers and
lines. The images in the dataset went through a manual process called labeling, where
these four objects of interest do not receive their respective labels assigned by a human
before the images are subjected to training by a neural network. Figure 4.1 shows these
four objects classified during training for a practical application in TL.
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Figure 4.1 – Objects classified during training.
Source: Author

Once trained, an artificial neural network will provide, for each image presented as input,
an output containing the degree of confidence that the network has in the detected object
belonging to the class inferred by the network.

In this work, for the process of labeling and training the neural networks, the Roboflow
dataset manager (ROBOFLOW, 2022) was used, which allows for each input image ap-
plied to the input of a trained neural network, based on the output (inference) of the
network, to draw the bounding boxes around the detected objects. Figures 4.2 shows the
five object classes identified by the trained algorithm. Figure 4.3 shows an image of a
video that includes the percentage of certainty that the trained network achieved in each
identified object. This video can be watched at (MARTINS, 2023).
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Figure 4.2 – Identified objects.
Source: Author

Figure 4.3 – Objects identified and percentages of certainty.
Source: Author

4.2 Simulation Tests
In order to guarantee control of the UAV during the transmission line tracking, a test
scenario was set up, containing towers, transmission lines, as well as different scenarios
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simulating the area of the towers to have more elements to be tested by the computational
vision algorithm.

Three different types of high voltage towers were reproduced in the study, used to transmit
energy over long distances, one with 115 kV and two with 230 kV, as shown in Figure 4.4.

Figure 4.4 – High voltage transmission towers used in simulator.
Source: Author

Two different environments were also reproduced in this study for testing (Figure 4.5).
The first depicts a clean simulation, with only the towers and lines connected. The second
has a more realistic ground, with differentiation of relief and objects on the ground that
do not belong to the structure of power transmission line.
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Figure 4.5 – Simulated worlds used in simulation.
Source: Author

Figure 4.6 shows the objects in the simulated environment.

Figure 4.6 – Objects in simulation.
Source: Author
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4.3 Image Dataset
It was necessary to produce a dataset with real and simulated images taking into account
routes and positions during inspections of power transmission lines and towers. In total,
1005 images of 3 different types of towers were collected and labeled, in 3 real environments
and 3 simulated environments. These images were labeled according to the position of the
line represented in the image, both for the Real Image Dataset and for the Simulated
Image Dataset, according to the discrete action to be performed by the UAV. A sample
of these labeled images is presented in Figure 4.3.

Figure 4.7 – Sample datasets
(a) marked pictures; (b) view from above and (c) side vision.

Source: Author

When preparing the Dataset, the images were divided into 905 for training (90%), 80
images for validation (8%) and 20 images for testing (2%). With the intention of improving
the model’s learning, a contrast [-10%,+10%] and brightness [-10%,+10%] differentiation
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reinforcement was generated, totaling 1,300 images for training, 116 for validation and 32
for testing.

Other forms of adding Datasets, such as rotation, cuts, occlusion, mosaic, and change
of angulation, were not considered as they directly alter the result of the inference and
contribute little. However, training tests were carried out using noise increment and blur,
resulting in a small improvement compared to using only contrast and brightness in gray
scale.

4.4 Edge Detection
Edge Detection (ED) in an image defines and stores the pixels that have some discon-
tinuity or sudden change in relation to their neighbors. John F. Canny in (CANNY,
1986) proposed an algorithm, named after him, for detecting all edges of an image. The
segmentation in this algorithm makes it easier to find straight shapes in images.

Its complete operation consists of applying a Gaussian filter to smooth the image and
remove noise, finding the image’s intensity gradients and determining potential edges by
applying double Sobel 1, check if the pixel is part of a “strong” edge by suppressing
all other edges that are weak and not connected to edges with a strong relationship of
values between neighboring pixels (BRADSKI; KAEHLER, 2008). The figure 4.8 shows
the application of the gradient filter in the Canny algorithm.

Figure 4.8 – Canny gradient filter. Source: (FILHO A. J. D.; RAMOS, 2020)

This section details the algorithm developed to track transmission lines using LSD, HT
and PHT (described in Section 3.8). Initially, the system parameters are defined, such as
the initial position of the UAV, availability and frequency of obtaining images, length of
1 Operator used to determine potential edges through the gradient of the intensity function , obtaining

the norm or horizontal and vertical gradient vector.
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the path to be covered, and standard speed of the defined movements. After obtaining the
first image, the image is resized and converted to gray scale, thus allowing the following
processes to be optimized.

An image processing determined to be closest to the ideal for the general situation is
carried out to facilitate the identification of straight line segments according to the images
obtained, thus, the noise filter with a kernel size of 3 or 5 is applied for experiments. In
edge detection, a threshold of [50,300] is used to classify any gradient edges with this
range as valid. The edges are passed to a HT, PHT, and LSD (MARTINS, 2020).

These sets of real images will undergo manipulation processing, and the recognition tech-
niques presented, considering 𝑛 the number of instances, VP, FP and FN, their effec-
tiveness will be evaluated with Precision, Recall, F1 Score and/or reward (GOUTTE;
GAUSSIER, 2005).

The precision equation 4.1 measures the percentage of how correct a model’s predictions
are. This metric allows for a better assessment of when FPs are considered more harmful
than FNs.

𝑃 = 𝑉 𝑃

𝑉 𝑃 + 𝐹𝑃
(4.1)

The recall equation 4.2 measures how correct the results given as positive are. In this
case, FNs are considered more harmful than FPs.

𝑅 = 𝑉 𝑃

𝑉 𝑃 + 𝐹𝑁
(4.2)

The F1 Score equation 4.3 is a metric for the harmonic value between precision and recall.
This metric allows quick evaluation of the model, indicating when precision or recall is
low

𝐹1 = 2.
𝑃 *𝑅

𝑃 + 𝑅
(4.3)

The criterion used in RL will be the maximum average reward achieved and average
episode size of the total training, in relation to the total steps executed.

After these processes, all sets of accepted parallel lines are found. This restriction is
defined by the minimum size defined by the average of the results obtained, to disregard
small lines belonging to towers or external elements. If none are found, the process must
be restarted, the selected set is the one with the largest straight line segment sizes. This
value is used to determine the direction of rotation, or, Ascent and Descent to be carried
out by the upper or lateral UAV respectively.
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The angle formed between the central axis of the image with the central space of the
parallel lines is obtained through the hyperbolic tangent function, as seen in Figure 21.
It was chosen because it has a stable behavior to obtain a unique angle in the calculation
from a point, in this case the end of the straight line.

Several experiments with Edge Detection were planned, and the results are presented in
Table 4.1, where the grid, LL, and UL used in the Canny algorithm are presented, and
then the average of the results referring to the number of potential lines are calculated
using the HT, PHT and LSD algorithms in test images. Results with less than 5 valid
lines for all algorithms were discarded, and results with more valid lines are highlighted
in the table.

After defining the best parameters for each algorithm, experiments were carried out with
images of real power TLs and the simulator, comparing them with the predictive ac-
tions according to the model established in the previous section. The values obtained are
presented in Table 4.2.

Table 4.1 – Edge detection using test images with different parameters.

Superior Drone Side Drone
Grid LL1 UL1 HT PHT LSD HT PHT LSD
3x3 0 100 13.0 10.75 0.0 21.0 21.75 0.0
3x3 100 100 3.0 5.75 2.0 16.0 16.0 19.0
5x5 50 100 29.5 25.5 9.25 61.0 19.25 29.75
5x5 50 200 28.25 26.5 9.25 53.75 18.5 21.75
5x5 50 300 27.25 23.0 9.25 50.5 23.0 21.75
5x5 100 100 29.25 24.25 9.25 60.0 18.5 26.25
5x5 100 200 27.75 23.75 9.25 53.25 18.25 21.5
5x5 100 300 26.5 23.0 9.25 50.0 20.5 21.25
5x5 150 100 28.25 24.5 9.0 56.0 24.0 24.75
5x5 150 200 26.5 24.25 9.05 53.75 22.25 21.25
5x5 150 300 26.5 22.25 9.05 49.5 19.5 21.25

1Considering an edge segment, for any value located above the UL, it is immediately
accepted. For any value below the LL, it is immediately rejected. Points located between
the two limits will be accepted if they are related to pixels that show strong responses.
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Table 4.2 – Tests using the algorithms and determining the actions.

Real life Simulated

Superior
Drone

Side Drone Superior
Drone

Side Drone

P R F1 P R F1 P R F1 P R F1
TH 0.29 0.40 0.33 0.17 0.14 0.15 0.17 0.20 0.18 0.29 0.40 0.33
THP 0.31 0.40 0.35 0.18 0.14 0.16 0.22 0.20 0.21 0.36 0.40 0.38
LSD 0.23 0.30 0.26 0.17 0.14 0.15 0.17 0.20 0.18 0.29 0.40 0.33

PHT was defined for comparison with other methods. The parameters selected for this
algorithm have a 5x5 grid and threshold [0.100] for Canny Edge Detector, in identifying
line segments.

4.5 Deep Learning
In this subsection, training of 6 popular high-performance Single Shot Multibox Detector
(SSD) models used in the study is evaluated for training the developed Dataset. Some
configurations and characteristics of the models are presented in Table 4.3.

Table 4.3 – Comparison of some popular SSD models.

Model FPN1 Batch Optmizer Parameters
Inspection V2 NA2 24 RMS 10M
Mobilenet V1 NA2 24 RMS 3M

Mobilenet
FPN

3.7 64 Momentum 4M

Mobilenet V2 NA2 24 RMS 3M
Resnet 101

FPN
2.7 64 Momentum 42M

Resnet 50 FPN 3.7 64 Momentum 25M
1Feature Pyramid Network (FPN). A feature extractor designed with feature pyramid
concept to improve accuracy and speed.
2Not applicable

All these models use Rectified Linear Unit (RELU) activation and they are Residual
Networks (ResNet) architecture based. They underwent training of 10,000 steps, with
batch size 12, and 50 random images for each evaluation step. With training completed, the
newly trained inference graph is extracted for later use in object detection. Furthermore,
the export of trained weights is used for simple inference with the same raw images as
the test set, for a quick empirical check of model quality.
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4.6 Reinforcement Learning
In this section, the three RL algorithms and the reward mode will be evaluated for study in
the proposed solution, using the clean world simulation environment and different towers.

To identify the best form of reward mathematical tests were carried out empirically, taking
into account the main objective, adjusting the view of transmission lines and nearby
surroundings in the search for identified problems. The straight line AB is the segment
between two towers, one tower being point A and the next tower being point B, and the
position of the UAV being point P.

Initially, the simple distance reward between two points P and B was determined, ob-
tained by Equation 4.4. Despite the correct execution of the route throughout the training,
the field of vision of the lines was compromised and the reward continued to grow, as the
UAV only had to find one path to the next tower.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃, 𝐵) =
√︁

(𝑃𝑥 −𝐵𝑥)2 + (𝑃𝑦 −𝐵𝑦)2 + (𝑃𝑧 −𝐵𝑧)2 (4.4)

A reward through the minimum distance from a point to the center of line segments was
tested. Using vectors in modulus, the distance measured from P to AB given by negative
Equation 4.5 is given as a reward, that is, the closer to zero the greater the reward.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃, 𝐵) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , 𝑖𝑓(𝑃 = 𝐴)𝑜𝑟(𝑃 = 𝐵)

|𝑃 − 𝐴| , 𝑖𝑓Θ(𝐴𝐵, 𝐴𝑃 ) > 90)

|𝑃 −𝐵| , 𝑖𝑓Θ(𝐴𝐵, 𝐵𝑃 ) > 90))
|𝐵−𝐴𝑥𝐴−𝑃 |

|𝐵−𝐴| , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.5)

The reward per episode during the training showed that the reward met the proposed
solution, as it encourages the agent to center the field of vision on the lines. However,
this reward mode encourages the execution of unnecessary movements that distance the
agent from the next tower. In this way, a composition of rewards is proposed to accelerate
the agent’s learning. Equation 4.6 defines the relevance weight for each negative distance
obtained.

𝑟𝑒𝑤𝑎𝑟𝑑 = (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃, 𝐵) ⋆ 0.1 + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃, 𝐴𝐵) ⋆ 0.9) ⋆ (−1) (4.6)

This reward format allows the agent to identify the best action to take to reach the next
tower while remaining centered in the field of view of the power TLs. The values for the
markers were then defined, -50 for the punitive marker and +20 for the target marker,
defined in model section 45, and with no limit on both success and failure for reward
accumulation.
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4.6.1 Reinforcement Learning Algorithms

The Reinforcement Learning (RL) algorithms proposed in the materials and methods
section were trained in a continuous space environment, with discrete actions and an
individual acting agent. As hyperparameters, it was used a learning rate of 0.002, batch
size 32, due to the number of steps, episodes and low discount, which help in long-term
training. The training time was up to 15,000 steps, the graphs of episode size and average
reward are presented in Figure 4.9.

Figure 4.9 – Training and learning results for DRL.
Source: Author

According to the results presented, DRL performed better on the UAV positioned at the
top of the structure, whereas the UAV positioned on the side, even with a low update
rate, was unable to progress with the increase in reward.

4.7 Simulated Environments

4.7.1 Airsim Simulator

As shown in Figure 4.10, the route developed in the simulator was based exclusively on
the set of towers whose images were taken in the field to assemble the Dataset, the use of
all movements in the defined model was taken into account.
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Figure 4.10 – The routes done by the UAV.
(a) real life, and (b) simulation.

Source: Author

Three algorithms was developed in the first moment, the Main Control Algorithm, the
Buffer Control Algorithm, and the Simplified Inference Algorithm. This section explains
each of these algorithms.

The Main Control Algorithm was developed to control UAVs in a discrete collaborative
way, its pseudocode is presented in Algorithm 4.1. This ensures execution in a swarm
system, where each UAV has its own function and works together. This Main Control Al-
gorithm is executed for each proposed solution separately, initially the necessary packages
are loaded and initialized, a control loop is executed until the final situation is reached,
which may be a number of towers, a distance in meters, GPS position among others, the
route results are displayed at the end of the program.

Algorithm 4.1 Main Control Algorithm
... ◁ Packets...
𝑏𝑢𝑓𝑓𝑒𝑟 ← []
𝑈𝐴𝑉 _𝑢𝑝← 𝑁𝑒𝑤𝑈𝐴𝑉 ()
𝑈𝐴𝑉 _𝑠𝑖𝑑𝑒← 𝑁𝑒𝑤𝑈𝐴𝑉 ()
... ◁ Initializations
while 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 do ◁ Route

𝑏𝑢𝑓𝑓𝑒𝑟(𝑈𝐴𝑉 _𝑢𝑝, 𝑈𝐴𝑉 _𝑠𝑖𝑑𝑒)
𝑏𝑢𝑓𝑓𝑒𝑟(𝑈𝐴𝑉 _𝑠𝑖𝑑𝑒, 𝑈𝐴𝑉 _𝑢𝑝)
... ◁ Results

end while

The Buffer Control Algorithm (Algorithm 4.2) is called by each UAV in the main program.



Chapter 4. Results 72

Its objective is to ensure that the UAV identifies and performs an action, so that the other
UAV can also perform it.

Algorithm 4.2 Buffer Control Algorithm
function Buffer(UAV1,UAV2,buffer1,buffer2) ◁ Cooperating
𝑑𝑜𝑛𝑒← 𝑓𝑎𝑙𝑠𝑒
while not done do

𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑈𝐴𝑉 1)
if (𝑏𝑢𝑓𝑓𝑒𝑟) then

𝑅𝑒𝑎𝑙𝐴𝑐𝑡𝑖𝑜𝑛(𝑈𝐴𝑉 2, 𝑏𝑢𝑓𝑓𝑒𝑟.𝑝𝑜𝑝)
𝑑𝑜𝑛𝑒← 𝑡𝑟𝑢𝑒

end if
end while

The Action Identification and Storage Algorithm (4.3) is responsible for determining the
action that the UAV will perform based on the last image obtained by it, and the type of
solution that wishes to be used, if identification is successful, the action is executed and
stored in temporary memory (buffer).

Algorithm 4.3 Action Identification and Storage Algorithm
function Inference (UAV) ◁ Action
𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡← 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦_𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡(𝑈𝐴𝑉 )
if (𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡) then

𝑅𝑒𝑎𝑙𝐴𝑐𝑡𝑖𝑜𝑛(𝑈𝐴𝑉, 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡)
𝑏𝑢𝑓𝑓𝑒𝑟.𝑝𝑢𝑠ℎ(𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡)

end if

4.7.1.1 Evaluation of the Selected Methods

In this subsection, comparative results of the selected techniques are presented, both for
the upper UAV and the side UAV, in edge detection, deep learning and reinforcement
techniques. Each of the experiment data is obtained from 10 runs of a given observation
method and variable. Table 4.4 lists the average training and execution time for each
method developed for the solution. The training time is understood from the beginning
until the end of training or parameter definition (in the case of Edge Detectors) in each
suggested model, that is, the time for the defined model to be ready for use in the main
algorithm. The execution time is the interval between receiving the image and defining
the action to use UAV in the simulator.
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Table 4.4 – Average training and execution time.

Method Training (hours) Executing (seconds)
Edge Detecytor 2 0.3

Deep Learning mono class 20 2.72
Deep Learning multi class 22 3.10
Reinforcement Learning 90 0.87

It is possible to observe that Edge Detector maintains the highest execution speed, mainly
due to the non-use of a neural network. Reinforcement Learning also has a fast execution
despite having a neural network, this is mainly due to the fact that the reinforced trapping
structure allows for a simplified network. The Deep Learning model has a considerably
longer execution time, this is mainly due to the size of the neural network, and the
identification and return structure using bounding boxes.

When comparing the variables in the experiments (Figure 4.11), it is possible to observe
that the average error in Edge Detector and Deep Learning is smaller when compared to
Reinforcement Learning, especially when noise is generated, such as in the storm and in
the dark, and this shows a low detection rate. The best result was from Deep Learning,
as the Edge Detector did not adapt well to the altitude variation. This result also shows
that Reinforcement Learning can be trained more intensely in situations where the image
received is unstable, since generally the learning rate used in deep neural networks is low,
emphasizing long-term training. It is assumed that the results obtained in Deep Learning
may reflect external elements that interfere in the identification of the action such as:
trails, curbs, roads, objects, among others.

Regarding the total distance reached, Deep Learning and Edge Detector obtain similar
results, with a small advantage to Deep Learning, at the same levels mentioned above,
this is due to the generalization capacity of the technique used. The best result is ob-
tained by Reinforcement Learning at most levels, it is understood that this occurs due to
reinforcement training, which avoids the worst rewards obtained mainly when leaving the
field of vision of the lines. This fact shows that different limit restrictions and training
with images obtained in the field are necessary to be able to observe a real generalization
of long-distance tracking of the transmission line corridor.

4.7.1.2 Environment variables

With the intention of broadly analyzing the trained models, test experiments were defined
to examine how much certain factors affect the variables related to them. To inspect the
exact effect of each factor and its combinations, factorial design was the model chosen
for the experiments. The idea is to select levels for each chosen factor and see how each
level impacts the experiment. Since the factorial design works with factors and variables,
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3 factors with 2 levels and 3 variables each were defined, and are presented in Table ??

Table 4.5 – Environment Variables for testing the models

Factor Level Variable

Bright (B) Clear (C)5 𝑙𝑢𝑚𝑒𝑛𝑠
𝑚2

Dark (D) 1 𝑙𝑢𝑚𝑒𝑛𝑠
𝑚2 Average Correct Distance [m]

Distance (D) Near (N) 5𝑚
Far (F) 10𝑚 Total Distance Achieved [a]

Weather (W) Good (G) Limpo
Rainy (R) Chuva e Vento Tempo médio de execução individual

[t]

Figure 4.11 – Error and distance graphs.
(a) error and (b) distance.

Source: Author

4.7.2 Simulated UAVs and Real Images

As shown, initially the simulations were run in the Airsim simulator, a sophisticated
development environment that is very realistic, but demanding an enormous amount of
time and effort dedicated specifically to the simulator software, worlds and scenarios to
be built to reflect the real world.

To minimize the time spent on these simulations, allowing greater dedication to the pro-
blem to be solved, in our case, in image processing, recognition of transmission lines,
transmission towers and UAV trajectory control, a a simplified and dedicated simula-
tor was developed in Python language, including a scenario with a variable and config-
urable number of UAVs represented by red dots, with behavior based on Reynolds flocking
rules (REYNOLDS, 1987).
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4.7.2.1 Reynolds Flocking Rules

(REYNOLDS, 1987) introduced a set of behavioral rules aiming to simulate the movement
of groups of animals, such as flocks of birds or schools of fishes. He created a computer
program in which entities called boids, the shortening of the expression bird-oid object,
which refers to a bird-like object. These boids move following these rules. To best represent
the behavior of real animals, was not created any central control, but instead programmed
each boid to sense its own environment and decide where to move. This resulted in a fluid
movement very similar to real bird flocks.

The flocking rules are represented in Figure 4.12 and can be described as the following:
(a) Separation: boids try to move away from nearby flockmates to avoid collisions; (b)
Alignment: boids try to match their heading with otherboids; and (c) Cohesion: boids
try to move closer to the other boids to form a flock. (BRAGA et al., 2018b).

Figure 4.12 – Reynolds Flocking Rules.
Source: (REYNOLDS, 1987)

This solution allowed us to continue with the experiments without worrying about issues
of collision and grouping of the UAVs, but only with the trajectory during the inspection
of the TL.

To allow computers with less processing power to simulate the solution proposed in this
thesis, a simulation environment written in Python language was developed.

Separation rule moves a boid away from the others, avoiding collisions. Vectors are created
that point in the opposite direction of each detected neighbor, forming a single resulting
vector. The code moves the boid in the direction of this resulting vector. Occasionally it
is possible that the boid simply does not move, if the resulting vector has a value equal
to zero. The implementation of these rules is shown in Algorithm 4.4.

Alignment rule moves a boid in the same direction as its neighbors based on the average
direction they are moving. The implementation can be seen in Algorithm 4.5.

Cohesion rule moves the boid to the center of mass of the flock forming a swarm based on
the average XYZ position of the neighbors. A vector pointing to this location is created
and returned to the main program The implementation is shown in Algorithm 4.6.
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Algorithm 4.4 Separation Rule Algorithm
1: procedure Separation
2: array V← 0
3: for all n neighbors do
4: V𝑛 ← (𝑡ℎ𝑖𝑠.𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛− 𝑛.𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)
5: V𝑛.𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒
6: V𝑛 ← (𝑉𝑛 * 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡ℎ𝑖𝑠, 𝑛))
7: V ← (𝑉 − 𝑛)
8: return 𝑉 ◁ The array V is updated
9: end for

10: end procedure

Algorithm 4.5 Alignment Rule Algorithm
1: procedure Alignment
2: array V← 0
3: for all n neighbors do
4: 𝑉𝑛 ← 𝑉𝑛 + 𝑛.𝑥𝑦𝑧𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠
5: end for
6: 𝑉𝑛 ← 𝑉𝑛/𝑛
7: return 𝑉 ◁ The array V is updated
8: end procedure

Algorithm 4.6 Cohesion Rule Algorithm
1: procedure Cohesion
2: array V← 0
3: for all n neighbors do
4: 𝑉𝑛 ← 𝑉𝑛 + 𝑛.𝑥𝑦𝑧𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
5: end for
6: 𝑉𝑛 ← 𝑉𝑛/𝑛
7: return 𝑉 ◁ The array V is updated
8: end procedure

Migration rule moves the swarm to a destination point. In our case, the migration point
is dynamically calculated in real time depending on the TL tracking task. The implemen-
tation is shown in Algorithm 4.7.

Algorithm 4.7 Migration Rule Algorithm
1: procedure Migration
2: array V← 0
3: if MigrationPoint then
4: 𝑉𝑛 ←𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡 + 𝑡ℎ𝑖𝑠.𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
5: end if
6: return 𝑉 ◁ The array V is updated
7: end procedure

Finally, a control algorithm is run independently on each UAV. In each loop, algorithm
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(a). gets the pose of the boid based on the xy coordinates; (b) for each neighbor, obtain
its pose relative to boid; (c) Apply Reynolds rules for Separation, Alignment, Cohesion
and Migration and move the boid according to these rules. The algorithm is shown in
Algorithm 4.8.

Algorithm 4.8 Swarm Control Algorithm
1: procedure Main
2: getPose()
3: getNeighbors()
4: V1 ← 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛()
5: V2 ← 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡()
6: V3 ← 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛()
7: V4 ←𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛()
8: Vres ← 𝑟1 * 𝑉1 + 𝑟2 * 𝑉2 + 𝑟3 * 𝑉3 + 𝑟4 * 𝑉4
9: moveTo(Vres)

10: end procedure

Shown below are the results obtained using the developed environment that combines two
simulated UAVs acting on video images captured in real flights.

Figure 4.13 shows a top view of five simulated UAVs flying over a transmission tower.
All aircraft are grouped above the TL structures. The five red dots are the boids and
represent the UAVs. The lead UAV starts positioned at the beginning of the mission
via GPS geographic coordinates and the other aircraft position themselves autonomously,
reacting to Reynolds rules and pre-defined parameters of minimum distance between each
aircraft and the transmission lines, 10m above the tower.

Because the UAVs are under the effects of Reynolds’ rules, they proved to be stable
throughout the experiment, remaining cohesive and, at the same time, remaining a safe
distance from each other, in a completely autonomous way. This was one of the biggest
challenges to be overcome.

Figure 4.14 shows the side view of five simulated UAVs tracking a TL.

In all these images, the simulated aircraft interact with each other, keeping their distance
from each other (dispersion rule) and follow the leader UAV and neighboring aircraft
(alignment rule) and tend to go towards the group’s center of mass (cohesion rule). They
are still under the action of an intelligence (Section 4.7.1) that keeps them away from the
lines and towers and on the path between one tower and another so as not to lose sight
of the TLs.
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Figure 4.13 – Top view of five simulated UAVs flying over a transmission tower
Source: Author

Figure 4.14 – Five simulated UAVs tracking a TL (B)
Source: Author

4.8 Experiments with Real UAV
The developed algorithms were loaded into real UAVs and executed on the route belonging
to tower A on the route shown in Figure 4.10, for a distance of 22 meters and 19 seconds,
using the Mobilenet v1 Feature Pyramid Network (FPN) Single Shot Multibox Detector
(SSD) model, in a section not belonging to the Training Dataset, Figure 4.15 shows an
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aspect of the test carried out, in the upper right corner (a) shows a screen from the
cameras of the upper UAV and the side UAV (d).

Figure 4.15 – Field test pictures
(a) GCS, (b) View of top UAV, (c) view of the UAV from operator, and (d) View of side UAV.

Source: Author

Although the weather conditions were not the best, it was possible to carry out the
test in order to validate, even in a small section, the detection method for use in real
environments. Results obtained were more successful in the simulated environment than
in the real environment.
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5 Conclusions

The experiments carried out and the results observed, both in a simulated environment
and in a real environment, confirm the formulated hypothesis: "It is possible the inte-
gration of cooperative swarm algorithms with image inferences using deep learning for
autonomous power TL tracking".

The solutions presented in this study refine computer vision algorithms, little discussed in
applied form, for the function of autonomous tracking of power TLs in high voltage towers.
The artifacts produced, such as Datasets and Simulators, reflect in the computational
environment, in a realistic way, the challenge imposed in inspections of large extensions
of energy transmission corridors throughout Brazil. All solutions obtained satisfactory
results at a low cost, using only two UAVs equipped with a front camera, and a computer
for image processing. Highlighting deep learning, which presents the best results, and
allows widespread use in other environments and structures.

The UAV is capable of tracking at the top of the lines with the camera pointed downwards,
or at the sides with the camera pointed at the side opposite to its relative position in the
tower. Other positions such as diagonal, rotating at the top, or at the bottom of the tower,
were not addressed in this study. The distance of the UAV in relation to the lines has
a high impact on model detection, and a distance above 10m from the top of the target
structure to the UAV is not recommended. Although it is possible to use the computer to
process the trajectories, there is a small delay and limitation of distance from the UAV
to the workstation, therefore, it is recommended to use it on board or using equipment
with greater processing and range.

5.1 Main Difficulties
For Deep Learning training, finding a data set that contained the images necessary for
the work proved to be a difficulty, in view of this, a specific dataset was developed. Train-
ing models that have Deep Learning are very expensive, especially Deep Reinforcement
Learning, as each model required between 24 and 90 hours to be trained. The implemen-
tation of an autonomous image processing and decision-making system depends heavily
on the performance of peripherals and frameworks, such as image data capture, hardware
control, processing algorithms, among other external characteristics that directly influence
the final implementation. The challenge of building and developing low-cost equipment
has a direct impact on these issues.

There is a latency between detecting the model, updating the values, and executing the
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actions, as all image frames were sent via video transmitter to a ground station, where
the algorithm was stored, and, after processing the images, the Calculated values were
sent back to the UAV via telemetry, which slows the movement with each detection.

5.2 Main Contributions
This work demonstrated the feasibility of applying cooperative swarm algorithms, with
image inferences using deep learning for autonomous power TL tracking. This implemen-
tation, however, is still initial and many improvements can still be made in the future.

The bibliographical review of this work provides a vast modeling and demonstration of the
possibilities and with well-defined methodological criteria, resulting in an analysis with
relevant materials from different studies on autonomous tracking of power transmission
lines.

The development of the work favored the production of its own dataset, an algorithm for
image processing, and the integration of this algorithm with the UAV for identifying and
tracking anomalies on the ground.

One of the merits of this work was to evaluate detection methods to identify discrete
actions to track power TLs. These are the Edge Detector algorithms; Single-class and
multi-class Deep Learning and Deep Reinforcement Learning, which produced a result
with a promising future.

Complex simulated environments with different towers and ecosystems were created for
simulation using an advanced 3D creation platform with photorealistic visuals. These en-
vironments enabled the validation of the best models proposed for each algorithm studied.

A simplified simulation environment was created capable of integrating real images ob-
tained in flight with points simulating UAVs in order to allow testing computer vision
algorithms and UAV trajectory control.

Three robust Datasets were developed with a collection of real and simulation images,
which include different environments, transmission towers and power lines. The first con-
sists only of identifying lines of the monoclass type, and the second for actions to be
taken of the multiclass type. The original images were manually labeled (MARTINS,
2020; DANTAS, 2020) and made available with pixel-level annotation in the TFRecords
format (DANTAS, 2020).

Operating in swarm mode allowed for a more precise and detailed inspection, maintaining
low costs, highlighting the relevance of the work, especially in a country with large areas
and limited financial resources in terms of investment in infrastructure.
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6 Future Work

Given the burgeoning use of UAVs for electrical TL inspection and the application for
fault detection and identification, the continuation of research is paramount across several
domains.

First and foremost, it is essential to conduct studies in optimal or combinatorial opti-
mization to integrate metaheuristic algorithms geared towards UAV route generation.
Such an approach can catalyze both quantitative and qualitative enhancements in appli-
cation efficiency and scope, minimizing redundancies and ensuring comprehensive problem
coverage.

Moreover, adopting systematic Automatic region of interest (ROI) techniques in edge de-
tection algorithms can refine the segmentation of TL components. From a data standpoint,
incorporating imagery from intricate environments or integrating additional datasets is
crucial to diversify and hone the Deep Learning models employed.

Another promising avenue is the exploration of Deep Reinforcement Learning (DRL)
algorithms with continuous actions, tailoring reward constraints and episode termination
criteria to the specific task of inspection.

Ultimately, the development and deployment of a dedicated onboard computer for UAVs
could optimize real-time processing and analysis during inspections in external settings,
rendering the procedure even more effective and secure.

As a proposal for future work, assemble a group with at least several UAVs following TL,
each with a specific reconnaissance task. For example, a UAV specialist in identifying
defects in the cable, at the junction of cables and cable-insulator, another UAVs specialist
in identifying defects in insulators, another UAVs with the mission of identifying defect
in the tower, another UAVs could identify erosion at the base of the tower, another UAVs
identifying housing invasion, another UAVs identifying tree invasion.
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APPENDIX A – COMPONENTS OF A
QUADCOPTER TYPE UAV 1

A.1 Introduction
There are several types and subtypes of UAVs according to their aerodynamic charac-
teristics, such as fixed-wings (airplanes) and rotary-wings (helicopters and multirotors)
(ANGELOV, 2012).

It is possible to divide the hardware of a rotary wing UAV, such as the quadcopters used in
this research, into two parts: the platform and the embedded systems. The function of the
platform (white balloons in Figure A.1) is to transport those on board (yellow balloons)
ensuring a stabilized and safe flight. The onboard system is the combined set of one or more
equipment or sensors, such as cameras and video transmitters responsible for capturing
and transmitting environmental information during the flight, and accessories such as
propeller protectors, alarms, hooks, and small networks for the transport of objects.

Figure A.1 – Components of a Rotary Wing UAV.
Source: Author

Some of the main components of a UAV are described below.
1 This material is the updated and adapted version of that produced in the author’s master’s the-

sis(MARTINS, 2018).
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A.2 Frame
The frame or "chassis" (Figure A.2), is the physical base of the UAV and it is on it that
all other components are fixed.

Figure A.2 – Frame of a Quadcopter UAV (highlighted in blue).
Source: Author.

There are several categories of frames, depending on the application of the UAV, such as
aerial cinematography, capable of lifting heavier professional cameras, light sports frames
to facilitate rapid and radical movements in acrobatics, First Person View (FPV) which
allow to accommodate various accessories such as cameras, transmitters and antennas to
give the operator the impression that he is flying on board the aircraft, and mini frames,
which are much smaller and resistant to falls.

A.3 Batteries
The battery (Figure A.3) provides the energy for the operation of the engines and all
electro-electronic components on board the UAV, and is therefore a vital item for your
flight.

Figure A.3 – Tattu 5200 battery used in UAV.
Source: Author

Unfortunately, electrical power is still a critical point for all users of rotary-wing UAVs,
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both for domestic and professional use, since practically no aircraft is currently able to
offer autonomy greater than 30 minutes of flight, as shown in Table A.1.

Table A.1 – The ten commercial RPAs with the greatest flight range (2022)

UAV Flight autonomy Control Range
Blade Chroma Quadcopter Drone 30 min 2,500m
Sim Too Pro 30 min 1,000m
DJI Phatom 4 28 min 3,500m
DJI Mavic Pro 27 min 7,000m
DJI Inspire 2 27 min 7,000m
Parrot Bebop 2 25 min 3,200m
DJI Phantom 3 Standard 25 min 1,500m
DJI Phantom 3 Pro 23 min 3,000 m
3DR Solo 22 min 500m
Yuneec Q500+ 22 min 2,000 m

According to the specifications of their manufacturers. Source: (LOPES, 2022)

Rain, fog, winds and even atmospheric pressure influence the energy consumption and
flight time of the UAV. Furthermore, efforts to maneuver and stabilize the aircraft cost
an extra battery charge. In the case of atmospheric pressure, the higher the altitude, the
thinner the air becomes, implying a greater need for engine rotations to keep the ARP in
flight, resulting in greater battery energy consumption.

To maximize flight autonomy, it is necessary to use a battery that satisfactorily combines
its charge capacity, capacitance and consequently discharge capacity. The harmony be-
tween these characteristics will provide a lighter battery with better power capacity. The
number of cycles (recharges) that a battery has already spent also influences flight time.
Older batteries do not fully charge or balance their cells perfectly.

The size, shape and material from which the propellers are made are also items that
influence the ARP’s flight time. Very small propellers result in less load capacity, forcing
the engines to make extra effort to keep the aircraft in flight, while very large propellers
overload and overheat the engine, reducing its efficiency and flight time, with the risk of
engine burnout and consequent crash of the UAV, which can cause accidents and damage
with unpredictable consequences.

A.4 Rotors
The motors for UAVs (Fig. A.4) are of the brushless type (without brushes or outrunners).

Because they do not have brushes, they last longer than brushed motors. While in these
the motor coil core rotates, in brushless ones the coil core remains stationary, while the
entire exterior rotates. For this reason they are called outrunners.

Furthermore, brushless rotors are stepper motors, that is, the combination of several
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Figure A.4 – Rotor for UAVs.
Source: Author

steps at high speed translates into the efficiency of this type of rotor. Professional or
high-performance UAVs use brushless rotors.

A.5 Propellers
The propeller of a UAV consists of two or more blades (Fig. A.5) connected to the central
hub at the root of the blade, to which these blades are attached. Each blade is essentially
a rotating wing, and every blade is an aerodynamic profile capable of generating lift. This
support force in the plane in which the blade moves is called traction or propulsion.

Figure A.5 – Components of a Propeller Blade
Source: Author

With the rotation, the propeller blades cut the air and create an aerodynamic effect, like
that of the support of the wing or the aircraft structure, that is, the circular displacement
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of the blade in the air will cause a low pressure on the back of the blade, and a high
pressure on the face, causing traction.

The propellers are what make the aircraft leave the ground, fly and land, and the efficiency
of a propeller is the direct ratio between the force exerted by the engines (input power)
and the result obtained (output power). The force applied is the force that the engine
will need to make to turn the propeller. The more force the engine exerts, the greater
the battery consumption. The result obtained is the propeller’s ability to produce thrust
under a given air speed or wind speed.

Propellers can have one or more blades. The most common are those made of plastic
(ABS, Nylon, etc.) and carbon fiber, while there are also those made of other materials,
such as wood, which are more expensive and unusual.

In quadcopters, the most used propellers are plastic (various types of plastic materials)
and are the cheapest and recommended for beginners, since at the beginning of learning
how to drive a quadcopter it is very common for them to be damaged. Plastic propellers
make more noise than carbon fiber propellers, have lower performance and vibrate more.
Because they are flexible, they bend at high speed, which is clearly a disadvantage.

Carbon fiber propellers vibrate less, making them suitable for aerial filming. They make
less noise, and are more stable. However, they are highly dangerous, as they transform
into true cutting blades when at high speed. It is not recommended for beginners due to
the cost, which is much higher than that of plastic propellers, and the danger of cutting.
They are rigid, do not flex at high speeds, and demand more from the engines, and may
consume a little more than plastic propellers. Because they are made of carbon fiber, they
are lighter than plastic (MOLRC1, 2016).

There are hybrid plastic and carbon fiber propellers in an attempt to increase quality at
a more affordable price.

A.6 ESC
Electronic Speed Controllers (ESCs) (Figure A.6) are mechanisms that transform the
Pulses Width Modulation (PWMLs) received from the flight controller board in rotation
of the engines, sending them electrical pulses making the engines rotate at a certain speed.



APPENDIX A. Components of a Quadcopter type UAV 89

Figure A.6 – ESC for UAVs
Source: Author

ESCs are composed of power transistors and a microcontroller. For each rotor category
there is a specific category of ESCs, as they vary in power, refresh rate in hertz, applica-
tions by type of rotor (brushless or brushed), support for certain types of batteries, and
other features.

Figure A.7 illustrates the arrangement of ESCs mounted on an UAV, highlighted in blue.
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Figure A.7 – ESCs mounted on a UAV.
Source: Author

ESCs are classified according to their powers in Ampere (A), there are 12A, 20A, 30A,
etc ESCs.

The update frequency (update rates) in Hertz (Hz) directly implies the RPA’s response
speed to the commands sent to the motors. Older ESCs worked at 50Hz rates, while newer
ones operate at 400Hz refresh rates (MOLRC2, 2016).

Some models have a reversal system, capable of making the engines/propellers rotate in
reverse, allowing the aircraft to decelerate significantly, causing it to touch the ground
gently at very low speed and in a reduced space (ECODRONES, 2018).

A.7 Transmitter Radio Control - TX
Radio controls (Figure A.8) are devices that allow an operator to control the flight and
maneuvers of an UAV from the ground and can replace the control station if necessary.
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Figure A.8 – Transmitter Radio Control - TX
Source: Author

They are made up of position switches and control levers called sticks, each of them
generally linked to a channel of the operated frequency.

In multirotors, by manipulating the radio control (TX) commands, the operator transmits
the information to the receiver (RX) on board the UAV, which takes it to the flight
controller that interprets it and acts on the ESCs in order to change the speed. of motors
producing remotely controlled movement (TX).

A.8 Automatic Pilot
The UAV’s autopilot allows several operations, such as aircraft stabilization and some
flight controls. Pixhawk is an example of an autopilot that has several pre-defined flight
modes, such as those listed below, among others:

Stabilize Mode: This mode allows the automatic leveling of the UAV, so that the UAV
operator (pilot) does not have to worry about the leveling of the aircraft, but only about
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its altitude and direction.

Alt Hold Mode: Maintains the UAV’s altitude. Altitude is automatically maintained by
sensors such as barometer, sonar or another method, depending on the UAV. This mode
is recommended for beginners as it makes operating the aircraft easier.

Loiter Mode: This mode is also known as GPS or Position Hold mode. It uses GPS to
maintain position, barometer to maintain altitude, and compass to maintain direction.
The UAV remains relatively fixed in the same position in space, relieving the operator of
any need to interact with the radio control while the UAV remains practically stationary
(immobile) in the air.

Return-to-Launch (RTL) mode: Also known as Return-to-Home (RTH) mode, this mode
causes the UAV to return to the starting location (where it started the flight).

Auto mode: This mode executes a mission planned through a system or Mission Planner
software.

Guided Mode: This function is only available through the use of a ground station running
Mission Planner software and telemetry. Allows the operator to control the UAV by
clicking on the Mission Planner map. The UAV will move to the location indicated by
the operator.

To be able to perform the functions mentioned, the autopilot has some sensors of its own,
namely:

A.8.1 IMU

Inertial Measurement Unit (IMU) is a device that brings together several sensors, such
as an accelerometer, gyroscope and temperature sensor. The first two sensors with three
measurement axes allow output response in six values, allowing six Degree of Freedom
(DOF).

A.8.2 Barometer / Altimeter

Altimeter is a type of barometer, a tool that allows you to measure air pressure. The higher
the aircraft is, the thinner the atmosphere and, therefore, the lower the air pressure, thus
allowing an algorithm to estimate the UAV altitude (distance between the aircraft and
sea level).

A.8.3 Accelerometer

The accelerometer is a device with sensors that, when moved from top to bottom or to
the sides, in 3D axis space, by flight movements, perceives the direction and speed of
displacement.
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A.8.4 Gyroscope

The gyroscope measures angular velocity. An example measurement would be 1 revolution
per second, which would represent 360 degrees or, 360/1. The direction in which the device
is rotating is also recognized. But depending on the application, there may be no rotation,
but just a shift in degrees, common in UAVs. By detecting small variations it is possible
to stabilize the flight.

A.8.5 Compass

A gyroscopic compass has 3 axes, while a magnetic compass only and always points north.
The mechanical gyro compass corrects for tilts caused by hills, sea influences and aircraft
pitch. The digital compass or electronic compass uses magneto-inductive technology, read-
ing variations in the Earth’s magnetic field. As it is a device sensitive to magnetic fields,
several peripheral precautions must be taken, such as considering the metallic mass close
to the sensor, electromagnetic fields and interference caused by circuits or sources close
to it (OPENCV, 2017).

A.8.6 Telemetry

Two-way communication system (both receives and transmits information) wirelessly via
antennas (Figures A.9 and A.10) and which allows data exchange between the onboard
flight controller and the control station (Figure A.8).

Figure A.9 – Embedded Wifi Antenna.
Source: Author

Telemetry provides the pilot with flight information and metrics by sending various types
of information to a receiver on the ground.
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One of the important pieces of information that telemetry provides to the ground con-
troller is RSSI, which indicates the strength of the radio signal, useful for understanding
when the aircraft is approaching the maximum radio control range limit, or the inclination
is unfavorable. for data transmission via antennas.

The charging voltage of the batteries is another information transmitted by telemetry to
the radio control, useful for estimating how much flight autonomy the UAV has left.

Figure A.10 – Wifi Antennas.
Source: Author

Although it is common to see operators using stopwatches to estimate the aircraft’s flight
time, factors such as the intensity of headwinds can require additional effort from the
engines and a consequent increase in energy consumption from the batteries, reducing
flight autonomy, which makes this practice inadvisable.

A.9 Sensors
To aid stability and allow free flight (when the GPS signal is unavailable), UAVs have
a series of internal and external equipment such as compass, altimeter, gyroscope and
barometer. An UAV can use multiple embedded sensors in many different ways.

A.9.1 Sonar

Sonar is an electronic device that allows detecting the distance between the UAV and the
ground or between the UAV and obstacles in front of it, depending on where the device is
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installed, below or in front of the aircraft. This sensor combined with the altimeter allows
for greater accuracy in altitude detection.

A.9.2 Laser

Lasers are sensors or scanners and laser allow scanning on board UAVs, making it possible
to perceive obstacles and reliefs during flight. This method of perceiving the environment is
called a Light Detection and Ranging (LIDAR) system and uses pulsed laser emission with
a high repetition frequency to measure distances by recording the reflection of these pulses,
allowing three-dimensional information to be obtained. about surfaces by assembling a
table of position (x, y) and elevation (z) data, generating a cloud of points.

A.9.3 Other Embedded Components

Other equipment and accessories can be embedded in an ARP, such as the GPS mod-
ule/antenna (Figure A.11), the Raspberry PI system, the Pixhawk controller and others.

Figure A.11 – Onboard GPS module.
Source: Author

Raspberry Pi (Figure A.12) is a mini-microcomputer similar to the mother board found
inside the case of a conventional Personal Computer (PC), containing processors, ex-
pansion slot, Universal Serial Bus (USB) interfaces, digital audio and video outputs
High-Definition Multimedia Interface (HDMI), Random Access Memory (RAM), RJ45
connector for network cable and input for power supply.
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Figure A.12 – RaspBerry Pi.
Source: Author

The Raspberry Pi computer was developed by the Raspberry Foundation, with the aim
of bringing technology to teaching young people and children.

Pixhawk (Figure A.13) is a hardware and software device that implements an autopilot
Open Source Hardware (OSHW) capable of controlling the basic operations of a UAV,
such as stabilizing, taking off and landing, among many others .

Figure A.13 – Pixhawk.
Source: Author

The Pixhawk system is multi-tasking and shares resources that can be performed together
or individually.

It has a built-in software that implements the basic flight control functions.

It offers a programming environment compatible with Unix and Linux operating systems
and integrated autopilot functions with detailed logs of missions and flight behavior. It
is equipped with a gyroscope, accelerometer, magnetometer and barometer and can be
connected to external accessories such as a GPS module.
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A useful feature of Pixhawk is the ability to communicate with other devices through
a protocol called MAVLink, which was developed specifically for UAV applications and
can be used within remote control range of the autonomous aircraft, running the control
algorithms in a small portable computer, such as a Raspberry Pi, which is embedded in
UAV and sends commands to Pixhawk via messages in the MAVLink protocol.
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ANNEX A – SOME TERMS IN
DISTRIBUTION LINES

A.1 Introduction
There are several safety procedures when it comes to electrical energy, established by
laws, standards and technical-operational procedures.

This appendix brings some of the concepts used in this thesis, contained in document
30.000-PE/LS-5621d - INTERFERENCE CRITERIA WITH DISTRIBUTION AND TRANS-
MISSION LINES BANDS, dated 05/30/2015, prepared by Companhia Energética de Mi-
nas Gerais Distribuição S.A. (CEMIG) (CEMIG, 2015) and on the Eletrobrás/Furnas
website (FURNAS, 2022).

The original documents have not been fully transcribed here. However, the following
definitions are faithful copies of the texts found in their original sources.

A.2 Definitions

A.2.1 Passing Lane

It is the strip of land along the axis of the overhead distribution and transmission lines,
which may be domain or easement, whose width must be at least equal to the safety strip.

A.2.2 Domain Range

It is the strip of land along the axis of the overhead distribution lines and networks,
declared of public utility, acquired by the owner of the line through an agreement through
a public instrument extrajudicial, judicial decision or acquisitive prescription (acquisition
of a property through peaceful and uninterrupted possession for a certain period of time),
duly registered in the property registry office, with a width at least equal to that of the
security strip.

A.2.3 Right of Way

It is the strip of land along the axis of the overhead distribution lines and networks,
the domain of which remains with the owner, however with restrictions on its use. The
aforementioned right over someone else’s property can be established through a public
or private instrument, acquisitive prescription over a period of time or even through a
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judicial measure, by registering it separately from the respective real estate registration.
In this case, the concessionaire, in addition to the right to pass the line, has free access
to the respective facilities, with a width of at least the same as the safety lane.

Figure A.1 illustrates the Right of Way, where:

Area A: It is around the structure of the towers. Used for moving vehicles and equipment
during maintenance work.

Area B: Corridor located well below the cables, along the line. Some improvements are
permitted in this area (see table alongside).

Area C: Strip of land that complements the total width of the easement strip.

The use of these areas is not completely prohibited, however, any activities that may be
carried out in these areas must first be analyzed and authorized by FURNAS.

Some activities, such as horticulture, fruit growing, floriculture, corn, wheat and rice
plantations are permitted in areas B and C of the easement strip. The approval of im-
provements is related to their location on the strip.

In the following table, some examples of what can and cannot be done within the right-
of-way. Table A.1 exemplifies some types of use of the Right of Way.

Type of use Area A Area B Area C
Low plantings YES YES YES
Small and medium-sized crops NO YES YES
Medium and large-sized afforestation/reforestation NO NO NO
Crops where burning is processed NO NO NO
Agricultural vehicles NO YES YES
Irrigation YES* YES* YES*

Improvements to support agriculture Standard NO YES* YES*

Electrical and mechanical installations NO NO NO
Deposit of non-flammable materials NO NO NO
Deposit of flammable materials NO NO NO
Houses NO NO NO
Wire fences, walkways and gates YES* YES* YES*

Leisure, industry and commerce area NO NO NO
Movement of people in the lane YES YES YES

(*) Consult FURNAS before deploying.

Table A.1 – Examples of types of use in the Right of Way.
Source: Author with data extracted from (FURNAS, 2022)

There are some requirements imposed by Brazilian legislation so that these tracks are
made correctly. One of the determinations implies that the strip must be 20 meters wide
aligned according to the center of the duct or construction being monitored. The Right
of Way cannot have any type of construction along its route, and only the strip and the
ground must be kept free of any material or object.

It is also important to highlight that the Right of Way is still part of the property’s land,
being the property of the owner. These use restrictions are focused on the safety of the
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Figure A.1 – Right of Way
Source: (FURNAS, 2022)

work and transmission lines.

This entire reserve destined for the Right of Way is important for everyone’s safety,
especially if you take into account electromagnetic waves generated by these transmission
lines.

When it comes to Right-of-Ways for monitoring gas pipelines, they aim to delimit and
protect the entire pipeline area, in addition to identifying where the equipment will be
installed.

Next to the support structures there is the right of way, which is the strip of land necessary
for the construction, operation and maintenance of the transmission line. After crossing
the line, landowners can use part of the easement, respecting restrictions that guarantee
the safety of residents, the property and the project.
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A.2.4 Safety Strip

It is the strip of land along the axis of overhead distribution lines and networks, necessary
to guarantee its good performance, inspection, maintenance and the safety of installations
and third parties. It is defined in accordance with the criteria established in NBR 5422,
NBR 12304, in Law 11934 of May 5, 2009 and in ANATEL Resolution No. 442 of July
21, 2006.

A.2.5 Parallel track

It is a fictitious strip, parallel to the distribution line crossing lane necessary to ensure
the operation of the line, taking into account the existence of large trees existing on the
edge of the easement strip, whose pruning or tipping could affect the structures or the
conductor cables and lightning arrester cables of the line.

A.2.6 Safety Distance

It is the minimum distance from the conductor and its energized accessories and any
parts, energized or not, from the line itself to the ground or to obstacles close to the line,
as prescribed by ABNT NBR 5422.

A.2.7 Counterweight wire

It is the conductor buried in the ground along the line’s safety strip, with the objective of
reducing the grounding resistance of the structure, tower or pole, to values compatible with
the expected performance against short circuits, switching surges, atmospheric discharges
and the security of third parties.

A.2.8 Dangerous potentials

In the event of phase-to-ground short circuits in a Line or in the substations at its ends,
high currents are injected into the ground through the feet of the structures and the
counterweight wires that make up the Line’s grounding system. These currents, in turn,
cause the appearance of electrical potential gradients on the ground surface that can
impose impermissible potential differences (step voltage or touch voltage) on a person in
the vicinity of structures.

A.2.9 Intersection or crossing

It is the transposition of a distribution line or network by another electrical line (higher,
equal or lower voltage) or telecommunications, buried or overhead ducts, transport routes,
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etc., complying with defined criteria and the regulatory requirements of the bodies in-
volved.

A.2.10 Distribution Networks

It is an electrical installation with voltage between phases whose effective value is greater
than 1kV and less than 69kV, also identified as DN.

A.2.11 Distribution Line

It is the line with voltage between phases whose effective value is equal to or greater than
69kV and less than 230kV, also identified as DL.

A.2.12 Transmission Line

It is the line with voltage between phases whose effective value is equal to or greater than
230kV, also identified as TL.

A.2.13 Convention

For simplicity, the overhead Distribution Lines (DL) and Transmission Lines (TL) will be
referred to as Lines for short.

A.2.14 NBR 5422

Technical Standard for the Design of overhead electric power transmission lines, from
ABNT, Brazilian Association of Technical Standards, which defines the minimum param-
eters for sizing the safety range.

A.2.15 NBR 12304

This Standard establishes the required conditions for measuring the levels of spurious
signals generated by Information Technology Equipment (ETI) and establishes the corre-
sponding limits permissible for the frequency range of 0.15MHz to 1,000MHz.

A.2.16 Law 11934 of May 5, 2009

This law provides for limits on human exposure to electric, magnetic and electromagnetic
fields.
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A.2.17 ANATEL Resolution No. 442 of July 21, 2006

This Regulation aims to establish electromagnetic compatibility requirements to be served
by telecommunications products.
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