
Journal of Robotics and Control (JRC) 

Volume 5, Issue 1, 2024 

ISSN: 2715-5072, DOI: 10.18196/jrc.v5i1.19081 82 

 

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id 

The Classification of Aflatoxin Contamination 

Level in Cocoa Beans using Fluorescence Imaging 

and Deep learning 

Muhammad Syukri Sadimantara 1*, Bambang Dwi Argo 2, Sucipto Sucipto 3, Dimas Firmanda Al Riza 4, Yusuf Hendrawan 5 

 1, 3 Department of Agroindustrial Technology, Universitas Brawijaya, Malang, 65145, Indonesia 

 1 Department of Food Science and Technology, Universitas Halu Oleo, Kendari, 93231, Indonesia 
2, 4, 5 Department of Biosystems Engineering, Universitas Brawijaya, Malang, 65145, Indonesia 

Email: 1 syukrisadimantara@uho.ac.id, 2 dwiargo@ub.ac.id, 3 ciptotip@ub.ac.id, 4 dimasfirmanda@ub.ac.id,  
5 yusuf_h@ub.ac.id 

*Corresponding Author 

 
Abstract—Aflatoxin contamination in cacao is a significant 

problem in terms of trade losses and health effects. This calls for 

the need for a non-invasive, precise, and effective detection 

strategy. This research contribution is to determine the best 

deep-learning model to classify the aflatoxin contamination level 

in cocoa beans based on fluorescence images and deep learning 

to improve performance in the classification. The process 

involved inoculating and incubating Aspergillus flavus 

(6mL/100g) to obtain aflatoxin-contaminated cocoa beans for 7 

days during the incubation period. Liquid Mass 

Chromatography (LCMS) was used to quantify the aflatoxin in 

order to categorize the images into different levels including 

“free of aflatoxin”, “contaminated below the limit”, and 

“contaminated above the limit”.  300 images were acquired 

through a mini studio equipped with UV lamps.  The aflatoxin 

level was classified using several pre-trained CNN approaches 

which has high accuracy such as GoogLeNet, SqueezeNet, 

AlexNet, and ResNet50. The sensitivity analysis showed that the 

highest classification accuracy was found in the GoogLeNet 

model with optimizer: Adam and learning rate: 0.0001 by 

96.42%. The model was tested using a testing dataset and obtain 

accuracy of 96% based on the confusion matrix. The findings 

indicate that combining CNN with fluorescence images 

improved the ability to classify the amount of aflatoxin 

contamination in cacao beans. This method has the potential to 

be more accurate and economical than the current approach, 

which could be adapted to reduce aflatoxin's negative effects on 

food safety and cacao trade losses. 

Keywords—Aflatoxin; Cocoa Beans; Deep Learning; 

Fluorescence Images. 

I. INTRODUCTION  

Aflatoxin exposure has a significant detrimental impact on 

consumer health and the global economy. A recent review by 

[1] estimated that 60% - 80% of the world's food crops were 

contaminated by aflatoxin. Aflatoxin can harm human health, 

leading to death [2-3], cancer [4-5], immune system 

disruption [6], and stunted child growth [7-8]. Aspergillus 

flavus produces aflatoxin, a secondary metabolite that thrives 

in uncontrolled processing and storage condition [9]. The 

contamination needs to be controlled early due to its 

thermostable nature, which can complicate the removal 

process from the supply chain [10]. This is necessary because 

of the recent increase in the market awareness of product 

quality [11] as well as the existence of strict regulations 

governing the maximum intake of aflatoxin by international 

institutions such as the 20 ppb limit imposed by the European 

Commission [12]. 

One of commodity that can become contaminated with 

aflatoxin is cocoa [13]. Cocoa beans are one of the important 

commodities in the world as indicated by their retail value 

reaching USD 100 billion in 2021. The total trade volume of 

cocoa and its products in the year 2018-2019 was also 

reported to be $50.9 billion with a 2.12% increase in export 

value [14]. However, several challenges have been identified 

in relation to the export of cocoa such as the reduction in the 

quality due to the risk of mycotoxins[15]. 

The detection of aflatoxin was observed to currently rely 

on the application of chemical approaches involving high 

costs, destructive processes, sophisticated equipment, and 

labor expertise [16] such as ELISA [17], HPLC [18], and 

LCMS [19]. Another method is computer vision which 

involves utilizing different image acquisition technologies 

such as Color imaging [20], Near-infrared (NIR) 

Spectroscopy [21-22], Mid-infrared (MIR) Spectroscopy [23-

24], Near-infrared (NIR) Hyperspectral Imaging [25-26], and 

even X-Ray Imaging [27] to detect mycotoxin. However, 

these image acquisition technologies have some limitations. 

For instance, color imaging has a limited electromagnetic 

range, making it unable to detect mycotoxin contamination at 

an early stage, despite its high detection accuracy of up to 

89% [28]. Hyperspectral imaging has high accuracy [29] but 

requires expensive equipment [30].  This requires an image 

acquisition approach that is simple but has high accuracy. 

Ultraviolet (UV) induced fluorescence imaging is an 

alternative technique involving the utilization of the 

excitation-emission properties of fluorescence light. This is 

possible because every organic material, including aflatoxin, 

exhibits different fluorescence properties [31]. Previous 

research already showed that aflatoxin has an excitation 

wavelength of 365 nm and an emission wavelength of 455 nm 

[32]. The fluorescence properties were used in the 

hyperspectral fluorescence imaging approach to detect the 

aflatoxin in maize [33]. However, this approach requires 

relatively expensive equipment, necessitating a relatively 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 83 

 

Muhammad Syukri Sadimantara, The Classification of Aflatoxin Contamination Level in Cocoa Beans using Fluorescence 

Imaging and Deep learning 

simpler approach by Rotich [34], 365 nm LEDs were used as 

the excitation light source in a color camera to capture the 

optical characteristics of fluorescence images produced by 

UV light in the visible region. The target fluorophores were 

observed to have been able to emit in the visible region 

thereby, enabling the use of simplified imaging techniques. 

This indicates that there is potential for using fluorescence 

imaging in this study. 

Convolutional Neural Network (CNN) is an approach 

commonly used for image classification [35-37]. This was 

further confirmed by the findings of recent research that 

machine learning is increasingly being applied in the field of 

agriculture, particularly to identify the quality of agricultural 

products. The phenomenon was associated with the machine 

learning's capabilities in the classification process, which is a 

recent development in computer vision [38]. Hendrawan [39] 

classified Indonesian coffee types using a pre-trained network 

with a testing accuracy of 99.6%. Momeny [40] also 

employed the Inception-v4 CNN to grade and detect 

counterfeit saffron with an accuracy of 99.5%. CNNs can not 

only be used for classifying reflectance images but are also 

well-suited for handling fluorescence images. The findings of 

the research support this statement. For example the 

classification performance of fluorescence images was 

reported to be better than that of reflectance images, as shown 

by Wei [41] where fluorescence images had a higher accuracy 

of 97.5% in the process of classifying tea leaves. 

This research contribution is to determine the best deep-

learning model to classify the aflatoxin contamination level in 

cocoa beans based on fluorescence images and deep learning 

to improve performance in the classification. The results are 

expected to offer an alternative, accurate method for 

classifying aflatoxin contamination levels in cocoa beans, 

which possible adapted to reduce aflatoxin's negative effects 

on food safety and cacao trade losses. 

II. MATERIALS AND METHOD 

A. Materials 

The materials used included pure strain A. flavus (Inacc 

F44) was collected from Lembaga Ilmu Pengetahuan 

Indonesia (LIPI) microbiology laboratory, Cibinong, 

Indonesia. Forastero cocoa beans that had been fermented for 

5 days with a shelf life of 3 months in a warehouse from the 

Pusat Penelitian Kopi dan Kakao, Jember, Indonesia. The 

fermented beans were unbroken, free of mycotoxin 

contamination and had a low moisture content of 6%. The 

chemicals used were aqua dest, NaCl, methanol, alcohol, and 

potato dextrose broth (PDB) media. 

The hardware used was image acquisition mini studio 

consisting of a Canon EOS 700D DSLR camera with 

dimensions of 133×100×79 mm, equipped with a PL filter. 
The camera had 18MP resolution specifications with a CMOS 

sensor, ISO 100-12800, a shutter speed of 30-1/4000 seconds, 

and Full HD video. 22.3×14.9 mm CMOS sensor size. UV 

Lamp Model: LDR2-100UV3-365-N, input 24V(DC)/23W, 

manufactured by CCS Inc as a UV light source.   The power 

supply had 30V/5A Specification with code MDB-K305D. A 

LED Pulse Controller, Brand GARDASOFT with model 

PP820C, which was equipped with 8 channels that can 

regulate a maximum current of 20A was used, with an input 

of 12-48V. A mini studio frame was assembled from several 

angles with a thickness of 2 mm combined using 10mm nuts 

and a Lenovo laptop with Intel Core i5-7200u specifications, 

2.50GHz CPU 2.71GHz, and 16GB memory. Aflatoxin 

quantification using Liquid Chromatography Mass 

Spectrometry (LCMS)/MS brand (Hitachi L 6200).  

B. Method 

The research's outline stages can be seen in Fig.1. As seen 

in Fig. 1, this study uses the inoculation and incubation of A. 

flavus to produce aflatoxins-contaminated cocoa beans. The 

fluorescence image acquisition process is carried out and the 

last step is the implementation of a pre-trained CNN model. 

The following provides a detailed explanation of each of the 

aforementioned stages. 

 

Fig. 1. Research outline 

1) Fungus Inoculum 

Fungal inoculation is carried out to obtain cocoa beans 

contaminated with aflatoxin. Fungal inoculum was obtained 

by culturing pure A. flavus in 10 mL of nutrient broth (DIFCO 

234000) and incubating it at room temperature for 3 days. In 

100 mL of NB media, the culture was revived, re-inoculated, 

and incubated at room temperature for three more days. To 

create a stock inoculum for the vaccination of cocoa beans, 

the resulting culture was then incubated for an additional three 

days at room temperature in 1000 mL of NB media. 60 mL/ 

kg of cocoa beans were added to the fungal inoculum, which 

was then incubated with A. flavus at 30° C and 90% RH until 

day 7.  

2) Measurement of Aflatoxin Levels 

The concentration of aflatoxin in the samples was 

measured using LCMS. The LC system consisted of: (i) 

a Shimadzu pump model LC-10AD (Shimadzu, Kyoto, 

Japan); (ii) a fluorescence detector (RF-10AXL) (Shimadzu); 

(iii) an auto-injector (SIL-10A, Shimadzu); and (iv) a control 
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system (SCL-10A, Shimadzu), as well as a mass spectrometry 

detector with an orthogonal ESI nozzle (model Agilent 

1100MSD SL). The Aflatoxin (AF) standard and pure 

samples were dissolved in 1 ml of mobile phase solution, 

which was then added to the LCMS/ESI in 6 μL. All of the 

tested AF contained protons, [M+ H]+, with a residence time 

of 1,000 ms per ion. The test tube containing the pure sample 

or the aflatoxin working standard was supplemented with 0.1 

mL of trifluoroacetic acid (TFA) for LC analysis. The selected 

ions (m/z) monitored for the target were 313 for AFB1, 315 

for AFB2, 329 for AFG1, and 331 for AFG2 [42]. The tube was 

vortexed, diluted with 0.9 ml of an acetonitrile-water solution 

(1:9), and allowed to sit in the dark for 15 minutes at room 

temperature. The resulting solution was then tested for 

reverse-phase LC analysis using 20 μL. Using electron 

ionization in multiple reaction monitoring modes, aflatoxin 

was discovered. The results of the LC/MS-MS data analysis 

gave the extract's compounds' molecular weight and 

chromatogram in the form of peaks, allowing for the 

calculation of how many compounds were total in each 

sample. For each measurement, three times were performed. 

3) Image Acquisition  

Canon EOS 700D camera was used to capture images of 

cocoa beans for up to seven days following the inoculation of 

A. flavus to obtain images of cocoa beans in 3 different 

aflatoxin contamination classes (aflatoxin free, below 

threshold, and above threshold).  400×600 pixel JPG files 

were used to save the generated images, then the image is 

resized to 224×224 pixels as the input image to the CNN [43].  

The image was captured in a studio that featured a 365 nm UV 

LED lamp made by CCS Inc. in Japan. The UV lamp was 

positioned 350 mm away from the sample unit, emitting 6.9 

Wm2 of radiation on average. Additionally, a UV bandpass 

filter was placed in front of the UV light source and the 

camera to block out the light that was reflected. It performs 

similarly to a UV cut filter but only lets 0.3% of 365 nm to 

pass through. In the subunit of image acquisition, a high-

resolution CMOS camera of 5×3078 pixels was used, namely 

the EOS Kiss×7 (Canon Inc., Japan) with ISO 200, F-5.6, and 

manual exposure of 1/3 second for fluorescence image 

recording placed 450 mm from the sample location. The 

image acquisition unit measures 18.5 cm×18.5 cm×29 cm and 

is connected to the light source through an optic fiber, as 

shown in Fig. 2.  

 

Fig. 2. Image acquisition unit 

Each cocoa bean is spaced approximately 5 cm apart in 

the arrangement. After seven days of image acquisition, 300 

fluorescence images with 12 cocoa beans each were obtained. 

Based on the findings of the LCMS test, the image is then 

classified into three classes of contamination. 

4) Deep Learning Modeling 

The model was created using deep learning to classify the 

aflatoxin contamination level in cocoa beans. Four different 

pre-trained CNN types were used in the process: SqueezeNet 

[44], GoogLeNet [45], ResNet50 [46], and AlexNet [47]. The 

CNN architecture for the classification is presented in the 

following Fig. 3. 

 

Fig. 3. CNN structure for aflatoxin contamination level classification 

As seen in Fig. 3, the cocoa image becomes input to the 

CNN model and then convolution and pooling are used to 

extract features. In the fully connected layer, classification is 

carried out so that the output is three classes of aflatoxin 

contamination in cocoa beans. Each pre-trained CNN was 

applied using several parameter settings such as optimizer 

(Adam, SGDm, RMSProp) [48], initial learning rate = 0.0001 

and 0.00005 [49], epoch 20 of minibatch size 20 [50], 

L2Regularization = 0.00001[51], momentum = 0 [52], 

learning rate drop period = 10[53], and learner drop factor = 

0 [54]. The value of sequence padding is 0 [55]. Padding 

affects network functionality and has a significant impact on 

performance and accuracy [56]. After validation, the CNN 

models were tested using 20 new images for each aflatoxin 

contamination level category. Moreover, the confusion matrix 

method [36] was used to determine the classification accuracy 

of the testing dataset in order to evaluate the performance of 

the CNN models. The architecture of the pre-trained CNN 

used is presented in the following Fig. 4. 

The ability of pre-trained CNNs to expedite and 

streamline the training process is one of its key advantages. 

The pre-trained model's weights and features can be used as a 

starting point and adjusted to particular task, rather than 

having to be started from scratch [57].  Each pre-trained 

network possess various architectures, parameter counts, and 

levels of complexity, all of which affect the accuracy and 

classification rate [58]. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Schematic representation of the CNN models (a) SqueezeNet, (b) ResNet50, (c) AlexNet, (d) GoogleLeNet 

 

III. RESULTS AND DISCUSSION 

A. Quantification of Aflatoxin Level in Cocoa Beans 

Inoculated with Aspergillus Flavus 

In this study analyzed total aflatoxin (AF) which is the 

total of aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin 

G1 (AFG1) and aflatoxin (AFG2). The detection limit of the 

LC-MS/MS test in this research was 1 ppb (part per billion). 

Samples were considered positively contaminated when the 

aflatoxin concentration was ≥ Limit of detection (LOD). Fig. 

5 indicated that the control did not detect aflatoxin at the limit 

of Reporting limit (RL) = 1 µg/kg, while the Aflatoxin (AF) 

inoculation treatment on days 1-7 did not detect AFB2 and 

AFG2. Furthermore, AFB1 and AFG1 levels increased during 

the observation period, with AFG1 showing the largest 

increase in aflatoxin level at 83.10 ppb on day 7, followed by 

AFB1 at 9.77 ppb on day 7. Aflatoxin level was significantly 

different in each observation. The higher concentration of 

AFG1 than AFB1 in this research was in line with [16], where 

aflatoxins in cocoa beans were analyzed in several regions in 

Brazil. The results showed an incidence of aflatoxin level in 

cocoa beans aflatoxin G1 higher than B1. However, some 

findings revealed that AFB1 and AFG1 levels were equal or 

AFB1 level was higher than AFG1. Compared to the 

incidence of aflatoxin contamination in other commodities 

such as peanuts, various reports obtained a higher level of 

AFG1 than AFB1[58], while others detected elevated AFB1 

than AFG1[59][60]. Comparable concentration patterns of 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 86 

 

Muhammad Syukri Sadimantara, The Classification of Aflatoxin Contamination Level in Cocoa Beans using Fluorescence 

Imaging and Deep learning 

AFB1 and AFG1 were also reported in beans from Brazil [61] 

and Burkina Faso [62]. 

The aflatoxin concentration in cocoa beans was found to 

exceed the threshold on day 3 after inoculating. Hruska [33] 

discovered that the aflatoxin level in corn kernels inoculated 

with A. flavus fungus exceeded the threshold on day 7. This 

condition occurred due to various factors that affected mold 

growth and aflatoxin production. Intrinsic factors included 

water activity [59], pH [60], redox potential [61], substrate 

[62], inhibitors [63], and osmotic pressure [64]. Meanwhile, 

extrinsic factors were related to environmental conditions 

such as temperature and humidity [65]. The incubator's 

temperature and relative humidity (RH), the amount of media 

added, and cocoa bean nutrient content (substrate) were all 

factors under control in this study that affected aflatoxin 

levels. In order to drive the growth of mold and the generation 

of aflatoxin, the incubator's temperature and RH were set to 

30 oC and 90 RH, respectively. Biotrop [66] reported that 

compared to temperatures of 40° C and 80 RH, a temperature 

of 30 oC with 90 RH was better for the development of molds 

and the production of aflatoxin. This is due to the mold's 

inability to grow at 40° C with a 70% RH. 

Nutrients from the substrate such as lipids, carbon, 

nitrogen, and amino acids are among the factors that can affect 

aflatoxin production [67]. Cocoa beans, which are composed 

of cocoa butter (50%), mainly stearic acid, oleic acid and 

palmitic acid, containing protein (11%), including glutamate, 

arginine and leucine provide an ideal commodity type for 

mold and aflatoxin development. Glutamate is a source of 

arginine  and proline  [68], which are nitrogen sources to 

stimulate aflatoxin production [9]. The highest aflatoxins are 

induced by glutamate and aspartate, followed by arginine 

[62]. Nitrogen in the form of nitrite and nitrate also increases 

the level of aflatoxin production [69]. Moreover, aflatoxin 

biosynthesis is also triggered by lipophilic epoxy fatty acids 

and induced by ergo-sterol oxidation [70]. 

 

Fig. 5. Changes in aflatoxin levels after inoculation of A. flavus on cocoa beans 

B. Image acquisition and analysis 

Fluorescence images were acquired for this study by 

excitation of UV light at 365 nm wavelength. Airborne 

mycotoxin is detected using an excitation source of 360– 370 

nm; and 435-440 nm for substrate in food materials [71]. 

Furthermore, the fluorescence image of cocoa beans obtained 

is shown in Fig. 6 and Fig. 7. 

  
(a) (b) 

Fig. 6. Difference of reflectance and fluorescence imaging (a) Reflectance 

image (b) Fluorescence image 

Fig. 6 shows how the reflectance and fluorescence images 

of aflatoxin-contaminated cocoa beans differ from one 

another. While there are some cocoa beans in the fluorescence 

image that excite blue light, as shown in Fig. 6 (b), there are 

no discernible differences between the reflectance images of 

the coffee beans. 

In Fig. 7, cocoa beans image can be observed with blue 

UV light emission on day 7. This emission occurs when 

fluorophores are excited by UV light at a specific wavelength, 

resulting in a longer wavelength. AFB1 and AFB2 have blue 

fluorescent colors, while AFG1 and AFG2 have green colors 

[72]. On the other hand, Fig. 6(b) shows that cocoa beans 

contaminated with aflatoxins are below the threshold at 

which, in theory, they should excite light as a sign of aflatoxin 

contamination; however, none of the cocoa beans exhibit light 

excitation. However, cocoa beans that produce excitation are 

not an absolute indicator of the presence of aflatoxin. It should 

be noted that aflatoxins are not the only ones responsible for 

UV light emission. According to Gao [73], UV fluorescence 

light may also be emitted by oil in grains and dust in the air. 

It's possible that accuracy will decrease if aflatoxins are only 

detected using blue-green fluorescence under UV light. 

Therefore, in the subsequent stage, deep learning approaches 

were employed to improve the accuracy of the detection 

process. 
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(a) 

Aflatoxin Free 

 
(b1) 

 
(b2) 

Contaminated below Threshold 

 
(c1) 

 
(c2) 

 
(c3) 

 
(c4) 

 
(c5) 

Contaminated over Threshold 

Fig. 7. Fluorescence image of cocoa beans from A. flavus inoculation on days 
1-7, a) Control, (b1) Day 1, (b2) day 2, (C1) day 3, (c2) day 4, (c3), day 5, 

(c4) day 6, (c5) day 7 

C. CNN Performances 

This research was conducted using four pre-trained CNN 

models including AlexNet, GoogLeNet, ResNet50, and 

SqueezeNet to classify the aflatoxin contamination level in 

cocoa beans. Moreover, sensitivity analysis was conducted 

through different variations of optimization methods such as 

Adam, SGDm, and RMSProp as well as initial learning rates 

set at 0.0001 and 0.00005. The performance of these models 

is presented in the following Table I. 

The pre-trained CNN models were observed to have 

produced different accuracy values with the lowest, 76.69%, 

recorded for GoogLeNet, optimizer: SGDm, learning rate: 

0.00005 and the highest, 96.42%, for GoogLeNet, optimizer: 

Adam, learning rate: 0.0001. This means GoogLeNet, 

optimizer: Adam, learning rate: 0.0001 was the best 

combination to classify the level of aflatoxin contamination in 

cocoa beans using fluorescence images. Moreover, the 

average accuracy based on the type of pre-trained network 

showed that ResNet50 had the highest average accuracy of 

91.48%, followed by AlexNet at 92.8%, GoogLeNet at 

87.2%, and SqueezeNet at 87.15%. This was observed to be 

consistent with the findings of Liu  [74] that ResNet has better 

accuracy than other models such as VGG-16 and MobileNet 

during the process of comparing the CNN models for fruit 

classification. However, it was discovered from Table I that 

ResNet50 required the longest training time of 58.2 minutes 

while AlexNet has the shortest at approximately 28.2 minutes. 

This was likely due to ResNet50 having a higher depth of 

50 layers which was more than AlexNet with 5 layers, 

SqueezeNet with 18 layers, and GoogLeNet with 22 layer.    

There are more weights and biases to update during training 

when the parameter size is larger. This may result in longer 

training times for the model by making it more complex and 

difficult to optimize [75]. 

TABLE I.  COMPARISON OF THE ACCURACY OF SEVERAL PRE-TRAINED 

CNN ARCHITECTURES DEVELOPED TO CLASSIFY THE AFLATOXIN 

CONTAMINATION LEVEL USING FLUORESCENCE IMAGES 

Architecture Optimizer 
Learning 

rate 
Accuracy 

(%) 
Time 

(minutes) 

SqueezeNet 

SGDm 0.00005 84.59 34 

Adam 0.00005 87.22 35 

RSMprop 0.00005 87.22 35 

SGDm 0.0001 85.71 35 

Adam 0.0001 93.98 35 

RSMprop 0.0001 84.21 34 

AlexNet 

SGDm 0.00005 83.46 23 

Adam 0.00005 90.25 22 

RSMprop 0.00005 89.47 23 

SGDm 0.0001 87.42 22 

Adam 0.0001 95.95 28 

RSMprop 0.0001 89.47 23 

GoogLeNet 

SGDm 0.00005 76.69 49 

Adam 0.00005 93.98 49 

RSMprop 0.00005 90.00 48 

SGDm 0.0001 81.2 48 

Adam 0.0001 96.42 51 

RSMprop 0.0001 90.98 48 

ResNet50 

SGDm 0.00005 84.96 42 

Adam 0.00005 92.48 45 

RSMprop 0.00005 91.73 59 

SGDm 0.0001 89.49 42 

Adam 0.0001 94.74 45 

RSMprop 0.0001 95.49 57 

 

The Adam optimizer was observed to have provided the 

highest average classification accuracy of 93.12% followed 

by RMSProp at 89.8% and SGDm at 84.88%. Adam 

optimizer is a first-order gradient-based optimization method 

with a stochastic function considered suitable for direct 

application to classification models with large data and 

parameters [76]. Furthermore, a 0.0001 learning rate was also 

discovered to have generally led to higher accuracy with an 

average value of 90.42% while 0.00005 had 87.9%. This is 

consistent with the findings of Hendrawan [77] that a learning 

rate of 0.0001 produced better classification accuracy 

compared to 0.00005 for tempeh quality. 

The training process for the six best models presented in 

Fig. 7 showed an increase in the classification accuracy as the 

iterations progressed. Different patterns of accuracy graphs 

were also obtained using the RMSprop optimizer and the 

validation value was observed to be increasing but 

fluctuating. Meanwhile, the Adam optimizer, specifically for 

the ResNet50 model with a learning rate of 0.0001, showed a 
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stable training and validation process. Adam and its 

modification are more preferred approaches in neural 

networks. Due to its exponential moving averages for both 

gradient and squared gradient, which significantly improve 

neural network training, Adam is a well-liked optimizer. 

These methods yield additional information about the global 

minimum by forcing optimization through the use of moment 

estimate. Furthermore, this improvement enhances the 

accuracy of object categorization and pattern recognition. 

[78]. The performance graphs for training and validation 

showed a rapid progression in the initial epochs, followed by 

convergence in the subsequent epochs, resulting in an 

accuracy value that approached an impressive 96.42%. The 

loss value consistently decreased as the iterations increased, 

signifying the effectiveness of the training process. The six 

top-performing CNN models exhibited comparable patterns, 

with the loss value converging towards 0. These six top 

performing models showed remarkable performance in 

classifying aflatoxin contamination levels using pre-trained 

networks as indicated in Fig. 8. 

The determination of the best results from the training and 

validation process was followed by the evaluation of the CNN 

models' performance using the testing dataset. The confusion 

matrix results in Fig. 9 showed that the average accuracy of 

the testing dataset was 96.6% and this was considered high 

for the classification of the aflatoxin contamination level in 

cocoa beans. A confusion matrix is a matrix representation of 

the prediction summary. Through a comparison of the 

predicted and true classes, it demonstrates the number of 

correct and wrong predictions for each class. This information 

may be utilized to make decisions and optimize our 

algorithms [79]. These results were comparable to the testing 

accuracy of 99% recorded by Albarrak [80] for date fruit 

classification. The CNN models were able to accurately 

classify 100% without errors for the "free of aflatoxin" and 

"contaminated above the limit" categories but had an error of 

10% for the "contaminated below the limit" by misclassifying 

cocoa beans as contaminated above the limit. This means the 

models classified the cocoa beans contaminated below the 

limit with an accuracy of 90%. Even though there is 

misclassification, this type of miscalculation can still be 

tolerated compared to the false negative type of 

miscalculation, namely miscalculation of aflatoxin-

contaminated cocoa beans categorized as aflatoxin-free, 

which will have a negative impact on ensuring food safety. 

This high accuracy means the constructed CNN models 

can effectively classify the aflatoxin contamination level in 

cocoa beans as "free of aflatoxin," "contaminated below the 

limit," and "contaminated above the limit". Based on the 

results obtained above, CNN models and fluorescence images 

can be combined in the future to serve as an alternative 

method to classify the level of aflatoxin contamination in 

cocoa beans. This approach can also offer better accuracy and 

cost efficiency than existing methods. The combination of 

CNN models and fluorescence images is expected to 

minimize the impact of aflatoxin on health and losses in the 

cacao trade. However, this research still uses an acquisition 

unit on immovable objects, so further research is needed to 

develop an acquisition system with an acquisition unit that 

can record images using a motorized stage so that it 

approaches applications in quality control in the cacao 

industry. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 8. Performance of the six best CNN models for aflatoxin contamination level classification using pre-trained networks: (a) GoogLeNet (optimizer = Adam, 

learning rate = 0.0001), (b) AlexNet (optimizer = optimizer = Adam, learning rate = 0.0001), (c) ResNet50 (optimizer = RSMprop, learning rate = 0.0001), (d) 

ResNet50 (optimizer = Adam, learning rate = 0.0001 (e) GoogLeNet (optimizer = Adam, learning rate = 0.00005) (f) SqueezeNet (optimizer = Adam, learning 

rate = 0.0001 
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Fig. 9. Confusion matrix for the aflatoxin level classification in cocoa beans 

using fluorescence images 

IV. CONCLUSION 

In conclusion, this study demonstrated the effectiveness of 

utilizing pre-trained CNN models in combination with 

fluorescence images to accurately classify aflatoxin 

contamination levels in cocoa beans. Through a comparative 

analysis of GoogLeNet, SqueezeNet, AlexNet, and ResNet50, 

it was determined that the GoogLeNet model, optimized with 

Adam and a learning rate of 0.0001, achieved remarkable 

classification accuracy, with a validation accuracy of 96.42% 

and a testing accuracy of 96%. These results highlight the 

potential of deep learning techniques and image-based 

approaches for addressing the crucial issue of aflatoxin 

contamination in cocoa beans. 

The success of this study opens up avenues for further 

research and applications. The proposed method offers a non-

invasive and cost-effective means to assess the safety of cocoa 

beans, aiding in maintaining the quality and value of this 

essential commodity. Moreover, the use of fluorescence 

imaging holds promises for early detection of contamination, 

contributing to proactive interventions in the food supply 

chain. Future research could explore the scalability of this 

approach across different varieties of cocoa beans and under 

varying environmental conditions. 

By integrating cutting-edge technology with the 

agriculture and food safety sectors, this study contributes to 

the ongoing efforts to ensure food security, trade compliance, 

and public health. As the field of deep learning continues to 

evolve, it is anticipated that innovative solutions like this will 

further revolutionize food quality assessment and safety 

assurance. 
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